DSpace Repository

Desarrollo de modelos de redes neuronales recurrentes para el pronóstico de niveles de agua del lago Titicaca

Show simple item record

dc.contributor.advisor Calderon Vilca, Edwin Fredy es_PE
dc.contributor.author Lujano Laura, Rene es_PE
dc.date.accessioned 2024-01-26T01:35:13Z
dc.date.available 2024-01-26T01:35:13Z
dc.date.issued 2024-01-26
dc.identifier.uri https://repositorio.unap.edu.pe/handle/20.500.14082/21461
dc.description.abstract El pronóstico preciso de los niveles de agua del Lago Titicaca (NALT) es esencial para la seguridad y la gestión eficiente de los recursos hídricos, especialmente en condiciones climáticas extremas. El objetivo de la investigación fue desarrollar modelos de Redes Neuronales Recurrentes (RNN) de memoria a corto y largo plazo (LSTM) para pronosticar niveles de agua a nivel diario y mensual, utilizando diferentes ventanas de tiempo. Se evaluaron los modelos utilizando métricas comunes en recursos hídricos, como el error cuadrático medio (RMSE), la eficiencia de Nash-Sutcliffe (NSE), la eficiencia de Kling-Gupta (KGE) y el sesgo porcentual (PBIAS). Para pronósticos diarios, la ventana de tiempo más efectiva fue de 1 día, con un RMSE de 0.0080 metros y un NSE de 0.9996. Para pronósticos mensuales, la mejor ventana de tiempo fue de 12 meses, con un RMSE de 0.103 metros y un NSE de 0.9741. En ambos casos, el modelo LSTM demostró un bajo sesgo y alta precisión. El número de épocas de entrenamiento no tuvo un impacto significativo en la precisión del modelo. La utilización de RNN-LSTM se revela efectiva en diferentes escalas temporales, siendo una herramienta valiosa para la predicción de niveles de agua del Lago Titicaca. Estos modelos pueden desempeñar un papel fundamental en la emisión de alertas tempranas, gestión del riesgo, regulación ecológica, suministro de agua, control de inundaciones y toma de decisiones en situaciones de cambio extremo en los NALT, con potenciales impactos en los ecosistemas. es_PE
dc.format application/pdf es_PE
dc.language.iso spa es_PE
dc.publisher Universidad Nacional del Altiplano. Repositorio Institucional - UNAP es_PE
dc.rights info:eu-repo/semantics/openAccess es_PE
dc.rights.uri https://creativecommons.org/licenses/by/4.0/deed.es es_PE
dc.source Universidad Nacional del Altiplano es_PE
dc.source Repositorio Institucional - UNAP es_PE
dc.subject Altiplano peruano es_PE
dc.subject Aprendizaje automático es_PE
dc.subject Aprendizaje profundo es_PE
dc.subject Aprendizaje supervisado es_PE
dc.subject Cuenca del lago Titicaca es_PE
dc.subject Inteligencia artificial es_PE
dc.subject LSTM es_PE
dc.subject RNN es_PE
dc.title Desarrollo de modelos de redes neuronales recurrentes para el pronóstico de niveles de agua del lago Titicaca es_PE
dc.type info:eu-repo/semantics/bachelorThesis es_PE
thesis.degree.name Ingeniero de Sistemas es_PE
thesis.degree.discipline Ingeniería de Sistemas es_PE
thesis.degree.grantor Universidad Nacional del Altiplano. Facultad de Ingeniería Mecánica Eléctrica, Electrónica y Sistemas es_PE
dc.type.version info:eu-repo/semantics/acceptedVersion es_PE
dc.publisher.country PE es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#1.02.01 es_PE
renati.advisor.orcid https://orcid.org/0000-0002-5118-0430 es_PE
renati.type https://purl.org/pe-repo/renati/type#tesis es_PE
renati.level https://purl.org/pe-repo/renati/nivel#tituloProfesional es_PE
renati.discipline 612076 es_PE
renati.juror Sosa Maydana, Carlos Boris es_PE
renati.juror Vilca Huayta, Oliver Amadeo es_PE
renati.juror Zanabria Gálvez, Aldo Hernán es_PE
renati.author.dni 47263576
renati.advisor.dni 42262469


Files in this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess

Search DSpace


Browse

My Account

Statistics