DSpace Repository

Machine learning y realidad aumentada para el reconocimiento de recursos turísticos

Show simple item record

dc.contributor.advisor Ibañez Quispe, Vladimiro es_PE
dc.contributor.author Renteria Ayquipa, Ronald Alberto es_PE
dc.date.accessioned 2021-09-01T16:26:21Z
dc.date.available 2021-09-01T16:26:21Z
dc.date.issued 2021-05-28
dc.identifier.uri http://repositorio.unap.edu.pe/handle/20.500.14082/16669
dc.description.abstract Apurímac, a pesar de contar con gran cantidad de recursos turísticos, no ha podido di-fundirlos de manera adecuada, por lo que en esta investigación se pretende aplicar ma-chine learning y realidad aumentada para la detección y geolocalización de recursos tu-rísticos. Construyendo una aplicación móvil que integre todas estas tecnologías y permi-ta mejorar la experiencia del visitante en tiempo real. Para lograr el objetivo, se conside-raron 25 recursos turísticos de la región, 5 para el entrenamiento del modelo machine learning y 20 para la ubicación en tiempo real por geolocalización. En cuanto a machine learning, se entrenó con un dataset construido exclusivamente para esta investigación, mediante YOLOv3 sobre Darknet, a continuación, el modelo entrenado se incluyó en un servidor web con Flask sobre Python, que estará a la espera de imágenes. Además, se implementó una aplicación web para la gestión de recursos turísticos que serán mostra-dos al usuario final. En lo referente a realidad aumentada esta se implementó sobre una aplicación móvil la cual envía imágenes captadas por la cámara del móvil al detector, esta app móvil también permite mostrar puntos de interés cercanos basado en la geoloca-lización y orientación actual; ya sean reconocidos o geolocalizados, la app permite mos-trar la información del recurso turístico mediante realidad aumentada. Como resultados se logró una precisión del modelo en el reconocimiento de imágenes superior al 90%, se logró determinar los puntos de interés turístico cercanos al móvil basándose en su geopo-sicionamiento y orientación, finalmente, se logró definir una arquitectura que intercomu-nique estos tres sistemas que trabajan con tecnologías diferentes. es_PE
dc.description.uri Tesis es_PE
dc.format application/pdf es_PE
dc.language.iso spa es_PE
dc.publisher Universidad Nacional del Altiplano. Repositorio Institucional - UNAP es_PE
dc.rights info:eu-repo/semantics/openAccess es_PE
dc.rights.uri https://creativecommons.org/licenses/by/4.0/deed.es es_PE
dc.source Universidad Nacional del Altiplano es_PE
dc.source Repositorio Institucional - UNAP es_PE
dc.subject Machine Learning y Realidad Aumentada es_PE
dc.subject Ciencias de la Computación es_PE
dc.title Machine learning y realidad aumentada para el reconocimiento de recursos turísticos es_PE
dc.type info:eu-repo/semantics/doctoralThesis es_PE
thesis.degree.name Doctoris Scientiae en Ciencias de la Computación es_PE
thesis.degree.discipline Ciencias de la Computación es_PE
thesis.degree.grantor Universidad Nacional del Altiplano. Escuela de Posgrado es_PE
thesis.degree.level Doctorado es_PE
dc.publisher.country PE es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#1.02.01 es_PE
renati.advisor.orcid https://orcid.org/0000-0002-0277-4945 es_PE
renati.type https://purl.org/pe-repo/renati/type#tesis es_PE
renati.level https://purl.org/pe-repo/renati/nivel#doctor es_PE
renati.discipline 611028 es_PE
renati.juror Aliaga Payehuanca, Elvis Augusto es_PE
renati.juror Jimenez Chura, Adolfo Carlos es_PE
renati.juror Juárez Vargas, Juan Carlos es_PE
renati.author.dni 41039754
renati.advisor.dni 01216522


Files in this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess

Search DSpace


Browse

My Account

Statistics