Abstract:
El presente trabajo de investigación tiene como propósito el de Implementar un modelo basado en redes neuronales recurrentes el cual pueda predecir la demanda de energía eléctrica con el mayor porcentaje de exactitud posible, utilizando los datos históricos suministrados por la Empresa de distribución Electro Puno, proponiendo un modelo basado en redes neuronales recurrentes para la predicción de la demanda de la energía eléctrica, se utiliza una base de datos de la demanda de energía eléctrica durante los años 2018, 2019, 2020 hasta agosto del 2021, el cual fue suministrado por la empresa Electro Puno S.A.A., Iniciándose con la inspección de los datos para lo cual se utiliza python y sus librerías, se realizan graficas del perfil de carga de la demanda para luego buscar patrones para construir el modelo y procediéndose a encontrar los datos atípicos y faltantes. Seguido se procede a la construcción de la red neuronal recurrente LSTM para lo cual se utiliza Tensorflow como herramienta principal y se evalúa las diferentes arquitecturas como la simple, apilada y bidireccional, obteniendo los mejores resultados con la arquitectura bidireccional y se concluye que el modelo es capaz de predecir la demanda de energía eléctrica en un horizonte de corto y mediano plazo, llegándose a determinar como resultado implemento un modelo de predicción basado en redes neuronales recurrentes LSTM que puede predecir la demanda de energía eléctrica con un 97.18% exactitud.