Show simple item record

dc.contributor.advisorRamos Cutipa, Jose Manueles_PE
dc.contributor.authorQuenta Ccaso, Wuildo Felipees_PE
dc.contributor.authorHancco Chambi, Eloy Rubenes_PE
dc.date.accessioned2019-12-23T16:46:46Z
dc.date.available2019-12-23T16:46:46Z
dc.date.issued2019-12-04
dc.identifier.urihttp://repositorio.unap.edu.pe/handle/20.500.14082/12533
dc.description.abstractEl presente proyecto de investigación titulado, “Metodología para el Diseño de un Controlador Difuso aplicado a Hornos Industriales de Petróleo”. Tuvo como objetico principal controlar y monitorear la corriente, temperatura y contaminación, que se produce dentro del prototipo experimental, mediante la implementación de un controlador difuso. La metodología que se desarrolló en esta investigación es de tipo cuantitativo, aplicativo y experimental; su estudio se desarrolló en la Escuela Profesional de Ingeniería Mecánica Eléctrica, específicamente en el Laboratorio de Control y Automatización. Donde el método más efectivo para el control de parámetros físicos es el control difuso, el cual permite trabajar con parámetros muy complejos y no lineales, gracias a su alta flexibilidad, su tolerancia con la imprecisión y su base en el lenguaje natural. Además proporciono un excelente rendimiento en condiciones de funcionamiento, Para el desarrollo del control difuso se utilizó un sistema de tipo Mamdani y Tsukamoto el cual se diseñó e implemento con la herramienta FuzzyLogicDesigner y/o Labview. Esta investigación aporta un sistema difuso que se puede adaptar a la amplia variedad de hornos industriales de la región, además da una solución con costos muy por debajo de las soluciones comerciales disponibles para su implementación. Los principales resultados alcanzados indican, que aplicando el control de Mandani con problema servo fue posible reducir la emisión de gases de combustión en un 77.00 PPM del CO y 0.00 PPM de CH4, a una temperatura de 200 °C en un tiempo de 40 Seg. Aplicando el control Mandani con problema regulado se logró reducir el CO en 27 PPM y CH4 en 0 PPM en un tiempo de 75 Seg. Aplicando el control de Tsukamoto se logró reducir el monóxido de carbono en un 37.00 PPM a una temperatura de 130 °C en tu tiempo de 100 Seg.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.eses_PE
dc.sourceUniversidad Nacional del Altiplanoes_PE
dc.sourceRepositorio Institucional - UNAPes_PE
dc.subjectControl de procesoses_PE
dc.subjectDiseño de un controlador difusoes_PE
dc.titleMetodología para el diseño de un controlador difuso aplicado a hornos industriales de petróleoes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.nameIngeniero Mecánico Electricistaes_PE
thesis.degree.disciplineIngeniería Mecánica Eléctricaes_PE
thesis.degree.grantorUniversidad Nacional del Altiplano. Facultad de Ingeniería Mecánica Eléctrica, Electrónica y Sistemases_PE
thesis.degree.levelTítulo Profesionales_PE
dc.publisher.countryPEes_PE
renati.discipline713076es_PE


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess