Detección de deforestación de bosques en imágenes satelitales con redes neuronales convolucionales
Abstract
La deforestación de los bosques de la Amazonía tiene orígenes naturales o por las actividades humanas, visto desde el espacio, la deforestación se refleja en imágenes tomadas por satélite Landsat-8. Metodológicamente la investigación es de diseño cuasi experimental por ende busca segmentar la deforestación de los bosques de la Amazonía peruana presente en las imágenes satelitales, utilizando la red neuronal convolucional especializada en segmentación de imágenes denominada U-Net (red neuronal totalmente conectada). Inicia con la selección de imágenes satelitales de la Amazonía de Puno y Madre de Dios, luego un pre-procesamiento consistente en dividir las imágenes en tamaños de 256x256 pixeles acompañados de imágenes binarizadas (máscaras) entre bosques y deforestación, estas imágenes se dividen en grupos de entrenamiento y prueba y son las entradas de la red neuronal, el modelo de la U-Net que procesa y completa la tarea de segmentación, consta de 5 capas convolucionales y 4 de convolución transpuesta, un kernel de 3x3, funciones de activación ReLU y Sigmoid. Los resultados de la U-Net muestran un alto desempeño en la segmentación de la deforestación presente en las imágenes satelitales Landsat-8, alcanzando una precisión de 98% con imágenes de entrenamiento y 98.6% con imágenes de prueba. Segmentar la deforestación de bosques implica analizar las diferencias existentes entre cúmulos de pixeles, para ello, la red neuronal U-Net logra excelentes resultados en tareas de segmentación y su precisión depende del contraste existente entre los pixeles que representan a los bosques y áreas deforestadas.