INCIDENCIA Y DIVERSIDAD DE PEQUEÑOS MAMÍFEROS TERRESTRES EN CULTIVOS DE QUINUA (*Chenopodium quinoa* WILLD) EN LA ESTACIÓN EXPERIMENTAL ZONAL ILLPA PUNO – INIAA

TESIS

PRESENTADA POR:

Br. PAULO CÉSAR CALLA CHAMBI

PARA OPTAR EL TÍTULO PROFESIONAL DE:

LICENCIADO EN BIOLOGÍA

PUNO – PERÚ

2018
UNIVERSIDAD NACIONAL DEL ALTIPLANO
FACULTAD DE CIENCIAS BIOLÓGICAS
ESCUELA PROFESIONAL DE BIOLOGÍA

INCIDENCIA Y DIVERSIDAD DE PEQUEÑOS MAMÍFeros TERRESTRES
EN CULTIVOS DE QUINUA (Chenopodium quinoa WILLD) EN LA ESTACIÓN
EXPERIMENTAL ZONAL I.L.LPA PUNO – INJAA

TESIS
PRESENTADA POR:
Br. PAULO CÉSAR CALLA CHAMBI
PARA OPTAR EL TÍTULO PROFESIONAL DE:
LICENCIADO EN BIOLÓGIA

APROBADA POR EL JURADO REVISOR:

PRESIDENTE:
Dr. Álvaro Gabino Sarmiento Mena

PRIMER MIEMBRO:
Mg. Martha Elizabeth Aparicio Saavedra

SEGUNDO MIEMBRO:
M. Sc. Gilmar Gamaliel Goyzueta Canacho

DIRECTOR / ASESOR:
M. Sc. Alfredo Ludwig Loza del Carpio

Fecha de sustentación: 28/08/2018

Área: Ciencias Biomédicas
Sub Línea: Conservación y Aprovechamiento de Recursos Naturales
Tema: Diversidad Biológica
DEDICATORIA

A la persona que me dio su apoyo durante toda su vida y aun ahora me deja una parte de ella: Vilma Alodia Chambi Condori
AGRADECIMIENTOS

Agradecer primero a Dios que me brindo una familia comprensiva y que a pesar de las dificultades salió adelante.

A mi Madre Vilma que desde donde esté me vigila y estoy seguro desea que cumpla mis sueños, a ella, que aún recuerdo la última caricia característica de ella y su tan fuerte afición al vóley de todos los fines de semana.

A mi Hermana Ximena Calla Chambi a la que prometí que cuidaría hasta el último aliento y aguanto tantos días sola para que pudiera ser alguien mejor.

A mi Padre Cesar que a pesar de nuestras diferencias y de ser tan testarudo trata de apoyarme en todo lo que puede y comparte el cariño por la señorita de la familia.

Mi eterno agradecimiento a la Facultad de Ciencias Biológicas, por darme todo el conocimiento hasta ahora adquirido, en especial al área de ecología por facilitarme todos los medios que fueron posibles.

Al M Sc. Alfredo Loza por el conocimiento que me brindo, no solo durante la ejecución de este trabajo, sino también durante toda la carrera.

Al Lic. Leorgio Palacios, quien con su experiencia profesional ayuda en todo lo posible, a las personas interesadas en la investigación.

Al B ngo. Pedro Delgado, por la ayuda del INIA y que permitió que mi persona pudiera ingresar al área para la realización de esta investigación.

A mi tía Gladis que ayuda tanto en casa a pesar de su trabajo y siempre muestra su apoyo.

A mi tío Mario que me ayudo tanto con mi trabajo, no hubiera sido posible realizar ninguna de estas actividades sin el financiamiento que brinda el trabajo.

Agradecer a la ONG Pro Carnívoros que me brindo los medios para la realización de esta y otras actividades, en especial al B ngo. Gabriel Llerena director de la ONG quien con sus palabras de apoyo fue impulso para dar un esfuerzo más.

A la señorita Katherine, por su apoyo y compañía durante el tiempo que la conozco, por hacer el tiempo en laboratorio menos aburrido.
ÍNDICE GENERAL

DEDICATORIA .. 3
AGRADECIMIENTOS .. 4
ÍNDICE DE FIGURAS .. 7
ÍNDICE DE TABLAS ... 9
RESUMEN .. 10
ABSTRACT .. 11

I. INTRODUCCIÓN .. 12

II. REVISIÓN DE LITERATURA ... 14

2.1. ANTECEDENTES .. 14

2.2. MARCO TEORICO .. 17

2.2.1. Diversidad de mamíferos .. 17

2.2.2. Orden Rodentia .. 17

a. Roedores como plaga en cultivos ... 19
b. Roedores en cultivo de quinua ... 20

2.2.3. La Quinua ... 20

a. Taxonomía de la Quinua .. 21
b. Descripción de la Morfología .. 22
c. Variedades de Quinua ... 23
d. Fenología de la Quinua ... 23
e. Cosecha y Post-Cosecha ... 24

2.2.3. Cultivo de la Quinua en Puno ... 25

2.3. MARCO CONCEPTUAL ... 26

III. MATERIALES Y MÉTODOS ... 29

3.1. Zona de Estudio ... 29

3.1.1. Área cultivada (AC) .. 29

3.1.2. Área sin cultivo (ASC) ... 29

3.2. Metodología ... 30

3.2.1. Identificación Taxonómica de pequeños mamíferos ... 30

a. Frecuencia y horario de muestreo ... 30

3.2.2. Identificación de la incidencia de los pequeños mamíferos en cultivos de Quinua ... 37

3.2.3. Identificación de pequeños mamíferos con efecto negativo en cultivos de quinua ... 38

3.2.4. Determinación de la fluctuación poblacional de los pequeños mamíferos en las etapas fenológicas y actividades post-cosecha ... 39

IV. RESULTADOS Y DISCUSIÓN .. 40

4.1. Identificación taxonómica de las especies de pequeños mamíferos 40
4.1.2. Grado de diversidad en la zona ... 41
4.2. Cuantificación de la incidencia de los pequeños mamíferos en cultivos de quinua (Chenopodium quinoa Willdenow) ... 42
 4.2.1. Comparación de la abundancia de pequeños mamíferos en las etapas de cultivo 44
4.3. Especies negativas para la quinua ... 44
4.4. Determinación de la fluctuación poblacional de los pequeños mamíferos en los periodos fenológicos de la quinua (grano pastoso y madurez fisiológica) y etapa post cosecha (emarve y almacén) ... 46
V. CONCLUSIONES .. 49
VI. RECOMENDACIONES ... 50
VII. REFERENCIAS .. 51
ANEXOS .. 59
ÍNDICE DE FIGURAS

Figura 1. Variación del número de dientes en las hojas de Quinua
Figura 2. Imagen satelital de la Estación Experimental Zonal Illpa Puno – INIAA
Figura 3. Disposición de las trampas golpe
Figura 4. Trampa golpe cebada y activada en el Área sin Cultivo
Figura 5. Medidas somáticas tomadas a los individuos capturados
Figura 6. Inicio del proceso de taxidermización
Figura 7. Flujo del proceso de taxidermización de roedores
Figura 8. Capturas totales de roedores en diferentes condiciones fenológicas del cultivo de quinua y en la época post cosecha
Figura 9. Panorámica del área destinada a los cultivos dentro de la EEA
Figura 10. Vista frontal de uno de los almacenes de la EEA
Figura 11. Panorámica de la carretera a Juliaca vista desde Illpa
Figura 12. Vista frontal del emparrado de la quinua variedad Pasankalla tipo Tauca
Figura 13. Vista lateral del emparrado de la quinua variedad Pasankalla tipo Tauca
Figura 14. Día de revisión y recojo de las trampas golpe
Figura 15. Día de revisión y recojo de trampas golpe
Figura 16. Planta de quinua variedad Pasankalla en la etapa fenológica de Madurez fisiológica
Figura 17. Sernicalo o aguilucho (Falco sparverius) sobre líneas de electricidad que cruzaban el almacén dentro de la EEA
Figura 18. Trampas golpe usadas para el muestreo de pequeños mamíferos en la EEA
Figura 19. Trampa golpe activada sin captura
Figura 20. Cebo usado como atrayente para las capturas de pequeños mamíferos dentro de la EEA
Figura 21. Trampa golpe y Cebo previamente preparado
Figura 22. Medición somática de la longitud total de un roedor
Figura 23. Medición sonática de la pata de un roedor
Figura 24. Medición sonática de la cola de un roedor
Figura 25. Medición sonática de la oreja de un roedor
Figura 26. Sernicalo o aguilucho (Falco sparverius)
Figura 27. Inicio de la taxidermización de un roedor capturado en la EEA
Figura 28. Limpieza final de los restos de grasa y musculo de la piel separada del cuerpo del roedor
Figura 29. Cráneo sumergido en lejía y agua oxigenada
Figura 30. Proceso de limpieza de cráneos usando bisturí y pinzas
Figura 31. Individuo de Akodon boliviensis capturado en el área sin cultivo de la Estación Experimental Zonal Illpa Puno – INIAA
Figura 32. Individuo de Abrothrix andinus capturado en el área sin cultivo de la Estación Experimental Zonal Illpa Puno – INIAA
Figura 33. Individuo de Akodon albiventer capturado en el área sin cultivo de la Estación Experimental Zonal Illpa Puno – INIAA
Figura 34. Individuo de *Mus musculus* capturado en el área sin cultivo de la Estación Experimental Zonal Illpa Puno – INIAA...71

Figura 35. Individuos de *Phyllotis xanthopygus* capturado en el área sin cultivo de la Estación Experimental Zonal Illpa Puno – INIAA.................................72

Figura 36. Medidas craneales para roedores consideradas en la clave..........................73

Figura 37. Cráneos de las 5 especies de roedores encontradas en la EEA (................74

Figura 38. Mandíbulas inferiores de las 5 especies de roedores encontradas en la EEA
..74

Figura 39. Vista superior de las 5 especies de roedores encontradas en la EEA........75

Figura 40. Contenido estomacal de los roedores secando para su posterior disgregación y pesado ..75

Figura 41. *Ascaris lumbricoides* encontrado en el estómago de *Abrothrix andinus*76

Figura 42. Semilla no identificada encontrada en los estómagos de *Phyllotis xanthopygus*
...76

Figura 43. Individuo del orden *Phthiraptera* encontrada en el estómago *Mus musculus*
..77
ÍNDICE DE TABLAS

Tabla 1. Variedades y principales características de plantas de Quinua.......................... 23
Tabla 2. Especies de pequeños mamíferos capturados dentro de la Estación Experimental Zonal Illpa Puno – INIAA ... 40
Tabla 3. Número de individuos capturados durante todo el periodo de muestreo por cada especie y cálculos de los índices de Shanon Wiener y Simpson.......................... 42
Tabla 4. Número de Individuos capturados en las áreas con cultivo de quinua y sin cultivo. ... 43
Tabla 5. Matriz para la prueba de U Mann-Whitney con el p valor entre las abundancias de roedores según diferentes condiciones del cultivo de quinua y post cosecha......... 44
Tabla 6. Peso y porcentaje de las categorías del contenido estomacal de los individuos capturados. ... 45
Tabla 7. Registro y medidas somáticas de individuos colectados durante el muestreo de pequeños mamíferos en la EEA, 2017... 78
RESUMEN

Los roedores son los mamíferos más diversos y con mayor distribución, en algunos casos pueden causar problemas, pero la mayoría son necesarios para los ecosistemas, en los cultivos en general su presencia está confirmada, sin embargo en los cultivos de Quinua (*Chenopodium quinoa* Willdenow) su presencia no fue estudiada por ello se realizó capturas con trampas golpe distribuidas en un área con cultivo y otra sin cultivo entre los meses de Marzo a Julio del 2017, periodo en el que se desarrollaron las etapas fenológicas de grano pastoso, madurez fisiológica y actividades post-cosecha de emparve y almacén, el trabajo de investigación se realizó en la Estación Experimental Zonal Illpa Puno–INIA ubicada en el Departamento de Puno, Provincia de Puno, Distrito de Paucarcolla. Los objetivos fueron: a) Identificar taxonómicamente las especies de pequeños mamíferos presentes en la zona de estudio, b) Cuantificar el grado de incidencia de los pequeños mamíferos en los cultivos de quinua comparado con áreas naturales sin cultivo, c) Identificar si las especies de pequeños mamíferos tienen un efecto negativo en cultivos de quinua y d) Determinar la fluctuación poblacional de los pequeños mamíferos en los periodos fenológicos de la quinua (grano pastoso, madurez fisiológica) y actividades post-cosecha (emparve, almacén). En total se realizaron 53 capturas delos cuales se obtuvo cráneos y pieles para taxidermia identificándose a los pequeños mamíferos: *Akodon boliviensis, Akodon albiventer, Mus musculus, Abrothrix andinus* y *Phyllotis xanthopygus*, todos del orden rodentia. Solo se realizó una captura de *M. musculus* en el área con cultivo (durante la actividad de emparve) lo cual indica que no existe una tendencia de los roedores a ocupar cultivos de quinua; al examinar 38 estómagos se determinó que no existe preferencia de los roedores a consumir quinua ya que el 97.74% de su dieta está representada por restos vegetales, el estómago de la especie *M. musculus* encontrada el emparve fue la única con granos de quinua representada por solo el 1.09% de su dieta; La comunidad de roedores tuvo una curva ascendente con un leve descenso en la etapa de madurez fisiológica, la población de *P. xanthopygus* fue la que marco diferencia de abundancia en la actividad de almacén con respecto a las otras etapas viéndose reflejada en la prueba estadística de U Mann-Whitney (p<0.05).

Palabras Clave: Actividad post-cosecha, Etapa fenológica, Pequeños mamíferos, Quinua y Roedor.
ABSTRACT

Rodents are the most diverse mammals and with greater distribution, in some cases they can cause problems but most are necessary for the ecosystems, in the crops in general their presence is confirmed, however in the Quinoa (Chenopodium quinoa Willdenow) Presence was not studied, therefore captures were made with blow traps distributed in an area with cultivation and another without cultivation between the months of March to July of 2017, period in which the phenological stages of pasty grain, physiological maturity and activities post-harvest were developed emparve and storage, the research work was carried out in the Illpa Puno-INIAA Zonal Experimental Station located in the Department of Puno, Province of Puno, District of Paucarcolla. The objectives were: a) To identify taxonomically the species of small mammals present in the study area, b) To quantify the degree of incidence of small mammals in quinoa crops compared to natural areas without cultivation, c) To identify if the species of small mammals have a negative effect on quinoa crops and d) Determine the population fluctuation of small mammals in the phenological periods of quinoa (pasty grain, physiological maturity) and post-harvest activities (emparve, storage). In total, 53 captures were made, of which skulls and skins were obtained for taxidermy to identifying the small mammals: Akodon boliviensis, Akodon albiventer, Mus musculus, Abrothrix andinus and Phyllotis xanthopygus, all of the order Rodentia. Only one capture of M. musculus was carried out in the area under cultivation (during the emparve activity), which indicates that there is no tendency for rodents to occupy quinoa crops; when examining 38 stomachs it was determined that there is no preference of rodents to consume quinoa since 97.74% of their diet is represented by vegetable remains, the stomach of the species M. musculus found the emparve was the only one with quinoa grains represented by only 1.09% of their diet; The community of rodents had an ascending curve with a slight decrease in the physiological maturity stage, the population of P. xanthopygus was the one that marked the difference of abundance in the storage activity with respect to the other stages, being reflected in the statistical test of U Mann-Whitney (p <0.05).

Keywords: Quinoa, Phenological stage, Post-harvest activity, Rodent and Small mammals.
I. INTRODUCCIÓN

En zonas donde se realizan cultivos para consumo humano, la presencia de “ plagas” tanto vertebradas como invertebradas son frecuentes; el monocultivo, mal manejo durante el cultivo, mala elección de semillas e incluso la mala calidad de almacenamiento traen como consecuencia una depreciación en calidad del producto hasta no ser apto para el consumo humano; para evitar tales daños en los productos que son comercializados, no solo en el mercado nacional, se llevan acciones de “control” de las mismas plagas, generalmente con productos químicos y en menor grado productos orgánicos o biológicos, en cualquier caso, el control se realizaría con mayor facilidad si es que se conoce el comportamiento de las especies que atacan a los productos cultivados.

En la región Puno donde se cultivan algunas especies de plantas para el consumo humano como la quinua (Chenopodium quinoa), cañigua (Chenopodium pallidicaule), papa (Solanum tuberosum), oca (Ullucus tuberosus) entre otras, son bien conocidos los efectos que causan los artrópodos, microorganismos y aves en los cultivos, dejando de lado a los mamíferos pequeños, los cuales se les juzga por la mala percepción cultural la misma que pasó de generación en generación pero no tuvo un sustento científico.

Los mamíferos pequeños principalmente conformados por roedores, tienen una amplia distribución y una muy alta eficacia biológica, su presencia en los cultivos de quinua ha sido observada por productores de este grano durante el emparrve, afirmando que traen consigo la supuesta mala presencia del zorro andino (Lycalopex culpaeus) derivando en otros problemas más graves como la depredación de animales domesticados que sirven de sustento a las personas, se puede adicionar a la presencia de los roedores los problemas de salud.

Ambos aspectos anteriormente descritos (salud y cultivo) deben ser analizados con mayor detenimiento, el manejo adecuado de todas las especies (no solo roedores) que causan algún problema, es necesario, para que estos no perjudiquen actividades propias del hombre como de otros animales con los que se comparten los hábitats, para cumplir este fin de una manera correcta, se necesita saber cuáles son las actividades que realizan, las épocas o períodos donde se debe de tener un mayor cuidado por el aumento de la población, la diversidad, preferencia por el alimento de cada especie, el hábitat que ocupa y las consecuencias de las actividades que realiza el hombre para controlar estas
especies, pues la reducción de una población de una especie por métodos que involucren la muerte no siempre será la adecuada y no es la única, a pesar de que ellos estén en nuestro terreno, somos nosotros los que invadimos sus hábitats y a la vez proporcionamos los medios adecuados para que se desarrollen aceleradamente, rompiendo el curso natural de la cadena trófica.

Por ello se presentó como objetivo general Evaluar la Incidencia y Diversidad de Pequeños mamíferos en cultivos de Quinua (*Chenopodium quinoa* Willd) en la Estación Experimental Zonal Illpa Puno – INIAA, y como objetivos específicos los siguientes:

1. Identificar taxonómicamente las especies de pequeños mamíferos presentes en la zona de estudio.

2. Cuantificar el grado de incidencia de los pequeños mamíferos en los cultivos de quinua (*Chenopodium quinoa* Willd).

3. Identificar si las especies de pequeños mamíferos tienen un efecto negativo en cultivos de quinua (*Chenopodium quinoa* Willd).

4. Determinar la fluctuación poblacional de los pequeños mamíferos en los periodos fenológicos de la quinua (grano pastoso y madurez fisiológica) y actividades post-cosecha (emparve y almacén).
II. REVISIÓN DE LITERATURA

2.1. ANTECEDENTES

Los estudios de roedores a lo largo del mundo son diversos enfocados en distintas disciplinas y desarrollados en muchos hábitats, ubicados a altitudes que van desde los 0 hasta los 6115 msnm (Gutiérrez, 2013) en Latinoamérica estas altitudes incluyen la zona alto andina que comparten Colombia, Ecuador, Perú, Bolivia, Argentina y Chile, estos países además de tener una diversidad de roedores propia, se les agregó algunas exóticas que Cossios (2010) denomina vertebrados naturalizados, Rattus rattus, Rattus norvegicus y Mus musculus fueron los mamíferos introducidos accidentalmente en el siglo XVI, están asociadas a poblaciones humanas y cultivos, causando daños a especies de aves y a los humanos, la última especie podría tener un comportamiento estacional pues Pefaur et al. (1978) en su estudio poblacional en las estaciones de invierno y primavera, en una zona agrícola abandonada y rodeada por edificios en Chile capturó en total 19 individuos (8 machos y 11 hembras), todas en la época de invierno.

Dicho comportamiento estacional de los roedores asociado a los cultivos en Perú fue descrito por Pastor (1995) quien también toma en cuenta la facilidad para encontrar refugio y el tipo de cultivo para cuantificar la magnitud de los daños causados por las especies Cavia tschudi, Akodon boliviendis, Akodon nollis, Akodon jelskii, Auliscomis pictus, Oryzomis andinus, Oryzomis melanostomato, Oryzomis xanthoelus, Phyllotis andinus, Raphidomis muclipes, Sigmodon ispidus, Mus musculus, Rattus rattus, Rattus norvergicus, Sciurus ignilus y Sciurus stramineus; para Lima et al. (2003) Phyllotis darwini también es considerada una plaga agrícola en Chile, el uso de hábitat está relacionada con la denominación de plaga de algunos roedores, Morales et al. (1991) describió un mayor uso de los hábitats con vegetación, Simonetti (1989) además de encontrar la relación antes descrita refiere que la perturbación humana por la reducción de cobertura vegetal y creación de irregularidad en la distribución de alimentos promueve la ocupación de las especies exóticas, una de las actividades que promueve dichas perturbaciones es el monocultivo (Collazo y Castro 1997). La reducción de la diversidad y aumento de las especies exóticas se reflejan en los estudios realizados por Luna (2009) que encontró en los hábitat con vivienda a la especie Mus musculus en Puno.
Los roedores, al ser uno de las órdenes más diversas tienen una amplia distribución, Myers et al. (1990) cita que el género *Akodon* (propio de regiones alto andinas) tiene una distribución en Argentina, Perú y Bolivia, estos dos últimos países al tener una gran biodiversidad tiene una amplia variedad de hábitats, según Anderson (1997) en Bolivia 327 especies de roedores están distribuidas por todo su territorio; en Argentina para Ferro y Barquez (2014) se pueden encontrar los géneros *Phyllotis, Akodon, Calomys, Necromys* y la especie *Abrothrix andinus*, esta última descrita por Ferro y Barquez (2008), todos se tuvieron registro hasta los 4300 msnm según estos autores, dentro de los géneros descritos anteriormente, para el estudio realizado, Altricher et al. (2004) la especie *Phyllotis xanthopygus* representó el 85% de las capturas siendo la más abundante.

Las especies alto andinas, no solo se limitan a países con un gran territorio ocupado por cordillera, en Colombia se encuentran las especies *Thomasomys laniger, Thomasomys niveipes, Thomasomys aureus, Thomasomys princeps, Chilomys instans, Microryzomys minutus y Neomicroxus bogotensis* (Calderón et al. 2016); en el Perú los departamentos que com parten la biodiversidad de roedores y de los que se tiene registro son Arequipa, Moquegua y Puno, Zeballos et al. (2001) registra a 28 roedores dentro de ellas a *Akodon albiventer, Akodon subfuscus, Auliscomys boliviensis, Auliscomys pictus, Auliscomys sublimis, Bolmyns amoenus, Calomys lepidus, Calomys sorellus, Calomys sp., Chinchillula sahamae, Chroeomys andinus, Chroeomys jelskii, Neotomys ebriosus, Oligoryzomys andinus, Oligoryzomys arenalis, Oligoryzomys sp., Oryzomys xhantheolus, Phyllotis amicus, Phyllotis xanthopygus chilensis, Phyllotis limatus, Phyllotis magister, Phyllotis osilae, Punomys lemminus, Chinchilla brevicaudata, Lagidium peruanaum, Cavia porcellus, Cavia tschudii y Abrocoma cinerea* todas estas especies en el departamento de Arequipa, en Moquegua Gutiérrez (2013) encontró especies que se comparten y algunas nuevas como *Lagidium peruanaum, Abrothrix andinus, Abrothrix jelskii, Akodon orophilus, Phyllotis andium, Phyllotis darwini, Mus musculus y Rattus rattus*.

En el departamento de Puno, a las especies registradas por Luna (2009) que fueron *Akodon boliviensis, Akodon albiventer, Calomys lepidus, Mus musculus y , Oligoryzomys andinus* esta ultima de vida semi-acuática por el hábitat en el que se encontró (totorales secos por descenso del nivel del lago) se adicionan los registros de La Autoridad Binacional del Lago Titicaca (2001) *Phyllotis xanthopygus, Auliscomys*
pictus, Chreomys andinus, Punomys leminus, Mus musculus y Lagidium peruanum además Ramírez et al. (2007) registra en Tupala, provincia del Collao a Auliscomys pictus, Bolomys amoeus y Chroeomys jelskii.

Por otro lado la dieta de los roedores que describe Noblecilla y Pacheco (2012) al revisar 105 roedores, encontró que Akodon orophilus es insectívora por contener el 90,1% de artrópodos, Thomasomys notatus y Thomasomys kalinowskii son herbívoros al contener 89% y 67,75% respectivamente de materia vegetal Microryzomys altissimus y Microryzomys minutus son omnívoros por presentar volúmenes similares de artrópodos y materia vegetal, de todas las especies solo Akodon orophilus fue denominada como especialista, además se indica que las especies del genero Akodon tienden a ser insectívoras, también Sahley et al. (2016) describe la dieta de Akodon torques, Calomys sorellus, Microryzomys minutus, Oligoryzomys andinus, Thomasomys aureus, Thomasomys kalinowskii y Thomasomys oreas especies con tendencia al omnivorismo (artrópodos 88%, pedazos de hojas y fibras de plantas 61%, semillas intactas 50%, y esporas de micorrizas 45%) sin embargo los géneros Thomasomys y Calomys mostraron un mayor contenido de vegetales mientras que los géneros Akodon, Microryzomys y Oligoryzomys mostraron mayor cantidad de artrópodos en su dieta.
2.2. MARCO TEORICO

2.2.1. Diversidad de mamíferos

Los mamíferos, aparecieron en el límite Triásico - Jurásico (Bonaparte, 2014) y podemos encontrar aproximadamente 5200 especies (Ceballos et al., 2013) de las cuales el 40 % (José & Steinmann, 2003) o 2021 especies (Hernández et al., 2010) pertenecen al orden Rodentia. Factores como la ubicación geográfica favorecen a la diversidad, por ello el Perú, ubicado en la región tropical, y que además está dentro de los países que comparten la cordillera de los andes (Pacheco et al., 2009) es uno de los países con mayor biodiversidad (MINAM, 2016) ocupando los primeros lugares en aves (1816 spp.) , mamíferos (515 spp.), reptiles (418 spp.), anfibios (449 spp.), peces (2000 spp.), plantas con flor (25000 spp.) y mariposas (3532 spp.) (MINAM, 2012).

2.2.2. Orden Rodentia

El orden Rodentia, conocidos también como roedores, son un grupo de mamíferos de una gran variedad de sistemas sociales y de apareamiento (Steinmann & Bonatto, 2015), gran éxito reproductivo con un periodo de vida entre uno y dos años, se reproducen desde los 2 a 4 meses de edad (Donald, 1984) por ello su alta adaptabilidad, hasta en los ambientes más hostiles; sus habilidades y todos los sentidos los tienen bien desarrollados, pueden nadar, bucear, trepar, saltar y roer materiales muy duros como el metal o aluminio (José & Steinmann, 2003). Los cuyes (cobayas) y hámster son los que mayor familiaridad tienen con el humano, por el contrario de los ratones y ratas se tiene una mala percepción, relacionando a estas especies con plagas y portadores de enfermedades como Lyme, leishmaniasis, hantavirus, leptospirosis y peste bubónica (Tzab & MacSwiney, 2014); sin embargo, solo el 26% de especies tiene esta capacidad, su participación en los procesos ecológicos como controladores de insectos, alimento, aireación del suelo (Figueroa et. al., 2001) e incluso dispersión de semillas (Acevedo & Zamora, 2016) es su mayor papel en la cadena trófica.

Se alimentan preferentemente de vegetales, con mayor predisposición a las semillas, sin embargo se pueden alimentar de casi cualquier cosa debido a
su enorme flora bacteriana (Benavides & Guénet, 2003), consumen hasta el 10 % de su peso al día (Robledo & Vaughan, 1986), generalmente no tienen un peso mayor a 120 gr (Hernández et al., 2010), algunos tienen grandes garras y la mayoría tiene un cuerpo muy flexible (Figueroa et. al., 2001). A lo largo de la historia también sirvieron como un recurso explotable por el uso de su piel, carne y huesos (Andrade & Boschin, 2015). La aparición de algunas especies cuando hay colonización (construcción de casas) es común, trayendo consigo conflictos con los humanos, los daños (principalmente económicos) que producen a nuestros alimentos y como vectores de enfermedades son los principales problemas causados por estos mamíferos (Priotto & Steinmann, 2003), ello incentiva medidas de control que en algunos casos no son adecuadas, pues no solo atacan a la especie “problema” sino también a los que podrían estar ayudando a controlar a los mismos (Acuña, 2014).

Los roedores representan el 40 % de todas las especies de mamíferos (Churakov et al., 2010) de los aproximadamente 451 géneros (Amori & Gippoliti, 2003) en el Perú se registraron 162 especies de roedores (Pacheco et al., 2009), su distribución altitudinal va desde el nivel del mar hasta los desiertos alto andinos ubicados a más de 4000 metros de altura (Ferro & Barquez, 2008; Ferro & Barquez, 2014), encontrándose en estas zonas altas una mayor diversidad del género *Akodon* (Young, 2007).

Su nombre deriva del verbo latín *rodere* que significa “para roer” (Tzab & MacSwinney, 2014) justamente, para realizar esta actividad, poseen un par de incisivos superiores e inferiores (que nunca dejan de crecer) separados de los molares por la ausencia de caninos, a este espacio se le denomina diastema (Reise, 1973). Los molares de los roedores son muy variados (distintos en cada especie) presentan pliegues, que son irregularidades en el esmalte dental y son útiles al momento de la identificación, los roedores presentan tres molares siendo el primero (más próximo a los incisivos) el más desarrollado por la mayor actividad que realiza, el segundo es más regular y el tercero no está muy desarrollado, tiene una estrecha relación con los incisivos los cuales pueden ser curvados hacia adelante (opistodonte) atrás (prodonte) o pueden ser rectos (ortodonte), además pueden tener
estrías y diferentes coloraciones de acuerdo al hábito alimenticios o características del hábitat (Hershkovits, 1962).

a. **Roedores como plaga en cultivos**

A algunos de los roedores que causan problemas en alguna actividad humana se les considera dentro del grupo de plagas vertebradas (Monge, 2007) y justamente son el grupo más importante dentro de esta categoría (WingChing et al., 2009) pues causan grandes pérdidas agrícolas, pecuarias, forestales y desequilibrios ecológicos; además de ser vectores de *Rikketsia* sp., *Leptospira* sp., *Salmonella* sp., *Brucella* sp., entre otras bacterias y virus (Valle et al., 1998) incluso las enfermedades estomacales más comunes son frecuentemente a causa de los roedores (Robledo & Vaughan, 1986). Generalmente se les denomina como plagas en el ámbito social por la percepción que se tiene de estos animales (Tzab & MacSwiney, 2014) y porque irrumpen en las casas (Cuartas & Marín, 2014). Sin embargo económicamente son considerados plaga cuando la población de una especie, en un determinado periodo de tiempo, causa algún tipo de daño económico por consumir, dañar o contaminar algún alimento o actividad humana, es erróneo pensar que como plagas son permanentes pues están sujetas ciertas condiciones en un momento dado (Monge, 2007).

Los roedores son los vertebrados que mayor impacto tienen en diferentes cultivos (Villar, 2000) la antropización en algunos casos favorecen a los mismos (Kufner et al., 2005), influyendo positivamente en la abundancia y negativamente en la diversidad (García et al., 2015) de especies como la rata gris (*Rattus* sp.) y el Ratón casero (*Mus musculus*) los cuales son frecuentemente encontrados en estas áreas causando grandes daños (Feliu et al., 1985). En los cultivos donde son considerados plagas, los roedores producen ciertas pérdidas, en algunos granos (5-10%), tubérculos (10-25%), raíces (10-30%) y frutales (variable) (Tapia & Fries, 2007).

La modificación de ecosistemas, monocultivos agrícolas y forestales que generalmente no tienen controladores naturales, favorecen a las especies cosmopolitas (*Rattus rattus*, *Rattus norvegicus* y *Mus musculus*) volviéndolas plagas y reduciendo el número de especies nativas, esto debido
a que las especies de roedores cosmopolitas tienen una curva poblacional de constante crecimiento, y reproducción no estacional, permitiéndoles atacar a los cultivos (Rodriguez, 1993); en ambientes urbanos la falta de recojo de basura, el descuido de una zona u hogar entre otras favorecen a estas especies por la mayor disponibilidad de alimento (Pastor, 1996)

Por otro lado los roedores durante el almacenaje y en general, el período post-cosecha (luego de la cosecha) son frecuentes, en la mayoría de los casos el control de su población no se realiza de la manera correcta, pero se realiza de tres formas que son: control biológico, control físico y control químico (Donald, 1984) sumándole a esto la mala calidad de almacenamiento, trae como consecuencia una depreciación en calidad del producto e incluso dañarlo hasta que no sea apto para el consumo humano (INIA, 1988).

b. **Roedores en cultivo de quinua**

Los roedores junto con los microorganismos, aves e insectos ocasionan grandes daños al grano, antiguamente se creía que los vertebrados no atacaban a la quinua por su gran cantidad de saponinas, actualmente se sabe que esto no es así (Meyhua, 1997), estos animales junto con las aves granívoras e insectos (que atacan tanto a la planta como a los granos), ocasionan grandes pérdidas económicas (Flores et al., 2010) el momento donde mayores pérdidas causan es en la post-cosecha (INIA, 1988) los roedores están presentes frecuentemente en el almacenamiento de la quinua, sobre todo en las zonas alto andinas donde las personas almacenan los granos en contenedores fabricados de muchos materiales, los cuales no son impedimento para que las ratas puedan atacar (Flores et al., 2010; Tapia & Fries, 2007). su sola presencia causa en muchos casos daños que no pueden ser remediados, pues dejan residuos como orina o pelos en el grano (Vaughan, 1988) en general la falta de buenas prácticas agrícolas son las responsables de los daños en quinua (SENASA, 2015).

2.2.3. **La Quinua**

Dentro de los granos andinos “la Quinua”, junto con la kiwicha y kañíwa, es uno de los más apreciados en la cultura andina, es incluso llamado un tesoro
andino, fruto de una perfecta relación entre las montañas y la cultura andina, su domesticación junto con la papa, el ají, el tomate, la quinua, el camote, el frijol y el pallar se realizó desde los 8000 a.C. (MINAM, 2014), siendo la quinua silvestre o “Ayara”, la cual tienen un característico color negro, uno de los primeros granos en ser domesticados (León, 2003). Este grano alcanzó su protagonismo en el mercado internacional desde la década de 1980 a raíz de investigaciones realizadas en su composición (Carvajal, 2011) llegando a ser un producto estrella en países europeos (Félix & Javier, 2013), incluso La FAO denominó a la quinua como uno de los cultivos promisорios del planeta por sus propiedades, nutrientes y usos, pues desde la antigüedad fue uno de los granos más usados en la preparación de alimentos como mazamorras, sopas, entre otras y en la actualidad para la preparación no tradicional en jugos (FAO, 2011).

a. **Taxonomía de la Quinua** (Apaza et al., 2013)

Reino: Vegetal

División: Fanerógamas

Clase: Dicotiledóneas

Subclase: Angiospermas

Orden: Centrospermales

Familia: Chenopodiaceae

Género: Chenopodium

Sección: Chenopodia

Subsección: Cellulata

Especie:

Chenopodium quinoa

Willdenow 1798
b. Descripción de la Morfología

La quinua tiene una raíz pivotante, ramificada en segundarias y terciarias, llegando a medir en algunos casos hasta 1.5m; el tallo cilíndrico en la etapa juvenil (de medula carnosa) y anguloso (de medula esponjosa y hueca) en plantas maduras puede llegar a medir 2m de alto, variando su color del verde al rojo (Tapia et al., 1979; Gómez & Aguilar, 2016; Tapia & Fries, 2007; Apaza et al., 2013), la ramificación del tallo puede ser de hábito sencillo (presente en el altiplano y los salares), cuando la planta tiene un solo tallo y termina con una sola inflorescencia definida o de hábito ramificado (presentes en los valles) con dos variedades, la primera donde las ramas laterales tienen casi el mismo tamaño del tallo principal y terminan en panojas, la segunda cuando las ramas son más pequeñas que el tallo principal dando a la planta una forma cónica de base muy amplia. Esta ramificación depende del ecotipo, raza, densidad de siembra y de las condiciones del medio en que se cultiven (FAO, 2011).

Sus hojas son polimórficas(Figura 1), romboidales en la base y lanceoladas al costado y alrededor de la panoja, conformada por el peciolo y la lámina, están dispuestas de forma alterna en el tallo donde en cada nudo se pueden encontrar de 5 a 12 hojas(León, 2003), una de las características más resaltantes de las hojas tiernas es la pubescencia granulosa que las recubre formada por oxalato de calcio, dicho recubrimiento ayuda a la absorción de la humedad del aire. La inflorescencia es racimosa, se le denomina panoja por tener un eje principal más desarrollado, puede ser de tipo amarantiforme (más primitivo) o glomerulada, las flores son incompletas, es decir sin pétalos, sésiles y son solo 10% de polinización cruzada, el fruto es eco e indehiscente, de forma elipsoidal, cónico o esférico, la semilla es el fruto seco sin perigónio, de bordes afilados en variedades cultivables y afilados en variedades silvestres(FAO, 2011; Tapia et al., 1979; Tapia & Fries, 2007; Apaza et al., 2013; Gómez & Aguilar, 2016).
Figura 1. Variación del número de dientes en las hojas de Quinua A) Raza del sur de Perú y Bolivia de pocos dientes; B) Raza del centro del Perú (3 a 12 dientes) y C) Raza del norte del Perú y Ecuador (más de 12 dientes). Obtenido de Tapia et al. (1979)

c. Variedades de Quinua

Tabla 1. Variedades y principales características de plantas de Quinua

<table>
<thead>
<tr>
<th>Nombre de Variedad</th>
<th>Eflucion de Saponina</th>
<th>Color del Pericarpo</th>
<th>Color de Episperma</th>
<th>Tamaño de Grano</th>
<th>Zona de Producción</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIA 431 - Altiplano</td>
<td>Nada</td>
<td>Crema</td>
<td>Blanco</td>
<td>Grande</td>
<td>Altiplano y Costa</td>
</tr>
<tr>
<td>INIA 427 - Amarilla Sacaca</td>
<td>Mucha</td>
<td>Amarillo</td>
<td>Blanco</td>
<td>Grande</td>
<td>Valles Interandinos</td>
</tr>
<tr>
<td>INIA 420 - Negra Collana</td>
<td>Nada</td>
<td>Gris</td>
<td>Negro</td>
<td>Pequeño</td>
<td>Altiplano, Valles intermedios y Costa</td>
</tr>
<tr>
<td>INIA 415 - Pasankalla</td>
<td>Nada</td>
<td>Gris</td>
<td>Rojo</td>
<td>Mediano</td>
<td>Altiplano, Valles intermedios y Costa</td>
</tr>
<tr>
<td>Ilipa INIA</td>
<td>Nada</td>
<td>Crema</td>
<td>Blanco</td>
<td>Grande</td>
<td>Altiplano</td>
</tr>
<tr>
<td>Salcedo INIA</td>
<td>Nada</td>
<td>Crema</td>
<td>Blanco</td>
<td>Grande</td>
<td>Altiplano, Valles intermedios y Costa</td>
</tr>
<tr>
<td>Quillahuaman INIA</td>
<td>Regular</td>
<td>Crema</td>
<td>Blanco</td>
<td>Mediano</td>
<td>Valles Interandinos</td>
</tr>
<tr>
<td>Ayacuchana INIA</td>
<td>Regular</td>
<td>Crema</td>
<td>Blanco</td>
<td>Pequeño</td>
<td>Valles Interandinos</td>
</tr>
<tr>
<td>Amarilla Marangani</td>
<td>Mucha</td>
<td>Anaranjado</td>
<td>Crema</td>
<td>Grande</td>
<td>Valles Interandinos</td>
</tr>
<tr>
<td>Blanca Juli</td>
<td>Poca</td>
<td>Crema</td>
<td>Blanco</td>
<td>Pequeño</td>
<td>Altiplano</td>
</tr>
<tr>
<td>Blanca Junín</td>
<td>Regular</td>
<td>Crema</td>
<td>Blanco</td>
<td>Mediano</td>
<td>Valles Interandinos, Costa</td>
</tr>
<tr>
<td>Cheweca</td>
<td>Poca</td>
<td>Crema</td>
<td>Blanco</td>
<td>Mediano</td>
<td>Altiplano</td>
</tr>
<tr>
<td>Huacariz</td>
<td>Poca</td>
<td>Crema</td>
<td>Blanco</td>
<td>Mediano</td>
<td>Valles Interandinos</td>
</tr>
<tr>
<td>Hualhuas</td>
<td>Nada</td>
<td>Crema</td>
<td>Blanco</td>
<td>Mediano</td>
<td>Valles Interandinos</td>
</tr>
<tr>
<td>Huancayo</td>
<td>Regular</td>
<td>Crema</td>
<td>Blanco</td>
<td>Mediano</td>
<td>Valles Interandinos</td>
</tr>
<tr>
<td>Kankolla</td>
<td>Poca</td>
<td>Crema</td>
<td>Crema</td>
<td>Mediano</td>
<td>Altiplano</td>
</tr>
<tr>
<td>Mantaro</td>
<td>Nada</td>
<td>Crema</td>
<td>Blanco</td>
<td>Mediano</td>
<td>Valles Interandinos</td>
</tr>
<tr>
<td>Rosada Junín</td>
<td>Regular</td>
<td>Crema</td>
<td>Blanco</td>
<td>Pequeño</td>
<td>Valles Interandinos</td>
</tr>
<tr>
<td>Rosada Taraco</td>
<td>Mucha</td>
<td>Crema</td>
<td>Blanco</td>
<td>Grande</td>
<td>Altiplano</td>
</tr>
<tr>
<td>Rosada Yamango</td>
<td>Poca</td>
<td>Crema</td>
<td>Blanco</td>
<td>Mediano</td>
<td>Valles Interandinos</td>
</tr>
</tbody>
</table>

Fuente: Apaza et al. (2013)

d. Fenología de la Quinua

La fenología es importante para adelantarse a adversidades externas que pueden afectar a la planta, además de permitir un mejor manejo del cultivo (Cogliatti & Heter, 2016). El tiempo de cada etapa fenológica (etapas del desarrollo) de la quinua es cambiante de acuerdo a la variedad (Apaza et al., 2013) oscilando de 119 días hasta los 220 (Rojas, 2014) comprende las etapas de: germinación, cuando el hipocotíleo sale de la semilla y emerge del suelo; hojas cotiledonales, es la etapa
cuando las dos hojas verdaderas de forma lanceolada se sitúan en la yema apical; dos hojas verdaderas, se denomina de esta manera a la etapa cuando además de las hojas cotiledonales la planta desarrolla dos hojas verdaderas de forma romboidal; cuatro hojas verdaderas, en esta etapa además presenta un botón foliar; seis hojas verdaderas aparecen además 2 hojas auxiliares, da inicio a la ramificación que es donde aparecen los granos de oxalato de calcio y se activan las yemas de manera secuencial empezando desde las primeras hojas, su culminación da paso a el panojamiento que es la etapa que da inicio al grano lechoso donde los granos están totalmente formados y al presionarlos desprenden una sustancia lechosa, en el grano pastoso esta sustancia cambia a una consistencia pastosa (FAO, 2011; Tapia et al., 1979; Tapia & Fries, 2007), la culminación de las etapas fenológicas se da con la madurez fisiológica alcanzada entre los 160 y 180 días después de la siembra (Mujica et al., 2004).

e. **Cosecha y Post-Cosecha**

Estas dos actividades, que incluyen el corte, secado, trilla, venteo y almacenamiento son las que determinan la calidad del producto final (FAO, 2011). Las actividades deben realizarse con la oportunidad correcta para evitar pérdidas por daños abióticos como la humedad que causan la germinación de los granos y otros daños bióticos como el ataque de las aves que es frecuente, causando en algunas variedades una perdida entre el 30 % y 40 % especialmente en cultivos que se encuentran a orillas del lago Titicaca (Meyhuay, 1997).

La madurez de la planta da inicio a la actividad de la cosecha, la siega o corte se realiza a una altura de 5 a 6 cm de la base de la planta para formar montículos en el emparve, esto sirve para el secado y posterior separación de los granos del resto de la planta por medio de la trilla que se realizada manual, mecanizada o semimecanizada, en todas el golpeteo y zarandeo de la panoja libera los granos. En el almacenamiento de los granos (periodo post-cosecha) los factores que afectan a la calidad del producto es la temperatura, la humedad, el oxígeno, algunos animales y microorganismos (Meyhuay, 1997) llegando a reducir la calidad del producto hasta un 30 % (INIA, 2015)
2.2.4. Cultivo de la Quinua en Puno

La quinua se cultiva desde los 0 hasta los 4000 metros sobre el nivel del mar en Sudamérica (Gómez & Aguilar, 2016). Este grano tiene un alto contenido de lisina y aminoácidos esenciales con la proporción exacta para ser considerado uno de los mejores alimentos incluso comparable con la proteína de origen animal (Meyhuay, 1997). En Puno es muy común el cultivo de este grano algunas veces a manera de cultivos asociados y otras a manera de cultivos exclusivos, con rotaciones de terreno entre tubérculos (papa generalmente), gramíneas (avena o cebada), leguminosas (haba tarwi) u otros cereales como la cañigua (Gómez & Aguilar, 2016). La quinua cultivada en Puno representa el 80.74% de la producción nacional (MINAM, 2013), superada solamente por Bolivia quien es el primer exportador de quinua a nivel mundial (Winkel et al., 2015); sin embargo algunas características geográficas permiten tener un mejor resultado durante el cultivo de este grano como en las islas dentro del Lago Titicaca las cuales tiene un microclima que permite un menor daño ocasionado por factores meteorológicos (ALT & PNUD, 2000).
2.3. MARCO CONCEPTUAL

- **Agro ecosistema**: Ecosistema que se desarrolla en terrenos cultivables, y que comprende los microorganismos, plantas y animales autóctonos y las especies cultivadas (Lawrence, 2003).

- **Antrópico**: Producido o causado por el hombre (Lawrence, 2003).

- **Biometría**: La biometría es la aplicación automatizada de técnicas biométricas a la certificación, autentificación e identificación. Las técnicas biométricas se utilizan para medir características corporales o de comportamiento con el objeto de establecer una identidad. (P. León & Susan, 2010).

- **Comunidad**: Reunión bien definida de plantas y animales, claramente distingüible de otras reuniones semejantes (Lawrence, 2003).

- **Conflicto**: Situación en la que dos motivaciones compiten por la dominancia en el control del comportamiento, como cuando un animal está decidiendo a cuál de dos objetos se va a aproximar (o evitar), o si debe aproximarse a un objeto o huir de él. (Lawrence, 2003).

- **Depredador**: Cualquier organismo que atrape y mate a otros organismos para alimentarse de ellos (Lawrence, 2003).

- **Diversidad biológica**: La variabilidad entre todos los distintos seres vivos, incluyendo los ecosistemas terrestres, los marinos y los otros ecosistemas acuáticos, así como los complejos ecológicos de los que forman parte. Esto incluye la diversidad dentro de una especie, entre especies y la de los ecosistemas (Lawrence, 2003).

- **Especie especialista**: Especie que sólo puede sobrevivir y desarrollarse bien dentro de un intervalo estrecho de condiciones de hábitat y climáticas, o que sólo puede utilizar una gama muy limitada de alimento, teniendo por lo tanto muy poca capacidad de adaptación frente a condiciones ambientales cambiantes. (Lawrence, 2003).

- **Especie generalista**: Organismo o especie con un nicho ecológico muy amplio que puede tolerar una gran abanico de condiciones ambientales y tiene una alimentación muy variada (Lawrence, 2003).

- **Especie oportunista**: Especies especializadas en la explotación de nuevos hábitats (Lawrence, 2003).
- **Éxito de trampeo**: Esta representado por el porcentaje de trampas con individuos capturados en una jornada de captura (Romero et al., 2007).

- **Fauna silvestre**: La fauna silvestre también llamada vida silvestre, son todos aquellos animales vertebrados o invertebrados que viven en condiciones naturales que pueden ser residentes o migratorios de uno o varios ecosistemas, y por consiguiente no necesitan del cuidado del hombre; forman parte de los recursos naturales renovables básicos, tiene valor ambiental y se le puede otorgar un valor económico (SEMARNAT, 2009).

- **Fenología**: registro y estudio de sucesos biológicos periódicos, como la floración, el apareamiento y la migración, en relación con factores climáticos y con otros factores ambientales. (Lawrence, 2003).

- **Granívoro**: que se alimenta de granos (Lawrence, 2003).

- **Hábitat**: el entorno en el que normalmente se encuentra un organismo (Lawrence, 2003).

- **Herbívoro**: animal que se alimenta exclusivamente de plantas (Lawrence, 2003).

- **Mamíferos Pequeños**: Los pequeños mamíferos (Reise, 1973) o micromamíferos (Merritt, 2010)(Acuña, 2014) son un grupo de mamíferos los cuales no tienen un peso mayor a 120 gr. (Hernández et al., 2010).

- **Mediadas somáticas**: son las medidas corporales tomadas a un individuo capturado, siendo las básicas la longitud total (LT), longitud de la cola vertebral (CV), longitud de la pata trasera (PT), longitud de la oreja (O) y peso (P) (Romero et al., 2007).

- **Medidas craneales**: Medidas tomadas del cráneo de mamíferos pequeños, generalmente son usadas para el estudio de dimorfismo sexual y morfometría, sin embargo también pueden ser usadas para la identificación taxonómica (Romero et al., 2007).

- **Noche trampa**: Es el número de trampas utilizadas en una noche, multiplicado por el número de noches en que fueron colocadas (Romero et al., 2007).

- **Omnívoro**: Animal que se alimenta tanto de plantas como de animales (Lawrence, 2003).
- **Población**: grupo de individuos de la misma especie que viven en un área definida. (Lawrence, 2003).

- **Recurso**: cualquier cosa suministrada por el medio que satisfaga las necesidades de un ser vivo. (Lawrence, 2003)

- **Región Alto Andina**: En el Perú 5 de las 8 regiones naturales de Pulgar Vidal (2014) pertenecen a la región denominada “Sierra” o alto andina, estas son: Yunga, Quechua, Suni, Puna seca y semi húmeda y Janka, todas se caracterizan por tener una escasa o mediana precipitación anual.

- **Surco**: acanaladura entre dos circunvoluciones de la superficie (Lawrence, 2003).

- **Taxidermia**: La actividad se realiza con el fin de preservar de manera correcta a los ejemplares capturados, es un procedimiento posterior a la biometría, requiere de paciencia, por este medio se obtiene la piel del animal para ser secada y observada posteriormente, actualmente además de la piel se conserva el cráneo y otros órganos, esto debido a que las actuales investigaciones involucran a muchas disciplinas (Romero et al., 2007).

- **Tipos de cebos**: Los cebos son usados como atrayentes, para la captura de roedores generalmente se usa hojuelas de avena, aunque existen algunos que usan mezclas con plátano, pescado, tocino o maní (Romero et al., 2007).

- **Trampas golpe**: son trampas diseñadas para captura de roedores, en la que se coloca un cebo como atrayente, tienen el inconveniente de que en algunos casos puede fracturar el cráneo, los modelos más utilizados son las Trampas Víctor (usadas para roedores relativamente grandes) y las Trampas Museum Special la cual tiene menor fuerza y por consiguiente los daños al individuo capturado se reduce (Romero et al., 2007).
III. MATERIALES Y MÉTODOS

3.1. Zona de Estudio

El área elegida para realizar el estudio fue la Estación Experimental Zonal Illpa Puno – INIA ubicada en el Departamento de Puno, Provincia de Puno, Distrito de Paucarcolla, en el km 22 de la carretera Puno – Juliaca (Figura 2), en las coordenadas 384739 E 8265676 S a una altitud de 3826 msnm, su extensión total es de 400 ha. El área estaba destinada principalmente a actividades pecuarias sin embargo también se realizaban cultivos de quinua, cebada y trigo dispersas y de distintas extensiones, para cumplir con los objetivos dentro de la EEA (Estación Experimental Agraria) se eligieron dos zonas un Área con Cultivo y otra Área sin Cultivo separadas por 250 m que sirvieron para comparar la preferencia de los pequeños mamíferos presentes en el área.

3.1.1. Área cultivada (AC)

El área con cultivo se eligió al azar e independientemente de la variedad de la quinua, los cultivos de quinua eran bastante extensos, pero de acuerdo a la metodología planteada solo se eligió una porción del total, que tenía una extensión de 0.311 ha, el área elegida se encuentra en las coordenadas 384427 E 8365872 S, el cultivo fue realizado en surcos separados unos de otros por 30 cm y una separación entre planta y planta de aproximadamente 10 cm, el área se encontraba cercada por alambre, sobre el terreno cruza una línea de alta tensión y por dos de los lados se encuentran caminos hechos para el paso de vehículos, el cultivo más cercano estaba separado por al menos 10 metros y fue de cebada.

3.1.2. Área sin cultivo (ASC)

Se evaluó un área natural con vegetación compuesta por ichu, diente de león y otras herbáceas, en inmediaciones de un almacén de forraje y material para la agricultura del INIA, cercano al AC ubicado en las coordenadas 384662 E 8265976 S, el área elegida tiene una extensión de 0.7 ha y se localiza casi al costado de la antigua carretera a Sillustani separado de esta por una excavación profunda a manera de cerco de la EEA; el almacén presenta 2 puertas rusticas grandes de calamina (a manera de garaje) que se encuentran a ambos extremos.
3.2. Metodología

3.2.1. Identificación Taxonómica de pequeños mamíferos

a. Frecuencia y horario de muestreo

Las capturas se realizaron en el periodo de cultivo (etapas fenológicas de grano pastoso y madurez fisiológica) y la post-cosecha (actividades de emparve y almacén), abarcando los meses de Marzo hasta Julio del 2017.

b. Descripción de materiales

Las capturas se realizaron con 40 trampas golpe en total, colocando 20 en el área con cultivo y 20 en el área sin cultivo por un período de 10 días consecutivos y activando las trampas al día siguiente en cada una de las etapas fenológicas y las actividades post-cosecha. En total 400 trampas/noche en cada etapa fenológica o actividad post-cosecha.

Las disposición de las trampas fue diferente en las dos áreas, en el área con cultivo de quinua se colocaron a manera de grilla o cuadrantes de 4 filas por 5 columnas siguiendo los surcos ya establecidos por el mismo, con una separación de 10 m aproximadamente, esto debido a que al momento de colocar las trampas se buscaba un lugar que permitiera que las trampas estén escondidas para tener una mayor oportunidad de captura y evitar la captura de aves. En el área sin cultivo, se colocaron las trampas en zonas adyacentes al almacén con una separación de 8m, al igual que en el área con cultivo se
buscó lugares de entrada a refugios o rastros (fecas o huellas) de pequeños mamíferos en el lugar (Figura 3).

Figura 3. Disposición de las trampas golpe, los puntos rojos indican la ubicación de cada trampa. A) Área cultivada y B) Área sin Cultivo

Las trampas se cebaron con una mezcla de cebos propuestas por el MINAM (2015) compuesta por 4 puñados de avena, una lata de portola de 475 gr y 10 ml de esencia de vainilla (Figura 4.), la mezcla debía de tener una consistencia suave-acuosa pero que permita formar bolitas que fueron colocadas en las trampas. Las trampas ya cebadas fueron activadas entre las 14:00 y las 17:30 horas buscando el periodo de mayor actividad de los pequeños mamíferos los cuales son de hábitos crepusculares o nocturnos (José & Steinmann, 2003; Romero Almaraz et al., 2007). Las trampas fueron revisadas entre las 08:30 y 11:00 del día siguiente de la activación, revisando el estado de los cebos (si se encontraban secos), si los cebos fueron mordidos, la trampa se activó o si hubo éxito en la captura, remplazando el cebo de ser necesario.
La revisión de las trampas se realizó tomando en cuenta medidas de bioseguridad que las circunstancias en campo permitió (uso de guantes), se inició por el área con cultivo por su mayor exposición a la luz solar la cual podía favorecer a que se dañe los individuos capturados. De los individuos se registraron datos de ubicación (el número de trampa en que se realizó la captura y las coordenadas); además se tomaron las medidas somáticas (Figura 5.) propuestas por Romero et al. (2007) al momento de revisión de las trampas que tuvieron captura, esto con el fin de evitar modificaciones de las medidas por factores ambientales o resecamiento de la piel, los datos tomados sirvieron para la identificación taxonómica de las especies de pequeños mamíferos capturados; las medidas tomadas fueron:

Longitud Total (LT): esta medida incluye la longitud del cuerpo, cabeza y cola, se colocó al individuo boca arriba sobre una regla de 30 cm se estiró al individuo para anotar la medida en mm, incluyendo el pincel de la cola (pelos en la parte final de la cola).

Longitud de la Cola (LC): Se colocó al individuo colectado al aire colocando solo la cola sobre la regla metálica de 30 cm, formando un Ángulo de 90 ° entre el cuerpo y la cola, la medida se tomó en mm desde la base de la cola hasta la punta de la cola incluyendo el pincel.
Longitud de la Pata Posteriors (LPP) para la toma de esta medida se sostuvo con los dedos índice y pulgar la pata derecha del individuo para tomar la medida en mm desde el talón hasta la uña del dedo más largo.

Longitud de la Oreja (LO): Sosteniendo el cuerpo del individuo capturado, se tomó la medida en mm de la oreja desde la base hasta la punta del pabellón auditivo.

Peso (P): Con la ayuda de una pesola (dinamómetro) de 500 gr se colocó al individuo en una bolsa de plástico que fue pesada previamente con el fin de tener el peso del individuo.

Figura 5. Medidas somáticas tomadas a los individuos capturados. (LT) Longitud Total, (LC) Longitud de la Cola, (LPT) Longitud de la Pata Trasera y (LO) Longitud de la oreja. Obtenido de Godínez & Guerrero, 2014

De los individuos capturados además se revisó su estado, es decir, si la trampa había causado heridas en la piel o si es que la descomposición por parte de las moscas (huevos de las mismas) habían causado algún daño a la
piel; así, si es que se encontraba la piel dañada se inyectó en las patas, tórax, espalda y cabeza alcohol al 96% para la preservación del individuo capturado, por el contrario si es que no se encontró daños en la piel se procedió a limpiar el cuerpo de ectoparásitos (garrapatas o pulgas), larvas o huevos de moscas; en ambos casos se colocaron los individuos en bolsas de polietileno de 12 x 20 cm para su transporte a laboratorio donde se trabajó en su identificación.

Para realizar la taxidermia del individuo fue necesario obtener la piel, lo cual se realizó haciendo un corte longitudinal de alrededor 2 cm en el vientre (dependiendo del tamaño del individuo capturado), aproximadamente a medio centímetro del inicio de las costillas hasta justo antes del órgano sexual del individuo (Figura 6.), cuidando que el peritoneo no se viera dañado; usando estilete y pinzas se fue separando la piel del cuerpo en el orden: patas traseras, cola, torso, tórax, patas delanteras y finalmente la cabeza, se usó aserrín (o harina como alternativa) durante el proceso, con la finalidad de quitar el exceso de grasa y evitar que los pelos se deprendan al pegarse a la grasas o partes húmedas del cuerpo.

Luego de la obtención de la piel se usó algodón hidrofílico para rellenar la piel, el tamaño del algodón dependió del tamaño de la piel obtenida, iniciando el rellenado por la cabeza y finalizando con el cuerpo; en las patas (delanteras y traseras) y cola se colocaron alambres de 1 y 1.5 mm (de acuerdo al grosor y tamaño de las extremidades y cola) envueltos con algodón a manera de hisopo, luego se hizo una costura simple de la incisión realizada al inicio del proceso con hilo y aguja corriente.
Figura 6. Inicio del proceso de taxidermización en el Laboratorio de Ecología de la Facultad de Ciencias Biológicas de la UNA-Puno

Los cráneos fueron usados para la identificación del género de los roedores. A los individuos sin piel, del proceso de taxidermización se les extrajo la cabeza realizando un corte en la nuca del roedor (bajo el hueso occipital) separando el cuerpo de la cabeza, el cráneo con músculo se sumergió primero en Lejía comercial (NaClO) por un periodo de 2 a 3 minutos, se limpió los restos de musculo con un bisturí (numero 15 y 21) y pinzas, luego se volvió a sumergir el cráneo por segunda vez y volver a limpiar, para finalizar el limpiado se sumergió en Peróxido de Hidrógeno ERZA (H₂O₂) por un periodo de 4 minutos con la finalidad de limpiar los últimos restos de piel y nervios; además se extrajo la masa cefálica con la ayuda de un estilete, durante todo el proceso se cuidó que el hueso zigomático no se dañe, ya que es un hueso bastante frágil y se puede disolver con las sustancias que se usaron. Para finalizar se colocó el cráneo en agua corriente para blanquear el hueso, se dejó secar por un periodo de 2 días luego se les colocó un código para la identificación.

Para la identificación taxonómica se utilizaron los individuos taxidermizados, además de las siguientes medidas craneales propuestas por Godínez y Guerrero(2014): longitud occipitonasal (LON), longitud condilobasal (LCB), longitud basal (LB), longitud basilar (LBR), longitud del rostro (LR), ancho del rostro (AR), longitud nasal (LN), anchura
zigomática (AZ), anchura de la caja craneana (ACC), constricción interorbital (CI), longitud palatal (LPA), longitud del foramen incisivo (LFI), longitud de la bula auditiva (LBA), anchura de la bula auditiva (ABA), longitud interparietal (LIP), anchura interparietal (AIP), longitud de la hilera molar de dientes (LHMD), anchura de la fosa mesopterigoidea (AFM), anchura de la placa zigomática (APZ) y profundidad del cráneo (PC), también se usaron las características de los molares que fueron observadas con una Lupa 10X y un estereoscopio Marca Kyowa Optical Model SDZ – Pt.

c. **Variables a analizar**

Las especies encontradas y el número de capturas de cada especie fueron las variables analizadas para calcular los índices de diversidad y dominancia.

d. **Aplicación de prueba bioestadística**

Determinación del grado de diversidad de la comunidad de pequeños mamíferos en la zona se usó el índice de Shannon Wiener:

\[
H' = - \sum_{i=1}^{S} (p_i \log_2 p_i)
\]

Dónde:

- \(S \) = número de especies
- \(p_i \) = proporción de individuos de la especie \(i \) respecto al total de individuos (es decir la abundancia relativa de la especie \(i \)): \((n_i / N) \)
- \(n_i \) = número de individuos de la misma especie \(i \)
- \(N \) = número de todos los individuos de todas las especies
Para la determinación de la dominancia de los pequeños mamíferos en la zona de estudio se usó el índice de Simpson:

\[D = \frac{\sum_{i=1}^{S} n_i(n_i - 1)}{N(N - 1)} \]

Dónde:
- \(S \) = número de especies
- \(N \) = es el total de individuos presentes
- \(n_i \) = número de individuos por especie

Para los primeros casos de diversidad y dominancia se usó el programa estadístico Past Versión 2.17C.

3.2.2. Identificación de la incidencia de los Pequeños mamíferos en cultivos de Quinua

a. Frecuencia y horario de muestreo

Para cumplir dicho objetivo se usaron los datos del primer objetivo, es decir las especies capturadas realizadas durante las etapas fenológicas en ambas áreas.

b. Descripción de los materiales

Para los análisis estadísticos descriptivos se usó el Microsoft Excel 2010 Versión 14.0.7210.5000

c. Variables a analizar

Se usaron los datos de abundancia del total de individuos en el área con cultivo el área sin cultivo, además de la abundancia de los individuos de cada especie capturada durante las etapas fenológicas y actividades post-cosecha evaluadas.

d. Aplicación de prueba bioestadística

Se usó estadística descriptiva de porcentaje tanto de abundancia en cada área como porcentaje de individuos de cada especie.
Y para la comparación de abundancia de roedores en etapas y actividades del cultivo de quinua se usó la prueba estadística de U Mann-Whitney en el programa InfoStat versión 2016:

\[U = n1 \cdot n2 + \frac{n1(n1 + 1)}{2} - R1 \]

Dónde:
- \(n1 \) = número de datos de la categoría A
- \(n2 \) = número de datos de la categoría B
- \(R1 \) = sumatoria de rangos de la categoría A

3.2.3. Identificación de pequeños mamíferos con efecto negativo en cultivos de quinua

a. Frecuencia y horario de muestreo

Para la identificación de las especies dañinas al cultivo y al grano mismo de la quinua, durante las etapas fenológicas (grano pastoso y madurez fisiológica) y la post-cosecha (emparve y almacén) se revisaron los estómagos de los individuos colectados dependiendo dichos datos de las especies.

b. Descripción de los materiales

Este proceso no se pudo realizar en el mismo momento de la colecta por lo cual se extrajeron para guardarlos en alcohol al 96%, para la posterior revisión del contenido estomacal; se realizó una incisión a un costado del estómago, se extrajo todo el contenido en placas Petri para dejar secar, al día siguiente con ayuda de una estereoscopio Marca Kyowa Optical Model SDZ – Pt se disgregó el contenido estomacal en las categorías: Granos de Quinua, Restos Vegetales, Artrópodos y Semillas, usando una balanza electrónica marca AND modelo GR-200 se pesó cada categoría.

c. Variables a analizar

La variable a analizar para cumplir el objetivo fue el peso de las categorías por cada especie.
d. Aplicación de prueba bioestadística

Se usó análisis estadístico descriptivo de porcentaje para determinar cuál es la principal dieta de las especies de pequeños mamíferos presentes en el área.

3.2.4. Determinación de la fluctuación poblacional de los pequeños mamíferos en las etapas fenológicas y actividades post-cosecha

a. Frecuencia y horario de muestreo

Para cumplir dicho objetivo se usaron los datos del primer objetivo, es decir la abundancia de especies capturadas realizadas durante las etapas fenológicas en ambas áreas.

e. Descripción de los materiales

El material usado fue una computadora para el análisis de los datos.

f. Variables a analizar

Se analizó el número de individuos capturados en cada etapa fenológica, tanto del área con cultivo como el área sin cultivo.

g. Aplicación de prueba bioestadística

Las pruebas estadísticas descriptivas que se aplicaron a los datos fue el promedio de las capturas en cada etapa fenológica, además de la desviación estándar para cada promedio

$$S = \sqrt{\frac{\sum(x_i - \bar{X})^2}{n}}$$

Dónde:

- $X_i =$ Valor del dato
- $\bar{X} =$ Promedio de la suma de datos
- $n =$ Numero de datos
IV. RESULTADOS Y DISCUSIÓN

4.1. Identificación taxonómica de las especies de pequeños mamíferos

Con un esfuerzo total de 1600 trampas noche, durante 40 días en que se realizó las capturas (10 por cada etapa fenológica y 10 por cada actividad post-cosecha) se obtuvieron 53 individuos de los cuales se pudo recuperar 9 pieles en buen estado y 52 cráneos y uno destruido por la presión de la trampa, con el uso de las claves dicotómicas y por molares se llegó a identificar 5 especies (Tabla 2.), todas del orden Rodentia, pertenecientes a las familias Muridae y Cricetidae, las especies identificadas fueron: *Akodon boliviensis, Abrothrix andinus* (anteriormente *Akodon andinus*), *Mus musculus, Akodon albiventer* y *Phyllotis xanthopygus*.

Tabla 2. Especies de pequeños mamíferos capturados dentro de la Estación Experimental Zonal Illpa Puno – INIAA durante las etapas fenológicas de grano pastoso y madurez fisiológica y actividad post cosecha de emparve y almacén, 2017.

<table>
<thead>
<tr>
<th>Orden</th>
<th>Familia</th>
<th>Sub Familia</th>
<th>Género</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Akodon</td>
<td>A. boliviensis Meyen, 1833</td>
</tr>
<tr>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Abrothrix</td>
<td>A. andinus Philippi, 1858</td>
</tr>
<tr>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus Linnaeus, 1758</td>
</tr>
<tr>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Akodon</td>
<td>A. albiventer Thomas, 1897</td>
</tr>
<tr>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Phyllotis</td>
<td>P. xanthopygus Waterhouse, 1837</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Las especies encontradas en la EEA ya tuvieron registro en Perú, estudios y revisiones como los resultados obtenidos por Pastor (1995) quien reportó a las especies *Akodon boliviensis y Mus musculus* dentro de Perú como especies que podrían causar problemas a diferentes actividades humanas, otros registros en departamentos vecinos a Puno como los de Zeballos et al. (2001) en Arequipa y Gutiérrez (2013) en Moquegua registraron a todas la especies del estudio ahora realizado; lo cual es concordante por las características que en algunas zonas se comparte (climáticas y altitudinales), incluso la distinta diversidad de flora no sería impedimento para el alcance de estos pequeños mamíferos. Ello se sustenta también en el estudio de Simonetti (1989) quien determino que el alimento y refugio de depredadores favorecen a los roedores. La presencia de *Mus musculus* en ambientes que han tenido influencia humana o que están
cerca de ellos es común, Pefaur et al. (1978) los encontró en zonas agrícolas que incluso estaban abandonadas pero cercanas a edificios ocupados por personas, Cosssios (2010) indica que esta especie está muy asociada al humano desde su llegada en el siglo XVI.

Aunque no existen registros de los individuos en el centro poblado de Illpa, Ramírez et al. (2007) realizó estudios en una zona alto andina del departamento de Puno, Akodon boliviensis, Akodon albiventer y Phyllotis xanthopygus fueron encontrados en la localidad de Tupala (distrito de Capaso) a 4400 msnm, tal resultado se pueden reforzar por la mayor diversidad del genero Akodon en zonas altas descrita por Young (2007). La ALT (2001) y Luna (2009) presentan estudios de diversidad realizados en zonas cercanas al lago Titicaca y son los más próximos a la EEA; solo no registraron a Abrothrix andinus sin embargo Ferro y Barquez (2008) indican que esta especie puede distribuirse hasta los 4000 msnm fortaleciendo el resultado ahora encontrado.

Myers et al. (1990) indica que Akodon boliviensis tiene distribución en Perú y Bolivia, Anderson (1997) refuerza tal distribución e incluye a las especies A. albiventer, M. musculus y P. xanthopygus. Esta última especie fue encontrada en Argentina por Altricher et al. (2004) y en el mismo país Ferro y Barquez (2014) solo no registró a M. musculus en altitudes que van desde los 2000 hasta los 4000 msnm. Esto demuestra que las especies encontradas en el estudio realizado tienen una amplia distribución no solo en Perú, sino también en países cercanos pero que comparten hábitats similares distribuidos a altitudes que podríamos llamar zonas altas, un factor determinante en la similitud de especies encontradas podría ser que los países vecinos a Perú comparten también la cordillera de los Andes.

4.1.1. Grado de diversidad en la zona

Al aplicar los índices de diversidad de Shannon y Simpson dieron como resultado 1,298 (rango de valores de 0 a 5) y 0.6728 (rango de valores de 0 a 1) respectivamente, dichos resultados indicarían una diversidad baja para toda la zona de estudio (Tabla 3).
La baja diversidad pudo haberse dado por la influencia antrópica en la zona, resultado que García et al. (2015) también encontró en áreas con mayor alteración. La ALT (2001) calculó un índice de diversidad para toda la fauna de 0.00013 (rango de 0 a 0.5) para el distrito de Paucarcolla expresando una baja diversidad, el resultado habría sido por las características climáticas y de flora del lugar, además indica que en general, las zona cercanas a el lago presentan una diversidad media casi todo el año, por otro lado Luna (2009) calculó, para la comunidad de roedores en Yasin, un índice de diversidad de 1.13, ambos resultados similares al índice ahora calculado, demostrando un diversidad baja de roedores; sin embargo estos estudios están sujetos siempre a lugares que tuvieron algún tipo de influencia humana.

4.2. Cuantificación de la incidencia de los pequeños mamíferos en cultivos de quinua (Chenopodium quinoa Willdenow)

Las capturas realizadas en la EEA Ilpa dan como resultado una mayor preferencia de pequeños mamíferos en las áreas sin cultivo (98.11%) que a las áreas con cultivo (1.88%), la única captura en el área de cultivo fue en la fase de emparve y de la especie Mus musculus especie común en construcciones antrópicas (Tabla 4). En el ámbito de estudio la especie Mus musculus representada por el 47% del total de capturas fue la especie con mayor incidencia, seguida por Phyllotis xanthopygus (28%), Abrothrix andinus (13%), Akodon albiventer (8%) y Akodon boliviensis (4%); se entiende el alto

<table>
<thead>
<tr>
<th>Especie</th>
<th>Área cultivada</th>
<th>Área sin Cultivo</th>
<th>Total Individuos capturados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akodon boliviensis</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Abrothrix andinus</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mus musculus</td>
<td>1</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Akodon albiventer</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Phyllotis xanthopygus</td>
<td>15</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>52</td>
<td>53</td>
</tr>
</tbody>
</table>

Índice de Shannon: 1.298
Índice de Simpson: 0.6728

Fuente: Elaboración Propia
porcentaje de incidencia en el área sin cultivo de *M. musculus* como especie cosmopolita asociada a poblaciones humanas y de gran adaptabilidad.

Tabla 4. Número de Individuos capturados en las áreas con cultivo de quinua y sin cultivo, 2017.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Área con cultivo</th>
<th>Área sin cultivo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Akodon boliviensis</td>
<td>2</td>
<td>3.846154</td>
<td>2</td>
</tr>
<tr>
<td>Abrothrix andinus</td>
<td>7</td>
<td>13.46154</td>
<td>7</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>1</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>Akodon albiventer</td>
<td>4</td>
<td>7.692308</td>
<td>4</td>
</tr>
<tr>
<td>Phyllotis xanthopygus</td>
<td>15</td>
<td>28.84615</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>52</td>
<td>100</td>
</tr>
<tr>
<td>Porcentaje</td>
<td>1.88</td>
<td></td>
<td>98.11</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Ya que los roedores prefieren lugares que permita que se escondan y encuentren un refugio de los depredadores se esperaba que la altura y densidad de las plantas de quinua sea beneficioso para estos individuos, sin embargo el sembrado de las semillas en surcos, distinto a lo tradicional (al boleo) dificultó esta acción durante las etapas fenológicas de grano pastoso y madurez fisiológica, además se observó una pareja de Cernícalos (*Falco sparverius*), que rondaban casi a diario el área de cultivo, llegando a funcionar como como controladores naturales de los mismos, efecto similar al que ofrecen las aves rapaces disecadas con respecto a las aves granívoras descritas por Tapia et al. (1979) y León (2003), Simonetti (1989) describe el mayor uso de los hábitats debajo de los arbustos, esto podría verse reflejado en la ausencia de los pequeños mamíferos. El aislamiento de la zona, con áreas completamente sin vegetación sería más fácil de cazar por algún depredador; a pesar de la abundancia de comida por las plantas de quinua son muy difíciles de alcanzar, siendo un gasto muy grande de energía para un poco de alimento.

Durante la etapa post-cosecha, el emparve se realizó a manera de “taucas”, habiendo 2 paralelas de aproximadamente 14 metros de largo y 1.25 metros de alto, se esperaba una mayor abundancia de los pequeños mamíferos, ya que el tipo de emparve provee alimento al alcance de los mismos por la cercanía de la
panoja al suelo, Pastor (1995) registra la presencia de *Mus musculus* y *Akodon boliviensis*, también encontrado en zona de cultivo por Luna (2009) sin embargo la ausencia de estas especies en los cultivos de quinua podría estar sujeto a el aislamiento de la zona de cultivo y de las taucas.

4.2.1. Comparación de la abundancia de pequeños mamíferos en las etapas de cultivo

La prueba estadística de U Mann-Whitney (p<0.05) (Tabla 5) indica que no existe diferencia en cuanto a la abundancia de roedores entre las etapas de grano pastoso, madurez fisiológica y emparve; por el contrario si existe una diferencia significativa entre las capturas de la actividad post-cosecha de almacén con respecto a las otras etapas del cultivo de la quinua.

Tabla 5. Matriz para la prueba de U Mann-Whitney con el p valor entre las abundancias de roedores según diferentes condiciones del cultivo de quinua y post cosecha. Valores con asteriscos indican diferencias significativas (cuando p < 0.05)

<table>
<thead>
<tr>
<th></th>
<th>Grano pastoso</th>
<th>Madurez fisiológica</th>
<th>Emparve</th>
<th>Almacén</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grano pastoso</td>
<td>-</td>
<td>0.207</td>
<td>0.065</td>
<td>0.012*</td>
</tr>
<tr>
<td>Madurez fisiológica</td>
<td>-</td>
<td>0.414</td>
<td>0.031*</td>
<td></td>
</tr>
<tr>
<td>Emparve</td>
<td>-</td>
<td>0.018*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Almacén</td>
<td></td>
<td></td>
<td>0.018*</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Luna (2009) al realizar muestreos en zona de cultivo con avena y cebada amontonada encontró una menor abundancia (15 individuos), la disposición de la cosecha es similar al emparve que se realiza con la quinua, la disponibilidad en la actividad post-cosecha de almacén sería un factor predominante en la diferencia de abundancia que hubo respecto a las otras etapas fenológicas y actividades post-cosecha del cultivo de la quinua.

4.3. Especies negativas para la quinua

Con la finalidad de identificar las especies que podrían ser dañinas o selectivas con el cultivo y/o grano de quinua se revisó en total 38 estómagos, cantidad menor a la de individuos capturados debido a que en algunas ocasiones los
roedores presentaban heridas por causa del tipo de trampa que se usó, en general todas las especies tuvieron un mayor contenido estomacal de restos vegetales (97.74%) que estaba conformado por forraje y algunas Poaceas, seguido de semillas (1.43%) las cuales solo se encontraron en P. xanthopygus pudiendo tener algún tipo de papel en la dispersión de semillas. Solo la especie M. musculus registro granos de quinua en su estómago.

Porcentualmente, A. boliviensis y A. albiventer se alimentaron solo de vegetales lo cual demuestra una tendencia a solo consumir plantas, M. musculus a pesar de tener el 1.08 % de quinua en su dieta, el 95.82% está representado por restos vegetales, además de presentar dentro de la categoría Artrópodos un 3.086 % en donde se incluye el orden Coleóptera y Phthiraptera, lo cual demostraría una tendencia de el roedor a ser oportunista o de practicar actividades de acicalamiento con otros roedores; P. xanthopygus tuvo una mayor tendencia a consumir vegetales (97.19%) seguido de semillas (2.26) y en menor cantidad de Artrópodos (0.54%) del orden Araneae, la especie A. andinus al igual que los demás roedores capturados tuvieron una mayor tendencia al consumo de vegetales (99.95%) un en mucho menor porcentaje artrópodos (0.04%) del orden Araneae(Tabla 6), además se encontró un parasito intestinal de la especie Ascaris lumbricoides (también llamada lombriz intestinal).

Tabla 6. Peso (gr) y porcentaje de las categorías del contenido estomacal de los individuos capturados, 2017.

<table>
<thead>
<tr>
<th>Alimento</th>
<th>A. boliviensis</th>
<th>A. andinus</th>
<th>M. musculus</th>
<th>A. albiventer</th>
<th>P. xanthopygus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso</td>
<td>%</td>
<td>Peso</td>
<td>%</td>
<td>Peso</td>
</tr>
<tr>
<td>Granos de quinua</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Restos vegetales</td>
<td>0.51</td>
<td>100.00</td>
<td>0.82</td>
<td>99.95</td>
<td>0.90</td>
</tr>
<tr>
<td>Insectos</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Semillas</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.51</td>
<td>100.00</td>
<td>0.82</td>
<td>100.00</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Noblecilla y Pacheco (2012) quien reviso la dieta de roedores en Huánuco y Sahley et al. (2016) encontraron que el género Akodon tuvo una mayor
predisposición a alimentarse de insectos, pudiéndose comparar con *Abrothrix andinus* pero no con *Mus musculus*, el resultado podría deberse a la disponibilidad de alimento fácil, al realizarse casi todas las capturas en un ambiente donde el forraje estaba disponible y no requería una gran inversión de energía por otro lado la captura de *M. musculus* en la actividad de emparve, no sería determinante para afirmar que es dañina para el cultivo de quinua, pero mayor número de captura en almacén aseguraría que los roedores serán favorecidos por las actividades humanas si es que no se toman medidas preventivas, lo cual evitara daños no solo a el producto de la Quinua sino a cualquier alimento que llegue a ser almacenado.

4.4. Determinación de la fluctuación poblacional de los pequeños mamíferos en los períodos fenológicos de la quinua (grano pastoso y madurez fisiológica) y etapa post cosecha (emparve y almacén)

La media indica que existe un mayor número de individuos en la etapa de almacén, y una menor en la etapa de grano pastoso; la similitud de la mediana con el promedio indica que existe una muestra homogénea de las capturas (Figura 7) La población de *Akodon boliviensis* y *Phyllotis xanthopygus* fueron las poblaciones menos frecuente y estuvieron presentes en la etapa de madurez fisiológica y almacén, respectivamente, *Akodon albiventer y Abrothrix andinus* estuvieron presentes en al menos 2 etapas, la población de la primera tuvo tendencia al decaimiento, mientras que la segunda al aumento de la población, la población de *Mus musculus* estuvo presente en todas las etapas con un pico de la población en la actividad de emparve, dicho comportamiento podría ser interpretado como un comportamiento de reproducción estacional o de migración de todas las especies de pequeños mamíferos en el área..
Figura 7. Fluctuación del promedio de las poblaciones de roedores según períodos fenológicos del cultivo de quinua. Letras diferentes indican diferencias significativas (p < 0.05).

Un comportamiento estacional o migratoria fue ya encontrada por Pefaur et al. (1978) al solo realizar capturas en invierno mas no en primavera, esta conducta podría deberse a la disponibilidad de alimento, refugio o factores climáticos de la zona, factores que Pastor (1995) describe como fundamentales para el comportamiento estacional de las especies de roedores, dicho comportamiento no es propio de todas las especies, Lima et al (2003) hace una referencia a que la estacionalidad sería característica de algunas especies mas no de todo el orden rodentia, uno delos grupos a los que se podría excluir de este tipo de comportamiento serian a las especies cosmopolitas de roedores (M. musculus, R. rattus y R. norvergicus) pues al menos el roedor M. musculus, fue el roedor más abundante y su población no desapareció o llego en una etapa en especifica.

En general la comunidad de roedores tuvo el comportamiento de una curva acescente, en la etapa de madurez fisiológica hubo un leve decaimiento de la comunidad, cabe resaltar que el alza de la comunidad de pequeños mamíferos en la etapa de almacén se debe a la llegada de la población de Phyllotis xanthopygus(Figura 8.).
La presencia de los roedores en almacenes de quinua fue registrada ya por Flores et al. (2010), este comportamiento indica que se debe de tener un mayor cuidado en la etapa de almacenaje por el aumento de individuos en la comunidad de roedores, Tapia & Fries (2007) indica que este aumento durante este periodo, si es que no se lleva de manera adecuada puede causar daños irremediables incluso, como dice el INIA (1988), dejándolo no apto para el consumo humano.

Figura 8. Capturas totales de roedores en diferentes condiciones fenológicas del cultivo de quinua y en la época post cosecha.
V. CONCLUSIONES

- La diversidad de pequeños mamíferos en la Estación Experimental Zonal Illpa Puno – INIAA estuvo conformada solo por el orden rodentia, dentro de ellas las especies *Akodon boliviensis*, *Akodon albiventer*, *Abrothrix andinus*, *Mus musculus* y *Phyllotis xanthopygus*, especies ya registradas en el departamento de Puno por otros autores.

- Debido a factores físico-biológicos no hubo incidencia significativa de los roedores hacia la quinua, el único individuo capturado relacionado directamente con la quinua se realizó durante la actividad de emparve y fue de la especie *M. musculus*.

- La misma ausencia de los roedores en los cultivos fue determinante para afirmar que no existe un efecto negativo en la quinua, solo en el individuo de *M. musculus* que fue capturado en el emparve de la quinua se encontró granos de quinua en el contenido estomacal, la mayor facilidad de encontrar alimento y refugio frente a depredadores ayudó a este resultado; la dieta, casi en su totalidad, de los roedores estuvo compuesta por vegetales y en menor cantidad de artrópodos.

- La fluctuación poblacional de las especies encontradas en el área indica una tendencia a la estacionalidad o actividades migratorias al tener una curva ascendente o descendente, *M. musculus* fue la especie más abundante y tuvo la población con mayor estabilidad; la comunidad de roedores tuvo una curva ascendente desde el inicio hasta el final del estudio lo cual indica que estaría sujeta mayormente a la disponibilidad de alimento, también promovería la migración de algunas especies como la población de *P. xanthopygus*, especie que solo estuvo presente en la actividad de almacén.
VI. RECOMENDACIONES

Estudiar la incidencia y diversidad de roedores en cultivos que presenten un método de cultivo de quinua al voleo además de que tengan distinta geografía.

Analizar los parásitos micro, macroscópicos, internos y externos en roedores, su transmisión a mamíferos mayores como sus predadores o humanos y la relacionan con estos últimos.

Realizar un monitoreo de las actividades migratorias de la poblaciones y/o comunidades de roedores en hábitats naturales e influenciadas por humanos, además de relacionarlas con la disponibilidad de alimento en ambas áreas.

Por la baja producción bibliográfica en roedores del departamento de Puno, es necesario una mayor investigación de este orden, que permita exclusividad de especies, evitando así que se use textos de regiones similares a las nuestras y que podrían llevar a errores.

Estudiar el grado de relación humano-roedor en las zonas alto andinas, y sus efectos en la vida cotidiana de las personas.
VII. REFERENCIAS

Universidad Nacional Agraria La Molina.

Ordenes y Familias de Mamíferos Presentes En La Region Sur Gande Del Perú.

Pearson, O., & Macedo, H. (1957). Clave de Roedores Altiplano Peruano y el Oeste de los andes. In An Annotated Key to the Species of Rodents of the Altiplano of Perú and the region to the West of the Andes (pp. 1–2).

Villalobos, D., Ramírez, J. D., Chacón, E., Pineda, W., & Rodríguez, B. (2016). *Clave

ANEXOS

Figura 9. Panorámica del área destinada a los cultivos dentro de la EEA, a la derecha una parte de uno de los almacenes y al fondo cultivos de avena, 2017.

Figura 10. Vista frontal de uno de los almacenes de la EEA a la derecha se nota la carretera antigua a Sillustani, 2017.

Figura 17. Cernícalo o aguilucho (*Falco sparverius*) sobre líneas de electricidad que cruzaban el almacén dentro de la EEA, 2017.

Figura 18. Trampas golpe usadas para el muestreo de pequeños mamíferos en la EEA
Figura 19. Trampa golpe activada sin captura, revisada luego de una intensa lluvia propia de la época

Figura 20. Cebo usado como atrayente para las capturas de pequeños mamíferos dentro de la EEA, compuesta por avena, portola (pescado en salsa de tomate) y esencia de vainilla
Figura 21. Trampa golpe (derecha) y Cebo (izquierda) previamente preparado y transportado en recipiente de vidrio, antes de la activación de las trampas

Figura 22. Medición somática de la longitud total de un roedor
Figura 23. Medición somática de la pata de un roedor

Figura 24. Medición somática de la cola de un roedor.
Figura 25. Medición somática de la oreja de un roedor

Figura 27. Inicio de la taxidermización de un roedor capturado en la EEA

Figura 28. Limpieza final de los restos de grasa y musculo de la piel separada del cuerpo del roedor
Figura 29. Cráneo sumergido en lejía (izquierda) y agua oxigenada (derecha), usados para la limpieza de los cráneos

Figura 30. Proceso de limpieza de cráneos usando bisturí y pinzas

Figura 36. Medidas craneales para roedores consideradas en la clave: longitud occipitonasal (LON), longitud condilobasal (LCB), longitud basal (LB), longitud basilar (LBR), longitud del rostro (LR), ancho del rostro (AR), longitud nasal (LN), anchura zigomática (AZ), anchura de la caja craneana (ACC), constricción interorbital (CI), longitud palatal (LPA), longitud del foramen incisivo (LFI), longitud de la bula auditiva (LBA), anchura de la bula auditiva (ABA), longitud interparietal (LIP), anchura interparietal (AIP), longitud de la hilera molar de dientes (LHMD), anchura de la fosa mesopterigoidea (AFM), anchura de la placa zigomática (APZ) y profundidad del cráneo (PC).

(Godinez & Guerrero, 2014)
Figura 37. Cráneos de las 5 especies de roedores encontradas en la EEA (de izquierda a derecha) *Mus musculus*, *Akodon albiventer*, *Phyllotis xanthopygus*, *Akodon boliviensis* y *Abrothrix andinus*.

Figura 38. Mandíbulas inferiores de las 5 especies de roedores encontradas en la EEA (arriba) *Phyllotis xanthopygus* y *Akodon boliviensis*, (medio) *Mus musculus* (abajo) *Akodon albiventer* y *Abrothrix andinus*.
Figura 39. Vista superior de las 5 especies de roedores encontradas en la EEA (arriba) Phyllotis xanthopygus y Akodon boliviensis, (medio) Mus musculus (abajo) Akodon albiventer y Abrothrix andinus

Figura 40. Contenido estomacal de los roedores secando para su posterior disgregación y pesado
Figura 41. *Ascaris lumbricoides* encontrado en el estómago de *Abrothrix andinus*

Figura 42. Semilla no identificada encontrada en los estómagos de *Phyllotis xanthopygus*
Figura 43. Individuo del orden Phthiraptera encontrada en el estómago Mus musculus
<table>
<thead>
<tr>
<th>Código</th>
<th>Etapa Fenológica</th>
<th>Orden</th>
<th>Familia</th>
<th>Sub Familia</th>
<th>Género</th>
<th>Especie</th>
<th>Hábitat</th>
<th>L. Total</th>
<th>L. Cola</th>
<th>L. Pata</th>
<th>L. Oreja</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCCC 001</td>
<td>G. Pastoso</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>169.00</td>
<td>84.00</td>
<td>18.38</td>
<td>16.32</td>
<td></td>
</tr>
<tr>
<td>PCCC 002</td>
<td>G. Pastoso</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Akodon</td>
<td>A. albiventris</td>
<td>A. sin cultivo</td>
<td>165.00</td>
<td>88.00</td>
<td>19.32</td>
<td>13.52</td>
<td>11.00</td>
</tr>
<tr>
<td>PCCC 003</td>
<td>G. Pastoso</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>173.00</td>
<td>83.00</td>
<td>17.80</td>
<td>19.12</td>
<td>7.00</td>
</tr>
<tr>
<td>PCCC 004</td>
<td>G. Pastoso</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Akodon</td>
<td>A. albiventris</td>
<td>A. sin cultivo</td>
<td>172.00</td>
<td>74.00</td>
<td>21.70</td>
<td>13.18</td>
<td>18.00</td>
</tr>
<tr>
<td>PCCC 005</td>
<td>G. Pastoso</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>165.00</td>
<td>80.00</td>
<td>18.30</td>
<td>17.66</td>
<td>3.00</td>
</tr>
<tr>
<td>PCCC 006</td>
<td>G. Pastoso</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>169.00</td>
<td>83.00</td>
<td>18.10</td>
<td>14.40</td>
<td>2.00</td>
</tr>
<tr>
<td>PCCC 007</td>
<td>G. Pastoso</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>145.00</td>
<td>79.00</td>
<td>18.44</td>
<td>14.90</td>
<td>2.00</td>
</tr>
<tr>
<td>PCCC 008</td>
<td>G. Pastoso</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Akodon</td>
<td>A. albiventris</td>
<td>A. sin cultivo</td>
<td>184.00</td>
<td>76.00</td>
<td>22.26</td>
<td>15.00</td>
<td>21.00</td>
</tr>
<tr>
<td>PCCC 009</td>
<td>Madurez Fisiológica</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>157.00</td>
<td>82.00</td>
<td>18.00</td>
<td>14.60</td>
<td>5.00</td>
</tr>
<tr>
<td>PCCC 010</td>
<td>Madurez Fisiológica</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>167.00</td>
<td>84.00</td>
<td>19.60</td>
<td>13.50</td>
<td>7.00</td>
</tr>
<tr>
<td>PCCC 011</td>
<td>Madurez Fisiológica</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>151.00</td>
<td>75.00</td>
<td>19.12</td>
<td>13.04</td>
<td>3.00</td>
</tr>
<tr>
<td>PCCC 012</td>
<td>Madurez Fisiológica</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Akodon</td>
<td>A. albiventris</td>
<td>A. sin cultivo</td>
<td>134.00</td>
<td>64.00</td>
<td>18.50</td>
<td>12.78</td>
<td>2.00</td>
</tr>
<tr>
<td>PCCC 013</td>
<td>Madurez Fisiológica</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>182.00</td>
<td>91.00</td>
<td>20.82</td>
<td>15.40</td>
<td>6.00</td>
</tr>
<tr>
<td>PCCC 014</td>
<td>Madurez Fisiológica</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Akodon</td>
<td>A. boliviensis</td>
<td>A. sin cultivo</td>
<td>143.00</td>
<td>65.00</td>
<td>20.14</td>
<td>8.34</td>
<td>3.00</td>
</tr>
<tr>
<td>PCCC 015</td>
<td>Madurez Fisiológica</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Akodon</td>
<td>A. boliviensis</td>
<td>A. sin cultivo</td>
<td>165.00</td>
<td>65.00</td>
<td>20.26</td>
<td>9.50</td>
<td>18.00</td>
</tr>
<tr>
<td>PCCC 016</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>149.00</td>
<td>68.00</td>
<td>18.80</td>
<td>13.68</td>
<td>2.00</td>
</tr>
<tr>
<td>PCCC 017</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>160.00</td>
<td>72.00</td>
<td>17.30</td>
<td>11.90</td>
<td>3.00</td>
</tr>
<tr>
<td>PCCC 018</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Abrotherix</td>
<td>A. andinus</td>
<td>A. sin cultivo</td>
<td>155.00</td>
<td>66.00</td>
<td>19.80</td>
<td>12.56</td>
<td>9.00</td>
</tr>
<tr>
<td>PCCC 019</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>160.00</td>
<td>78.00</td>
<td>18.70</td>
<td>13.64</td>
<td>5.00</td>
</tr>
<tr>
<td>PCCC 020</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>159.00</td>
<td>78.00</td>
<td>18.52</td>
<td>13.00</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Tabla 7. Registro y medidas somáticas de individuos colectados durante el muestreo de pequeños mamíferos en la EEA, 2017
<table>
<thead>
<tr>
<th>Código</th>
<th>Etapa Fenológica</th>
<th>Orden</th>
<th>Familia</th>
<th>Sub Familia</th>
<th>Género</th>
<th>Especie</th>
<th>Hábitat</th>
<th>L. Total</th>
<th>L. Cola</th>
<th>L. Pata</th>
<th>L. Oreja</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCCC 021</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>154.00</td>
<td>76.00</td>
<td>18.80</td>
<td>13.00</td>
<td>5.00</td>
</tr>
<tr>
<td>PCCC 022</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>149.00</td>
<td>68.00</td>
<td>18.40</td>
<td>14.30</td>
<td>5.00</td>
</tr>
<tr>
<td>PCCC 023</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Abrothrix</td>
<td>A. andinus</td>
<td>A. sin cultivo</td>
<td>164.00</td>
<td>82.00</td>
<td>19.00</td>
<td>12.70</td>
<td>4.00</td>
</tr>
<tr>
<td>PCCC 024</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Abrothrix</td>
<td>A. andinus</td>
<td>A. sin cultivo</td>
<td>168.00</td>
<td>86.00</td>
<td>17.60</td>
<td>13.84</td>
<td>5.00</td>
</tr>
<tr>
<td>PCCC 025</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>142.00</td>
<td>63.00</td>
<td>19.34</td>
<td>11.40</td>
<td>3.00</td>
</tr>
<tr>
<td>PCCC 026</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>182.00</td>
<td>90.00</td>
<td>7.60</td>
<td>14.90</td>
<td>6.00</td>
</tr>
<tr>
<td>PCCC 027</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>164.00</td>
<td>78.00</td>
<td>18.90</td>
<td>14.20</td>
<td>3.00</td>
</tr>
<tr>
<td>PCCC 028</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>139.00</td>
<td>70.00</td>
<td>17.30</td>
<td>12.58</td>
<td>3.00</td>
</tr>
<tr>
<td>PCCC 029</td>
<td>Emparve</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. con cultivo</td>
<td>160.00</td>
<td>78.00</td>
<td>18.30</td>
<td>16.80</td>
<td>3.00</td>
</tr>
<tr>
<td>PCCC 030</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>161.00</td>
<td>83.00</td>
<td>18.12</td>
<td>12.58</td>
<td>5.00</td>
</tr>
<tr>
<td>PCCC 031</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Abrothrix</td>
<td>A. andinus</td>
<td>A. sin cultivo</td>
<td>149.00</td>
<td>74.00</td>
<td>17.44</td>
<td>12.30</td>
<td>5.00</td>
</tr>
<tr>
<td>PCCC 032</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>186.00</td>
<td>74.00</td>
<td>21.80</td>
<td>11.48</td>
<td>12.00</td>
</tr>
<tr>
<td>PCCC 033</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>157.00</td>
<td>82.00</td>
<td>18.42</td>
<td>12.72</td>
<td>4.00</td>
</tr>
<tr>
<td>PCCC 034</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Muridae</td>
<td>Muridae</td>
<td>Mus</td>
<td>M. musculus</td>
<td>A. sin cultivo</td>
<td>149.00</td>
<td>78.00</td>
<td>17.30</td>
<td>14.42</td>
<td>3.00</td>
</tr>
<tr>
<td>PCCC 035</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Phyllotis</td>
<td>P. xanithypus</td>
<td>A. sin cultivo</td>
<td>215.00</td>
<td>118.00</td>
<td>27.00</td>
<td>24.52</td>
<td>21.00</td>
</tr>
<tr>
<td>PCCC 036</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Phyllotis</td>
<td>P. xanithypus</td>
<td>A. sin cultivo</td>
<td>212.00</td>
<td>120.00</td>
<td>26.50</td>
<td>21.74</td>
<td>22.00</td>
</tr>
<tr>
<td>PCCC 037</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Phyllotis</td>
<td>P. xanithypus</td>
<td>A. sin cultivo</td>
<td>204.00</td>
<td>108.00</td>
<td>27.50</td>
<td>23.48</td>
<td>25.00</td>
</tr>
<tr>
<td>PCCC 038</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Phyllotis</td>
<td>P. xanithypus</td>
<td>A. sin cultivo</td>
<td>199.00</td>
<td>108.00</td>
<td>25.36</td>
<td>23.00</td>
<td>20.00</td>
</tr>
<tr>
<td>PCCC 039</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Phyllotis</td>
<td>P. xanithypus</td>
<td>A. sin cultivo</td>
<td>215.00</td>
<td>115.00</td>
<td>27.24</td>
<td>22.02</td>
<td>22.00</td>
</tr>
<tr>
<td>PCCC 040</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Phyllotis</td>
<td>P. xanithypus</td>
<td>A. sin cultivo</td>
<td>212.00</td>
<td>113.00</td>
<td>22.66</td>
<td>23.32</td>
<td>22.00</td>
</tr>
<tr>
<td>PCCC 041</td>
<td>Almacén</td>
<td>Rodentia</td>
<td>Cricetidae</td>
<td>Sigmodontinae</td>
<td>Phyllotis</td>
<td>P. xanithypus</td>
<td>A. sin cultivo</td>
<td>261.00</td>
<td>140.00</td>
<td>25.34</td>
<td>25.00</td>
<td>22.00</td>
</tr>
<tr>
<td>Código</td>
<td>Familia</td>
<td>Sub Familia</td>
<td>Especie</td>
<td>Genro</td>
<td>Hábitat</td>
<td>Pá</td>
<td>Pata</td>
<td>Oreja</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 042</td>
<td>Almaceña</td>
<td></td>
<td>P. xamhiopogus</td>
<td>Phyllolepis</td>
<td>A. sin cultivar</td>
<td>231.00</td>
<td>115.00</td>
<td>26.26</td>
<td>20.68</td>
<td>21.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 043</td>
<td>Almaceña</td>
<td></td>
<td>M. musculus</td>
<td>Mus</td>
<td>A. sin cultivar</td>
<td>132.00</td>
<td>62.00</td>
<td>17.50</td>
<td>10.00</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 044</td>
<td>Almaceña</td>
<td></td>
<td>M. musculus</td>
<td>Mus</td>
<td>A. sin cultivar</td>
<td>142.00</td>
<td>56.00</td>
<td>17.50</td>
<td>10.00</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 045</td>
<td>Almaceña</td>
<td></td>
<td>P. xamhiopogus</td>
<td>Phyllolepis</td>
<td>A. sin cultivar</td>
<td>231.00</td>
<td>115.00</td>
<td>26.26</td>
<td>21.00</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 046</td>
<td>Almaceña</td>
<td></td>
<td>P. xamhiopogus</td>
<td>Phyllolepis</td>
<td>A. sin cultivar</td>
<td>257.00</td>
<td>140.00</td>
<td>27.50</td>
<td>24.66</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 047</td>
<td>Almaceña</td>
<td></td>
<td>P. xamhiopogus</td>
<td>Phyllolepis</td>
<td>A. sin cultivar</td>
<td>257.00</td>
<td>140.00</td>
<td>27.50</td>
<td>24.66</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 048</td>
<td>Almaceña</td>
<td></td>
<td>A. andinus</td>
<td>A. andinus</td>
<td>A. sin cultivar</td>
<td>176.00</td>
<td>63.00</td>
<td>26.68</td>
<td>21.00</td>
<td>21.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 049</td>
<td>Almaceña</td>
<td></td>
<td>A. andinus</td>
<td>A. andinus</td>
<td>A. sin cultivar</td>
<td>191.00</td>
<td>94.00</td>
<td>26.64</td>
<td>20.32</td>
<td>5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 050</td>
<td>Almaceña</td>
<td></td>
<td>A. andinus</td>
<td>A. andinus</td>
<td>A. sin cultivar</td>
<td>134.00</td>
<td>82.00</td>
<td>17.28</td>
<td>13.28</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 051</td>
<td>Almaceña</td>
<td></td>
<td>A. andinus</td>
<td>A. andinus</td>
<td>A. sin cultivar</td>
<td>149.00</td>
<td>61.00</td>
<td>17.68</td>
<td>10.00</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 052</td>
<td>Almaceña</td>
<td></td>
<td>A. andinus</td>
<td>A. andinus</td>
<td>A. sin cultivar</td>
<td>141.00</td>
<td>59.00</td>
<td>16.88</td>
<td>8.32</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCCC 053</td>
<td>Almaceña</td>
<td></td>
<td>A. andinus</td>
<td>A. andinus</td>
<td>A. sin cultivar</td>
<td>171.00</td>
<td>84.00</td>
<td>21.40</td>
<td>21.40</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESOLUCIÓN ADMINISTRATIVA N° 044-2017-SERFOR-ATFFS-PUNO

Puno, 06 de Marzo de 2017

CUT: 07616-2017

VISTO:

La solicitud presentada el 13 de febrero de 2017, por el señor Paulo Cesar Calla Chambi, estudiante de Biología de la Universidad Nacional del Altiplano Puno, quien solicitó autorización con fines de investigación de fauna silvestre, fuera de Áreas Naturales Protegidas, en el departamento de Puno, como parte del estudio titulado: "Incidencia y Diversidad de Micromamíferos Terrestres en Cultivos de Quinua (Chenopodium quinoa Willd) en la Estación Experimental Zonal Illipa Puno, INIAR", y,

CONSIDERANDO:

Que, el artículo 66° de la Constitución Política del Perú, establece que los recursos naturales, renovables y no renovables, son patrimonio de la Nación. El Estado es soberano en su aprovechamiento; asimismo, en su artículo 68° establece que es obligación del Estado promover la conservación de la diversidad biológica;

Que, la Ley N° 26821, Ley Orgánica para el Aprovechamiento Sostenible de los Recursos Naturales, establece en su artículo 9º, referido a la investigación científica, que el Estado promueve la investigación científica y tecnológica sobre la diversidad, calidad, composición, potencialidad y gestión de los recursos naturales. Asimismo, promueve la información y el conocimiento sobre los recursos naturales. Para estos efectos, podrán otorgarse permisos para investigación en materia de recursos naturales;

Que, mediante Decreto Legislativo N° 997, Decreto Legislativo que aprueba la Ley de Organización y Funciones del Ministerio de Agricultura, ahora Ministerio de Agricultura y Riego, modificado por la Ley N° 30048, dispone que este Ministerio es el órgano rector del Sector Agrario, el cual comprende entre otras: las tierras de uso agrícola, de pastoreo, las tierras forestales, las erizas con aptitud agraria; los recursos forestales y su aprovechamiento; la flora y fauna; las actividades de producción, transformación y de comercialización de cultivos y crianzas; asimismo, dispone, entre otros, que este Ministerio diseña, establece, ejecuta y supervisa las políticas nacionales y sectoriales en materia agraria; ejerce la rectoría en relación con ella y vigila su obligatorio cumplimiento por los tres niveles de gobierno;

Que, el artículo 13° de la Ley N° 29763, crea el Servicio Nacional Forestal y de Fauna Silvestre-SERFOR, como organismo público técnico especializado, con personería jurídica de derecho público interno; como pliego presupuestal adscrito al Ministerio de Agricultura y Riego. Asimismo, se señala que el SERFOR es la autoridad nacional forestal y de fauna silvestre, ente rector del Sistema Nacional de Gestión Forestal y de Fauna Silvestre (SINAFO), y se constituye en su autoridad técnico normativa a nivel nacional, encargada de dictar las normas y establecer los procedimientos relacionados a su ámbito;
Que, mediante Decreto Supremo N° 007-2013-MINAGRI del 18 de julio del 2013, y modificado por Decreto Supremo N° 015-2014-MINAGRI del 03 de setiembre del 2014, aprobó el Reglamento de Organización y Funciones - ROF del Servicio Nacional Forestal y de Fauna Silvestre - SERFOR, el mismo que en la parte de disposiciones complementarias transitorias señala que las administraciones técnicas forestales y de fauna silvestre se incorporan al SERFOR, como órganos desconcentrados de actuación local del SERFOR, ejerciendo una de las funciones de las Administraciones Forestales y de Fauna Silvestre, la de actuar como primera instancia en la gestión y administración de los recursos forestales y de fauna silvestre, dentro del ámbito territorial de su competencia; y acorde a las atribuciones reconocidas;

Que, el Decreto Supremo N° 004-2014-MINAGRI, aprueba la actualización de la lista de clasificación y categorización de las especies amenazadas de fauna silvestre legalmente protegidas;

Que, la Resolución de Dirección Ejecutiva N° 060-2016-SERFOR/DE aprueba los lineamientos para el otorgamiento de la autorización con fines de investigación científica de flora y/o fauna silvestre, el mismo en el punto 6.8. del lineamiento, indica sobre el cumplimiento de las obligaciones previstas en los reglamentos de la Ley N° 29763.

Que, mediante Decreto Supremo N° 019-2015-MINAGRI, se aprobó el Reglamento para la Gestión de la Fauna Silvestre, el mismo que en el artículo 134°, numeral 134.1°, menciona que la investigación científica del Patrimonio se aprueba mediante autorizaciones, salvaguardando los derechos del país, respecto a su patrimonio genético nativo. Asimismo, el numeral 134.5° de la citada norma, señala que el desarrollo de actividades de investigación básica taxonómica de fauna silvestre, relacionada con estudios moleculares con fines taxonómicos, sistemáticos, fitogeográficos, biogeográficos, evolutivos y de genética de la conservación, entre otras investigaciones sin fines comerciales, son aprobadas mediante autorizaciones de investigación científica;

Que, mediante solicitud sin, presentada el 13 de febrero de 2017, el señor Paulo Cesar Calla Chambi, estudiante de la facultad de Ciencias biológicas de la Universidad Nacional del Altiplano Puno, solicitó autorización para realizar investigación científica en fauna silvestre, fuera de Áreas Naturales Protegidas, en el departamento de Puno, como parte del estudio titulado: “Incidencia y Diversidad de Micromamíferos Terrestres en Cultivos de Quinua (Chenopodium quinoa Willd) en la Estación Experimental Zonal Illipa Puno, INIAA”, por el periodo comprendido entre marzo de 2017 a noviembre de 2017;

Que, el Informe Técnico N° 005-2017-SERFOR-ATFFS-PUNO-SEDE-SAN ROMAN-GIH, de fecha 06 de marzo de 2017, concluye que la presente investigación reviste importancia debido a que brindará información científica relevante sobre la interacción entre la biodiversidad y los cultivos altoandinos y la identificación taxonómica de micromamíferos en la región Puno. Los datos generados serán de utilidad al SERFOR en la toma de decisiones relacionadas a la gestión del patrimonio de fauna silvestre. Asimismo, recomienda se apruebe la solicitud presentada por el Sr. Paulo Cesar Calla Chambi.
Que, el precepto Informe Técnico señala que la solicitud materia de resolución, cumple con presentar la documentación necesaria, y,

De conformidad con la Ley N° 29763, Ley Forestal y de Fauna Silvestre; el Reglamento para la Gestión de Fauna Silvestre aprobado por Decreto Supremo N° 019-2015-MINAGRI, Ley N° 27444 Ley del Procedimiento Administrativo General, y el Reglamento de Organización y Funciones del Servicio Nacional Forestal y de Fauna Silvestre, aprobado por Decreto Supremo N° 307-2013-MINAGRI, modificado por el Decreto Supremo N° 016-2014-MINAGRI, y en uso de sus atribuciones conferidas por la presente disposición

SE RESUELVE:

Artículo 1°.- Otorgar la autorización con fines de investigación científica de fauna silvestre, al señor Paulo Cesar Calla Chambi, de nacionalidad Peruano, con DNI N° 70169557, correspondiéndole el Código de Autorización 21-PUN/AUT-IFS-2017-001.

Artículo 2°.- La autorización indicada en el artículo precedente comprende la captura temporal y liberación, con un máximo de capturas de hasta 100 individuos por especie, de las 05 especies a más de micromamíferos descritas en el plan de investigación (Akodon boliviensis, Akodon albiventer, Calomys lepidus, Oligoryzomys andinus y Mus musculus entre otras especies) además de la colecta definitiva de 05 individuos por especie de micromamíferos para la identificación taxonómica de los especímenes capturados, fuera de las áreas naturales protegidas, solicitado como parte del proyecto titulado “Incidencia y diversidad de micromamíferos terrestres en cultivos de Quinua (Chenopodium quinoa Wild) en la Estación Experimental Zonal Ilipa Puno – INIAR”, ha ser realizado en el departamento de Puno por el periodo de 09 meses (marzo a noviembre), contados a partir del día siguiente de la notificación de la presente resolución, las muestras de los individuos capturados se enviarán al Museo de la Universidad Nacional de San Agustín de Arequipa.

Artículo 3°.- El titular de la autorización se compromete a:

a) Colectar únicamente las muestras autorizadas.
b) No ceder el material colectado a terceros, ni utilizarlo para fines distintos a lo autorizado.
c) Si por razones científicas acotadas, se requiere enviar al extranjero parte del material colectado, los interesados deberán gestionar el correspondiente Permiso para la Exportación ante la Dirección General de Gestión Sostenible del Patrimonio Forestal y de Fauna Silvestre del SERFOR, así como pasar el control respectivo.
d) No contactar, ni ingresar a los territorios comunales sin contar con la autorización de las autoridades comunales correspondientes.
e) Entregar a la Dirección General de Gestión Sostenible del Patrimonio Forestal y de Fauna Silvestre una (01) copia del Informe Parcial anual (incluyendo versión digital), al término de cada año, contado a partir de la emisión de la presente autorización. Asimismo, entregar una (01) copia de las publicaciones producto de la investigación realizada en formato impreso y digital.
f) Entregar a la Dirección General de Gestión Sostenible del Patrimonio Forestal y de Fauna Silvestre, una (01) copia del Informe Final (incluyendo versión digital) como resultado de la autorización otorgada, copias del material fotográfico y/o slides que puedan ser utilizadas
para difusión. Asimismo, entregar una (01) copia de las publicaciones producto de la investigación realizada en formato impreso y digital.
g) El Informe Parcial e Informe Final deberán contener una lista taxonómica de las especies de fauna colectadas o registradas bajo la presente autorización, en formato MS Excel. Esta lista deberá contar con sus respectivas coordenadas en formato UTM (Datum WGS84), incluyendo la zona (17, 18 ó 19). El formato de Informe Parcial y Final que debe ser usado se encuentra en el Anexo 1 de la presente resolución.
h) La entrega de lo indicado en el literal e), no deberá exceder los seis (06) meses luego de terminado cada año de la autorización, y en el caso del literal f) no deberá ser mayor a los seis (06) meses al vencimiento de la presente autorización.
i) Indicar el número de la Resolución en las publicaciones generadas a partir de la autorización concedida.
j) Informar a la Jefatura de la Estación Experimental Zonal ilipa Puno INIAA el ingreso a campo para el inicio de la toma de datos de la autorización de investigación, comunicando de éste hecho con días de anticipación.
k) Entregar una copia de los resultados de la investigación científica en formato físico y digital a la Jefatura de la Estación Experimental Zonal ilipa Puno INIAA, a fin de que cuenten con una base de información sobre la biodiversidad de micromafíferos existentes en el área.

Artículo 4°.- El investigador deberá tener en consideración el bienestar animal en los especímenes de a ser capturados y manipulados, así como tomar las medidas necesarias para la correcta eutanasia de especímenes para su posterior identificación.

Artículo 5°.- La Administración Técnica Forestal y de Fauna Silvestre del SERFOR, no se responsabiliza por accidentes o daños sufridos por el solicitante de esta autorización, durante la ejecución del proyecto; asimismo, se reserva el derecho de demandar del proyecto de investigación los cambios a que hubiese lugar en los casos en que se dicten nuevas disposiciones legales o se formulen ajustes sobre la presente autorización.

Artículo 6°.- El incumplimiento de los compromisos adquiridos podrá ser causal para denegar futuras autorizaciones a nivel institucional.

Artículo 7°.- Notificar la presente Resolución al señor Paulo Cesar Calla Chambi, a la Dirección General de Información y Ordenamiento Forestal y de Fauna Silvestre, a la Dirección General de Gestion Sostenible del Patrimonio Forestal y de Fauna Silvestre, y a la Policía Nacional del Perú.

Regístrate y comunícalese