EVALUACIÓN DE LAS CONCENTRACIONES DEL SUPLEMENTO DE PÉPTIDOS SOBRE PARÁMETROS PRODUCTIVOS DE *Oncorhynchus mykiss* TRUCHA ARCO IRIS EN POMATA – PUNO

TESIS

PRESENTADA POR:

Br. CLIVER ABAD LEON SEGURA

PARA OPTAR EL TÍTULO PROFESIONAL DE:

LICENCIADO EN BIOLOGÍA

PUNO PERÚ

2019
UNIVERSIDAD NACIONAL DEL ALTIPLANO DE PUNO
FACULTAD DE CIENCIAS BIOLÓGICAS
ESCUELA PROFESIONAL DE BIOLOGÍA

EVALUACIÓN DE LAS CONCENTRACIONES DEL SUPLEMENTO DE PÉPTIDOS SOBRE PARÁMETROS PRODUCTIVOS DE * Oncorhynchus mykiss*
TRUCHA ARCO IRIS EN POMATA - PUNO

TESIS

PRESENTADO POR:
Br. CLIVER ABAD LEON SEGURA

PARA OPTAR EL TÍTULO PROFESIONAL DE:
LICENCIADO EN BIOLOGÍA

APROBADA POR EL JURADO REVISOR CONFIRMADO POR:

PRESIDENTE : Ing. M. Sc. JOSE DAVID VELEZVIA DIAZ

PRIMER MIEMBRO : D. Sc. BELISARIO MANTILLA MENDOZA

SEGUNDO MIEMBRO : Blgo. HERMINIO RENE ALFARO TAPIA

DIRECTOR / ASESOR : Ing. M. Sc. EDWIN FEDERICO ORNA RIVAS

Fecha de sustentación: 14 de agosto del 2019

AREA: Ciencias Biomédicas

TEMA: Nutrición y alimentación de especies acuícolas
DEDICATORIA

A Dios

Por la vida, inteligencia y fuerza necesarias para la culminación de esta etapa de mi vida.

A mis padres

Con mucho cariño Martha y Edilberto por su apoyo, guía y amor que me brindan.

De manera especial a Luz Delia Mamani Lima por brindarme su ayuda incondicional, comprensión y paciencia.

Cliver Abad Leon Segura
AGRADECIMIENTOS

➢ A la UNA – Puno, por haberme formado durante 5 años en sus aulas, y ser ahora mi mejor carta de presentación, en donde me encuentre.

➢ A los docentes de la Facultad de Ciencias Biológicas, por impartir su sabiduría a todos los alumnos para que en un futuro seamos buenos profesionales.

➢ Al Ing. Edwin Federico Orna Rivas, quien asesoró este trabajo de investigación por sus sabios consejos y por apoyo en el desarrollo de esta investigación.

➢ A los miembros del jurado de esta tesis por brindar sus correcciones oportunas y sugerencias en esta investigación.

➢ Al Centro de Producción Acuícola Dios es Amor E.I.R.L, por brindarme la oportunidad de realizar la investigación en su establecimiento.

➢ A Ingredients Inc Peru S.A.C. por facilitarme el Aqua Natura Fish 40 para realizar las pruebas, y al Lic. Biol. Wilson Reinaldo Quispe Gallegos por orientarme en este proyecto.

➢ A los Señores Edwin Rodríguez, Daniel Rodríguez, Celestino Gonzales y Domingo Rodríguez por el apoyo técnico.
ÍNDICE GENERAL

RESUMEN .. 10
ABSTRACT ... 11
I. INTRODUCCIÓN .. 12
 1.1. OBJETIVO GENERAL: .. 13
 1.2. OBJETIVOS ESPECÍFICOS: .. 13
II. REVISIÓN DE LITERATURA .. 14
 2.1. ANTECEDENTES DEL PROYECTO ... 14
 2.2. MARCO TEÓRICO .. 18
 2.2.1. Generalidades ... 18
 2.2.2. Parámetros productivos: .. 22
 2.2.3. Requerimiento de parámetros fisicoquímicos .. 25
III. MATERIALES Y MÉTODOS ... 27
 3.1. Frecuencia y muestreo .. 27
 3.2. Descripción detallada de los equipos y materiales .. 27
 3.3. Variables .. 29
 3.4. Pruebas bioestadísticas: .. 29
 3.5. Metodología: ... 29
IV. RESULTADOS Y DISCUSIÓN ... 34
 4.1. EVALUACIÓN DEL CRECIMIENTO Y LA MORTALIDAD DE
 Oncorhynchus mykiss TRUCHA ARCO IRIS. PRODUCIDAS CON
 ALIMENTO BALANCEADO EN DISTINTAS
 CONCENTRACIONES DE PéPTIDOS. ... 34
 4.2. DETERMINACION DE PARAMETROS PRODUCTIVOS... 38
V. CONCLUSIONES ... 48
VI. RECOMENDACIONES .. 49
VII. REFERENCIAS ... 50
ANEXOS .. 55
ÍNDICE DE FIGURAS

Figura 1. Instalación de jaulas de 3m x 3m x 2.5m en Pomata mes de julio del 2018. ... 29

Figura 2. Disposición de tratamientos y alimentación de las truchas en Pomata durante julio a octubre del 2018. .. 30

Figura 3. Pesado de alimento balanceado y mezcla con el suplemento AQUA FISH 40 en Pomata durante julio a octubre del 2018. 31

Figura 4. Traslado de truchas de las jaulas hacia tierra en Pomata durante julio a octubre del 2018... 32

Figura 5. Biometría de trucha arco iris anestesiada con aceite de clavo de olor en Pomata durante julio a octubre del 2018.. 32

Figura 6. Incremento de peso de trucha arco iris alimentado con Nicovita balanceado con inclusión del suplemento de péptidos en Pomata entre los meses de julio a octubre del 2018. ... 34

Figura 7. Incremento catorcenal de talla de trucha arco iris producidas con alimento balanceado Nicovita y concentraciones suplemento de péptidos en Pomata durante julio a octubre del 2018. ... 36

Figura 8. Mortalidad de trucha arco iris alimentada con Nicovita balanceado y concentraciones de suplemento de péptidos en Pomata entre julio a octubre del 2018.. 37

Figura 9. Incremento de la biomasa (g) de trucha, cultivada con concentraciones de suplemento de péptidos en Pomata entre julio a octubre del 2018.. 38

Figura 10. Ganancia de Peso (g) de trucha arco iris cultivada con concentraciones de suplemento de péptidos en Pomata durante julio a...
Figura 11. Tasa de crecimiento específico (%/día) de trucha arco iris cultivada con suplemento de péptidos en concentraciones de 20 ml/kg y 30 ml/kg en Pomata durante julio a octubre del 2018.

Figura 12. Tasa de crecimiento absoluta (g/día) en trucha arco iris cultivada con concentraciones de suplemento de péptidos en Pomata durante julio a octubre del 2018.

Figura 13. Crecimiento relativo (%) de trucha arco iris cultivada con suplemento de péptidos en dos concentraciones en Pomata durante julio a octubre del 2018.

Figura 14. Factor de conversión alimenticia (FCA) de trucha arco iris cultivada con suplemento de péptidos en distintas concentraciones en Pomata durante julio a octubre del 2018.

Figura 15. Factor de condición de truchas cultivada con suplemento de péptidos en dos concentraciones en Pomata durante julio a octubre del 2018.

Figura 16. Sobrevivencia expresada en porcentaje, de trucha arco iris cultivada con suplemento de péptidos en concentraciones de 20 y 30 ml/kg de AB en Pomata durante julio a octubre del 2018.

Figura 17. Monitoreo de temperatura y oxígeno disuelto haciendo uso de equipo digital OxyGuard Handy Polaris, Pomata de julio a octubre del 2018.
ÍNDICE DE TABLAS

Tabla 1. Especificaciones nutricionales de aminoácidos (Aqua Natural Fish 40) Perú del 2018. ... 20

Tabla 2. Composición de minerales en Aqua Natural Fish 40, Perú del 2017 20

Tabla 3. Análisis químico proximal de alimento Nicovita, Perú 2017 21

Tabla 4. Tabla de alimentación con la estrategia nueva de Nicovita, Perú 2017 21

Tabla 5. Parámetros físicoquímicos generales para el cultivo de trucha arco iris 26

Tabla 6. Análisis de varianza y test de Tukey de la variable FCA de trucha en Pomata durante julio a octubre del 2018. .. 55

Tabla 7. Análisis de varianza y test de Tukey del factor de condición de trucha cultivada en Pomata durante julio a octubre del 2018. 56

Tabla 8. Formato de biometría para cultivo de trucha 56

Tabla 9. Formato de alimentación para cultivo de trucha 57

Tabla 10. Alimento total suministrado (g) en las tres jaulas de experimentación cultivadas en Pomata entre julio a octubre del 2018 57

Tabla 11. Tabla de alimentación NICOVITA con la estrategia nueva, Perú del 2017 ... 58

Tabla 12. Densidad poblacional expresada en Kg/m3 de trucha de las tres jaulas en experimentación cultivadas en Pomata entre julio a octubre del 2018. ... 58

Tabla 13. Parámetros de oxígeno disuelto (mg/L) y temperatura en °C de la bahía de Pomata – Faro entre julio a octubre del 2018. ... 59
ÍNDICE DE ACRÓNIMOS

ml = Mililitro

G = Gramos

et al. = Colaboradores

Kg = Kilogramo

FCA = Factor de conversión alimenticia

°C = Grados Celsius

K = Factor de condición

TCE = Tasa de crecimiento específico

% S = Porcentaje de sobrevivencia

FONDEPES = Fondo de desarrollo pesquero

CIPBS = Centro de investigación y producción de bienes y servicios

GB = Ganancia de biomasa

GP = Ganancia en peso individual

TCA = Tasa de crecimiento absoluto

CR = Crecimiento relativo

K = Factor de condición

FCA = Factor de conversión alimenticia

AD = Alimentación diaria

F = Factor de conversión

Ai = Alimento ingerido

NPf = Número de peces final

NPi = Número de peces inicial

ppt = Partes por trillón

AB = Alimento balanceado
RESUMEN

La investigación se realizó en el Centro de Producción de trucha Acuícola Dios es Amor E.I.R.L., en Pomata – Puno, entre julio y octubre del 2018 y tuvo como objetivos evaluar el crecimiento y la mortalidad de *Oncorhynchus mykiss*, producidas con alimento balanceado en distintas concentraciones de péptidos y determinar la ganancia de biomasa (GB), ganancia en peso individual (GP), tasa de crecimiento específico (TCE), tasa de crecimiento absoluto (TCA), crecimiento relativo (CR), factor de condición (K), factor de conversión alimenticia (FCA), y sobrevivencia expresada en porcentaje (S), en *Oncorhynchus mykiss*. producidas con alimento balanceado en distintas concentraciones de péptidos. Se trabajó con tres jaulas de 3m x 3m x 2.5m cada una con 500 peces, con un peso promedio inicial de 2.54 g. Se realizó dos tratamientos experimentales y un tratamiento control, el tratamiento control fue alimentado con alimento balanceado extruido Nicovita en la jaula 1, el tratamiento 1 fue alimentado con suplemento de péptidos en una concentración de 20 ml/kg de alimento balanceado en la jaula 2 y el tratamiento 2 se alimentó con suplemento de péptidos en una concentración de 30 ml/kg de alimento balanceado extruido en la jaula 3. El cálculo de la ración diaria se determinó mediante tabla de Nicovita, la metodología utilizada fue el biométrico que se realizó cada 14 días y para determinar los parámetros productivos en estudio se aplicaron índices de productividad a partir de la biometría. Los resultados en el crecimiento muestran que el tratamiento 2, alcanzó mayor peso 129.03 g y talla 23.35 cm, observándose un efecto del suplemento de péptidos sobre el crecimiento. La mortalidad promedio fue mayor en el tratamiento 2 (101 individuos) y menor en el tratamiento 1 (59 individuos). La GB óptimo fue en el T1 = 55.59 Kg, la GP mayor fue en el T2 = 126.49 g, la TCE máximo fue el T1 y T2 =1.74 %/día, la TCA fue superior en el T1 y T2 = 1.29 g/día, el CR promedio fue mejor en el T1 = 76 %, el FCA promedio más eficiente fue el T2 = 0.7, el K promedio superior se mostró en el T0 = 1.17 y el S fue mejor en T1 98.2 %. Las pruebas estadísticas aplicadas a los tratamientos (ANOVA) no muestran diferencias estadísticas significativas en la mayoría de las variables estudiadas excepto en la del FCA donde el p-valor = 0.019 > 0.05 y en el K donde el p-valor = 0.039 > 0.05.

Palabras clave: Conversión alimenticia, Crecimiento relativo, Factor de condición, Mortalidad, Nutrición.
ABSTRACT

The research was carried out at the Acuicola Dios es Amor E.I.R.L. Trout Production Center, in Pomata - Puno, between July and October 2018, aimed to assess the growth and mortality of *Oncorhynchus mykiss*. produced with balanced feed at different concentrations of peptides and determine biomass gain (GB), individual weight gain (GP), specific growth rate (TCE), absolute growth rate (TCA), relative growth (CR), factor of condition (K), food conversion factor (FCA), and survival expressed in percentage (S), in *Oncorhynchus mykiss*. produced with balanced feed in different concentrations of peptides. We worked with three cages of 3m x 3m x 2.5m each with 500 fish, with an initial average weight of 2.54 g. Two treatments and one control were performed, the control treatment was fed with balanced Nicovita extruded in cage 1, treatment 1 was fed with peptide supplement at a concentration of 20 ml/kg of balanced feed in cage 2 and treatment 2 it was fed with peptide supplement in a concentration of 30 ml/kg of balanced feed extruded in the cage 3. The calculation of the daily ration was determined by Nicovita table, the methodology used was the biometric that was performed every 14 days and for to determine the productive parameters under study, productivity indices were applied based on biometrics. The results in the growth show that the treatment 2, reached greater growth in weight 129.03 g and height 23.35 cm, observing an effect of the peptide supplement on the growth. The average mortality was higher in treatment 2 (101 individuals) and lower in treatment 1 (59 individuals). The optimal GB was at T1 = 55.59 Kg, the highest GP was at T2 = 126.49 g, the maximum TCE was T1 and T2 = 1.74 %/day, the TCA was higher at T1 and T2 = 1.29 g / day, the Average CR was better at T1 = 76%, the most efficient average FCA was T2 = 0.7, the higher average K was shown at T0 = 1.17 and S was better at T1 98.2%. The statistical tests applied to treatments (ANOVA) do not show significant statistical differences in most of the variables studied except in that of the ACF where the p-value = 0.019> 0.05 and in the K where the p-value = 0.039> 0.05.

Keywords: Food conversion, Relative growth, Condition factor, Mortality, Nutrition.
I. INTRODUCCIÓN

En el año 2050 la demanda de alimentos proyectada será un 70 % superior a la de hoy en día e incluirá un consumo anual adicional de casi 1 000 millones de toneladas de cereales para la alimentación humana y animal y 200 millones de toneladas de carne (FAO, 2009a). Por lo cual es necesario buscar métodos que incrementen la producción de alimentos para disminuir el hambre y/o incrementar la producción de fuentes de proteína animal como el pescado.

El cultivo de trucha se realiza en 16 departamentos andinos del Perú y se desarrolla principalmente utilizando ovas importadas. Los mayores volúmenes de producción se presentan en Puno (66%), Junín (20%), Huancavelica (3,4%), Cuzco (1,3%), Cajamarca (1,3%) y Ayacucho (1,1%), los volúmenes de producción se han incrementado de 117 TM (US$ 395 000) a 25 323 TM (US$ 8 835 440), desde 1998 a 2013 (Guerrero, Palacios, & Mina, 2014) el año 2016 Puno se ha convertido en el principal productor de trucha con más 43 000 TM que representaría el 80 % de la producción nacional (PRODUCE, 2017). Convirtiéndose así en una actividad económica importante en nuestro país que se fue desarrollando a lo largo de los años.

La producción de trucha en la Región de Puno se ha incrementado en los últimos años, llegando a ubicar a la Región Puno como primer productor de trucha a nivel nacional (Flores, 2014), debido al progresivo mejoramiento de técnicas y manejo de cultivo de esta especie, sin embargo, la mayor parte de esta producción incumple con estándares de comercialización, debido al desconocimiento de los productores en algunos aspectos de la crianza. El crecimiento de esta especie necesita de una serie de factores que incluyen el oxígeno disuelto, la densidad de carga, temperatura, manejo técnico, y principalmente la alimentación, en el cual se debe tener en cuenta, la cantidad de ración alimentaria, el tipo de alimento a utilizar y la calidad del alimento.

El alimento artificial para la crianza de trucha equivale aproximadamente 70% de los costos de producción (FONDEPES, 2014), siendo costos muy elevados, los cuales se busca reducir mejorando la digestibilidad del alimento balanceado haciendo uso del suplemento de péptidos (Aqua Natural Fish 40) y para poder demostrar la efectividad de este suplemento necesitamos saber ¿Cuál es el efecto de las concentraciones del suplemento de péptidos en
los parámetros productivos de trucha arco iris? y si ¿Existe diferencia en el crecimiento y mortalidad de *Oncorhynchus mykiss*, producidas con alimento balanceado en distintas concentraciones de péptidos frente a las producidas sin péptidos? ¿El suplemento de péptidos optimiza los parámetros productivos de la trucha?

El propósito de este trabajo de investigación es conocer ¿cuál es la ganancia de peso y talla, sobrevivencia, ganancia de biomasa, tasa de crecimiento, factor de conversión y factor de condición de las truchas producidas con alimento balanceado extruido dosificado con el suplemento de péptidos frente a las truchas producidas solamente con alimento balanceado extruido comercial?

1.1. OBJETIVO GENERAL:

Estar a evaluar las concentraciones de péptidos sobre el crecimiento, mortalidad y parámetros productivos de *Oncorhynchus mykiss*, trucha arco iris en la etapa de alevinos a juveniles.

1.2. OBJETIVOS ESPECÍFICOS:

- Evaluar el crecimiento y la mortalidad de *Oncorhynchus mykiss* trucha arco iris, en la etapa de alevinos a juveniles producidas con alimento balanceado en distintas concentraciones de péptidos.

- Determinar la ganancia de biomasa (GB), ganancia en peso individual (GP), tasa de crecimiento específico (TCE), tasa de crecimiento absoluto (TCA), crecimiento relativo (CR), factor de condición (K), factor de conversión alimenticia (FCA), y sobrevivencia expresada en porcentaje (S), en *Oncorhynchus mykiss* trucha arco iris producidas con alimento balanceado en distintas concentraciones de péptidos.
II. REVISIÓN DE LITERATURA

2.1. ANTECEDENTES DEL PROYECTO

Flores (2014), en la investigación crecimiento de *Oncorhynchus mykiss* trucha arco iris producidas con alimento fresco y balanceado en jaulas flotantes, trabajó con 4 jaulas de 2 x 2 x 1.5 m, cada una con 100 peces, con un peso inicial de 102.3 g a una temperatura de 15.42 °C, así mismo Gomez (2017), evalúa el crecimiento de trucha arco iris en jaulas flotantes alimentadas *ad libitum* y convencionalmente, utiliza 4 jaulas de 2.5 m x 2.5 m x 1.5 m cada una con 300 peces, con un peso promedio inicial de 91.3 g, de la misma manera Mamani (2006), realiza la comparación entre el crecimiento de *Salmo aquabonita* trucha dorada y *Oncorhynchus mykiss* trucha arco iris en el CIPBS-Chucuito, desde la etapa de alevinos a juveniles a 13.7 °C.

Gomez (2017), evalúa el crecimiento de trucha arco iris concluyendo que la alimentación *ad libitum* es mejor en el crecimiento, incrementando en 90 días a 532.4 g, de peso y 13 cm. de longitud, por otro lado Flores (2014), al evaluar el crecimiento de trucha con tratamientos que incluían alimento balanceado y alimento fresco determinó mayor incremento en el tratamiento de la jaula 3 que contenía 75% alimento balanceado y 25% alimento fresco en la que incrementó 357.12 g de peso y 9.04 cm de longitud, de la misma manera Quimbiamba (2009), analizó parámetros zootécnicos de trucha alimentada con suplemento de sangre de bovinos trabajó a temperaturas de 11 a 13 °C determinando incremento máximo de 45.6 g para el tratamiento de 70% de alimento balanceado más 30% de sangre de bovino, y Morales (2004), muestra mayor incremento en el tratamiento bajo el régimen alimentario *ad libitum* alcanzando peso promedio final de 153.9 g en crecimiento de trucha.

Bastardo *et al.* (2007), evalúa dietas para iniciador de *Oncorhynchus mykiss* trucha arco iris DE1 y DE2 que contenían 25% y 50% de harina de lombriz, respectivamente, en sustitución de harina de pescado, concluyendo que la harina de lombriz puede sustituir en un 25% a la harina de pescado, cuando se utiliza en las primeras etapas de desarrollo de este salmónido. Por otro lado Medina (2012), determina el efecto de la inclusión de la dieta de una mezcla de L-aminoácidos libres, sobre su comportamiento alimentario y crecimiento en peso de trucha arco iris, en su primer ensayo, analizó la preferencia de los alevinos, por incitación y estimulación del sistema gustativo extra oral y oral por dietas que incluían un 3% y 5% de
una mezcla de L-alanina (L-ala), L-Prolina (L-Pro) y L-Leucina (L-Leu) en una concentración de 10^{-1} M, 10^{-2} M y 10^{-2} M, respectivamente. En una segunda oportunidad comparó el crecimiento de los alevinos. Concluyendo que las dietas al 3% y 5% de mezcla de L-aminóácidos no tienen un efecto incitante y estimulante en la actividad alimenticia, sin embargo, en la prueba de crecimiento, la dieta de 3%, presentaron una mayor tasa de crecimiento, de acuerdo con esta investigación esta dieta puede generar una potenciación del sabor, por lo que indirectamente incrementaría la tasa de ingesta del pez.

En el análisis de parámetros zootécnicos de crecimiento de trucha arco iris alimentada con sangre de bovinos, para el cual realiza tres tratamientos; T1: 100% de alimento balanceado (AB), T2: 70% de AB más 30 % sangre de bovinos y T3: 50 % de AB más 50% de sangre de bovino. Trabajó con una temperatura entre 11 y 13 °C y un pH de 6.3 ppm (Quimbiamiaba, 2009), en cambio Villarreal et al. (2011), determina el efecto de seis dietas con diferente contenido de proteína de origen vegetal sobre el crecimiento de alevinos de *Cichlasoma urophthalmus*, utilizando dietas isoenergéticas e isolipídicas con contenido de proteína entre 10% y 60 %, empleando soya y gluten de trigo como las principales fuentes proteicas, asimismo Marciales et al. (2011), quienes evaluaron el desempeño productivo de post-larvas de *Pseudoplatystoma* sp bagre rayado y de *Leiarius marmoratus* yaque durante su acostumbramiento a una dieta comercial del 40% de proteína bruta de origen animal, llegando a la conclusión de que el acondicionamiento a dieta seca fue más eficiente en post-larvas de *L. marmoratus* que en *Pseudoplatystoma* sp, debido principalmente a la atractabilidad y digestibilidad del alimento, así como a características de las post-larvas (desarrollo del tracto digestivo), por otro lado, Pineda (1999), formula y evalúa dietas a partir de harina de *Euthynnus linneatus* barrilete y *Ictalurus punctatus* rasposa, cuatro dietas al 45%, con harina barrilete entero (A1), sobrante de barrilete con viseras (B1), rasposa entera (A2), sobrante de rasposa con viseras (B2), para alevinos (dieta inicial), y cuatro dietas al 32% de harina para juveniles y engorde.

Los parámetros de desempeño productivo para el levante de alevinos de trucha arco iris en sistemas cerrados de recirculación de agua, donde obtuvo una ganancia de peso (GP) superior de 4.86 g (Montaña, 2009), por otra parte Castillo et al. (2015), indica un incremento de peso total (250.2 g/pez) en cultivo de trucha.
La ganancia de biomasa total (GB) es de 50.04 Kg al evaluar la productividad de la trucha arco iris (Castillo, 2015), por otro lado Gomez (2017), refiere una tasa específica de crecimiento de 2.06 %/día alimentando *ad libitum* en el crecimiento de la trucha, de la misma manera Mamani (2006), registra el crecimiento de salmoníidos *Salmo aguabonita* trucha dorada y *Oncorhynus mykiss* trucha arco iris determinando una tasa de crecimiento específica de 3.18 %/día en trucha dorada y 3.38 %/día en trucha Arco Iris, así mismo Montaña (2009), en el levante de alevinos en sistemas cerrados de recirculación, obtuvo una tasa de crecimiento específico máximo de 6.80 %, por otra parte Pineda (1999), realiza estudios donde formula y evalúa dietas a partir de harina de *Euthynnus lineatus* barrilete y *Ictalurus punctatus* rasposa, para cultivo de *Ictalurus punctatus* bagre, obteniendo mejor tasa de crecimiento específica en dietas con harina de barrilete.

En el cultivo de alevinos de *Oncorhynus mykiss* determina una tasa de crecimiento absoluto (TCA) máximo de 0.16 g/día (Montaña, 2009), en cambio Castillo et al. (2015), describe una tasa de crecimiento absoluta (TCA) de 2.36 g/día al evaluar la productividad de la trucha, por otra parte Villarreal et al (2011), en el CR de alevinos de *Cichlasoma urophthalmus* con dietas basadas en diferentes niveles de inclusión de proteínas de soya y gluten, durante 40 días de experimentación, determina un menor CR=70.91% en dietas con 10% de inclusión de proteínas y un mayor CR=237.36% en dietas con 60% de inclusión.

El Factor de Conversión en truchas alimentadas con balanceado NICOVITA, fue de 1.07, mientras que el factor de conversión de truchas alimentadas con alimento fresco (ispi) fue de 3.77 (Flores, 2014). Asimismo Gomez (2017), al evaluar estrategias de alimentación concluye que la alimentación *ad libitum* incrementa el factor de conversión alimenticia (FCA) 1.02, en cambio la alimentación convencional muestra un factor de conversión alimenticia (FCA) de 0.77. por otro lado Mamani (2006), registra una conversión alimenticia de 0.82 en trucha dorada y 0.72 en trucha arco iris, quien trabajó en etapas de alevinos a juveniles.
En el estudio factor de conversión alimentaria para tres dietas alimentarias de trucha arco iris y su relación con los parámetros de temperatura y pH en la zona de producción de Faro-Pomata, determina un FCA para la dieta A =1.12, con la dieta B =1.34 y con la dieta C= 1.19, la temperatura promedio 15.57 °C, y pH de 8.43 (Cardenas, 2013), de la misma manera Morales (2004), en el crecimiento y eficiencia alimentaria de la trucha arco iris en jaulas bajo tres regímenes de alimentación, J1: alimentación ad libitum, J2: ración de crecimiento y J3: ración de mantenimiento, el FCA mayor fue registrada para J1 (FCA=1.32) y menor para J2 (FCA=1.13), asimismo Castillo et al. (2015), registra un factor de conversión de alimento de 1.48 en el cultivo de trucha.

En el crecimiento de trucha arco iris se determina un factor de condición máximo de 1.84 en la jaula 2 bajo tratamiento de 50% de alimento ispi más 50% alimento balanceado y mínimo de 1.25 en la jaula 4 bajo tratamiento de alimento ispi (Flores, 2014), así mismo Gomez (2017), en el crecimiento de trucha bajo régimen de alimentación ad libitum determinó un factor de condición de (K) 1.6, por otro lado Mamaní (2006) un factor de condición promedio de 1.19 en trucha dorada y 1.30 en trucha Arco Iris, y Montaña (2009), un factor de condición mayor de 1.57 y menor de 1.03 en alevinos de trucha cultivados en sistema de recirculación cerrado.

Al evaluar parámetros productivos de alevinos de trucha en sistema de recirculación cerrado determinó un porcentaje de sobrevivencia superior de 98 % e inferior de 62 % (Montaña, 2009). Asimismo Asenjo (2015), una sobrevivencia de 97.12 %, al evaluar la sobrevivencia de larvas de trucha, de la misma manera Bastardo et al. (2007), registra superior al 90% la supervivencia en trucha con dietas que incluían 25% y 50% de harina de lombriz.
2.2. **MARCO TEÓRICO**

2.2.1. **Generalidades**

a. **Trucha arco iris**: Cuerpo de forma alargada, fusiforme con 60-66 vértebras, 3-4 espinas dorsales, 10-12 rayos dorsales blandos, 3-4 espinas anales, 8-12 rayos anales blandos, 19 rayos caudales. Aleta adiposa presente, usualmente con borde negro. Sin tubérculos nupciales, pero ocurren cambios menores en la cabeza, boca y color de los machos desovantes. Tendencia de los residentes en corrientes y de los desovantes a ser más oscuros con color más intenso, mientras que los residentes de lagos son más brillantes y más plateados (FAO, 2009b).

- **Reino**: Animal
- **Filo**: Cordados
- **Sub filo**: Vertebrado
 - **Superclase**: Gnathostomata
 - **Clase**: Actinopterygii
 - **Orden**: Salmoniformes
 - **Familia**: Salmonidae
 - **Género**: Oncorhynchus
 - **Especie**: Oncorhynchus mykiss

b. **Péptidos**: Un péptido es un polímero de aminoácidos unidos por enlaces amido entre el grupo amino de cada aminoácido y el grupo carboxilo del aminoácido vecino. A cada unidad de aminoácido del péptido se le denomina residuo (Wade, 2004). Los oligopéptidos tienen diez o menos aminoácidos. Los polipéptidos y las proteínas son cadenas de más de diez aminoácidos, pero los péptidos que contienen más de 50 aminoácidos se clasifican como proteínas (Zamora, 2018). Los péptidos pueden proceder de moléculas de proteínas de origen animal y vegetal acuático o terrestre. Por ejemplo, las algas marinas, soya, crustáceos, etc.

Obtención de péptidos a partir de hidrólisis enzimática: los péptidos pueden ser generados de la proteína precursora de múltiples maneras, que incluyen: digestión gastrointestinal in vivo, hidrólisis in vitro por acción de enzimas digestivas, proteolíticas u otras enzimas derivadas de microorganismos o plantas y fermentación microbiana (Moure et al. 2005)
En la hidrólisis enzimática un conjunto de etapas transcurre en serie, dando péptidos de tamaño decreciente: proteínas, proteasas, peptonas, péptidos y aminoácidos. Se trata de un conjunto de reacciones simultáneas de ruptura de enlaces, con distintas especies cargadas en equilibrio (Najafian & Babji, 2014). Así mismo Benítez & Ibarz (2008) indica que en un proceso de hidrólisis constituido por tres reacciones consecutivas. Primero, la formación de un complejo enzima proteína, después la ruptura del enlace amídico liberando un péptido, finalmente el péptido restante se separa de la enzima después de un ataque nucleofílico de una molécula de agua. El proceso puede iniciarse nuevamente sobre los dos nuevos péptidos o sobre uno de ellos.

La hidrólisis enzimática de las proteínas depende de varios factores fisicoquímicos, la selección de la enzima hidrolítica apropiada o mezcla óptima de enzimas es vital para obtener resultados previstos. Después de la selección de las enzimas, diversas condiciones de proceso se pueden emplear con el fin de obtener la máxima recuperación de componentes activos, la hidrólisis enzimática ofrece indudables ventajas, como la no existencia de procesos de degradación del sustrato ya que las enzimas son selectivas para un tipo de enlace, los valores de pH y temperatura son moderados (pH están comprendidos entre 5 a 10 y las temperaturas entre 40 a 60 ºC), se mantiene o mejora el valor nutritivo de la proteína. Por otro lado, la ventaja adicional de hidrólisis enzimática es la disminución de alérgenos (Borja, 2014).

c. **Aqua Naural Fish 40 (suplemento de péptidos):** es un compuesto conformado por una mezcla de aminoácidos de alta digestibilidad (péptidos y nucleótidos), a partir de proteínas de origen hidrobiológico enriquecido con minerales y ácidos orgánicos que ejercen acción sinérgica potenciando la acción de los aminoácidos, obtenido por proceso de hidrolisis enzimática, es de color café oscuro, estado líquido viscoso, soluble en aceite, olor a mariscos, la concentración referencial es de 30 ml/kg, el nivel de proteína bruta de mezcla es de acuerdo al porcentaje proteico del tipo de alimento en que se aplica el suplemento. La concentración referencial se basa en la utilización del suplemento proteico en crianza de otras especies animales como cerdos (Ingredients, 2014), denominado fish 40 porque los péptidos están compuestos por aminoácidos al 40 %.
Tabla 1. Especificaciones nutricionales de aminoácidos (Aqua Natural Fish 40) Perú del 2018.

<table>
<thead>
<tr>
<th>AMINOACIDOS DE ALTA DIGESTIBILIDAD</th>
<th>PEPTIDOS TOTAL %</th>
<th>PEPTIDOS AL 40 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanina</td>
<td>5.95</td>
<td>2.38</td>
</tr>
<tr>
<td>Arginina</td>
<td>4.88</td>
<td>1.95</td>
</tr>
<tr>
<td>Ácido Aspártico</td>
<td>9.35</td>
<td>3.74</td>
</tr>
<tr>
<td>Cistina</td>
<td>0.74</td>
<td>0.3</td>
</tr>
<tr>
<td>Ácido Glutámico</td>
<td>14.04</td>
<td>5.62</td>
</tr>
<tr>
<td>Glicina</td>
<td>7.13</td>
<td>2.85</td>
</tr>
<tr>
<td>Histidina</td>
<td>4.36</td>
<td>1.74</td>
</tr>
<tr>
<td>Isoleucina</td>
<td>4.42</td>
<td>1.77</td>
</tr>
<tr>
<td>Leucina</td>
<td>6.66</td>
<td>2.66</td>
</tr>
<tr>
<td>Lisina</td>
<td>8.21</td>
<td>3.28</td>
</tr>
<tr>
<td>Metionina</td>
<td>2.01</td>
<td>0.8</td>
</tr>
<tr>
<td>Metionina/cistina</td>
<td>2.75</td>
<td>1.1</td>
</tr>
<tr>
<td>Fenilalanina</td>
<td>2.95</td>
<td>1.18</td>
</tr>
<tr>
<td>Prolina</td>
<td>5.17</td>
<td>2.07</td>
</tr>
<tr>
<td>Serina</td>
<td>3.65</td>
<td>1.46</td>
</tr>
<tr>
<td>Treonina</td>
<td>4.16</td>
<td>1.66</td>
</tr>
<tr>
<td>Triptófano</td>
<td>0.77</td>
<td>0.31</td>
</tr>
<tr>
<td>Valina</td>
<td>4.98</td>
<td>1.99</td>
</tr>
</tbody>
</table>

Fuente (Ingredients, 2014)

<table>
<thead>
<tr>
<th>MINERALES</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fosforo</td>
<td>0.43</td>
</tr>
<tr>
<td>Calcio</td>
<td>0.11</td>
</tr>
<tr>
<td>Selenio</td>
<td>0.00054</td>
</tr>
<tr>
<td>Hierro</td>
<td>0.006</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.005</td>
</tr>
</tbody>
</table>

ÁCIDOS ORGÁNICOS + ANTIOXIDANTES 7%

Fuente (Ingredients, 2014)
d. Alimento balanceado extruido de línea comercial Nicovita: para nuestro experimento se utilizó alimento Nicovita Classic una dieta clásica para la etapa de crecimiento y engorde de las truchas, desde los 2 gramos de peso hasta la etapa comercial (NICOVITA, 2017), el alimento balanceado para truchas debe ser similar al alimento natural en su composición nutricional, al fin de lograr el máximo crecimiento y desarrollo en el menor tiempo posible (Flores, 2014), en el cultivo de trucha se utilizan alimentos con diferentes tenores de proteína, según la fórmula o el tipo, el tiempo que se debe utilizar cada tipo de alimento, tiene relación directa con el tamaño del pez en sus diferentes estadios (FONDEPES, 2014).

Tabla 3. Análisis químico proximal de alimento Nicovita, Perú 2017.

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>Proteína (% mín.)</th>
<th>Grasa (% mín.)</th>
<th>Ceniza (% máximo)</th>
<th>Humedad (% máximo)</th>
<th>Fibra (% máximo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicovita Classic Trucha 2</td>
<td>50</td>
<td>13</td>
<td>15</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Nicovita Classic Trucha 5</td>
<td>45</td>
<td>13</td>
<td>15</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Nicovita Classic Trucha 25</td>
<td>42</td>
<td>13</td>
<td>15</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Nicovita Classic Trucha 60</td>
<td>42</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>3.5</td>
</tr>
<tr>
<td>Nicovita Classic Trucha 150</td>
<td>40</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>3.5</td>
</tr>
<tr>
<td>Nicovita Classic Trucha 150 P</td>
<td>40</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Fuente: (NICOVITA, 2017)

Tabla 4. Tabla de alimentación con la estrategia nueva de Nicovita, Perú 2017.

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Producto</th>
<th>Calibre (mm)</th>
<th>Peso Unitario Pez (g)</th>
<th>DESDE</th>
<th>HASTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio I</td>
<td>Nicovita Classic Trucha 2</td>
<td>1.5</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Inicio II</td>
<td>Nicovita Classic Trucha 5</td>
<td>2</td>
<td>5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Crecimiento I</td>
<td>Nicovita Classic Trucha 25</td>
<td>3</td>
<td>25</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Crecimiento II</td>
<td>Nicovita Classic Trucha 60</td>
<td>4</td>
<td>60</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Acabado</td>
<td>Nicovita Classic Trucha 150</td>
<td>6</td>
<td>150</td>
<td>Comercial</td>
<td></td>
</tr>
<tr>
<td>Acabado Pig</td>
<td>Nicovita Classic Trucha 150 P</td>
<td>6</td>
<td>150</td>
<td>Comercial</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: (NICOVITA, 2017).
2.2.2. **Parámetros productivos**: son variables que nos permiten evaluar el proceso productivo

a. **Factor de conversión alimentaria (FCA)**: es el parámetro técnico que más se usa en la crianza de engorde para evaluar sus resultados. Es la relación entre la cantidad de alimento en kilos o en libras, que se necesita para producir un kilo o libra de carne, es convertir o transformar el alimento en carne (Bocek et al, 2010), el factor de conversión ideal para la trucha es de 1:1 (FONDEPES, 2014), el factor de conversión alimentaria (FCA): permite medir matemáticamente en forma simple el nivel de incremento en peso de la población de peces en relación al alimento consumido en un rango de tiempo determinado (Flores, 2014). El factor de conversión se obtiene mediante la fórmula (Bastardo, 2003).

\[
F = \frac{Ai}{GP}
\]

Donde:
- F: factor de conversión
- Ai: alimento ingerido (g)
- GP: ganancia de peso (g)

b. **Factor de condición (K)**: El Factor de condición sirve para valorar el estado nutritivo de los organismos (Martinez, 1987), expresa la relación volumétrica existente en función del peso, según la expresión matemática Lagler (1956) citado por Martinez (1987).

\[
K = \frac{P \times 100}{L^3}
\]

Donde P y L, son el peso (g) y la longitud (cm) respectivamente, y K es el factor de condición que buscamos. Este factor es útil para comparar y cuantificar la condición o estado en que el pez se encuentra, en una forma numérica, pudiendo asociarse a una valoración de la contextura o estado de delgadez o de obesidad (Martinez, 1987). Si el K esta debajo de 1 están relativamente delgados, en estos casos se estaría aplicando días de ayuno, raciones incompletas o la digestibilidad del alimento no es buena (Villenas, 2010).
c. **Biometría**: La biometría se define como la aplicación de los métodos estadísticos a la solución de problemas biológicos y hace referencia a las mediciones corporales que se le realizan a un individuo (Sokal & Rohoff, 1979) citado por Gomez, (2010). La biometría es la medida del peso y talla de la población de peces. Permite controlar mediante muestreos como va desarrollando el pez a través del tiempo de crianza, es recomendable que estos muestreos sean quincenal o mensualmente, de acuerdo a la población y biomasa (Flores, 2014).

d. **Crecimiento**: Es el incremento de talla y peso en la unidad de tiempo de los organismos vivos (Espino et al. 2008).

e. **Mortalidad**: Porcentaje o fracción de los componentes de una población que mueren en un tiempo determinado. Se diferencia la mortalidad causada por la pesca y la producida por causas naturales (Espino et al. 2008).

f. **Mortandad**: gran cantidad de muertes causadas por epidemia, cataclismo, peste o guerra (RAE, 2019).

g. **Biomasa**: El peso total de los componentes de una población de peces o de otro recurso (Espino-Bar et al., 2008).

\[
GB = \text{Biomasa total final (g)} - \text{biomasa total inicial (g)}
\]

h. **Ganancia de peso individual (GP)**: La ganancia de peso individual determina el incremento en peso de cada individuo el cual se obtiene según la expresión matemática de (Burgos et al., 2006).

\[
GP = \text{Peso promedio final (g)} - \text{Peso promedio inicial (g)}
\]

i. **Tasa de crecimiento absoluta (TCA)**: es un parámetro que puede ayudar a caracterizar el crecimiento del pez a través del tiempo (Bastías, Diez, & Finot, 2014), permite valorizar el incremento de masa de órganos por unidad de tiempo (Grossman, 1995), citado por Bastías et al (2014), es la cantidad de gramos que el pez incrementa
en un día (g/día). La tasa de crecimiento absoluto (TCA) se calculó mediante la expresión matemática (Arce & Figueroa, 2003)

$$TCA = \frac{Peso \ final \ (g) - Peso \ inicial\ (g)}{t2 - t1}$$

j. **Tasa de crecimiento específico (TCE):** es el grado de crecimiento de una especie por unidad de tiempo (Fao, 2004), el porcentaje de peso que el pez incrementa en un día (%/día). La tasa de crecimiento específico (TCE) se calcula mediante la expresión matemática de Ricker (1971) citado por Arce & Figueroa (2003)

$$TCE = \frac{ln Y2 - ln Y1}{t2 - t1} \times 100$$

Dónde: Y1 y Y2 son el peso húmedo al inicio y al final del período experimental, t1 y t2 son la duración en días, ln Y1 y ln Y2 son el logaritmo natural del peso al inicio y al final de la fase de crecimiento.

k. **Crecimiento relativo (CR):** también denominado tasa de crecimiento expresa el crecimiento en peso como porcentaje del peso corporal inicial (Monteros & Labarta, 1987), (Martinez, 1987), según la expresión matemática:

$$Cr = \frac{Peso \ total - Peso \ inicial}{Peso \ inicial} \times 100$$

l. **Sobrevivencia (S):** Proporción de individuos que, en un intervalo de tiempo, consigue sobrevivir a las diversas causas de mortalidad (Espino-Bar et al., 2008). El porcentaje de sobrevivencia se determina a partir de la diferencia entre el número final e inicial de individuos, mediante la expresión matemática (Pineda, 1999). Donde S= sobrevivencia expresada en %, NPf= número de peces final, NPi= número de peces inicial.

$$S = \frac{NPf}{NPi} \times 100$$
2.2.3. **Requerimiento de parámetros fisicoquímicos:** El agua es el principal factor de producción en acuicultura intensiva y particularmente en el cultivo de la trucha que demanda grandes volúmenes del líquido. El agua aporta el oxígeno, elimina los desechos del metabolismo y por su composición y variabilidad físico-química condiciona los rendimientos de reproducción. Las exigencias de los salmónidos son cuantitativas (caudal y velocidad del agua) y cualitativas como composición y temperatura, esta última no debe de exceder los 20°C para la trucha arco iris, lo que limita los lugares de implantación posibles (Gutierréz, 2014).

a. **Temperatura:** La trucha arco iris, como todos los peces, no tiene capacidad propia para regular su temperatura corporal, esta depende del medio acuático en la que vive. La trucha en condiciones naturales es un pez que puede vivir en aguas comprendidas entre 0° y 25° C. sin embargo los límites entre los cuales su desarrollo y crecimiento son correctos, corresponden a 9° C como límite inferior y a 17° C como límite superior. La temperatura más adecuada de la trucha arco iris, en la que las funciones fisiológicas se realizan de forma óptima es 15° C, la temperatura destinada a la alimentación de una piscifactoría industrial, esta no debe sobrepasar al menos notoriamente, los limites antedichos, para que haya un buen funcionamiento (Blanco, 1984) citado por Flores (2014).

b. **Oxígeno disuelto:** El oxígeno disuelto en el agua es para la trucha, como para todos los seres acuáticos, un elemento esencial para la vida. El agua es capaz de absorber oxígeno del aire hasta que su presión parcial este en equilibrio con la del oxígeno del aire, en la interface aire-agua (Flores, 2014). La trucha es bastante exigente frente a este factor, cifras inferiores a 5,5-5 mg/l de oxígeno es perjudicial debido a que la trucha tiene gran dificultad para extraer, el oxígeno del agua y transportarlo a través de las branquias al torrente circulatorio (Blanco, 1984), citado por Flores (2014), los rangos óptimos son de 6.0 a 8.5 mg/l de oxígeno disuelto (FONDEPES, 2014).

c. **Potencial de hidrogeniones (pH):** El valor de pH viene determinado por la concentración de hidrogeniones (H+) del agua, se expresa en una escala que varía entre 0 y 14. Si el pH es igual a 7,0 el agua es neutra; inferior a 7,0 es acida y si es
superior es alcalina. El pH es por si solo es un factor importante en la cría de truchas, para este tipo de explotación es deseable un pH de 6.5 a 7 (Blanco, 1984), citado por Flores (2014).

Tabla 5. Parámetros fisicoquímicos generales para el cultivo de trucha arco iris

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Temperatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxígeno disuelto</td>
<td>Mayor a 5 mg/l</td>
</tr>
<tr>
<td>pH</td>
<td>6.7 a 9.0</td>
</tr>
<tr>
<td>Dióxido de carbono</td>
<td>Menor a 2 mg/l</td>
</tr>
<tr>
<td>Calcio</td>
<td>Mayor a 52 mg/l</td>
</tr>
<tr>
<td>Zinc</td>
<td>Menor a 0.04 mg/l a pH de 7.6</td>
</tr>
<tr>
<td>Amonio</td>
<td>Menor a 0.012 mg/l como nh3</td>
</tr>
<tr>
<td>Nitrato</td>
<td>Menor a 0.55 mg/l</td>
</tr>
<tr>
<td>Nitrógeno</td>
<td>Menor a 110 % de saturación total</td>
</tr>
<tr>
<td>Solidos suspendidos</td>
<td>Menor a 80 mg/l</td>
</tr>
<tr>
<td>Solidos disueltos</td>
<td>Menor a 400 mg/l</td>
</tr>
<tr>
<td>Ácido sulfhidrico</td>
<td>Menor a 0.002 mg/l</td>
</tr>
</tbody>
</table>

III. MATERIALES Y MÉTODOS

3.1. Frecuencia y muestreo

Se realizó cada catorce días un total de ocho muestreos (biometría) de 25 individuos al azar por jaula, la población estuvo conformada por alevinos de *Oncorhynchus mykiss*, trucha arco iris de 6.54 cm de talla promedio y 2.54 g de peso promedio, los cuales fueron creciendo en función al tiempo y la alimentación. La muestra estuvo conformada por 1500 alevinos distribuidos en tres tratamientos, 500 en cada tratamiento (jaula) tomando como referencia a Blondet, (1996) citado por Gomez (2017).

3.2. Descripción detallada de los equipos y materiales

3.2.1. Evaluación del crecimiento y mortalidad de *Oncorhynchus mykiss* trucha arco iris producidas con alimento balanceado en distintas concentraciones de péptidos.

- Centro de crianza Acuícola Dios es Amor EIRL: lugar donde se realizó la investigación, ubicada en Km. 01 barrio villa el salvador del distrito de Pomata, provincia de Chucuito, departamento de Puno.
- Jaulas flotantes: compuesta por estructuras de acero galvanizado con dimensiones de 3 m x 3 m, con bolsas de red alquitranado de ¼ pulgada de malla el cual tenía 2 m de profundidad, ubicadas a una latitud de 16°15´9.98´´S y una longitud de 69°17´47.86´´O, a 200 m. de la orilla aproximadamente y una profundidad de 27 m.
- Bote con motor fuera borda marca Suzuki de dos tiempos de 25 HP, el bote con dimensiones de 6.5 m de largo por 1.80 de ancho aproximadamente el cual se utilizó para transporte de orilla hacia las jaulas en el lago.
- Ictiómetro: para determinar la longitud de los peces, el cual media 50 cm de largo.
- Balanza digital de 0.01 gramos de precisión marca electronic counting scale modelo ATK – 668, el cual se utilizó para determinar el peso del alimento balanceado y el peso de los peces en la biometría.
- Suplemento de péptido de alta digestibilidad (Aqua Natural Fish 40), fabricado por ingredients inc. Perú S.A.C. es un potente promotor y mejorador orgánico de la productividad de cerdos, aumentando la eficiencia alimenticia e incrementando la ganancia de peso, compuesto por aminoácidos de alta digestibilidad (péptidos y nucleótidos) de origen hidrobiológico, enriquecido con minerales y ácidos orgánicos,
se encuentra en estado líquido viscoso, tiene color café y un olor a mariscos. Los usos y dosificaciones para la cría de cerdos son; en líquido 1 litro de Aqua Natura Fish 40 x 50 litros de agua, y en alimento 3 litros de Aqua Natura Fish 40 x 100 Kg de alimento balanceado.

- Material Biológico; alevinos de trucha arco iris un total de 1500 los cuales tenían un peso inicial de 2.54 g y talla inicial de 6.54 cm.
- Alimento balanceado extruido comercial: de la marca Nicovita classic, se utilizó inicio I, inicio II, Crecimiento I y Crecimiento II, según incremento en el peso promedio durante el proceso de evaluación.
- Recursos humanos: 01 tesista, 01 asesor de tesis.
- Tapas alevineras para proteger a los peces de los rayos del sol, y tapas para juvenil para evitar depredación de aves.
- Esencia de clavo de olor: se usa como anestésico para facilitar la biometría, la concentración utilizada fue de 0.5 ml/L, para lo cual se preparó cuatro litros de agua en un recipiente y se mezcló hasta que alcanzó una apariencia uniforme y poder sumergir a los peces por un periodo de 1 min aproximadamente.
- Chinguillo para extraer peces de la jaula
- Contador de alevinos manual (para contabilizar los peces)
- OxyGuard Handy Polaris 2 v. 4.07: equipo digital para medir parámetros de Oxígeno disuelto, temperatura y porcentaje de saturación del agua.
- Recipientes: 4 baldes de 20 litros de capacidad, jarras de 2 litros de capacidad, tina de 30 litros de capacidad, balde de 6 litros de capacidad con escala de medición, los cuales se utilizaron para el transporte de peces, biometría y recuento de alevinos.
- Jeringas de 1 ml y 5 ml, se utilizaron en la inclusión de concentraciones de péptidos en alimento balanceado y para medir la concentración de esencia de clavo de olor, para anestesiar a los peces.

3.2.2. Determinación de algunos parámetros de desempeño productivo en *Oncorhynchus mykiss* trucha arco iris. producidas con alimento balanceado en distintas concentraciones de péptidos.
- Laptop con hoja de cálculo Excel: donde mediante la aplicación de índices de productividad se determinó parámetros productivos a partir de la evaluación de peso, talla y mortalidad, además de ración diaria, temperatura y oxígeno disuelto.
3.3. Variables

3.3.1. Variable independiente: Para evaluar el crecimiento y la mortalidad de trucha se trabajó con variables de peso, talla y mortalidad.

3.3.2. Variable dependiente: Para determinar los índices de productividad se utilizó variables de ganancia de biomasa (GB), ganancia en peso individual (GP), tasa de crecimiento específico (TCE), tasa de crecimiento absoluto (TCA), crecimiento relativo (CR), factor de condición (K), factor de conversión alimenticia (FCA), y sobrevivencia expresada en porcentaje (S)

Los índices de productividad dependen de la evaluación del crecimiento (peso, talla) y mortalidad.

3.4. Pruebas bioestadísticas: para ambos objetivos específicos se utilizaron prueba estadística inferencial de análisis de varianza de un factor (ANOVA), para realizar el contraste de hipótesis, y test de comparaciones de Tukey para las variables donde se encontraron diferencia estadística significativa p-valor < 0.05, para lo cual se utilizó el paquete estadístico InfoStat versión 2008.

3.5. Metodología:

3.5.1. Actividades previas:

3.5.1.1. Instalación de jaulas:

Se realizó la instalación de 3 jaulas flotantes con dimensiones de 3 m x 3 m, en el cual se colocaron bolsas alevineras (¼) cuya profundidad fue de 2 m (Figura 1). En cada jaula se colocaron 500 peces, los cuales tenían un peso promedio de 2.54 gramos y una talla de 6.54 cm promedio, así mismo se colocaron tapas alevineras, esto para evitar la pérdida por predadores y la exposición a los rayos del sol.

Figura 1. Instalación de jaulas de 3m x 3m x 2.5m en Pomata mes de julio del 2018.
3.5.1.2. Alimentación:

El tipo de alimento que se utilizó fue alimento balanceado extruido comercial. El cual se suministró de la siguiente manera (Figura 2):

- Peces de la primera jaula (T0), se les suministro, alimento balanceado extruido (Nicovita).
- Peces de la segunda jaula (T1), fueron alimentados con alimento balanceado extruido mezclado con suplemento de péptidos en una concentración de 20 ml/kg de alimento.
- Peces de la tercera jaula (T2) se les suministro con alimento balanceado extruido mezclado con suplemento de péptidos en una concentración de 30 ml/kg de alimento.

![Figura 2. Disposición de tratamientos y alimentación de las truchas en Pomata durante julio a octubre del 2018.](image)

Para el cálculo de la ración alimentaria diaria (RD) se utilizó la siguiente fórmula:

\[
Ración\ Diaria = \frac{(biomasa)\times(\%\ de\ peso\ corporal)}{100}
\]

El porcentaje de peso corporal se obtuvo a partir de datos de temperatura y el peso promedio de la trucha arco iris, la temperatura fue monitoreada haciendo uso del termómetro digital OxyGuard, como se observa en el anexo A (Figura 17), con ambos datos acudimos a la tabla comercial para truchas de la marca Nicovita la cual se muestra en el anexo L, y al realizar una intersección entre temperatura y peso promedio determinamos el porcentaje de peso corporal.
Figura 3. Pesado de alimento balanceado y mezcla con el suplemento AQUA FISH 40 en Pomata durante julio a octubre del 2018.

Para la obtención de la biomasa se aplicará la siguiente Fórmula:

\[
BIOMASA = Peso\ promedio \times \text{número de peces}
\]

De esta manera se obtuvo el cálculo de alimento que se le suministró diariamente realizando el pesado y mezcla con el suplemento de péptidos (Figura 3), el número de raciones día fue de 2 veces durante la etapa de alevino y una ración en la etapa de juvenil.

3.5.2. Evaluación del crecimiento y mortalidad de *Oncorhynchus mykiss* Trucha arco iris producidas con alimento balanceado en distintas concentraciones de péptidos.

Método: biométrico (peso y talla), registro de mortalidad.

Procedimientos:

Para realizar la biometría se trasladaron en bote los peces de las jaulas hacia tierra haciendo uso de tres recipientes de 20 litros de capacidad debidamente rotulados, con el fin de realizar una biometría exacta, para facilitar la biometría se utilizó esencia de clavo de olor como anestésico en una concentración de 0.5 ml/l para lo cual se utilizó jeringas de 1 ml de capacidad, el cual se preparó en un recipiente con 4 litros de agua, se mezcló hasta que tenga una apariencia uniforme, luego se colocaron los peces en
la solución aproximadamente 1 min, y posteriormente se realiza las medidas de talla y peso, finalmente se devolvió a sus jaulas respectivas (Figura 4 y 5).

![Figura 4. Traslado de truchas de las jaulas hacia tierra en Pomata durante julio a octubre del 2018](image1)

- Se evaluó el crecimiento de las truchas alimentadas con alimento balanceado extruido y suplemento de péptidos en diferentes concentraciones cada 14 días, realizando 8 muestreos.

![Figura 5. Biometría de trucha arco iris anestesiada con aceite de clavo de olor en Pomata durante julio a octubre del 2018.](image2)

- La mortalidad se evaluó diariamente llevando un registro de mortalidad según tipo de tratamiento (jaula).
3.5.3. Determinación de algunos parámetros de desempeño productivo en *Oncorhynchus mykiss* trucha arco iris. producidas con alimento balanceado en distintas concentraciones de péptidos.

Método: mediante índices de productividad según autores mencionados en el marco teórico; ganancia de biomasa (GB), ganancia en peso individual (GP), tasa de crecimiento específico (TCE), tasa de crecimiento absoluto (TCA), crecimiento relativo (CR), factor de condición (K), factor de converción alimenticia (FCA), y sobrevivencia expresada en porcentaje (S).
IV. RESULTADOS Y DISCUSIÓN

4.1. EVALUACIÓN DEL CRECIMIENTO Y LA MORTALIDAD DE *Oncorhynchus mykiss* TRUCHA ARCO IRIS. PRODUCIDAS CON ALIMENTO BALANCEADO EN DISTINTAS CONCENTRACIONES DE PÉPTIDOS.

El crecimiento fue evaluado cada catorce días determinando el peso y talla promedio, las concentraciones se determinaron tomando como referencia la utilización del FISH 40 en el cultivo de otras especies (cerdo), ya que en su información comercial no mencionan dosificaciones para peces.

4.1.1. Incremento de peso promedio

Durante el proceso de evaluación se realizó 8 muestreos para determinar el peso promedio a partir de una muestra de 25 truchas al azar que representa el 5 % de la población por jaula, tomadas de diferentes profundidades de la jaula (Figura 4).

![Gráfico de crecimiento de peso promedio de truchas](image)

Figura 6. Incremento de peso de trucha arco iris alimentado con Nicovita balanceado con inclusión del suplemento de péptidos en Pomata entre los meses de julio a octubre del 2018.

La jaula 1 (tratamiento 0): inició con un peso promedio de 2.54 g. y culminó hasta llegar a 92.75 g. de peso promedio, al término de la evaluación se muestra un incremento de 90.21 g. La jaula 2 (tratamiento 1): al inicio de la evaluación su peso
promedio fue de 2.54 g. y finalmente se obtuvo truchas de 128.66 g de peso promedio en la cual se muestra un incremento de 126.12 g. La jaula 3 (tratamiento 2): inicia con peso promedio de 2.54 g. hasta llegar a 129.03 g. al final de la evaluación, mostrando una ganancia de peso de 126.49 g. (Figura 6)

Sin embargo, no existe diferencia estadística significativa entre los 3 tratamientos siendo el p-valor 0.77 > 0.05, por lo cual se acepta la hipótesis nula y se rechaza la hipótesis alterna, es decir se acepta que no existe diferencia estadística significativa en el crecimiento de trucha arco iris entre los tratamientos estudiados.

La experiencia realizada por Gomez (2017) inicio con un peso promedio de 95.9 g hasta llegar a 392 g de peso promedio, incrementando a 291.7 g durante 3 meses de evaluación, en la investigación se obtuvo un incremento de 90.1 para el Tratamiento control que fue alimentado de forma convencional con Nicovita, el incremento de Gomez (2017) es mayor debido a que trabajo en la etapa de engorde, sin embargo en este trabajo comprende las etapas de alevinos a juveniles, durante los 8 muestreos se observa un efecto favorable en el incremento de peso de los tratamientos 1 y 2, respecto al tratamiento control. Por otra parte Flores (2014), inicio con truchas de 102.3 g promedio, incrementado en 357.04 g en peces alimentados con alimento balanceado y 357 g en peces alimentados con 75 % de alimento balanceado y 25 % alimento fresco (ispi).

4.1.2. **Incremento de talla promedio**

Al inicio de la evaluación los individuos tenían una longitud promedio de 6.54 cm, en vista de que la población con la que se realizó la investigación pertenecían al mismo lote, al final de la evaluación el tratamiento control (T0) llego a alcanzar una longitud promedio de 19.62 cm., en tanto que el primer tratamiento (T1) alcanzo una talla promedio de 22.67 cm., y finalmente el segundo tratamiento (T2) obtuvo una talla promedio de 23.35 cm como se observa en la figura 7. en cambio Flores (2014) inicio con 22.6 cm de talla promedio llegando a obtener 32.36 cm en truchas alimentadas con balanceado Nicovita (Figura 7).

En general el crecimiento en peso y talla fue superior en los tratamientos que incluían suplemento de péptidos en comparación del tratamiento control el cual fue
suministrado solo con alimento balanceado Nicovita, el promedio del peso vivo al final de la evaluación para el control fue de 28.08 g y tratamientos con suplemento de péptidos fue de 40.70 g, lo cual representa el 31 % más de crecimiento de los tratamientos respecto al control, en talla el control obtuvo 11.88 cm y para los tratamientos fue de 13.59 cm, lo cual representa el 13 % más de crecimiento de los tratamientos respecto al control.

Figura 7. Incremento catorcenal de talla de trucha arco iris producidas con alimento balanceado Nicovita y concentraciones suplemento de péptidos en Pomata durante julio a octubre del 2018.

Por otro lado Gomez (2017), inicio con 18.9 cm de talla y al finalizar obtuvo 31 cm en trucha alimentada con balanceado Nicovita con estrategia alimentaria *ad libitum*. Montaña (2009), obtuvo incrementos superiores a 5.95 cm en todas las réplicas de los grupos que estudio en la etapa de alevinos durante 30 días de experimentación. De la misma manera que los pesos se observa un crecimiento en talla superior en los tratamientos que incluían el suplemento de péptidos respecto al tratamiento control que fue alimentado con alimento balanceado solamente, lo cual también nos indica que existe un efecto de las dietas que incluyen concentraciones de péptido respecto a la dieta control, en cuanto al crecimiento en longitud.
4.1.3. Registro de mortalidad

Se inició con 500 individuos por tratamiento, en el tratamiento control (T0) hubo una mortalidad de 71 (14.2 %) individuos al final de la evaluación, así mismo en el primer tratamiento (T1) nos muestra una mortalidad de 59 (11.8 %), por último, el segundo tratamiento (T2) tuvo una mortalidad de 101 (20.2 %) al final de la evaluación (Figura 8).

Figura 8. Mortalidad de trucha arco iris alimentada con Nicovita balanceado y concentraciones de suplemento de péptidos en Pomata entre julio a octubre del 2018.

El p-valor determinado fue de 0.58 > 0.05, no existiendo diferencia estadística significativa entre los tratamientos de esta variable, por tanto, se rechaza la hipótesis nula.

Flores (2014) registró una mortalidades de 43 para J1, 22 para J2, 7 para J3 y 01 para la J4, debido a que trabajo con una población menor de 100 individuos por jaula, a diferencia de esta investigación en la que se trabajó con una población de 500 individuos por jaula. Flores (2014) trabajo en la etapa de engorde donde la mortalidad suele ser baja, en cambio esta investigación se desarrolló en las etapas de alevinos a juveniles, por otra parte Gomez (2017), inicio con 300 juveniles de trucha y alcanzo mortalidades mínimas de 6.7 % para jaula 1 alimentada de forma convencional con
balanceado ewos y mortalidades máximas de 13.7 % para la jaula 3 alimentadas *ad libitum* con balanceado ewos. Las mortalidades son menores a las que se obtuvo debido a la diferencia de etapas de cultivo con las que se trabajó, ya que las mortalidades son superiores en las etapas de alevines.

4.2. **DETERMINACION DE PARAMETROS PRODUCTIVOS.**

Los parámetros productivos fueron determinados a partir de las mediciones de crecimiento y registro de mortalidad, los parámetros productivos determinados fueron la ganancia de biomasa (GB), ganancia en peso individual (GP), tasa de crecimiento específico (TCE), tasa de crecimiento absoluto (TCA), crecimiento relativo (CR), factor de condición (K), factor de conversión alimenticia (FCA), y sobrevivencia expresada en porcentaje (S).

4.2.1. **Ganancia de biomasa (GB)**

Según los resultados obtenidos para la ganancia de biomasa o incremento de biomasa bruta, en los tres tratamientos se mostraron por encima de los 38 000 g, en un periodo de 99 días calendarios, el T1 (20 ml/kg) fue el que obtuvo los mayores incrementos de biomasa total final (55 595.43 g), siendo el T0 (sin suplemento de péptidos) el que obtuvo menor incremento de biomasa final (38 518.14 g) (Figura 9).

![Figura 9](image.png)

Figura 9. Incremento de la biomasa (g) de trucha, cultivada con concentraciones de suplemento de péptidos en Pomata entre julio a octubre del 2018.
Por otra parte, el p-valor fue de 0.77 > 0.05, lo cual nos muestra que no existe diferencia estadística significativa entre los tratamientos, por lo cual se acepta la hipótesis nula.

Castillo (2015) obtuvo un incremento de biomasa de 50.04 kg, en 106 días, a una temperatura de 15 °C, 6.5 pH, cultivados en estanques, el resultado es similar al obtenido en los tratamientos 1 y 2 de esta investigación donde se obtuvo incrementos de 55.59 Kg. y 55.33 Kg respectivamente, ya que los factores ambientales, la población y el tiempo fueron similares, por otro lado Luna et al (2007), trabajo con postlarvas de langostino, considero su periodo de experimentación en dos intervalos de cultivo, durante el periodo final (15-30 días) obtuvo mayor incremento de biomasa, similar al comportamiento de los datos que obtuvimos donde existe mayores incrementos de biomasa en los últimos periodos de evaluación, en cambio Adron & Mackie (1978) citados por Medina (2012), encontraron que la biomasa inicial de las truchas alimentados durante 21 días con caseína y aminoácidos aumentó en 23.58 %, mientras que la biomasa de los peces alimentados con caseína pura aumentó solo en 12.81 %, los resultados que obtuvimos también muestran mayores incrementos de biomasa en dietas que incluyen suplemento de aminoácidos.

4.2.2. Ganancia de peso individual (GP)

En los datos obtenidos de ganancia de peso individual nos muestra el incremento de g/pez durante los siete periodos de evaluación, se observa el mayor incremento en el último periodo de evaluación, en el que se determina 48.92 g/pez para el T1, y el mínimo valor registrado fue durante el primer periodo de evaluación en el que se determinó 2.38 g/pez para el tratamiento control (sin concentraciones de péptidos), a lo largo de la evaluación que fue por un periodo de 99 días calendarios, se observa una ganancia de peso individual exponencial en función al tiempo (Figura 10).
Figura 10. Ganancia de Peso (g) de trucha arco iris cultivada con concentraciones de suplemento de péptidos en Pomata durante julio a octubre del 2018.

Medina (2012) trabajo con 270 alevinos de trucha para evaluar la ganancia de peso durante 28 días en estanques donde obtuvo ganancia de pesos de 0.159 g para su control, 0.193 g con la inclusión al 3% de L-aminoácidos, 0.123 g con la inclusión de 5% de L-aminoácidos, las ganancias de pesos son inferiores a los de esta investigación, debido a que trabajaron con tallas iniciales inferiores, ya que en 28 días de evaluación se obtuvo ganancias de pesos de 5.78 g para el control, 7 g para el T1, y 7.02 g para el T2, en cambio Gomez (2017), en 90 días de evaluación, con truchas de 91.3 g. de peso inicial, obtuvo una ganancia de peso de 532.4 g, mayor a los datos de esta investigación, debido a que trabajó en la etapa de engorde.

4.2.3. Tasa de crecimiento específico (TCE)

La tasa específica de crecimiento promedio para el tratamiento control T0 fue de 1.59 %/día, mientras que para el tratamiento 1 (T1) y tratamiento dos (T2) fue de 1.74 %/día. El mayor valor encontrado fue en el primer periodo de evaluación donde el T2 = 2.21 %/día, y el menor valor encontrado fue en el cuarto periodo de estudio donde el T0 = 1.17 %/día (Figura 11).
Figura 11. Tasa de crecimiento específico (%/día) de trucha arco iris cultivada con suplemento de péptidos en concentraciones de 20 ml/kg y 30ml/kg en Pomata durante julio a octubre del 2018.

El análisis de varianza no muestra diferencia estadística significativa determinando un p-valor de 0.62>0.05 por lo cual se rechaza la hipótesis alterna y se acepta la hipótesis nula.

Pineda (1999), en el crecimiento de Ictalurus punctatus bagre alimentados con alimento balanceado a partir de Rasposa y barrilete durante 168 días, determino TCE de 1.19 %/día para su dieta 1 y 0.88 %/día para su dieta 2, los cuales difieren con los datos que se obtuvo debido a que se trabajó con diferentes especies. Gómez (2017), determino la TCE de trucha arco iris en la etapa de engorde, encontrando el mayor valor en el primer periodo de evaluación similar al comportamiento de los datos de esta investigación, sin embargo su TCE promedio fueron de 1.66 en alimentación por tabla y 2.06 en la alimentación ad libitum, en esta investigación se obtuvo promedios de 1.74 en la T1 y T2, mientras que en la T0 1.59, los datos difieren mínimamente respecto a los datos obtenidos por Gómez en la alimentación por tabla en vista que el sistema de alimentación para todos los tratamientos fue por tabla y se evaluó el crecimiento en diferentes etapas.
4.2.4. Tasa de crecimiento absoluto (TCA)

La tasa de crecimiento absoluta promedio para la T0 fue de 0.92 g/día, para la T1 fue de 1.29 g/día y para el T2 fue de 1.29 g/día, en el último periodo de evaluación se encontró la mayor TCA (T1=3.49 g/día) y el menor TCA se encontró en primer periodo de evaluación (T0=0.17 g/día) (Figura 12).

![Figura 12. Tasa de crecimiento absoluta (g/día) en trucha arco iris cultivada con concentraciones de suplemento de péptidos en Pomata durante julio a octubre del 2018.](image)

Montaña (2009), experimento con alevinos de trucha en un sistema de recirculación, durante 30 días, con una población de 150 individuos por grupo, con tres grupos en total, obteniendo un TCA de 0.13 g/día para el grupo A, 0.06 g/día para el grupo B y 0.09 g/día para el grupo C, en este trabajo se obtuvo promedios de 0.92 g/día para T0 y 1.29 g/día para T1 y T2, mayores a los obtenidos por Montaña (2009) debido a que trabajo con fases iniciales de alevinos y en esta investigación entre alevinos a juveniles, los resultados de montaña nos permiten deducir que la TCA en periodos iniciales de crianza son menores y van incrementándose a lo largo del tiempo, en cambio Villarreal et al (2011), trabajo con alevinos de Cichlastoma urophthalmus, alimentados con inclusión de proteína de soya y trigo, obteniendo TCA máximo de 1.251 mg/ dia $^{-1}$ en la dieta que incluía el 60 % de proteína.
4.2.5. Crecimiento relativo (CR)

El crecimiento relativo promedio del T0 fue de 68 %, el T1 fue de 76% y el T2 tuvo un CR de 75.9%. El crecimiento relativo mostró una tendencia decreciente a lo largo del tiempo siendo el mayor en el primer periodo en el T2 = 104.1 % y menor en el quinto periodo del T1 = 46% (Figura 13).

<table>
<thead>
<tr>
<th>T0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
<th>7.0</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>93.5</td>
<td>69.1</td>
<td>62.4</td>
<td>46.0</td>
<td>47.2</td>
<td>83.5</td>
<td>74.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T1</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
<th>7.0</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>102.7</td>
<td>85.0</td>
<td>90.0</td>
<td>79.9</td>
<td>47.1</td>
<td>66.1</td>
<td>61.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T2</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
<th>7.0</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>104.1</td>
<td>84.1</td>
<td>90.1</td>
<td>70.7</td>
<td>61.0</td>
<td>62.6</td>
<td>58.8</td>
</tr>
</tbody>
</table>

Figura 13. Crecimiento relativo (%) de trucha arco iris cultivada con suplemento de péptidos en dos concentraciones en Pomata durante julio a octubre del 2018.

El análisis estadístico ANOVA mostro un p-valor de 0.63 > 0.05, no encontrándose diferencias estadísticas significativas.

Villarreal et al (2011), evaluó el CR de alevinos de *Cichlasoma urophthalmus* con dietas basadas en diferentes niveles de inclusión de proteínas de soya y gluten, durante 40 días de experimentación, determinando un menor CR=70.91% en dietas con 10% de inclusión de proteínas y un mayor CR=237.36% en dietas con 60% de inclusión, en esta investigación se determinó mayor CR en el tratamiento con suplemento de péptidos T2=104.1% y menor en el tratamiento control que no tenía suplemento, por otra parte Estrada (2016), estudio el efecto de la salinidad en crías de trucha, donde obtuvo un CR de 535.63 % en el tratamiento A (con una salinidad de 0 ppt) y un CR de 487.11 % en el tratamiento B (con una salinidad de 5 ppt) durante 70 días de evaluación con un peso inicial de 1.08 g y talla inicial de 4.16 cm.
4.2.6. Factor de conversión alimenticia (FCA)

Se determinó que el factor de conversión alimenticia promedio de la T0 fue de 1, mientras que la FCA del T1 fue de 0.8 y el FCA del T2 fue de 0.7, se encontró el menor FCA en el cuarto periodo del T2 = 0.6 y el mayor FCA encontrado fue en el quinto periodo T0 = 1.3 (Figura 14).

![Factor de conversión alimenticia (FCA)]

Figura 14. Factor de conversión alimenticia (FCA) de trucha arco iris cultivada con suplemento de péptidos en distintas concentraciones en Pomata durante julio a octubre del 2018.

El p-valor determinado para esta variable fue de 0.019<0.05, por lo cual se acepta la hipótesis alterna para esta variable, indicando que si existe diferencia estadística significativa del FCA entre los tratamientos que incluyen suplemento de péptidos frente al tratamiento control.

Flores (2014), obtuvo un factor de conversión alimenticia de 1.07 en truchas cultivadas en etapa de engorde, en cambio esta investigación se desarrolló en la etapa de alevinos a juveniles donde se obtuvo un FCA promedio de 1 en el tratamiento control, ligeramente menor debido a que en la etapa de alevinos suelen captar plancton del medio acuático, Mamani (2006), obtuvo un FCA promedio de 0.7 similar al FCA que se obtuvo en el T2, debido a que la etapa de cultivo con la que trabajó es similar al de esta investigación, por otro lado Gomez (2017), determino
mejores FCA (0.77 promedio) en truchas alimentadas convencionalmente con balanceado ewos, el cual se asemeja con el FCA de los tratamientos de esta investigación que incluían suplementos de péptidos, por otro lado Pineda (1999), obtuvo mejor índice de FCA en la dieta 2 (a base de sobrante de barrilete con viseras) para cultivo de bagre, y Cardenas (2013), obtuvo un índice de FCA de 1.12, en un periodo de evaluación de seis meses de cultivo de trucha.

4.2.7. Factor de condición (K)

Se determinó un factor de condición promedio de 1.17 para el tratamiento control (T0), 1.11 el tratamiento 1 (20 ml/Kg) y 1.07 para el tratamiento 2 (30 ml/kg), el factor de condición fue monitoreado durante 7 periodos de evaluación que comprendían 99 días calendarios (Figura 15).

![Figura 15. Factor de condición de truchas cultivada con suplemento de péptidos en dos concentraciones en Pomata durante julio a octubre del 2018.](#)

El p-value determinado para esta variable fue de 0.039 < 0.05 por lo cual existe diferencia significativa se acepta la hipótesis alterna. Indicando que existe un efecto del suplemento de péptidos sobre el factor de condición de los peces.

Mamani (2006), obtuvo factor de condición promedio de 1.26, en cambio en la investigación que se realizó fue 1.17 para el tratamiento control cultivado bajo similares condiciones, los factores de condición para los tres tratamientos fueron
menores pero no representaron niveles de desnutrición ya que se mostraban dentro de los intervalos aceptables, por otra parte Gomez (2017), obtuvo un K de 1.61 en cultivo de trucha alimentada ad libitum (saciedad) sin embargo su índice de FCA no fue óptimo. En cambio Flores (2014) en su evaluación de crecimiento de trucha, determino un K superior de 1.36 en la jaula 1 alimentado con balanceado Nicovita.

4.2.8. **Sobrevivencia (S)**

Se determinó la sobrevivencia promedio para el tratamiento control T0 = 97.9%, el primer tratamiento fue la mayor sobrevivencia de 98.2% y el segundo tratamiento mostró una menor sobrevivencia promedio 96.9%, los mayores porcentajes de sobrevivencia se observaron durante la última etapa de evaluación y el menor porcentaje de sobrevivencia se observó en el quinto periodo de evaluación en el segundo tratamiento 91.2% (Figura 16).

![Figura 16. Sobrevivencia expresada en porcentaje, de trucha arco iris cultivada con suplemento de péptidos en concentraciones de 20 y 30 ml/kg de AB en Pomata durante julio a octubre del 2018.](image)

El p-valor para esta variable fue de 0.54>0.05 por lo cual se acepta la hipótesis nula, sin embargo, si existen diferencias en el sexto periodo de evaluación. Gomez (2017), obtuvo una sobrevivencia promedio de 89.58% menor al porcentaje de sobrevivencia que determinamos, debido a que Gómez incluyó en sus tratamiento
alimentación *ad libitum* a diferencia de esta investigación solo con alimentación convencional, según los datos que se obtuvieron no se muestran relaciones entre el tratamiento suministrado y el porcentaje de sobrevivencia. Sin embargo, el segundo tratamiento los porcentajes de sobrevivencia disminuyeron significativamente durante el quinto y sexto periodo de evaluación, se presume que esto se debe a otros factores no asociados al tratamiento por que no muestran relación con otros periodos de evaluación. Por otro lado Montaña (2009), en su estudio de crecimiento de alevinos de trucha en sistema de recirculación obtuvo un índice mayor de sobrevivencia 83 % en el grupo A, en cambio Estrada (2016), obtuvo sobrevivencias superiores a 90 % en el tratamiento A (con una salinidad de 5 %).
V. CONCLUSIONES

- El tratamiento 2 (30 ml/kg), alcanzó mayor crecimiento en peso (129.03 g) y talla (23.35 cm) promedio al finalizar la evaluación, observándose un efecto del suplemento de péptidos sobre el crecimiento. La mortalidad mostró una tendencia decreciente en función al tiempo, en promedio fue mayor en el tratamiento 2 (101 individuos) y menor en el tratamiento 1 (20 ml/kg) alcanzando 59 individuos. No encontrándose diferencias significativas.

- La ganancia de biomasa (GB) óptimo, fue con en el tratamiento 1 con una concentración de 20 ml/kg donde se obtuvo 55.59 Kg, la ganancia de peso individual (GP) mayor fue en el tratamiento 2 (30 ml/kg) alcanzando 126.49 g, la tasa de crecimiento específico (TCE) máximo fue el tratamiento 1 y 2 (1.74%), la tasa de crecimiento absoluto (TCA) fue superior en el tratamiento 1 y 2 (1.29 g/día), el crecimiento relativo (CR) promedio fue mejor en el tratamiento 1 (76 %), el factor de conversión alimenticia (FCA) promedio más eficiente fue el tratamiento 2 (0.7), el factor de condición (K) promedio superior se mostró en el tratamiento control (1.17) y el porcentaje de supervivencia fue mejor en el tratamiento 1 (98.2 %).

- Las pruebas estadísticas aplicadas a los tratamientos (ANOVA) no muestran diferencias estadísticas significativas en la mayoría de las variables estudiadas excepto en la del FCA (p-valor = 0.019 > 0.05) y en el K (p-valor = 0.039 > 0.05).
VI. RECOMENDACIONES

- Realizar investigación sobre costo beneficio de la inclusión del suplemento de péptidos comercial (Aqua Natura Fish 40), en la alimentación de trucha arco iris cultivadas en jaulas flotantes.

- Evaluar la calidad físico organoléptica del producto final (sabor, olor) de la trucha arco iris en base a los suplementos de péptidos empleados.
VII. REFERENCES

Cardenas, E. (2013). Determinación del factor de conversión alimentaria para tres dietas alimentarias de trucha (*Oncorhynchus mykiss*) y su relación con los parámetros de temperatura y pH en la zona de producción de faro – Pomata, provincia de Chucuito Juli región de Puno. Universidad Nacional San Agustín de Arequipa.
Estrada, L. (2016). Efecto de la salinidad en el crecimiento de crías de trucha arcoíris (*Oncorhynchus mykiss*). Toluca Mexico: Universidad Autonoma del estado de México.
Gomez, M. C. (2010). Aspectos biométricos y reproductivos de peces marinos comerciales capturados artesanalmente en la zona norte del departamento del magdalena, caribe
colombiano (marzo – octubre, 2009). Universidad Jorge Tadeo Lozano facultad de ciencias naturales e ingeniería, Bogota.

http://repositorio.unap.edu.pe/bitstream/handle/UNAP/2536/GUTIERREZ_CASTILLO_O_SERGIO_PAUL.pdf?sequence=1&isAllowed=y

Montaña, C. (2009). Crecimiento y sobrevivencia en el levante de alevinos de trucha arco iris (Oncorhynchus mykiss) en sistemas cerrados de recirculación de agua, 76.
Recuperado a partir de http://repository.unimilitar.edu.co/bitstream/10654/397/1/MontanaCamilo2009.pdf

PRODUCE. (2017). Cultivo de la trucha arco iris en el Perú con énfasis en la importación de ovas embrionadas y la comercialización de la producción. Ministerio de la Producción, 34.

ANEXOS

Anexo A

Figura 17. Monitoreo de temperatura y oxígeno disuelto haciendo uso de equipo digital OxyGuard Handy Polaris, Pomata de julio a octubre del 2018.

Anexo B

Tabla 6. Análisis de varianza y test de Tukey de la variable FCA de trucha en Pomata durante julio a octubre del 2018.

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² A</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR DE CONVERSION</td>
<td>21</td>
<td>0.36</td>
<td>0.29</td>
<td>19.59</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>g1</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>0.25</td>
<td>2</td>
<td>0.13</td>
<td>5.01</td>
<td>0.0186</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>0.25</td>
<td>2</td>
<td>0.13</td>
<td>5.01</td>
<td>0.0186</td>
</tr>
<tr>
<td>Error</td>
<td>0.45</td>
<td>18</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.70</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: Tukey Alfa=0.05 DMS=0.21591

Error: 0.0250 g1: 16

TRATAMIENTO Medias n E.E.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Medias</th>
<th>n</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>0.71</td>
<td>7</td>
<td>0.06 A</td>
</tr>
<tr>
<td>T1</td>
<td>0.76</td>
<td>7</td>
<td>0.06 A B</td>
</tr>
<tr>
<td>T0</td>
<td>0.96</td>
<td>7</td>
<td>0.06 B</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)
Anexo C

Tabla 7. Análisis de varianza y test de Tukey del factor de condición de trucha cultivada en Pomata durante julio a octubre del 2018.

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR DE CONDICIÓN</td>
<td>21</td>
<td>0.30</td>
<td>0.22</td>
<td>6.08</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>0.04</td>
<td>2</td>
<td>0.02</td>
<td>3.88</td>
<td>0.0398</td>
</tr>
<tr>
<td>TRATAMIENTO</td>
<td>0.04</td>
<td>2</td>
<td>0.02</td>
<td>3.88</td>
<td>0.0398</td>
</tr>
<tr>
<td>Error</td>
<td>0.08</td>
<td>18</td>
<td>4.6E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.12</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: Tukey Alfa=0.05 DMS=0.09272

Error: 0.0046 gl: 18

<table>
<thead>
<tr>
<th>TRATAMIENTO</th>
<th>Medias n</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>1.07</td>
<td>7</td>
</tr>
<tr>
<td>T1</td>
<td>1.11</td>
<td>7</td>
</tr>
<tr>
<td>T0</td>
<td>1.17</td>
<td>7</td>
</tr>
</tbody>
</table>

Medias con una letra común no son significativamente diferentes (p > 0.05)

Anexo D

Tabla 8. Formato de biometría para cultivo de trucha

<table>
<thead>
<tr>
<th>N°</th>
<th>JAULA 1</th>
<th>JAULA 2</th>
<th>JAULA 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PESO (g)</td>
<td>TALLA (cm)</td>
<td>PESO (g)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>....</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROMEDIO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anexo E

Tabla 9. Formato de alimentación para cultivo de trucha

<table>
<thead>
<tr>
<th>MARZO</th>
<th>TIPO DE ALIMENTO</th>
<th>T.A.C.</th>
<th>CANTIDAD DE ALIMENTO CONSUMIDO</th>
<th>DOSIS DE FISH 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° FÉCHA</td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JAULA 1 (T0)</td>
<td>JAULA 2 (T1)</td>
</tr>
</tbody>
</table>

Anexo F

Tabla 10. Alimento total suministrado (g) en las tres jaulas de experimentación cultivadas en Pomata entre julio a octubre del 2018

<table>
<thead>
<tr>
<th>FECHA</th>
<th>J1 (T0)</th>
<th>J2 (T1)</th>
<th>J3 (T2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/07/2018</td>
<td>914.20</td>
<td>914.20</td>
<td>914.2</td>
</tr>
<tr>
<td>04/08/2018</td>
<td>1515.00</td>
<td>1611.00</td>
<td>1611.0</td>
</tr>
<tr>
<td>18/08/2018</td>
<td>2165.00</td>
<td>3192.52</td>
<td>2322.8</td>
</tr>
<tr>
<td>01/09/2018</td>
<td>3482.54</td>
<td>4792.97</td>
<td>4152.4</td>
</tr>
<tr>
<td>15/09/2018</td>
<td>4693.56</td>
<td>5614.75</td>
<td>5069.2</td>
</tr>
<tr>
<td>29/09/2018</td>
<td>7237.53</td>
<td>9295.49</td>
<td>7696.5</td>
</tr>
<tr>
<td>13/10/2018</td>
<td>10672.22</td>
<td>13429.61</td>
<td>12273.1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>30680.04</td>
<td>38850.55</td>
<td>34039.26</td>
</tr>
</tbody>
</table>
Anexo G

Tabla 11. Tabla de alimentación NICOVITA con la estrategia nueva, Perú del 2017.

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>TALLA (cm)</th>
<th>PESO (g)</th>
<th>TEMPERATURA DEL AGUA (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><2.5</td>
<td><0.18</td>
<td>8</td>
</tr>
<tr>
<td>ORIGIN 0.1</td>
<td></td>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td>ORIGIN 0.3</td>
<td>2.5 - 2.8</td>
<td>0.18 - 0.39</td>
<td>3.80</td>
</tr>
<tr>
<td>ORIGIN 0.6</td>
<td>2.8 - 3.5</td>
<td>0.30 - 0.60</td>
<td>3.80</td>
</tr>
<tr>
<td>3.5 - 5.0</td>
<td>0.60 - 1.42</td>
<td>3.80</td>
<td>4.40</td>
</tr>
<tr>
<td>5.0 - 5.7</td>
<td>1.42 - 2.0</td>
<td>2.90</td>
<td>3.30</td>
</tr>
<tr>
<td>CLASSIC 2</td>
<td>5.7 - 7.0</td>
<td>2.0 - 4.5</td>
<td>2.90</td>
</tr>
<tr>
<td>7.0 - 7.30</td>
<td>4.5 - 5.0</td>
<td>2.50</td>
<td>2.80</td>
</tr>
<tr>
<td>CLASSIC 5</td>
<td>7.3 - 9.8</td>
<td>5.0 - 12.5</td>
<td>2.50</td>
</tr>
<tr>
<td>9.8 - 12.0</td>
<td>12.5 - 22.2</td>
<td>1.90</td>
<td>2.20</td>
</tr>
<tr>
<td>12.0 - 12.5</td>
<td>22.2 - 25.0</td>
<td>1.50</td>
<td>1.70</td>
</tr>
<tr>
<td>CLASSIC 25</td>
<td>12.5 - 14.5</td>
<td>25.0 - 40.0</td>
<td>1.50</td>
</tr>
<tr>
<td>14.5 - 16.5</td>
<td>40.0 - 60.0</td>
<td>1.50</td>
<td>1.70</td>
</tr>
<tr>
<td>CLASSIC 60</td>
<td>16.5 - 17.50</td>
<td>60.0 - 66.6</td>
<td>1.50</td>
</tr>
<tr>
<td>17.5 - 20.0</td>
<td>66.6 - 100</td>
<td>1.40</td>
<td>1.50</td>
</tr>
<tr>
<td>20.0 - 22.0</td>
<td>100 - 142</td>
<td>1.20</td>
<td>1.40</td>
</tr>
<tr>
<td>CLASSIC 150</td>
<td>22.0 - 23.0</td>
<td>142 - 150</td>
<td>1.10</td>
</tr>
<tr>
<td>23.0 - 25.0</td>
<td>150 - 200</td>
<td>1.10</td>
<td>1.30</td>
</tr>
<tr>
<td>150 - 200</td>
<td>200 - 250</td>
<td>1.10</td>
<td>1.30</td>
</tr>
<tr>
<td>25.0 - 26.0</td>
<td>200 - 250</td>
<td>1.00</td>
<td>1.20</td>
</tr>
<tr>
<td>26.0 - 29.0</td>
<td>250 - 333</td>
<td>1.00</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Anexo H

Tabla 12. Densidad poblacional expresada en Kg/m3 de trucha de las tres jaulas en experimentación cultivadas en Pomata entre julio a octubre del 2018.

<table>
<thead>
<tr>
<th>FECHA</th>
<th>J1 (T0)</th>
<th>J2 (T1)</th>
<th>J3 (T2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/07/2018</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>21/07/2018</td>
<td>0.19</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>04/08/2018</td>
<td>0.30</td>
<td>0.35</td>
<td>0.36</td>
</tr>
<tr>
<td>18/08/2018</td>
<td>0.48</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>01/09/2018</td>
<td>0.69</td>
<td>1.17</td>
<td>1.13</td>
</tr>
<tr>
<td>15/09/2018</td>
<td>1.01</td>
<td>1.71</td>
<td>1.65</td>
</tr>
<tr>
<td>29/09/2018</td>
<td>1.83</td>
<td>2.82</td>
<td>2.60</td>
</tr>
<tr>
<td>13/10/2018</td>
<td>3.18</td>
<td>4.55</td>
<td>4.13</td>
</tr>
</tbody>
</table>
Anexo I

Tabla 13. Parámetros de oxígeno disuelto (mg/L) y temperatura en °C de la bahía de Pomata – Faro entre julio a octubre del 2018.

<table>
<thead>
<tr>
<th>SEMANA</th>
<th>O2 (mg/l)</th>
<th>Temperatura °C</th>
<th>Hora</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.9</td>
<td>13.8</td>
<td>11:20</td>
</tr>
<tr>
<td>2</td>
<td>6.6</td>
<td>14.2</td>
<td>13:20</td>
</tr>
<tr>
<td>3</td>
<td>6.8</td>
<td>13.7</td>
<td>10:26</td>
</tr>
<tr>
<td>4</td>
<td>6.7</td>
<td>14.3</td>
<td>14:02</td>
</tr>
<tr>
<td>5</td>
<td>6.8</td>
<td>14.4</td>
<td>14:32</td>
</tr>
<tr>
<td>6</td>
<td>6.8</td>
<td>14.3</td>
<td>08:28</td>
</tr>
<tr>
<td>7</td>
<td>6.9</td>
<td>14.5</td>
<td>14:57</td>
</tr>
<tr>
<td>8</td>
<td>6.7</td>
<td>14</td>
<td>10:23</td>
</tr>
<tr>
<td>9</td>
<td>6.5</td>
<td>13.9</td>
<td>09:23</td>
</tr>
<tr>
<td>10</td>
<td>6.3</td>
<td>13.8</td>
<td>11:30</td>
</tr>
<tr>
<td>11</td>
<td>6.5</td>
<td>14.8</td>
<td>12:54</td>
</tr>
<tr>
<td>12</td>
<td>6.5</td>
<td>14.8</td>
<td>11:50</td>
</tr>
<tr>
<td>13</td>
<td>6.8</td>
<td>14.3</td>
<td>14:20</td>
</tr>
<tr>
<td>14</td>
<td>6.2</td>
<td>15.2</td>
<td>12:02</td>
</tr>
</tbody>
</table>
CONSTANCIA

El que suscribe representante del centro de producción de la empresa acuícola dios es amor E.I.R.L.

HACE CONSTAR:

Que el señor, Cliver Abad LEON SEGURA identificado con DNI Nº 48240721 de la Facultad de Ciencias Biológicas de la Universidad Nacional del Altiplano, ha desarrollado su proyecto de investigación titulado “EVALUACIÓN DE LAS CONCENTRACIONES DEL SUPLEMENTO DE PÉPTIDOS SOBRE PARÁMETROS PRODUCTIVOS DE Oncorhynchus mykiss TRUCHA ARCO IRIS EN POMATA – PUNO” en el centro de Producción de trucha de Pomata Acuicola Dios es Amor E.I.R.L., de fecha de 01 de julio al 15 de octubre del 2018.

Se expide la presente constancia a petición del interesado para los fines que estime por conveniente.

Pomata, 15 de noviembre del 2018