Show simple item record

dc.contributor.advisorCalderon Vilca, Edwin Fredyes_PE
dc.contributor.authorLujano Laura, Renees_PE
dc.date.accessioned2024-01-26T01:35:13Z
dc.date.available2024-01-26T01:35:13Z
dc.date.issued2024-01-26
dc.identifier.urihttps://repositorio.unap.edu.pe/handle/20.500.14082/21461
dc.description.abstractEl pronóstico preciso de los niveles de agua del Lago Titicaca (NALT) es esencial para la seguridad y la gestión eficiente de los recursos hídricos, especialmente en condiciones climáticas extremas. El objetivo de la investigación fue desarrollar modelos de Redes Neuronales Recurrentes (RNN) de memoria a corto y largo plazo (LSTM) para pronosticar niveles de agua a nivel diario y mensual, utilizando diferentes ventanas de tiempo. Se evaluaron los modelos utilizando métricas comunes en recursos hídricos, como el error cuadrático medio (RMSE), la eficiencia de Nash-Sutcliffe (NSE), la eficiencia de Kling-Gupta (KGE) y el sesgo porcentual (PBIAS). Para pronósticos diarios, la ventana de tiempo más efectiva fue de 1 día, con un RMSE de 0.0080 metros y un NSE de 0.9996. Para pronósticos mensuales, la mejor ventana de tiempo fue de 12 meses, con un RMSE de 0.103 metros y un NSE de 0.9741. En ambos casos, el modelo LSTM demostró un bajo sesgo y alta precisión. El número de épocas de entrenamiento no tuvo un impacto significativo en la precisión del modelo. La utilización de RNN-LSTM se revela efectiva en diferentes escalas temporales, siendo una herramienta valiosa para la predicción de niveles de agua del Lago Titicaca. Estos modelos pueden desempeñar un papel fundamental en la emisión de alertas tempranas, gestión del riesgo, regulación ecológica, suministro de agua, control de inundaciones y toma de decisiones en situaciones de cambio extremo en los NALT, con potenciales impactos en los ecosistemas.es_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.eses_PE
dc.sourceUniversidad Nacional del Altiplanoes_PE
dc.sourceRepositorio Institucional - UNAPes_PE
dc.subjectAltiplano peruanoes_PE
dc.subjectAprendizaje automáticoes_PE
dc.subjectAprendizaje profundoes_PE
dc.subjectAprendizaje supervisadoes_PE
dc.subjectCuenca del lago Titicacaes_PE
dc.subjectInteligencia artificiales_PE
dc.subjectLSTMes_PE
dc.subjectRNNes_PE
dc.titleDesarrollo de modelos de redes neuronales recurrentes para el pronóstico de niveles de agua del lago Titicacaes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
thesis.degree.grantorUniversidad Nacional del Altiplano. Facultad de Ingeniería Mecánica Eléctrica, Electrónica y Sistemases_PE
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_PE
dc.publisher.countryPEes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.01es_PE
renati.advisor.orcidhttps://orcid.org/0000-0002-5118-0430es_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
renati.levelhttps://purl.org/pe-repo/renati/nivel#tituloProfesionales_PE
renati.discipline612076es_PE
renati.jurorSosa Maydana, Carlos Borises_PE
renati.jurorVilca Huayta, Oliver Amadeoes_PE
renati.jurorZanabria Gálvez, Aldo Hernánes_PE
renati.author.dni47263576
renati.advisor.dni42262469


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess