Show simple item record

dc.contributor.advisorRamos Cutipa, Jose Manueles_PE
dc.contributor.authorLarico Capia, Jhonatan Edwines_PE
dc.date.accessioned2022-11-23T20:33:29Z
dc.date.available2022-11-23T20:33:29Z
dc.date.issued2022-11-25
dc.identifier.urihttps://repositorio.unap.edu.pe/handle/20.500.14082/19185
dc.description.abstractEl presente trabajo de investigación tiene como propósito el de Implementar un modelo basado en redes neuronales recurrentes el cual pueda predecir la demanda de energía eléctrica con el mayor porcentaje de exactitud posible, utilizando los datos históricos suministrados por la Empresa de distribución Electro Puno, proponiendo un modelo basado en redes neuronales recurrentes para la predicción de la demanda de la energía eléctrica, se utiliza una base de datos de la demanda de energía eléctrica durante los años 2018, 2019, 2020 hasta agosto del 2021, el cual fue suministrado por la empresa Electro Puno S.A.A., Iniciándose con la inspección de los datos para lo cual se utiliza python y sus librerías, se realizan graficas del perfil de carga de la demanda para luego buscar patrones para construir el modelo y procediéndose a encontrar los datos atípicos y faltantes. Seguido se procede a la construcción de la red neuronal recurrente LSTM para lo cual se utiliza Tensorflow como herramienta principal y se evalúa las diferentes arquitecturas como la simple, apilada y bidireccional, obteniendo los mejores resultados con la arquitectura bidireccional y se concluye que el modelo es capaz de predecir la demanda de energía eléctrica en un horizonte de corto y mediano plazo, llegándose a determinar como resultado implemento un modelo de predicción basado en redes neuronales recurrentes LSTM que puede predecir la demanda de energía eléctrica con un 97.18% exactitud.es_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.eses_PE
dc.sourceUniversidad Nacional del Altiplanoes_PE
dc.sourceRepositorio Institucional - UNAPes_PE
dc.subjectModelo de predicciónes_PE
dc.subjectDemanda eléctricaes_PE
dc.subjectPreprocesamiento de datoses_PE
dc.subjectRedes neuronales recurrentes LSTMes_PE
dc.subjectPythones_PE
dc.subjectTensorflowes_PE
dc.titleAplicación de las redes neuronales recurrentes para la predicción de la demanda de energía eléctrica en la barra de 10kv - Juliaca, de la empresa de distribución Electro Puno S.A.Aes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.nameIngeniero Mecánico Electricistaes_PE
thesis.degree.disciplineIngeniería Mecánica Eléctricaes_PE
thesis.degree.grantorUniversidad Nacional del Altiplano. Facultad de Ingeniería Mecánica Eléctrica, Electrónica y Sistemases_PE
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_PE
dc.publisher.countryPEes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.03es_PE
renati.advisor.orcidhttps://orcid.org/0000-0001-5447-3362es_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
renati.levelhttps://purl.org/pe-repo/renati/nivel#tituloProfesionales_PE
renati.discipline713076es_PE
renati.jurorBeltran Castañon, Norman Jesuses_PE
renati.jurorHurtado Chavez, Angel Marioes_PE
renati.jurorQuisocala Herrera, Jhimmy Alberthes_PE
renati.author.dni70262011
renati.advisor.dni01342289


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess