Show simple item record

dc.contributor.advisorQuispe Carita, Ángel Javieres_PE
dc.contributor.authorCuno Cartagena, Kewin Xavieres_PE
dc.date.accessioned2024-12-17T23:33:28Z
dc.date.available2024-12-17T23:33:28Z
dc.date.issued2024-12-19
dc.identifier.urihttps://repositorio.unap.edu.pe/handle/20.500.14082/23692
dc.description.abstractEste trabajo evalúa algoritmos de Machine Learning para predecir la precipitación total horaria en estaciones meteorológicas de las Redes Regional y Global de Observación Básica (RBON y GBON), utilizando datos de estaciones en Arequipa, Tacna y Lima, extraídos de la plataforma de datos abiertos del gobierno peruano. Se implementó un marco metodológico riguroso que incluyó el filtrado de valores atípicos, imputación de datos faltantes y normalización de variables predictoras para garantizar la calidad del dataset este contiene 387108 registros en diferentes estaciones. Se analizaron algoritmos como Decision Tree, Random Forest, Support Vector Regressor, Linear Regression y K-Nearest Neighbors, seleccionados por su capacidad para modelar relaciones lineales y no lineales, y se evaluaron utilizando métricas como el Error Cuadrático Medio (MSE), Error Absoluto Medio (MAE), Coeficiente de Determinación (R²), Varianza Explicada y Error Máximo. El modelo Decision Tree demostró el mejor desempeño, alcanzando un MSE de 1.01, un RMSE de 1.01 y un R² de 0.53, destacándose por su capacidad para manejar datos complejos y minimizar errores extremos. Los resultados validan la viabilidad de identificar modelos predictivos de alto rendimiento para precipitación horaria, subrayando la importancia del preprocesamiento de datos, optimización de hiperparámetros y análisis multivariante de métricas.es_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional del Altiplano. Repositorio Institucionales_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.eses_PE
dc.subjectMachine Learninges_PE
dc.subjectOptimización de Modeloses_PE
dc.subjectPrecipitación Horariaes_PE
dc.subjectPredicción Meteorológicaes_PE
dc.subjectProcesamiento de Datoses_PE
dc.titleEvaluación comparativa de algoritmos de Machine Learning para la predicción de precipitación total horaria en estaciones meteorológicas de RBON y GBONes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.nameIngeniero Estadístico e Informáticoes_PE
thesis.degree.disciplineIngeniería Estadística e Informáticaes_PE
thesis.degree.grantorUniversidad Nacional del Altiplano. Facultad de Ingeniería Estadística e Informáticaes_PE
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_PE
dc.publisher.countryPEes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.01es_PE
renati.advisor.orcidhttps://orcid.org/0000-0002-7357-4043es_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
renati.levelhttps://purl.org/pe-repo/renati/nivel#tituloProfesionales_PE
renati.discipline542066es_PE
renati.jurorLópez Cueva, Miltones_PE
renati.jurorTorres Cruz, Fredes_PE
renati.jurorTisnado Puma, Julio Césares_PE
renati.author.dni73097174
renati.advisor.dni42266179


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess