DSpace Repository

Modelo de aprendizaje automático para identificar operaciones inusuales de lavado de activos en una entidad financiera

Show simple item record

dc.contributor.advisor Condori Alejo, Henry Ivan es_PE
dc.contributor.author Flores Dueñas, Wari Ymber es_PE
dc.contributor.author Pari Salazar, Yumey Leslie es_PE
dc.date.accessioned 2022-04-22T08:39:45Z
dc.date.available 2022-04-22T08:39:45Z
dc.date.issued 2022-04-22
dc.identifier.uri http://repositorio.unap.edu.pe/handle/20.500.14082/18340
dc.description.abstract Hoy en día, las entidades financieras se enfrentan a una lucha constante contra el lavado de activos y el financiamiento al terrorismo, es por ello que centran sus esfuerzos en la identificación de operaciones inusuales, utilizando las características que puedan evidenciar un comportamiento irregular al momento de realizar transacciones dentro de la entidad financiera, por ello que se crea un modelo que trabaje de forma conjunta para efectuar un análisis de los datos del cliente y con ello lograr la detección de posibles operaciones inusuales de lavado de activos, es necesario utilizar técnicas que nos permitan realizar un análisis exhaustivo y con precisión de grandes volúmenes de datos e información relevante y confiable. Para lograr este objetivo, se ha realizado un pre procesamiento de los datos y posteriormente se han aplicado algoritmos de aprendizaje automático que han surgido como una herramienta fundamental dentro del análisis y generación de conocimiento, dentro de ellos, se han utilizado los más representativos. Seguidamente, para realizar la aprobación del modelo se ha aplicado una validación cruzada de información y se obtuvo la métrica Acuracy, que es la precisión de cada modelo aplicado brinda, de esta manera, se ha obtenido una métrica que evalúa la precisión de cada uno de los modelos implementados. Finalmente, los resultados de los modelos propuestos han dado un 78.37% de precisión de confianza en el modelo. La entidad financiera deberá actualizar su información de riesgo, ya que debido a las vulnerabilidades que se exponen por diferentes delitos de LAFT, estas se incrementan de manera paulatina, es por ello que se debe mantener actualizado de los constantes delitos precedentes, para así alimentar la información del Modelo de Aprendizaje Automático. es_PE
dc.description.uri Tesis es_PE
dc.format application/pdf es_PE
dc.language.iso spa es_PE
dc.publisher Universidad Nacional del Altiplano. Repositorio Institucional - UNAP es_PE
dc.rights info:eu-repo/semantics/openAccess es_PE
dc.rights.uri https://creativecommons.org/licenses/by/4.0/deed.es es_PE
dc.source Universidad Nacional del Altiplano es_PE
dc.source Repositorio Institucional - UNAP es_PE
dc.subject Aprendizaje automático es_PE
dc.subject Lavado de activos y financiamiento al terrorismo es_PE
dc.subject Operaciones inusuales es_PE
dc.subject CRISP-DM es_PE
dc.title Modelo de aprendizaje automático para identificar operaciones inusuales de lavado de activos en una entidad financiera es_PE
dc.type info:eu-repo/semantics/bachelorThesis es_PE
thesis.degree.name Ingeniero de Sistemas es_PE
thesis.degree.discipline Ingeniería de Sistemas es_PE
thesis.degree.grantor Universidad Nacional del Altiplano. Facultad de Ingeniería Mecánica Eléctrica, Electrónica y Sistemas es_PE
thesis.degree.level Título Profesional es_PE
dc.publisher.country PE es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#2.02.04 es_PE
renati.advisor.orcid https://orcid.org/0000-0002-1219-555X es_PE
renati.type https://purl.org/pe-repo/renati/type#tesis es_PE
renati.level https://purl.org/pe-repo/renati/nivel#tituloProfesional es_PE
renati.discipline 612076 es_PE
renati.juror Arcaya Coaquira, William Eusebio es_PE
renati.juror Zanabria Galvez, Aldo Hernan es_PE
renati.juror Ruelas Acero, Donia Alizandra es_PE
renati.author.dni 70190194
renati.author.dni 71040230
renati.advisor.dni 01325355


Files in this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess

Search DSpace


Browse

My Account

Statistics