

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERÍA DE MINAS ESCUELA PROFESIONAL DE INGENIERÍA DE MINAS

"DISEÑO Y EVALUACIÓN DE VOLADURAS PARA OBRAS CIVILES EN EL PROYECTO MINERO LAS BAMBAS"

TESIS

PRESENTADO POR:

Bach. ALEX RUBEN HUALLPACHOQUE NINAJA

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO DE MINAS

PUNO – PERÚ

2018

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERÍA DE MINAS ESCUELA PROFESIONAL DE INGENIERÍA DE MINAS

TESIS

"DISEÑO Y EVALUACIÓN DE VOLADURAS PARA OBRAS CIVILES EN EL

PROYECTO MINERO LAS BAMBAS"

PRESENTADO POR:

Bach. ALEX RUBEN HUALLPACHOQUE NINAJA

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO DE MINAS

FECHA DE SUSTENTACIÓN: 25-10-2018

APROBADA POR EL JURADO REVISOR CONFORMADO POR:

PRESIDENTE:

M.Sc. Mario Serafin Cuentas Alvarado

PRIMER MIEMBRO:

Dr. Juan Mayhua Palomino

SEGUNDO MIEMBRO:

D.Sc. Jorge Gabriel Durant Broden

DIRECTOR / ASESOR:

Ing. Arturo/Rafael Chayña Rodriguez

Área : Ingeniería de Minas.

Tema : Diseño y evaluación de voladuras para obras civiles.

DEDICATORIA

A Dios quien supo guiarme por el buen camino y permitirme llegar a este momento tan gratificante de mi formación profesional. A mi madre Isabel, por su confianza, comprensión y por brindarme siempre su amor infinito. A mi padre Isaac, por haberme inculcado de buenos valores y enseñarme que con humildad y perseverancia se puede lograr muchas cosas. A mi hermana Yeny y hermano Eloy por creer en mí y brindarme su apoyo incondicional. Al amor de mi vida, compañera y cómplice, por darme siempre el empujón que necesito para conseguir mis metas, Gina Natalia. A mi pequeño Hans Ruben, por ser el milagro y motivación de vida. Y para mis buenos amigos Jhol, Ramiro, Brandon, Jonathan y Jorge Luis por formar parte de este proyecto y por compartir cátedras de voladura y lecciones de vida.

AGRADECIMIENTO

A Dios por darme el soplo de vida y hacer posible este trabajo de investigación.

Mi eterno agradecimiento a la Universidad Nacional del Altiplano – Puno, mi alma mater. A la Escuela Profesional de Ingeniería de Minas por haberme acogido durante mi formación profesional. Al personal docente por sus enseñanzas y experiencias para aplicarlos durante mi vida profesional.

Mi agradecimiento a mi director de tesis Ing. Arturo Chayña y miembros del jurado: M.Sc. Mario Cuentas, Dr. Juan Mayhua y D.Sc. Jorge Durant. Por sus aportes, recomendaciones y orientaciones durante el desarrollo del presente trabajo de investigación.

En especial, a la empresa Pevoex Contratistas SAC, por darme la oportunidad de iniciar mi carrera profesional, en especial al Ingeniero Rómulo Mucho, por haberme brindado la confianza y oportunidad para realizar el presente trabajo de investigación. A toda la línea de mando de ingenieros y personal técnico.

Y, por último, el agradecimiento más profundo para mi familia. Sin su apoyo, colaboración e inspiración habría sido complicado lograrlo. A mis padres, Isaac Huallpachoque e Isabel Ninaja, por su ejemplo de lucha y honestidad; a mi amada Gina y mi querido hijo Hans Ruben, gracias a ustedes por creer siempre en mí.

.

ÍNDICE GENERAL

INDIC	CE GENERAL	V
ÍNDIC	CE DE FIGURAS	xi
ÍNDIC	CE DE TABLAS	XV
ÍNDIC	CE DE ACRÓNIMOS	XV
RESU	MEN	17
ABST	RACT	18
	CAPÍTULO I	
	INTRODUCCIÓN	
1.1	Descripción de la realidad problemática	
1.2	Formulación del problema	
1.2.1	Problema general	
1.2.2	Problemas específicos	
1.3	Objetivos de la investigación	
1.3.1	Objetivo general	
1.3.2	Objetivos específicos	
1.4	Justificación de la investigación	23
	CAPÍTULO II	
	REVISIÓN DE LA LITERATURA	
2.1	Antecedentes de la investigación	24
2.2	Bases teóricas	26
2.2.1	Identificación de variables de diseño	26
2.2.2	Relación de rigidez	27
2.2.3	Diámetro de perforación	28
2.2.4	Altura de corte	28
2.2.5	Diseño integral de voladura	29

2.2.5.1	Diseño de malla de voladura para cimentaciones	29
2.2.5.2	Cálculo del burden y espaciamiento para cimentaciones	30
2.2.5.3	Diseño de malla de voladura para zanjas	31
2.2.5.4	Cálculo del burden y espaciamiento para zanjas	31
2.2.5.5	Trazo de malla para zanjas.	31
2.2.5.6	Iniciación y cebado de cargas	32
2.2.5.7	Cálculo del factor de carga	33
2.2.5.8	Cálculo de la densidad de carga lineal	33
2.2.5.9	Cálculo de taco adecuado	34
2.2.5.10	Sistema de iniciación no eléctrico dual	35
2.2.5.11	Configuración de retardos	37
2.2.5.12	Dispersión en los tiempos de retardo	38
2.2.5.13	Secuencia de detonación de voladura en obras civiles	39
2.2.6	Diseño de precorte para el muro "R"	41
2.2.6.1	Diseño de voladura de precorte	41
2.2.6.2	Cálculo de la presión en taladros desacoplados	42
2.2.6.3	Cálculo del espaciamiento	42
2.2.6.4	Secuencia de detonación	43
2.2.6.5	Efectos de la exactitud de la perforación	43
2.2.6.6	Inclinación del precorte	44
2.2.7	Diseño de voladura amortiguada	44
2.2.7.1	Voladura con taladros Buffer	44
2.2.7.2	Voladura con cámara de aire (Air Decks)	45
2.2.8	Control de vibraciones	46
2.2.8.1	Generalidades	46
2.2.8.2	Tipos de ondas	47
2.2.8.3	Velocidad de propagación y velocidad de partícula	48

2.2.8.4	Modelo de vibraciones a campo lejano	48
2.2.8.5	Instrumentación para monitoreo de vibraciones	50
2.2.8.6	Regulación internacional de control de vibraciones	51
2.2.8.7	Norma Alemana – DIN 4150	53
2.2.9	Control de proyección de rocas (Flyrocks)	53
2.2.9.1	Causas de proyección de rocas (Flyrocks)	54
2.2.9.2	Criterio del cráter (Frank Chiapetta)	56
2.2.9.3	Método convencional, recubrimiento de una voladura.	56
2.2.10	Control de la onda aérea de presión (Airblast)	57
2.2.10.1	Factores que afectan la sobrepresión	57
2.2.10.2	Predicción de la onda aérea de presión	59
2.2.10.3	Limitaciones normativas para la onda aérea de presión	59
2.2.11	Diseño de voladura mediante el software JK Simblast – 2DBench	60
2.2.11.1	Administración de base de datos	61
2.2.11.2	Configuración de retardos	61
2.2.11.3	Simulación de detonación	62
1.1.3.1	Análisis de resultados (Vibraciones a campo lejano)	63
2.2.12	Evaluación del resultado de voladura	64
2.2.12.1	Método de análisis cuantitativo visual mediante fotografías	64
2.2.12.2	Contorno de la obra civil ó precorte	64
2.2.12.3	Impacto ambiental	65
2.3	Marco Conceptual	65
2.3.1	Plano de obra civil	65
2.3.2	Propiedades de los explosivos:	66
2.3.2.1	Velocidad de detonación (VOD)	66
2.3.2.2	Presión de detonación	66
2.3.2.3	Presión de taladro o explosión	67

2.3.2.4	Energía del explosivo	. 67
2.3.2.5	Explosivos utilizados en el proyecto minero las Bambas	. 67
2.3.3	Resistencia del macizo rocoso	. 68
2.3.3.1	Resistencia a la compresión	. 68
2.3.3.2	Resistencia a la tensión	. 69
2.3.3.3	Ripiabilidad de los materiales de excavación	. 69
2.3.4	Burden	. 70
2.3.5	Espaciamiento	. 70
2.3.6	Carga operante	. 70
2.3.7	Carga desacoplada	. 70
2.3.8	Campo lejano	. 71
2.4	Planteamiento de la hipótesis	. 71
2.4.1	Hipótesis general	. 71
2.4.2	Hipótesis específicas	. 71
2.4.3	Operacionalización de variables	. 72
2.4.3.1	Variable dependiente	. 72
2.4.3.2	Variable independiente	. 72
2.4.3.3	Matriz de la operacionalización de variables	. 72
	CAPÍTULO III	
	MATERIALES Y MÉTODOS	
3.1	Ubicación del proyecto minero las Bambas	. 73
3.1.1	Ubicación de planta concentradora	. 73
3.2	Geología y caracterización geotécnica de planta concentradora	. 73
3.2.1	Geología de planta concentradora	. 73
3.2.2	Caracterización geotécnica por sectores	. 77
3.2.2.1	Planta de flotación (celdas)	. 77
3.2.2.2	Espesadores de concentrado y poza de emergencia	. 78

3.2.2.3	Zona de remoliendas	78
3.2.2.4	Parámetros geomecánicos	79
3.3	Descripción de los proyectos de voladura de obra civil	81
3.4	Distancias de los proyectos de voladura hacia la infraestructura	82
3.5	Diseño metodológico de investigación	84
3.6	Tipo de investigación	84
3.6.1	Pasos para diseñar y evaluar voladuras de obra civil.	85
3.7	Población	87
3.8	Muestra	88
3.9	Técnica de recolección de datos	88
3.10	Instrumentos de recolección	88
	CAPÍTULO IV	
	RESULTADOS Y DISCUSIÓN	
4.1	Diseño de la malla de voladura para obras civiles	90
4.1.1	Consideraciones de diseño	90
4.1.1.1	Parámetros resistivos al macizo rocoso	91
4.1.1.2	Diámetro de perforación	92
4.1.1.3	Explosivos utilizados en las Bambas	93
4.1.1.4	Diseño de taladros de precorte	97
4.1.2	Diseño de voladura precorte para el muro "R"	101
4.1.2.1	Aspectos generales.	101
4.1.2.2	Diseño del taladro precorte	104
4.1.2.3	Cálculo de malla en taladros buffer:	104
4.1.2.4	Vista perfil y planta de taladros.	105
4.1.3	Diseño de voladura para cimentaciones	108
4.1.3.1	Aspectos generales.	108
4.1.3.2	Diseño de taladros precorte.	110

4.1.3.3	Cálculo del burden en taladros de producción	110
4.1.3.4	Cálculo del espaciamiento en taladros de producción	111
4.1.3.5	Diseño de taladros buffer.	112
4.1.3.6	Vista perfil y planta de taladros.	112
4.1.4	Diseño de voladura para zanjas.	115
4.1.4.1	Aspectos generales	115
4.1.4.2	Diseño de precorte en zanjas	115
4.1.4.3	Diseño de malla de voladura	117
4.1.4.4	Vista planta y perfil de taladros	117
4.1.5	Discusión de resultados	120
4.2	Control de vibraciones	120
4.2.1	Regulación mediante norma técnica DIN 4170	120
4.2.2	Cálculo de la carga máxima por retardo	121
4.2.3	Factor de carga	123
4.2.4	Distribución de carga y configuración de retardos para el muro "R"	125
4.2.4.1	Distribución de la carga explosiva	125
4.2.4.2	Distribución de carga en taladros de precorte	125
4.2.4.3	Distribución de carga en taladros buffer 1	126
4.2.4.4	Distribución de carga en taladros buffer 2	128
4.2.4.5	Configuración de retardos en Jksimblast	128
4.2.4.6	Simulación de la vibración teórica en Jksimblast	131
4.2.5	Distribución de carga y configuración de retardos en cimentaciones	132
4.2.5.1	Distribución de carga en taladros de precorte	132
4.2.5.2	Distribución de carga en taladros buffer y producción.	133
4.2.5.3	Configuración de retardos en Jksimblast	134
4.2.5.4	Simulación de la vibración teórica en Jksimblast	136
4.2.6	Distribución de carga y configuración de retardos en zanjas	136

4.2.6.1	Distribución de carga en taladros precorte y producción	136
4.2.6.2	Configuración de retardos en Jksimblast	138
4.2.6.3	Simulación de la vibración teórica en Jksimblast	141
4.2.7	Discusión de resultados	141
4.3	Control de proyección de rocas	143
4.3.1	Cálculo del taco adecuado	143
4.3.2	Recubrimiento de la zona de voladura	145
4.3.3	Discusión de resultados	146
4.4	Evaluación de resultados	147
4.4.1	Resultados fotográficos de la voladura de precorte en el muro "R"	147
4.4.1.1	Reporte de vibración – muro "R".	150
4.4.2	Resultados fotográficos de voladura en cimentaciones	151
4.4.2.1	Reporte de vibración – cimentaciones	152
4.4.3	Resultados fotográficos de voladura en zanjas	153
4.4.3.1	Reporte de vibración - zanjas	155
4.4.4	Evaluación de impacto ambiental y criterios de daño	155
4.4.4.1	Resultados del nivel de vibraciones	156
4.4.4.2	Resultados de la onda aérea de presión	157
CONCI	USIONES	159
RECON	MENDACIONES	161
REFER	ENCIAS BIBLIOGRÁFICAS	163
ANEXO	OS	165
ANEXO	A. Planos de obra civil emitidos por Bechtel	165
ANEXO	B. Levantamiento topográfico de taladros	168
ANEXC	C. Certificado de calibración del Sismógrafo	188

ÍNDICE DE FIGURAS

Figura N° 1 : Identificación de variables controlables y no controlables	27
Figura N° 2 : Esquema de una malla triangular equilátera	30
Figura N° 3 : Diseño de una malla típica para zanja con diámetro de 3"	31
Figura N° 4: Trazo de malla de zanjas (simple hilera, 2 bolillo y 3 bolillo)	32
Figura N° 5 : Cebado para columnas de carga	33
Figura N° 6 : Valores del factor de seguridad para el cálculo de taco.	35
Figura N° 7 : Secuencia de detonación de un sistema no eléctrico dual	36
Figura N° 8: Secuencia de detonación longitudinal (paralela al eje de zanja)	40
Figura N° 9: Secuencia de detonación transversal (perpendicular al eje de zanja)	40
Figura N° 10: Secuencia de detonación en cimentaciones tipo diamante	41
Figura N° 11: Ubicación de taladros amortiguados (buffers)	44
Figura N° 12 : Desempeño de la voladura con cámara de aire	45
Figura N° 13: Variación de la presión en el taladro por aumento de la cámara de aire	46
Figura N° 14: Tipos de onda	48
Figura N° 15: Tipos de dirección de flyrocks	56
Figura N° 16: Configuración de retardos en el software Jk Simblast	62
Figura N° 17: Simulación de detonación en el software JK Simblast	63
Figura N° 18: Resultado de la VPP Teórica en el software JK Simblast	63
Figura N° 19 : Ubicación del proyecto minero las Bambas	75
Figura N° 20: Ubicación de planta concentradora – las Bambas	75
Figura N° 21: Caracterización geológica de planta concentradora	76
Figura N° 22: Plano de distancias y ubicación de las áreas de voladura	83
Figura N° 23: Distribución de carga en taladros de precorte	101
Figura N° 24: Estado inicial del muro "R"	102
Figura N° 25: Plano de ubicación y dimensionamiento del muro "R"	103
Figura N° 26: Vista perfil del diseño de taladros en el muro "R"	106
Figura N° 27: Vista planta del diseño de taladros en el muro "R" y vistas en 3D	107
Figura N° 28: Plano de ubicación y dimensionamiento de la cimentación	109
Figura N° 29: Vista perfil de taladros tipo cimentaciones	113
Figura N° 30: Vista en Planta de taladros tipo cimentaciones	114
Figura N° 31: Plano de ubicación y dimensionamiento de la zanja	116
Figura N° 32: Vista de taladros en planta para zanjas	118

Figura N° 33: Plano vista perfil de taladros para zanjas	119
Figura N° 34: Distribución de carga en taladros precorte del muro "R"	125
Figura N° 35: Distribución de carga en taladros Buffer 1 del muro "R"	127
Figura N° 36: Distribución de carga en taladros Buffer 2 del muro "R"	128
Figura N° 37: Configuración de retardos en el muro "R".	129
Figura N° 38: Secuencia de detonación del muro "R"	130
Figura N° 39: Simulación de la vpp teórica evaluación de precorte	131
Figura N° 40: Simulación de la vpp teórica evaluación de precorte	131
Figura N° 41 : Distribución de carga en taladros precorte tipo cimentaciones	132
Figura N° 42: Distribución de carga en taladros de producción y buffer	133
Figura N° 43: Configuración de retardos en cimentaciones	134
Figura N° 44: Secuencia de detonación tipo diamante	135
Figura N° 45: Simulación de la VPP teórica en cimentaciones	136
Figura N° 46: Diseño de carga explosiva en taladros de precorte y producción	137
Figura N° 47: Configuración de retardos de la fila de precorte en la zanja	138
Figura N° 48: Configuración de retardos de los taladros de producción	139
Figura N° 49 : Secuencia de detonación alterna para zanjas	140
Figura N° 50: Simulación de la vpp teórica en zanjas	141
Figura N° 51: Zona de voladura del muro "R"	147
Figura N° 52: Área de voladura con recubrimiento	148
Figura N° 53: Escombros de voladura con una fragmentación excavable	148
Figura N° 54: Vista panorámica de la voladura en el muro "R"	149
Figura N° 55: Estabilidad del mro "R", tras la voladura	149
Figura N° 56: Visibilidad de las cañas producto de la voladura de precorte	150
Figura N° 57 : Reporte de vibraciones del muro "R" - fecha 09/02/2014	150
Figura N° 58: Zona de voladura recubierta	151
Figura N° 59: Pila de escombro de la voladura de cimentaciones	151
Figura N° 60: Taludes estables en el contorno de cimentaciones	152
Figura N° 61: Reporte de vibraciones voladura de cimentación - fecha 12/04/2014	152
Figura N° 62: Zona de voladura de zanjas recubierta	153
Figura N° 63: Pila de escombros tras la voladura.	153
Figura N° 64: Integridad de las estructuras cercanas tras la voladura	154
Figura N° 65: Estabilidad de taludes en el contorno de la zanja.	154
Figura N° 66: Reporte de vibraciones voladura de zanja - fecha 03/06/2014	155

TESIS UNA - PUNO

Figura N° 67: Análisis de criterio de daño	156
Figura N° 68: Análisis de los resultados de onda aérea de presión	158

ÍNDICE DE TABLAS

Tabla N° 1 : Valoración de la relación de rigidez	27
Tabla N° 2 : Matriz de tiempos de retardo	37
Tabla N° 3: Variabilidad de los factores "K" y "Alfa"	49
Tabla N° 4: Normatividad internacional en el manejo de voladuras	51
Tabla N° 5: Visión sinóptica de algunas normas internacionales	52
Tabla N° 6: Valores guía máximos para la velocidad de partícula DIN4150:1999	53
Tabla N° 7: Criterios típicos para la sobrepresión	59
Tabla N° 8: Base de datos de levantamiento topográfico de taladros	61
Tabla N° 9: Distribución de la energía en diferentes eventos	67
Tabla N° 10: Lista de explosivos y accesorios	68
Tabla N° 11: Tabla de resistencia de la roca	68
Tabla N° 12: Criterio general de excavabilidad en función a la Vp	69
Tabla N° 13: Operacionalización de variables	72
Tabla N° 14: Parámetros geomecánicos zona de remoliendas	79
Tabla N° 15: Parámetros geomecánicos celdas de flotación	80
Tabla N° 16: Resultados de la resistencia a la tracción	81
Tabla N° 17: Variabilidad de parámetros y total de voladuras ejecutadas	82
Tabla N° 18: Resumen de las propiedades geomecánicas	91
Tabla N° 19: Selección de retardos óptimos	95
Tabla N° 20 : Criterios de selección de retardos.	95
Tabla N° 21: Comparación de resultados diseño de malla en zanjas	120
Tabla N° 22: Valores de velocidad pico partícula seleccionados	121
Tabla N° 23: Cálculo de la carga máxima con diferentes distancias	123
Tabla N° 24: Comparación de resultados en base a la carga máxima	142
Tabla N° 25: Valores del taco con explosivo anfo	144
Tabla N° 26: Valores del taco con explosivo emulfan	145
Tabla N° 27: Comparación del factor de seguridad (SD)	146
Tabla N° 28: Análisis de los resultados de vibraciones	156
Tabla N° 29: Predicción de la onda aérea de presión	157
Tabla N° 30: Resultados de la onda aérea de presión y criterio de daño	158

ÍNDICE DE ACRÓNIMOS

VPP : Velocidad Pico Partícula

DIN : Deutsches Institut für Normung (Instituto Alemán de Normalización)

SD: Distancia Escalada

W : Carga operante

K : Factor de Amplitud

α : Factor de Atenuación.

ms : Milisegundos

MPa : Megapascales

Kbar : Kilobares

MWH: Empresa de firma estadounidense

Flyrock: Roca volante refiriéndose a proyección de rocas

Airblast: Onda aérea de presión

m/s : Metros por segundo

ms/m : Milisegundos por metro

Kg/m³: Kilogramos por metro cubico

dB : Decibeles

Buffer: Taladro de amortiguación

Vp : Velocidad de onda compresional

"R" : Iniciales de Regrind (remolienda)

RESUMEN

El estudio de investigación denominado "Diseño y evaluación de voladuras para obras civiles", se llevó a cabo en zonas cercanas a la infraestructura de planta concentradora del proyecto minero las Bambas, durante la etapa de construcción. Y fueron ejecutados por Pevoex Contratistas SAC. El problema yace en que la excavación del material rocoso no pudo realizarse por medios mecánicos, ya que la velocidad de propagación de onda compresional era superior a 2000 m/s y la excavación solo podía realizarse mediante voladuras. Considerando, la cercanía a las estructuras entre (15m a 70m), las especificaciones de planos de construcción civil como limitantes y con recursos disponibles de perforación y voladura. El diseño de voladura se convierte en todo un reto para el profesional de Ingeniería de Minas. El objetivo principal de esta investigación consiste en diseñar y evaluar voladuras para obras civiles de tipo cimentaciones, zanjas y una obra de precorte para la inclinación del muro "R". Por lo tanto, el diseño de malla es diferente para cada tipo de obra civil, el mismo que se debe ajustar a la geometría del plano. Como prioridad se controló el nivel de vibraciones mediante el modelo a campo lejano, donde se determinó que la carga máxima a 15m debe ser de 4 kg de explosivo, un exceso en la carga ocasionaría que la velocidad pico partícula sea mayor a 20 mm/s. este criterio de daño se obtuvo de la norma DIN 4150 edificaciones tipo industriales. Así mismo, necesariamente se tuvo que usar factores de carga mínimos entre (0.20-0.30 Kg/m³) y para el secuenciamiento de la detonación se configuraron los retardos mediante el sistema no eléctrico dual, haciendo que en lo posible no exista el traslape. Para el control de proyección de rocas se determinó el taco adecuado mediante el factor de seguridad donde el resultado debe estar entre (0.92 – 1.40), No obstante, el confinamiento y recubrimiento de voladura mitigaron por completo tal peligro. Con la aplicación de la voladura de precorte se obtuvo taludes estables y paredes uniformes. La simulación del diseño de voladura en el software Jksimblast genera un grado de confiabilidad. La evaluación se realizó mediante fotografías y reportes de vibraciones emitidos por un sismógrafo, donde los resultados de velocidad pico partícula fueron: voladura de cimentación 14.7 mm/s; zanja 16.9 mm/s y en el muro 23.1 mm/s. Así mismo, se evaluó el daño de la onda aérea de presión donde se concluye que los resultados fueron los esperados y aceptables.

Palabras Claves: Diseño, Plano de obra civil, Carga máxima, Vibraciones, Proyección de rocas.

ABSTRACT

The research study called "Design and evaluation of blasting for civil works. It was carried out in areas near the concentrator plant infrastructure of the las Bambas mining project. during the construction phase. And it was executed by Pevoex Contratistas SAC. The problem is that the excavation of the rocky material could not be done by mechanical means, since the velocity of compressional wave propagation is higher than 2000 m / s. and the excavation could only be done by blasting. Considering, the proximity to the structures between (15m to 70m), the specifications of civil construction plans as limiting and with available resources of drilling and blasting. The design of blasting becomes a challenge for the professional of Mining Engineering. The main objective of this investigation is to design and evaluate blasting for civil works of type foundations, ditches and a precut work for the inclination of the "R" wall. Thus, the pattern design is different for each type of civil works, which must be adjusted to the geometry of the plane. As a priority, the level of vibrations was controlled by the far-field model where it was determined that the maximum charge at 15m should be 4kg. of explosive, an excess load would cause the peak particle velocity to be greater than 20 mm/s. This criterion of damage was obtained from the DIN 4150 standard industrial buildings. Likewise, necessarily had to use minimum load factors between (0.20-0.30 Kg/m³) and for the detonation sequencing the delays were configured by means of the dual non-electric system, making the overlapping as far as possible. For the control of rock projection, the optimal block was determined by the safety factor where the result must be between (0.92 - 1.40). However, the confinement and blasting coating completely mitigated such a hazard. With the application of pre-cut blasting, stable slopes and uniform walls were obtained. The simulation of the blasting design in Jksimblast software generates a degree of reliability. The evaluation was carried out by means of photographs and reports of vibrations emitted by a seismograph, where the results of peak particle velocity were, blasting of foundation 14.7 mm/s; ditch 16.9 mm/s and in the wall 23.1 mm/s. Likewise, the damage of the air pressure wave was evaluated, and it is concluded that the results were as expected and acceptable.

Key words: Design, Civil works plan, Maximum charge, Vibrations, Flyrocks

CAPÍTULO I

INTRODUCCIÓN

La excavación de material rocoso mediante la aplicación de voladuras en proyectos de construcción civil siempre será una solución eficiente frente a los demás medios de excavación mecánicos. Tales como, (Tractores ripper, Martillos hidráulicos demoledores, etc). A diferencia de las voladuras primarias en mina donde se prioriza la fragmentación óptima de la roca con parámetros de diseño ya establecidos, el diseño de voladuras en obras civiles se transforma en un verdadero arte de voladura controlada, por su complejidad cuando se realizan en zonas cercanas a poblaciones o construcciones, la geometría del plano de obra civil y los recursos disponibles puestos en el proyecto se convierten en una limitante de diseño. Dicho esto, el valor de este tipo de voladura esta en obtener paredes uniformes tras la voladura con un adecuado control en las vibraciones y proyección de rocas apartando como secundario a la fragmentación del macizo rocoso. Para el presente trabajo de investigación se diseñó voladuras en la cercanía de la infraestructura de planta concentradora del proyecto minero las Bambas, donde se tomará como muestra a 3 tipos de obra civil entre ellos una zanja situada a 15m de la estructura de remoliendas, otro de tipo cimentación a 65m de la estructura de remoliendas y una voladura de precorte para la inclinación de un muro situada a 30m de las estructuras de celdas de flotación y construcción principal de

planta concentradora. En donde cada uno tendrá un diseño diferente, pero la metodología de diseño mantendrá cierta similitud para cada caso.

Mediante el uso de modelos de vibraciones, formulaciones matemáticas, herramientas tecnológicas como softwares para la predicción de voladuras y el recurrir a normas técnicas internaciones para el control de vibraciones, control de la onda aérea de presión y criterio de daño para proteger tales estructuras, es factible realizar un diseño adecuado. Sin embargo, una estimación errónea o no controlada podría ocasionar consecuencias de daño severo en las estructuras y/o personal, por lo tanto, el diseño de voladura se debe hacer con bastante criterio y sólidos conocimientos de la materia.

El aporte de este trabajo de investigación está en desarrollar una metodología de diseño con soporte científico y tecnológico en el proceso de perforación y voladura orientado a obras civiles, el cual permita proteger las estructuras cercanas de los impactos negativos que genera la voladura principalmente la vibración y la proyección de rocas.

1.1 Descripción de la realidad problemática

Durante la etapa de construcción del proyecto minero las Bambas, Se realizaron diferentes trabajos de carácter civil, tales como la construcción de campamentos, planta concentradora, faja transportadora, chancadora primaria, etc. La planta concentradora con capacidad de 140,000 TM/día tenía demoras de instalación en sus diferentes infraestructuras, tales como, el sistema de tuberías, canaletas de conducción de relaves, bancoductos, plataformas para espesadores, moliendas, celdas de flotación, cortes en muro, etc. Todos estos trabajos de construcción denominados "obras civiles". La causa de tal demora radica en que la excavación del macizo rocoso no es aplicable por equipos de movimiento de tierras (Tractores ripper, Martillos hidráulicos demoledores, etc). Frente a este problema, se debe recurrir a técnicas de voladura de obra civil para facilitar la excavación del material rocoso. Entonces el proyecto de voladura a realizarse será un caso en especial por la cercanía de infraestructura e instalaciones a la planta concentradora entre (15m a 7m) de la zona de voladura, los mismos que se encuentran construidos debidamente calibrados, así como, personal y equipos en plena faena laboral, instalaciones eléctricas y oficinas. Debido a estas restricciones se debe realizar un diseño de voladura que asegure lo siguiente: Control en el nivel de vibraciones, control de la proyección de rocas y la fragmentación de roca de tamaño regular (excavable).

La ejecución del proyecto de voladura de obra civil será la solución para la excavación de la zona rocosa donde se instalará la infraestructura necesaria (sistema de tuberías, cimentaciones, etc.) Para la construcción de la planta concentradora. Con ello podemos mencionar que tales instalaciones dependerán de la ejecución de trabajos de voladuras y para su realización se debe cumplir con las dimensiones geométricas del plano de construcción. Si la vibración resulta con niveles excesivos muy fuera de los límites permisibles ocasionaría la descalibración y daño de las estructuras instaladas en planta concentradora. Así mismo, la proyección de roca excesiva ocasionaría un daño a las personas, equipos y oficinas. Entonces si la voladura no cumple con los objetivos mencionados influirá en pérdidas económicas de gran magnitud (la reconstrucción de la estructura afectada el cual representaría aproximadamente un 10% del costo de construcción), y generaría tiempos de stand by en horas hombre y horas equipo por un día de paralización, el cual representaría el 100% de la cantidad del personal y el 100% de equipos de perforación de la empresa contratista que lo ejecuta y un 30% de personal y equipos de movimiento de tierras de compañía. Si la fragmentación resulta de tamaño grueso habrá sobre esfuerzo en los equipos de movimiento de tierras y un sobre costo de voladura secundaria. Entonces, el diseño y evaluación de voladuras de obra civil estará sujeto a los objetivos mencionados. Para lo cual, se recurrirá a la combinación de los tipos de voladura controlada y de producción ya conocidas y por tratarse de varios tipos de obra civil entre (zanjas, cimentaciones y el precorte en el muro) se desarrollará cálculos para determinar los parámetros iniciales de la malla de perforación, el cálculo de la carga máxima por retardo, la distribución de carga explosiva para cada tipo de obra civil, como también, la configuración de retardos mediante el sistema no eléctrico dual. Así mismo, para prevenir el nivel de vibraciones excesivos simularemos cada evento de voladura en el software Jksimblast donde se obtendrá la VPP teórica (Velocidad Pico Partícula), carga operante máxima y secuencia de retardos y durante la ejecución de voladuras se evaluará haciendo el uso de un sismógrafo quien determinará la VPP real de la vibración.

La voladura de obra civil en si es una combinación de los tipos de voladura controlada y producción con la diferencia de que para su ejecución se necesita de un diseño en particular el que estrictamente de debe cumplir. Alguien en un momento dijo, "las voladuras en obras civiles son voladuras de arte" esto refiriéndose a que en una operación minera las personas cercanas a la voladura están familiarizadas con el proceso, sin embargo, en las voladuras de carácter civil cada una resulta muy en particular.

1.2 Formulación del problema

1.2.1 Problema general

¿Cómo es el diseño y evaluación de voladuras de obra civil tipo zanjas, cimentaciones y muro, cercanas a la infraestructura de planta concentradora en el proyecto minero las Bambas?

1.2.2 Problemas específicos

- a) ¿Cómo se diseña la malla de voladura en obras de tipo zanjas, cimentaciones y muro de acuerdo a un plano de obra civil?
- b) ¿Cómo se calcula la cantidad máxima de carga explosiva y como se configura los retardos, para el control de la vibración en infraestructura cercana?
- c) ¿Cómo se minimiza la proyección de rocas para el cuidado de la infraestructura cercana de planta concentradora en el proyecto minero las Bambas?

1.3 Objetivos de la investigación

1.3.1 Objetivo general

Diseñar y evaluar voladuras para obras civiles de tipo zanjas, cimentaciones y muro, en cercanía de la infraestructura de planta concentradora en el proyecto minero las Bambas.

1.3.2 Objetivos específicos

- a) Diseñar la malla de voladura de obra civil de tipo zanja. cimentación y muro de acuerdo a un plano de construcción.
- b) Calcular la cantidad máxima de carga explosiva y configurar los retardos para controlar el nivel de vibraciones para no dañar la infraestructura cercana.
- c) Minimizar la proyección de rocas producto de la voladura para el cuidado de la infraestructura cercana

1.4 Justificación de la investigación

La aplicación de voladuras en obras civiles es muy poco investigada y esto hace que sea una voladura muy en particular para cada evento que se realiza, en tal sentido, el presente proyecto de investigación se centra en diseñar y evaluar voladuras de obras civiles en las instalaciones e infraestructura cercana a la construcción de planta concentradora del proyecto minero las Bambas. Con la única finalidad de fragmentar el macizo rocoso de acuerdo con las dimensiones geométricas del plano de obra civil, Así mismo, proteger tales instalaciones de los impactos negativos que una voladura genera principalmente la vibración y la proyección de rocas.

El plazo de ejecución para las voladuras fue de 03 meses con un promedio de 5,000 m³ por disparo y un total de 93,455 m³ insitu de material rocoso. Con la ejecución de voladuras se logró excavar el macizo rocoso de las zanjas para la instalación del sistema de tuberías, Así mismo, la excavación de plataformas para la cimentación e instalación de infraestructura y también la inclinación del muro "R" para una mejor estabilidad. Con ello, se solucionó la demora del avance en la construcción de planta concentradora a consecuencia de la excavación de roca por medios mecánicos. Entonces, para el diseño de estos tipos de voladura se debe contar con un vasto conocimiento y experiencia necesaria para obtener resultados favorables, con ello, también se romperá el paradigma de que una voladura podría resultar muy peligrosa teniendo instalaciones cercanas en su entorno.

CAPÍTULO II

REVISIÓN DE LA LITERATURA

2.1 Antecedentes de la investigación

Fernández (2012). *Voladura para la instalación de ductos enterrados* (tesis de pregrado). Universidad Nacional de Ingeniería, Lima, Perú. En una de sus conclusiones más importantes refiere, que:

Refiriéndose a voladuras de obra civil, de tipo zanjas cercanas a infraestructuras, indica que, para el diseño de la malla de voladura (burden y espaciamiento). Esta se debe adecuar a las dimensiones geométricas cuales son 2.1m de profundidad por 1.8m de ancho en superficie y 1.4m de ancho en el fondo de la zanja. El cual con un diámetro de perforación de 2.5" el burden resulta en 1.2m y el espaciamiento en 1.8m. Este último, calculado por considerarse una malla triangular. Y que, además el factor de rigidez entre los valores de 1.5 a 2.5 ayudan dinámicamente para redimensionar la malla de voladura en función de la altura de corte. Concluye, finalmente que los resultados fueron los deseados y concerniente al factor de carga parámetro de gran importancia es de 200 gramos por metro cubico ó (0.20 kg/m³), cabe recalcar que hubo zonas en las que el factor de carga se incrementó debido al tipo de roca, pero en términos generales ese fue el factor de carga que se utilizó en la mayoría del proyecto. Asimismo, concluye también que los accesorios con los que se obtuvo los mejores resultados fue el fanel dual 25/600 ms y los conectores CTD, dado que les permitió

tanto en zanja como en pista controlar la salida en secuencias taladro por taladro y reducir la contaminación del espectro sonoro. En lo que refiere al control de proyecciones se probó con mucho éxito el geotextil y la arena humectada, evitando así posibles impactos a infraestructura cercana.

Delgado (2014). Estrategias en el diseño de perforación y voladura para estructuras aledañas controlando vibraciones y rocas al aire en minas a tajo abierto (tesis de pregrado). Universidad Nacional de San Agustín, Arequipa, Perú. Concluye que:

El cálculo de la carga máxima se realiza mediante un modelo de predicción de vibraciones a campo lejano propio de la zona de mina, teniendo como base un estudio previo de monitoreo de vibraciones, y aplicando el modelo a campo lejano de *Devine*, Así mismo, para la configuración de retardos hace uso del sistema de iniciación electrónica, indicando que con este último se elimina la dispersión de los retardos. Aplicando tal modelo se obtiene que a 61m de la zona de voladura no se debe exceder en 15 kg de explosivo teniendo como límite máximo permisible 50 mm/s de VPP. Así mismo, en la aplicación de la metodología caso I, la proyección de rocas se minimiza, mediante el criterio del cráter de *Frank Chiapetta*, en donde la SD resulta 1.4 y la altura del taco para explosivos Flexigel60 y Anfo resulta en 6m y 5.5m respectivamente diseñados en un taladro de 270 mm. Concluye, que aplicando tal metodología le permitió controlar factores de eyección, dar solución y efectuar disparos sin daños hacia las infraestructuras cercanas.

Inocente (2011). Planeamiento de operaciones en perforación y voladura superficial (tesis de pregrado). Pontificia Universidad Católica del Perú, Lima, Perú. En una de sus conclusiones menciona que:

Cada proyecto sea minero o civil que involucre dentro de su estructura trabajos de perforación y voladura tienen una ejecución particular. Y que además las vibraciones son los problemas más destructivos producto de las voladuras, pero es posible controlarlas en función a la carga operante refiriéndose al cálculo de la carga máxima por retardo.

Ponce (2012). Perforación y voladura controlada, fundamentos y aplicaciones en minería y obras civiles (curso taller). Instituto de capacitación minera, Lima, Perú. En una de sus conclusiones señala que: Para controlar la proyección de rocas volantes se pueden optar de la siguiente manera: a) Uso de técnicas de voladura controlada. - El control de las proyecciones de rocas comienza con el correcto diseño de las voladuras.

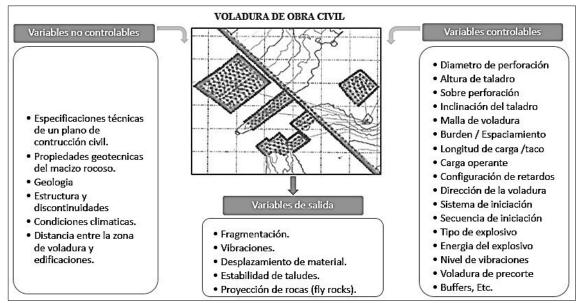
- b) Uso de Protecciones. Ocasiona un costo adicional por el material protector a usar. En el caso de voladuras de pequeña magnitud y muy cercanas a estructuras y/o monumentos a preservar, es de uso común: la arena, mallas metálicas de contención, trozos de neumáticos o fajas entramadas; pero estos no son aplicables para voladuras de grandes dimensiones.
- c) El uso combinado de la técnica de voladura controlada y protecciones es el método más efectivo y seguro.

Benjumea (2003). *Vibraciones causadas por actividad humana* (tesis de postgrado). Universidad del Valle, Cali, Colombia. Concluye que:

Refiriéndose a la evaluación de vibraciones de voladuras sobre estructuras concluye, que el uso de la normatividad internacional (basadas en muchas observaciones), es el estándar de trabajo para la evaluación de los efectos de las vibraciones de voladura. Los resultados obtenidos debían tener un punto de comparación, el cual no existe en su País. Por tanto, se hizo necesario adquirir algunas normas internacionales entre ellas la alemana DIN las cuales son ampliamente descritas en ese proyecto de investigación.

Ravi Kummar (2008). *Diseño de voladura extendida para un ajustado control de zanjas* en roca dura adyacente a oleoductos activos, Estados Unidos. Concluye que:

A diferencia de otros trabajos de voladura, era crítico que el diseño de voladura este equilibrado para alcanzar el avance requerido por la voladura, además de la fragmentación aceptable, las vibraciones del suelo, la proyección de rocas y la dirección de la voladura. Así mismo, mediante el uso de detonadores de retardo en milisegundos la utilización de la energía de explosivos en la roca se ha optimizado. También han ayudado a reducir la vibración en el suelo y reducir al mínimo la sobre rotura y alcanzar un mejor corte de zanja terminado en una roca sumamente fracturada y no homogénea.


2.2 Bases teóricas

2.2.1 Identificación de variables de diseño

Para el diseño de voladuras en obras civiles intervienen una gran cantidad de variables. Los mismos que se verán interpolados entre sí y determinarán el resultado de dicho proceso, Para lo cual, se debe distinguir cuales de estas variables podrían ser controlables para así mediante cálculos establecer parámetros de perforación y voladura. Por otro lado, las variables no controlables no podrían ser manipuladas por su naturaleza misma. A continuación, en la figura Nº 1 se muestra una descripción de tales variables.

Figura N° 1 : Identificación de variables controlables y no controlables.

Fuente: Elaboración propia

2.2.2 Relación de rigidez

Esta formulación fue planteada por Konya (1998) donde relaciona la altura de corte con el burden, del resultado que se obtenga y mediante una tabla de valoración (tabla N° 1), se determina el potencial de los efectos indeseables en una voladura cuales son la fragmentación deficiente, rocas volantes y vibraciones siendo 3 el valor óptimo.

Donde:

$$K = \frac{H}{B}$$

K : Relación de rigidez

H : Altura de corte

B : Burden

Tabla N° 1: Valoración de la relación de rigidez

RELACIÓN DE RIGIDEZ (K)	1	2	3	4
Fragmentación Sobre presión de	Pobre	Regular	Bueno	Excelente
aire	Severa	Regular	Bueno	Excelente
Rocas en vuelo Vibración de	Severa	Regular	Bueno	Excelente
terreno	Severa	Regular	Bueno	Excelente

Comentarios Rompimiento trasero severo y problemas de piso, No dispare, vuelva a diseñar. Rediseñe si es posible de fragmentación	No hay mayores beneficios con el incremento de la relación de rigidez arriba de
---	---

Fuente: Konya (1998)

Sin embargo, el mismo autor también da a conocer que, cuando se tenga bancos bajos refiriéndose a alturas de corte bajos y en el diseño de voladura de zanjas la relación de rigidez (H/B) debe ser mayor que 1.

2.2.3 Diámetro de perforación

Según, EXSA S.A. (2009) señala que en bancos de canteras y en obras civiles de superficie los diámetros habituales varían entre 50 y 125 mm (2" a 5") mientras que en minería por tajos abiertos varían entre 150 a 310 mm (6" a 12") y llegan hasta 451 mm (15").

Para determinar el diámetro óptimo en la práctica, se consideran varios aspectos:

- La disponibilidad y aplicabilidad del equipo de perforación en el trabajo proyectado.
- La altura de banco proyectada y la amplitud o envergadura de las voladuras a realizar.
- Control de la exactitud de la perforación, y su efecto en la fragmentación, seguridad e impacto ambiental.
- Tamaño de la perforadora y la accesibilidad al sitio.

Por otro lado, la gran longitud de tramo y las condiciones cambiantes de la geometría en el diseño de las obras civiles imponen el diseño de cada disparo como si fuera un caso en particular. Una manera para determinar el diámetro de perforación es aplicando la siguiente formulación.

Donde:
$$\emptyset = \frac{H}{60}$$

Ø: Diámetro de taladro (m)

H : Altura de corte promedio (m)

2.2.4 Altura de corte

La altura de corte o altura de excavación viene definida en el plano de construcción civil y está determinada por el tipo de trabajo a excavar el mismo que varía con cada tipo de diseño,

entre ellos tenemos (zanjas, plataformas para cimentaciones, cortes en muros, etc.) Entonces esta variable será importante para establecer la longitud del taladro, estimar el burden para el proceso de perforación, así como también para determinar la distribución de carga explosiva.

2.2.5 Diseño integral de voladura

2.2.5.1 Diseño de malla de voladura para cimentaciones

Las excavaciones de tipo cimentaciones se realizan para la nivelación de plataformas, donde se vierten una base de concreto para luego construir edificaciones o instalar algún tipo de estructura. Para nuestro caso, las estructuras de las celdas de flotación, salas eléctricas, tanques, etc. Generalmente para el diseño de este tipo de voladuras se presenta los siguientes problemas. Según, López (2003):

- No se dispone de una cara libre, lo cual dificulta la fragmentación y esponjamiento del escombro.
- La rotura de la roca debe adaptarse al perfil establecido en el diseño de ingeniería civil sin producir sobre excavaciones.
- Existen limitaciones para las vibraciones y proyecciones de roca cuando las voladuras se realizan en medios urbanos.

Para el diseño de malla en taladros de producción se podría utilizar mallas cuadradas o rectangulares, sin embargo, una malla triangular equilátera o alterna mejora la fragmentación, básicamente por la interacción del radio de detonación en cada taladro. (Ver figura N° 2). Teniendo así una relación de S/B = 1.15.

Malla triangular equilatera

onda: de detonation

Malla cuadrada Malla rectangular

Espacio no fragmentado

Figura N° 2 : Esquema de una malla triangular equilátera

Fuente: Internet

2.2.5.2 Cálculo del burden y espaciamiento para cimentaciones

Andersen (1952) nos muestra una ecuación para el cálculo del burden teniendo en cuenta para este caso la variabilidad de la altura de corte para cada proyecto de voladura.

$$B = \sqrt{D \times L}$$

Donde:

B : Burden (pies)

D : Diámetro del taladro (pulgadas)

L : Longitud del taladro (pies)

El cálculo del espaciamiento (S) se realiza mediante la relación de la malla triangular equilátera S/B = 1.15, despejando se tiene:

$$S = 1.15B$$

Donde:

B : Burden (metros)

S : Espaciamiento (metros)

2.2.5.3 Diseño de malla de voladura para zanjas

EXSA S.A. (2009) las zanjas son aquellas obras de carácter civil con un diseño geométrico lineal, en donde, su ancho comprende de 0.6m a 3m y una profundidad que oscila entre 0.5m y 5m. Generalmente se localizan en superficie cerca a zonas urbanas y su aplicación depende de muchas necesidades, como, por ejemplo, para la instalación de tuberías, construcción de drenajes, servicios de alcantarillado, conducción de aguas, etc. La excavación de zanjas mediante el uso de explosivos presenta ciertas características que obligan a realizar un diseño de voladura acorde a las especificaciones técnicas de un plano de diseño civil, condiciones de la roca y para nuestro caso por situarse en zonas aledañas a la infraestructura de planta concentradora. Se debe tomar medidas especiales en lo referente a control de vibraciones y proyecciones de roca.

2.2.5.4 Cálculo del burden y espaciamiento para zanjas

La estimación del burden y espaciamiento dependen mucho del diámetro de perforación y la geometría de la zanja (ancho) con dimensiones ya establecidas.

International Society of Explosives Engineers (ISEE, 2008) nos muestra un diseño de malla típico, para una zanja con 3" de diámetro de perforación que produce buena excavación, el burden varia de 1 a 1.5m, los taladros se ubican en el centro de cada burden y son retardados para una iniciación secuencial. (Ver figura N° 3)

etc. 300 250 200 150 100 50 325 275 225 175 125 75 25

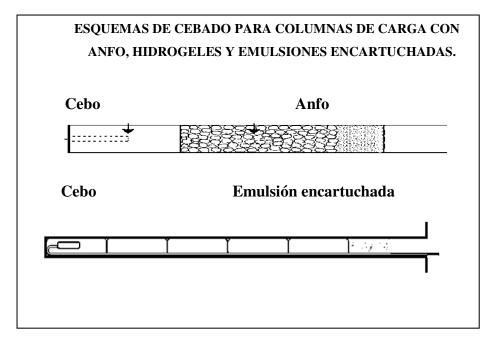
Figura N° 3 : Diseño de una malla típica para zanja con diámetro de 3"

Fuente: Isee (2008)

Cuando la excavación de zanja se encuentra en un medio urbano. Al margen de obtener una fragmentación excavable con el nivel piso deseado y taludes de zanja estables. El diseño de malla debe considerar minimizar el nivel de vibraciones.

2.2.5.5 Trazo de malla para zanjas.

Según, EXSA S.A (2009) el ancho de la zanja determina la distribución de los taladros y los que mayormente se emplean son: de simple hilera, de doble hilera alterna (dos bolillo), de triple hilera alterna.


Figura N° 4: Trazo de malla de zanjas (simple hilera, 2 bolillo y 3 bolillo)

Fuente: Exsa (2009)

2.2.5.6 Iniciación y cebado de cargas

En principio, el cebo debe tener la suficiente energía como para garantizar el completo inicio de la carga a su mayor régimen y poder mantenerlo así en todo el taladro. EXSA S.A (2009), de conocimiento general es que a mayor potencia del cebo se obtiene mayor rendimiento de la voladura. Se denominan cebos o primas a los conjuntos formados por un cartucho de dinamita, de emulsión o de hidrogel sensible al fulminante, al que se le ha insertado un fulminante, un detonador eléctrico, o un extremo de cordón detonante y que se utilizan para activar e iniciar la detonación de la carga explosiva principal en un taladro de voladura. Los taladros de tamaño medio se emplean mayormente para voladura de producción en minas subterráneas, en canteras y obras civiles perforándolos con máquinas grandes tipo jumbo y con track drills. Es importante que la velocidad de detonación del cebo siempre sea mayor que el Anfo (que va de 1 500 a 3 200 m/s máximo) por lo que se recomienda emplear cebos de alto explosivo (que van de 3 500 a 7 000 m/s) cuanto más alto, mejor. Es recomendable también sellar los taladros cargados con Anfo con taco inerte para fomentar mayor número de puntos calientes.

Figura N° 5 : Cebado para columnas de carga

Fuente: Exsa (2009)

2.2.5.7 Cálculo del factor de carga

Es la cantidad de explosivo necesaria para fragmentar un metro cubico de roca y se expresa en (Kg/m³), en términos generales se expresaría de la siguiente manera:

Factor de carga =
$$\frac{\text{Total de explosivo utilizado, en Kg}}{\text{Total de roca fragmentada, en } m^3}$$

De acuerdo con la experiencia del área de perforación y voladura de la empresa Pevoex para la estimación del factor de carga se usaban los siguientes valores: Para voladuras controladas es deseable aplicar factores de carga menores que oscilen entre (0.20 a 0.30 kg/m³). con este valor se controlará el daño a la cara de la pared en obras civiles, se disminuirá el nivel de vibraciones en voladuras cercanas a estructuras y obviamente la fragmentación de roca resultará de tamaño regular dependiendo de la calidad del macizo rocoso. La cantidad de explosivo utilizado deberá ser muy próximo al mínimo necesario para desprender la roca. Menos carga significa tener una voladura deficiente y, por el contrario, un exceso de carga significa mayor gasto y mayores riesgos de accidentes.

2.2.5.8 Cálculo de la densidad de carga lineal

EXSA S.A (2009) es la relación entre la masa del explosivo dentro del taladro y la longitud de la columna de carga, y está definida por la siguiente fórmula:

$$Dc = 0.507 \times \rho e \times O^2$$

Donde:

Dc : Densidad de carga, en kg/ml.

0,507 : Factor.

Ø : Diámetro del taladro, en pulg.

ρe : Densidad del explosivo a usar.

2.2.5.9 Cálculo de taco adecuado

Enaex (2002) básicamente la función del taco es la de retener a los gases generados durante la detonación, sólo durante fracciones de segundo, suficientes para evitar que estos gases fuguen como un soplo por la boca del taladro y más bien trabajen en la fragmentación y desplazamiento de la roca en toda la longitud de la columna de carga explosiva. Si el taco es insuficiente, además de la fuga parcial de gases se producirá proyección de rocas, craterización y fuerte ruido por onda aérea. Si el taco es excesivo, la energía se concentrará en fragmentos al fondo del taladro, dejando gran cantidad de bloques o bolones en la parte superior, especialmente si el fisuramiento natural de la roca es muy espaciado, resultando una fragmentación irregular y poco esponjada y adicionalmente se generará fuerte vibración. Normalmente como relleno se emplean los detritos de la perforación que rodean al taladro, arcillas o piedra chancada fina y angulosa. En la práctica su longitud usual es de 0.7 veces el burden Sin embargo, de acuerdo a Alan Bauer y Frank Chiapetta basados en resultados obtenidos de pruebas de cráter y/o filmaciones con cámara de alta velocidad, la primera forma para fijar el largo de taco adecuado (T), para minimizar tanto la generación como alcance de los "flyrock", es utilizar el siguiente procedimiento que consiste en establecer el largo de taco adecuado en función de la distancia (D) medida desde el collar del taladro en superficie hasta el centro de una carga de largo igual a diez veces el diámetro de taladro que parte del extremo superior de la columna explosiva, (Lw) y, cuyo valor en definitiva se establece multiplicando la denominada "Scaled Depth of Burial, SD", por la raíz cúbica de la carga explosiva (W)^{1/3} contenida en el largo igual a 10 veces el diámetro del taladro. En concreto, el largo de taco (T) será:

$$T = D - \frac{L_w}{2}$$

Y el factor de seguridad seria:

$$SD = \frac{D}{W^{1/3}}$$

En la figura N° 6, que viene a continuación, muestra claramente esta modalidad de cálculo indicando en particular, que valores de la "Scaled Depth of Burial, SD" deben ser considerados cuando se desea mantener los "flyrock" bajo control. Valores bajos generaran excesivo "flyrock" mientras tanto valores medios controlaran la proyección de rocas como también se logrará una buena fragmentación y esponjamiento del material.

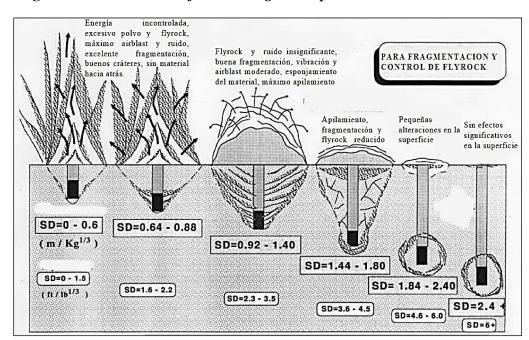


Figura N° 6 : Valores del factor de seguridad para el cálculo de taco.

Fuente: Enaex (2002)

2.2.5.10 Sistema de iniciación no eléctrico dual

La elección de este sistema de iniciación se debe a la secuencia pausada de detonación entre taladros, controlando así la cantidad de explosivo que detona por un tiempo de retardo, lo que permitiría controlar el nivel de vibraciones, Sin embargo, se debe considerar el grado de dispersión.

ISEE (2008) está formado por un tubo no eléctrico de largo variable, que tiene en un extremo un detonador y en el otro un conector de superficie. Este sistema utiliza un fenómeno de explosión de polvo en un tubo de plástico casi vacío para transmitir la señal de iniciación. La manguera nonel viene recubierto por dentro con una capa delgada de un material reactivo. Este material reactivo, está sujeto a la pared interior del tubo mediante una

carga estática, cuando se envía la suficiente descarga al tubo, los componentes reactivos se desprenden de la pared y se produce una ignición. Esta reacción, continúa generando una onda de choque que viaja dentro del tubo a una velocidad aproximada de (1830-2130 m/s). Cuando esta reacción alcanza al detonador acoplado, esta activa el funcionamiento de los componentes de retardo incorporados en el detonador, resultando finalmente en el encendido de la carga principal del taladro. La secuencia de taladro a taladro, y fila a fila, se puede introducir utilizando las diferentes combinaciones de unidades de superficie y unidades dentro del taladro existentes en el mercado (ver figura .N° 7)

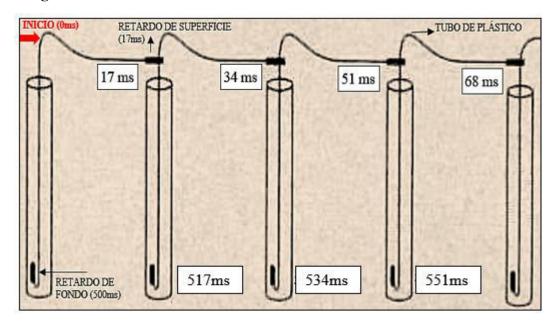


Figura N° 7 : Secuencia de detonación de un sistema no eléctrico dual

Fuente: ISEE (2008)

Ventajas del sistema: De acuerdo con, Enaex (2002) se tiene las siguientes ventajas:

- El sistema no se inicia por golpes
- El tubo puede sufrir estiramiento de hasta 5 veces su longitud, sin perder su capacidad de iniciación.
- No sufre destrucción después de haber sido iniciado.
- Puede sufrir nudos y quiebres bruscos, no perdiendo su característica de iniciación.
- Aumenta la flexibilidad de diseño, permitiendo una amplia elección de intervalos de retardo para lograr resultados específicos de voladura.
- Se conectan en forma sencilla y rápida, sin requerir de accesorios especiales
- La señal propagada por el interior del tubo es silenciosa.

2.2.5.11 Configuración de retardos

McKenzie (1994) la selección del intervalo de retardo es una de las tareas más difíciles en el diseño de voladura. El retardo tiene la habilidad de influenciar casi cada aspecto de la voladura, incluyendo la fragmentación, estabilidad, excavabilidad, impacto ambiental y sobre rotura. La detonación de taladros individuales o grupos de taladros se retardan de otros taladros por las siguientes razones:

- Para mejorar la fragmentación de la pila.
- Para proporcionar mayor control sobre el desplazamiento de la pila.
- Para reducir el grado de sobre rotura y daño.
- Para reducir los niveles de vibración del suelo y la sobre presión.

Ha reportado varias veces que el retardo óptimo se relaciona al burden de los hoyos. Valores mostrados en la literatura varían de 3 a 15 ms/m de burden, con algunas referencias a valores tan altos como 26 ms/m. Por la variabilidad de estos datos, la regla general no debe tomarse en cuenta. De acuerdo con la experiencia de asistencia técnica de Famesa Explosivos, el intervalo óptimo lo decidirá el tipo de roca, condiciones de terreno, eficiencias de la voladura y los requerimientos del operador, para esto mediante estudios y resultados en terreno se ha determinado la siguiente Tabla N° 2, para la configuración de los tiempos de retardo.

Tabla N° 2 : Matriz de Tiempos de retardo

MATRIZ DE TIEMPOS DE RETARDOS (APLICACIÓN TAJO ABIERTO)		Retardo entre filas	PERIODO	Retardo entre taladros		
		MS/fila	PERIODO	Min (MS/tal)	Max (MS/tal)	
	Masiva	45	MS min	15	23	
	Iviasiva	210	MS máx.	70	105	
Tipo de	Muchas Fracturas	17	MS min	6	9	
Roca	Muchas Fracturas	65	MS máx.	22	33	
	F: 1/1 '1	17	MS min	6	9	
	Fisuras débiles	45	MS máx.	15	23	
Condiciones	I lama da A aya	17	MS min	6	9	
de Agua	Lleno de Agua	50	MS máx.	17	25	
Evologizas	Dansidad N1 2 alaa	17	MS min	6	9	
Explosivos	Densidad >1.3g/cc	65	MS máx.	22	33	
	Commonto	17	MS min	6	9	
Perfil de	Compacto	30	MS máx.	10	15	
Material	Suelto	30	MS min	10	15	
Detonado		80	MS máx.	27	40	
	Desparramado	80	MS min	27	40	

		210	MS máx.	70	105
	Fragmentación	30	MS min	10	15
	Promedio	70	MS máx.	23	35
	Buena	45	MS min	15	23
	Fragmentación	120	MS máx.	40	60
Eficiencias	Sobrerotura hasta	65	MS min	22	33
de Voladura	el fondo	210	MS máx.	70	105
, 0144414	Control de	45	MS min	15	23
	Flyrock	150	MS máx.	50	75
	Vibraciones	65	MS min	22	33
	Mínimas	220	MS máx.	73	110

Fuente: Asistencia técnica Famesa

2.2.5.12 Dispersión en los tiempos de retardo

McKenzie (1994) la naturaleza de los compuestos pirotécnicos es tal que los elementos de retardo no reaccionan a una velocidad de reacción constante, independiente del grado de control de calidad sobre las condiciones de fabricación, pero más bien dentro de tolerancias especificadas. Este efecto de dispersión se puede atribuir a las variaciones en las cinéticas químicas de los compuestos de retardo y del volumen absoluto del producto en el retardo mismo.

ISEE (2008) indica que la importancia de los intervalos de retardo de 8ms, dentro de las diferentes regulaciones, criterios y especificaciones de proyectos se ha vuelto una práctica común considerar como peso de carga máxima por retardo aquel que detone dentro de cualquier intervalo de tiempo de 8ms. Esta práctica data, aparentemente, de comienzos de los años 60 según un informe proporcionado por el buro de minería de los estados unidos referente a pruebas con intervalos de retardo de 9, 17, y 34ms. Tales pruebas mostraron su eficacia en la reducción de la vibración, pero ninguna prueba se realizó en ese momento con retardos de intervalos más cortos. Algunos organismos reguladores establecieron posteriormente que todas las cargas dentro de cualquier intervalo de 8ms se consideren como un retardo simple.

Otros organismos establecieron que todos los retardos que se vayan a emplear deben tener un intervalo de al menos 9ms, o más. Pruebas posteriores realizadas por el mismo grupo de investigadores den buro de minería descubrieron que los retardos de 5ms también son efectivos. Estos investigadores llegaron a la siguiente conclusión" los niveles de vibraciones resultantes de los disparos que emplearon conectores de retardo de 5ms no mostraron ser demasiado diferentes de los niveles de vibración causados por disparos con

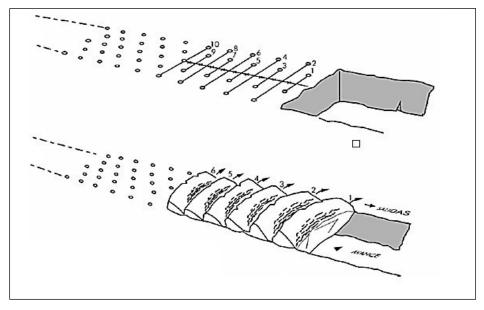
retardos de periodos más largos. Por consiguiente, se incluyeron en el análisis de datos "Devine y otros (1963). Es conveniente contar con un método estandarizado de reporte de datos. A menudo son convenientes los intervalos de retardo de periodo largo con el objeto de mejorar la fragmentación; no obstante, el autor encontró necesario emplear intervalos de 5ms en ciertas circunstancias (por ejemplo, para prevenir cortes en la columna), y no encontró dificultades con el control de la vibración incluso en operaciones de voladura a gran escala (oriard y emmert 1980) siempre que exista alguna duda se aconseja comenzar con una voladura de prueba.

2.2.5.13 Secuencia de detonación de voladura en obras civiles

Enaex (2002) señala que la secuencia de iniciación determina el orden en que los taladros detonan en una malla de voladura. Comúnmente los términos usados para describir la secuencia de iniciación son lineal, en "v", echelon, etc. Pero por tratarse de voladuras en obras civiles se usarán términos como longitudinal, transversal o diamante esto dependerá del tipo de proyecto a realizar.

Los factores que influyen en la selección de la secuencia de iniciación son:

- El número de caras libres, dirección preferencial de desplazamiento de la roca quebrada.
- La orientación de los conjuntos de diaclasas principales, y
- La ubicación de las estructuras sensibles a medio ambiente.


A continuación, se muestran en las figuras N° 8 y N° 9, donde se puede apreciar la secuencia de detonación longitudinal y transversal de una zanja.

Salidas

Figura N° 8: Secuencia de detonación longitudinal (paralela al eje de zanja)

Fuente: Exsa (2009)

Figura N° 9: Secuencia de detonación transversal (perpendicular al eje de zanja)

Fuente: Exsa (2009)

Para la secuencia de detonación en cimentaciones, se debe considerar la única cara libre que está orientada a la superficie plana, la iniciación de la secuencia de detonación comienza en el centro y se aleja hacia los extremos de la malla a este tipo de salida se le conoce como diamante ó punto ciego. De esta manera se genera una cara libre para los demás tiempos de detonación (ver figura N° 10) .

Figura N° 10: Secuencia de detonación en cimentaciones tipo diamante.

Fuente: Exsa (2009)

2.2.6 Diseño de precorte para el muro "R"

El diseño para este tipo de voladura es muy similar al diseño de voladura en banco, considerando taladros de precorte como diseño independiente y diseño de taladros buffer. Con la diferencia de que para su detonación se usan cargas desacopladas y factores de carga mínimos.

2.2.6.1 Diseño de voladura de precorte

El diseño de precorte en voladuras de obra civil tiene por finalidad, generar una línea de corte a lo largo de la longitud de un trazo. Esta línea de corte se forma mediante el agrietamiento de la roca producto de la detonación de explosivos, en teoría se minimizan las presiones de taladro lo suficiente, para generar grietas entre taladros. El precorte también actúa como una barrera de amortiguación frente a las vibraciones y el empuje de los gases de explosión que genera la voladura principal.

Esta técnica de voladura tiene por objetivo minimizar las presiones en el taladro, lo suficiente para generar grietas entre taladros adyacentes de la línea del precorte. Para obtener buenos resultados, se deben tomar en cuenta tres requerimientos, esto acuerdo con Enaex (2002):

- Una línea de taladros con pequeño espaciamiento
- Una baja densidad lineal de carga de explosivo

- Una simultaneidad en la iniciación de los taladros.

El plano de debilidad se genera mediante una grieta que se extiende a lo largo de los taladros de precorte, la presión en las paredes del taladro (presión de taladro) debe ser del orden de la resistencia a la compresión de la roca. Para el cálculo de la presión en las paredes del taladro desacoplado se utiliza la siguiente expresión:

2.2.6.2 Cálculo de la presión en taladros desacoplados

$$P_t=110*f^n*\delta_{exp}*VOD^2$$

Donde:

Pt : Presión de taladro (MPa)

fⁿ : Razón de desacoplamiento

δexp : Densidad de explosivo (g/cm³)

VOD : Velocidad de detonación (km/s)

fⁿ es la razón de desacoplamiento, definida como la relación entre el volumen del explosivo y el volumen del taladro. El exponente n se estima igual a 1.25 para taladros secos y 0.9 para taladros con agua.

$$f=(D_e^2*L)/(D_h^2*H)$$

Donde:

D_e : Diámetro del explosivo en (mm)

D_h : Diámetro del taladro en (mm)

L : Longitud de la carga explosiva (m)

H: Longitud del taladro (m)

2.2.6.3 Cálculo del espaciamiento

Su aplicación es importante ya que generara paredes estables y evitara la sobrerotura conforme al diseño de obra civil.

Enaex (2002) nos plantea la siguiente ecuación para determinar la distancia entre taladros de precorte (espaciamiento).

$$E = \emptyset \times \frac{(Pt + Rt)}{Rt}$$

Donde:

E : Espaciamiento entre taladros (mm)

Ø: Diámetro de taladro (mm)

Pt : Presión de taladro (MPa)

Rt : Resistencia a la tracción de la roca (MPa)

Este resultado tiene que ser menor a la resistencia de compresión de la roca. Por esta razón, cuanto menos sea el valor de la presión de taladro menor será el daño hacia la pared final de la voladura.

2.2.6.4 Secuencia de detonación

Según, Enaex (2002) el precorte debe ser iniciado separada o juntamente con la tronadura de producción, sólo con una diferencia de a lo menos 100 ms, previo a la tronadura de producción. Respecto a los intervalos entre taladros del precorte, la teoría de formar una grieta de tensión entre dos taladros implica una detonación simultánea de ellos. A modo de referencia, Ouchterlony (1995) reportó que, si existen diferencias de tiempo de 1ms entre taladros de precorte, éstas generarían mayores daños alrededor de un taladro. Por tal motivo el autor del estudio recomienda usar cordón detonante para la iniciación del precorte. Idealmente deben detonarse todos los taladros del precorte en forma simultánea, pero como medida precautoria en relación con las vibraciones, éstos deben ser detonados en grupos de 20 a 30 taladros.

Así mismo, ISEE (2008) nos sugiere que el precorte se debe disparar de forma simultánea, utilizando cordón detonante y lineas troncales o detonadores eléctricos instantáneos; sin embargo, si se llegará a disparar lineas demasiado largas, algunas secciones se deben retardar con retardos o conectores MS. en aquellos casos en donde las condiciones impidan disparar los taladros de precorte antes de perforar los taladros primarios, el precorte se puede lograr retardando los taladros primarios para dejar que los taladros de precorte disparen primero.

2.2.6.5 Efectos de la exactitud de la perforación

Enaex (2002) nos indica que la importancia de la exactitud de la perforación puede no ser considerada cuando se diseña un precorte, pero ésta tiene una gran relevancia debido al

paralelismo que debe existir entre taladros, ya que, de lo contrario, puede ser la causa de perfiles irregulares.

2.2.6.6 Inclinación del precorte

Enaex (2002) señala que los máximos beneficios en términos de mejorar la estabilidad de los taludes se obtienen cuando el precorte se perfora inclinado. Estas inclinaciones fluctúan en el rango de 15 a 30 grados, siendo mejores los resultados a medida que se utiliza una mayor inclinación, aumentando ciertamente la dificultad en la perforación.

Cuando se realizan precortes inclinados y una fila buffer delante de ellos, es conveniente tronar el precorte antes de la tronadura de producción, principalmente para evitar que la fila buffer o amortiguada en la zona del pie del banco, quede demasiado cerca del taladro de precorte y ésta pueda ser iniciada por simpatía. Así mismo, Ttito (2014) refiere que mediante funciones trigonométricas también es posible su cálculo.

2.2.7 Diseño de voladura amortiguada

2.2.7.1 Voladura con taladros Buffer

Enaex (2002) indica que los taladros amortiguados o (Buffers), se ubican en la última fila de los taladros de producción, y cumplen el propósito de amortiguar el impacto de la onda de detonación proveniente de los taladros de producción hacia la superficie del precorte. El burden debe estar en el rango de 0.5 a 0.8 veces el burden de los taladros de producción y el espaciamiento del orden de 1.25 veces el burden definido para las filas amortiguadas, generalmente el espaciamiento es mayor que el burden.

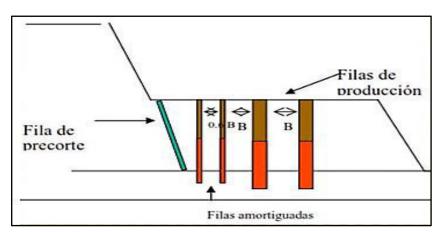


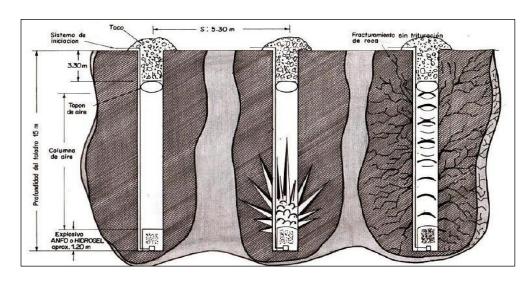
Figura N° 11: Ubicación de taladros amortiguados (Buffers)

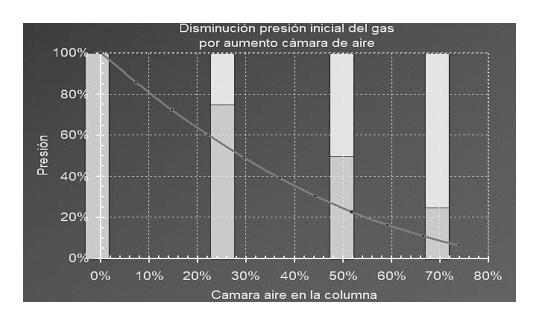
Fuente: Enaex (2002).

2.2.7.2 Voladura con cámara de aire (Air Decks)

Es una técnica de voladura controlada donde se emplea espacios de aire dentro de un taladro con el fin de reducir el impacto de una columna explosiva en la roca adyacente y su aplicación depende de diferentes necesidades, por ejemplo, por un factor de seguridad en taladros próximos a la cresta de un talud donde amerite controlar el desplazamiento y proyección de rocas, como taladros buffer (amortiguación) cercanos a las paredes de talud.

La presencia de un taco de aire reduce la presión de gases del taladro, resultando que las columnas de aire pueden mejorar la distribución de la energía en el taladro. El nivel de fragmentación depende de la ubicación de la columna de aire dentro de la columna explosiva y de su tamaño. Naturalmente, a medida que el tamaño de la columna de aire aumenta, la fragmentación se reduce, y solamente se logra fracturar la roca en el área radial del taladro. (Ver Figura N° 12).




Figura N° 12 – Desempeño de la voladura con cámara de aire

Fuente: Mucho (2005)

A manera de referencia, Fuentes (2005) nos muestra el siguiente gráfico de la disminución de presión inicial del gas por un aumento en la longitud de la cámara de aire (Figura N° 13).

Figura N° 13: Variación de la presión en el taladro por aumento de la cámara de aire.

Fuente: Fuentes (2005)

2.2.8 Control de vibraciones

2.2.8.1 Generalidades

Enaex (2002) indica que la vibración es un fenómeno de transmisión de energía que se propaga mediante un movimiento ondulatorio (ondas) a través de un medio. Cuando se detona un explosivo en el taladro, la energía que se transmite al terreno circundante desarrolla altas presiones de gases y de choque, seguida por la fragmentación del material inmediatamente cercano. Las presiones decaen rápidamente con la distancia desde la carga a valores que están bajo la resistencia de compresión del medio confinado. En este punto, la energía restante viaja a través del medio rocoso en forma de onda de presión o de frente de choque desplazándose a diferentes velocidades. La amplitud de este movimiento ondulatorio disminuye a medida que nos alejamos del punto principal de detonación.

A raíz de la detonación de una carga explosiva se generan dos grupos de ondas con diferentes características y se conocen como ondas internas o de cuerpo y están compuestas por las ondas longitudinales y transversales las cuales se desplazan a través del cuerpo del material. El otro grupo de ondas se conocen como superficiales las cuales pueden tomar diferentes formas, pero se desplazan por la superficie. A estas se le conocen como ondas Rayleigh y Love.

2.2.8.2 Tipos de ondas

a) Ondas Longitudinales o Primarias "P"

Las ondas P, son ondas longitudinales o compresionales lo cual significa que el suelo es alternadamente comprimido y dilatado en la dirección de la propagación. Estas ondas generalmente viajan a una velocidad 1.73 veces de las ondas S y pueden viajar a través de cualquier tipo de material liquido o sólido. Velocidades típicas son 1450 m/s en el agua y cerca de 5000 m/s en el granito.

b) Ondas Transversales o Secundarias "S"

Las ondas S, son ondas en las cuales el desplazamiento es transversal a la dirección de propagación. Su velocidad es menor que la de las ondas primarias. Debido a ello, éstas aparecen en el terreno algo después que las primeras. Estas ondas son las que generan las oscilaciones durante el movimiento sísmico y las que producen la mayor parte de los daños. Sólo se trasladan a través de elementos sólidos. La velocidad de propagación de las ondas S en medios isótropos y homogéneos depende del módulo de corte μ y de la densidad ρ del material.

c) Ondas Superficiales

Onda de Tipo Love. Las ondas de love son ondas superficiales que producen un movimiento horizontal de corte en superficie. Se denominan así en honor al matemático neozelandés A.E.H. Love quien desarrolló un modelo matemático de estas ondas en 1911. La velocidad de las ondas Love es un 90% de la velocidad de las ondas S y es ligeramente superior a la velocidad de las ondas Rayleigh. F

Ondas de Tipo Rayleigh. Las ondas rayleigh, también denominadas ground roll, son ondas superficiales que producen un movimiento elíptico retrógrado del suelo. La existencia de estas ondas fue predicha por John William Strutt, Lord Rayleigh, en 1885. Son ondas más lentas que las ondas de cuerpo y su velocidad de propagación es casi un 70% de la velocidad de las ondas S.

Ondas P

expansions

undisturbed medium

Ondas S

wavelength

wavelength

Figura N° 14: Tipos de onda

Fuente: Internet

2.2.8.3 Velocidad de propagación y velocidad de partícula

ISEE (2008) indica que cuando la onda "P" se desplaza a velocidades diferentes a través de un medio. A esto se le puede llamar velocidad de propagación de onda. También, nos interesa otra clase de velocidad, esta es la velocidad a la que se mueve la superficie del suelo mientras una onda pasa a través de esta. Dicha velocidad se conoce con el nombre de velocidad de partícula, y su mayor valor máximo recibe el nombre de velocidad pico partícula. A medida que las ondas sísmicas se desplazan a través de un área, estas generan movimientos de la partícula, a los cuales llamamos vibraciones. El movimiento de la partícula en la superficie del suelo es similar al movimiento de un corcho sobre una superficie de agua cuando una ola pasa por debajo.

Actualmente, lo más común es emplear la velocidad pico partícula para expresar la intensidad de las vibraciones del suelo procedentes de la voladura. En la mayoría de los casos, esta se relaciona más estrechamente al potencial de daño. En el sistema métrico se expresa en milímetros por segundo (mm/s)

2.2.8.4 Modelo de vibraciones a campo lejano

Enaex (2002) teóricamente el criterio que mejor representa el comportamiento de vibraciones generadas por tipo de cargas explosivas, en voladuras de superficie, es el de Devine, puesto que al utilizar cargas en columnas con geometría cilíndrica se obtiene,

mediante análisis adimensional, distancias que deben se corregidas por la raíz cuadrada de la carga.

Scherpenisse (2000) indica que el criterio de Devine es el que mejor representa el comportamiento de la vibración, para el campo lejano (aproximadamente d > 3 largo de la carga).

Ecuación propuesta por Devine:

$$VPP = K * \left[\frac{d}{W^{1/2}}\right]^{-\infty}$$

Donde:

Orica (2017), VPP es la velocidad pico particula expresada en (mm/s), "W" corresponde a la carga detonada por retardo de forma instantánea en (kg),"d" es la distancia en metros entre la voladura y el punto de interes del monitoreo, "K" constante relacionada a la propiedades del lugar y la roca y " \propto " es una constante relacionada a las propiedades del lugar y de la roca (usualmente es -1.6).

El factor "K", variara con el confinamiento, según la geologia:

- Roca de confinamiento bajo, altamente fisurada K=500
- Cara libre en roca normal, confinamiento normal: K=1140
- Roca dura, confinamiento alto: K = 5000

Y, por otro lado; Scherpenisse (2000) nos muestra la tabla N° 3, para la estimación de las constantes "K" y " \propto ". Basándose en valores obtenidos en diferentes tipos de roca y distintas faenas mineras del país.

Tabla N° 3: Variabilidad de los factores "K" y "Alfa"

Factor de Amplitud K	Factor de Atenuación Alfa	Factor de Amplitud K	Factor de Atenuación Alfa
597	-2.34	99	-2.33
500	-2.11	227	-1.6
321	-2.39	499	-2.01
495	-2.12	175	-1.63
262	-2.28	112	-1.94

K Promedio =	357	Alfa Promedio =	-2.07
K Mínimo =	99	Alfa Mínimo =	-1.54
K Máximo =	703	Alfa Máximo =	-2.49
597	-2.32	177	-2.04
299	-2.48	703	-2.21
481	-1.74	168	-1.54
284	-1.72	428	-2.49

Fuente: Scherpenisse (2000).

Scherpenisse (2000) nos señala en la Tabla N° 3, diferentes valores para los parámetros del modelo Devine (K y Alfa), obtenidos en diferentes tipos de roca y distintas faenas mineras del país. Esta gran variabilidad para el factor K desde un mínimo de 99 hasta un máximo de 703 (7 veces mayor) y para el factor de atenuación Alfa desde -1.54 hasta -2.49, determinan que el uso indiscriminado de estos modelos y la transferencia de estos desde una mina a otra o desde un sector a otro en la misma mina puede significar estimar un gran margen de error las vibraciones y como consecuencia de ello las restricciones a las voladuras y los criterios de daño.

Esta variabilidad en los parámetros del modelo Devine, da cuenta de la gran importancia que se debe establecer para cada tipo de macizo rocoso en particular, la ecuación de comportamiento de las vibraciones, la que está directamente relacionada con las propiedades geomecánicas, tipos de explosivos, aspectos geométricos, etc. Y, por tanto, deben ser estimados como consecuencia de una campaña de monitoreo y modelamiento, en forma independiente no sólo en cada mina si no en cada dominio geomecánico de la misma.

2.2.8.5 Instrumentación para monitoreo de vibraciones

Enaex (2002) nos indica que la instrumentación es un tema vital y su propósito es localizar transductores en puntos estratégicos con el objeto de obtener información consistente y representativa. Esta información consiste en saber manejar conocimientos acerca de las ondas sísmicas que se generen en una voladura, ejemplo: que su transmisión sea esférica y su descomposición se traduzca en ondas del tipo P, S, y R., las cuales transportan energía vibracional, por lo tanto, su relevancia depende de la geometría, posición de la voladura y sistema estructural. Por ejemplo, la onda superficial de menor amplitud viaja a más distancia, por lo tanto, es importante que sea medida en un campo lejano, al contrario de las ondas P y S que son significativas cerca de la voladura.

La instrumentación que se utiliza para medir vibraciones de roca, inducidas por voladura, se compone de los siguientes elementos:

- Transductores: Geófonos o Acelerómetros, que se instalan en forma solidaria a la roca
- Sistema de cables: Encargados de llevar la señal captada por los transductores al equipo de monitoreo.
- Un Sismógrafo: Para recibir la señal y guardarla en memoria
- Un computador: Con el correspondiente software incorporado que se requiere para traspasar información desde el equipo monitor, además para su posterior análisis.

2.2.8.6 Regulación internacional de control de vibraciones

Orihuela (2009) precisa que en todos los países del entorno europeo y en la mayoría de los países desarrollados existen normativas específicas que tienen como finalidad regular las vibraciones generadas por la práctica de diferentes actividades, proponiendo criterios de limitación de las mimas, e incluso, en ciertos casos, brindando pautas sobre el mejor procedimiento a seguir si se va a realizar un proyecto que lleve implícito el uso de explosivos. Los límites admisibles establecidos por estar organizaciones equivalen a patrones ambientales, los cuales deben ser respetados por toda empresa minera. Estos límites son similares a los patrones de calidad de aire y del agua, todos equivalen al concepto de capacidad de asimilación del medio. Trabajos realizados en diversos países Europeos, en Canadá, USA y en Australia propusieron diferentes valores de velocidad máxima de partícula, tratando de esta manera evitar daños a construcciones. Los valores propuestos se sitúan entre el rango de 10-50 mm/s.

Tabla N° 4: Normatividad internacional en el manejo de voladuras

País de procedencia	Nombre de reglamentación	Fecha de expedición
Alemania*	DIN 4150	1975
Brasil	CETESB D7.013	1998
Escocia	PAN50	2000
EE. UU Federal	USBM RI8507	1980
EE. UU Federal	OSM 817.67	1983
España	UNE 22-381-93	1993
Francia	Recomendaciones GFEE	2001
Internacional	ISO 4866	1990
Italia	UNI 9916	1991

Nueva Zelanda	NZS 4403	1976
Portugal	NP2074	1983
Reino Unido	BSI 6472	1992
Reino Unido	BSI 7385	1993
Sueca	SS 460 48 46	1991
Suiza	SN 640 312a	1992

^{*} La norma alemana tiene además tres actualizaciones en los años 1999 y 2001.

Fuente: Benjumea (2003).

Tabla N° 5: Visión sinóptica de algunas normas internacionales

	Norma							
	DIN	PAN	USBM	OSM	UNE	ISO	SN	SS
<u>Aplicación</u>								
voladuras	*	*	*	*	*	*	*	*
maquinaria	*					*	*	
trafico	*					*	*	
<u>Variables</u>								
Frecuencia	*	*	*		*	*	*	
vel.particula	*	*	*	*	*	*	*	
vel. x	*	*		*				*
componente								
acel.						*		
valores	*	*	*	*	*		*	*
<u>Sensor</u>								
geófono	*	*	*	*	*	*	*	*
acelerómetro					*	*		
<u>Tipo</u>								
residencial	*	*	*	*	*	*	*	*
industrial	*				*	*	*	*
ed. Históricas	*	*			*	*	*	*
materiales			*			*	*	*
otros	*	*				*	*	
<u>Solicitaciones</u>						*	*	
<u>Geología</u>					*			*
<u>Tipo análisis</u>								
Semiperiodo	*	*		*	*	*	*	*
Fourier	*	*	*	*	*	*	*	*
Respuesta					*	*	*	
Sitio de medición								
Edificación	*	*	*			*	*	
Suelo	*	*	*	*	*	*		*

Fuente: Benjumea (2003).

2.2.8.7 Norma Alemana – DIN 4150

Benjumea (2003) Instituto de Normalización Alemana ó DIN (Deseches Institut fur Normung) han publicado varios criterios de niveles máximos de vibración, el primero en 1975, el cual fue desglosado en 3 partes y actualizado en 1999 y 2001. Los criterios de la DIN 4150 de 1975 a partir de información en Persson (1994) se resume en la siguiente Tabla N° 6:

Tabla N° 6: Valores guía máximos para la velocidad de partícula DIN4150:1999

Clase de construcción	Frec	Nsa		
	1 a 10 Hz	10 a 50 Hz	50 a 100 Hz	TFb
1 Edificaciones industriales, oficinas y similares o con diseños robustos.	20*	20 - 40	40 - 50	40
2 Edificaciones residenciales y construcciones similares.	5	5 - 15	15 - 20	15
3 Otras edificaciones sensibles a vibraciones o las no incluidas en las dos anteriores clases	3	3 - 8	8 - 10	8

Adaptado de DIN (2001a).

Fuente: Benjumea (2003).

Los valores indicativos recomendados por la DIN 4150:1975 dependen del tipo de edificación, Una de las características importantes en esta norma es la inclusión de valores máximos (de partícula y pico vertical) para edificaciones históricas. La Norma Internacional DIN 4150 (1999) establece los valores máximos de velocidad de vibración (en mm/s) en función de la frecuencia, para que no se observen daños en diferentes tipos de edificaciones (comercial, viviendas, edificios, industrias y otros). Las actualizaciones de la norma DIN mencionadas son: 1) Predicción de los parámetros de medición (DIN, 2001b), 2) Efectos en las personas dentro de edificaciones (DIN, 2001c) y 3) Efectos en estructuras (DIN, 2001a). De estas tres, la última es la más atractiva para este proyecto.

2.2.9 Control de proyección de rocas (Flyrocks)

Enaex (2002) los "flyrocks" son fragmentos de roca violentamente proyectados por la acción de gases que se generan después de detonar un explosivo confinado, en un cierto

a Nivel superior componente horizontal

b Todas las frecuencias

^{*} Velocidades de partícula en mm/s

volumen de roca los "flyrocks" constituyen un riesgo totalmente inherente a la práctica de voladura y representa un peligro muy significativo para la seguridad de las personas, como también para equipos e instalaciones en general. Las voladuras de obras civiles, que se realicen dentro del radio urbano es aún de mayor importancia y tiene restricciones más exigentes. Así, debemos decir que el tamaño de la voladura debe ser menor, el diámetro (1" a 3" máximo) la columna de carga debe ser también reducidos, como asimismo la cantidad de explosivo por taladro. Respecto a este último punto, la complejidad del problema puede llegar a un grado tal, que aconseje evitar el uso de explosivos, reemplazándolo por "cementos expansivos". Del mismo modo en estos casos, es casi obligatorio utilizar "cobertores" ya sean mallas metálicas o geomembranas en desuso colocados cuidadosamente sobre toda la superficie del sector a volar, manualmente por una cuadrilla de varios trabajadores o bien, con apoyo de equipo mecanizado (retroexcavadora u cargador frontal) y finalmente sobre el cobertor se coloca cuidadosamente sacos de arena.

2.2.9.1 Causas de proyección de rocas "Flyrocks"

Enaex (2002) indica que las causas que originan los "flyrocks", pueden presentarse tanto en la voladura primaria como en la voladura secundaria respectivamente. Sin embargo, la atención del análisis de las causas señaladas a continuación se centrará en algunas importantes.

- Longitud de taco insuficiente. Esta variable es considerada una de las más importantes respecto a la generación de "flyrocks". Tenemos que la longitud de taco inadecuado permite una liberación más eficaz de los gases a alta presión.
- Tipo de material usado como taco. En general materiales de granulometría muy fina usados como material de taco tiene una gran "fluidez", y presentan poca resistencia a ser eyectados.
- La Geología del terreno. En términos generales, las rocas altamente fisuradas y alteradas que muestran planos de debilidad notorios y definidos, así como las de conformación heterogénea tales como brechas y conglomerados con matriz débil, tienen mayor propensión a ocasionar proyecciones que las rocas homogéneas y compactas.
- Burden inadecuado en los taladros de primera fila. Un burden muy corto resulta como consecuencia de error de cálculo en el diseño del trazo de perforación, o también eventualmente cuando por efecto de excesiva sobrerotura hacia atrás del disparo anterior la nueva cara frontal resulta excesivamente fisurada y debilitada, al

extremo de crearse concavidades que reducen el espesor del burden en determinados sectores. La existencia de pequeñas cavernas de disolución internas, capas o diques de material suave y débil, o fallas estructurales también en muchos casos dan lugar a burden muy corto.

- **Exceso de carga en los taladros.** Esta causa puede ser un problema para todos los taladros de una voladura, pero lo es más aún en los taladros de primera fila.
- Tipo de voladura. Las voladuras sin cara libre (tipo canalón), tienen en general, mayor tendencia a provocar craterización en los taladros cargados con gran generación de "flyrocks".
- Error en la secuencia de encendido. seleccionado entre filas y entre taladros. Un retardo demasiado corto especialmente entre filas y/o demasiado largo entre taladros (mayor que 100 MS), provocará también la craterización de los tiros con gran generación de "flyrocks". Un tiro fuera de secuencia es igual a un tiro con burden excesivo. Ejemplo: si un taladro de segunda fila sale antes que otro de primera fila provocará proyecciones hacia arriba.
- Collares de los taladros muy fracturados ó dañados. Esta causa de "flyrocks" es muy importante, y tiene su origen en el exceso de sobre perforación o bien tipo de carga de fondo usada en los tiros correspondientes al banco de la fase anterior.
- Factor humano. Operadores no calificados para los trabajos de carguío, atacado y amarre de taladros en una voladura, pueden ocasionar malas maniobras en el proceso. Cuando por garantizar el resultado de un disparo se exagera la dosis de explosivo por m³ a romper, cuando un taladro se bloquea, por ejemplo, con una piedra atracada, es común que los operadores compensen la deficiencia sobrecargando la parte libre, a veces hasta la misma boca del taladro.

Basándonos en los puntos anteriores se puede afirmar que, las variables de más incidencia en la generación de "flyrocks" son en primer lugar: la longitud de taco insuficiente, problema que se intensifica más aún si la zona del taco presenta un fuerte pre fracturamiento por la sobre perforación del banco o fase anterior y, en segundo lugar, el "Burden irregular y/o insuficiente" en los taladros de primera fila.

Tipo 1: De banco Tipo 2: De sopladuras Tipo 3: De cráter

Figura N° 15: Tipos de dirección de Flyrocks

Fuente: Exsa (2009)

2.2.9.2 Criterio del cráter (Frank Chiapetta)

Enaex (2002) señala que la determinación de la longitud de taco es sin duda el factor más importante de la causa de "flyrocks". Por esta razón Alan Bauer y Frank Chiapetta, realizaron una teoría basándose en resultados obtenidos de pruebas de cráter y/o filmaciones con cámara de alta velocidad, para minimizar tanto la generación como alcance de los "flyrock". Precisamente con este procedimiento se establecerá la longitud de taco óptimo.

Mediante el índice "SD" que se calcula mediante un cociente entre una distancia que comprende el taco más 5 veces el diámetro del taladro, dividido todo ello por la raíz cúbica de la carga contenida en la fracción de longitud de carga correspondiente a 10 veces el diámetro. Dependiendo de los resultados de la voladura que uno espera uno considera el valor de SD para el cálculo de la longitud de taco necesaria, para la obtención de esos resultados.

La formulación y esquema para los valores del "SD" se muestran con mayor detalle en el ítem 2.2.5.9 "cálculo del taco adecuado".

2.2.9.3 Método convencional, recubrimiento de una voladura.

Exsa (2009) precisan que se llaman cobertores a todos aquellos elementos que se utilizan para cubrir las voladuras con la finalidad de evitar las proyecciones de roca. La cobertura de un disparo en obras civiles tales como zanjas, excavaciones para cimentación especialmente en áreas pobladas o de daño a instalaciones, deberá adaptarse a las condiciones y tipo de voladura a efectuar.

2.2.10 Control de la onda aérea de presión (AirBlast)

Isee (2008) indica que además de las vibraciones, las operaciones de voladura también generan ondas de aire. La presión de aire es simplemente la presión que ejerce sobre y por encima de la presión atmosférica, la cual está siempre presente. La mayoría de los instrumentos de monitoreo miden directamente la sobrepresión y no responde a la presión ambiental. Las ondas de aire son ondas de compresión que viajan a través del aire de manera similar a como hacen las ondas de compresión en el agua o tierra (ondas P). Es inusual que las ondas de aire, generadas por operaciones de voladura, alcancen niveles potencialmente perjudiciales en las viviendas, si esto ocurriera, la evidencia seria inmediata y se manifestaría en forma de ventanas rotas. Incluso en las operaciones donde existe daño potencial, las ondas de aire siguen siendo una materia de considerable interés.

2.2.10.1 Factores que afectan la sobrepresión

ISEE (2008) señala que los factores que contribuyen a la sobrepresión se ordenan de mayor a menor importancia, aunque la importancia relativa de cada factor será especifica de cada lugar y cada operación de voladura.

- Peso máximo de carga por retardo
- Profundidad de enterramiento de la carga
- Materiales de detonación expuestos en la superficie de la roca
- Condiciones atmosféricas
- Gradientes de temperatura
- Viento y gradientes de viento
- Atmosfera, hora del día y relaciones publicas
- Topografía
- Volumen de roca desplazada
- Intervalo de retardo y orientación
- Tipo de explosivo

A continuación, Delgado (2014) describe tales factores que afectan la sobre presión.

- Peso máximo por carga por retardo

Este factor afecta la sobrepresión de aire de una manera similar al efecto sobre las vibraciones del terreno

Profundidad de enterramiento.

Es la altura de taco o la distancia detrás de una cara abierta al explosivo. Los resultados pueden verse afectados por cuán rápido o fuerte es el movimiento de la roca.

- Detonación de superficie expuesta

Se deben de considerar los accesorios de voladura como el cordón detonante y otros productos que detonan en la superficie del suelo, estos producen ruidos más agudos que se pueden observar fácilmente cerca a la voladura.

Temperatura

La velocidad del sonido en el aire cambia con la temperatura, y la velocidad es inferior a una mayor altitud. Este cambio en la velocidad hace que las ondas sonoras se doblen o se refracten de manera ascendente. Cuando el aire aumenta de temperatura, en este caso, las ondas sonoras se curvan de manera descendente hacia la superficie del suelo y los sonidos se escuchan con mayor facilidad a mayor distancia.

- Viento

El viento cambia los ángulos de la parte frontal de una onda, estos se inclinan hacia abajo cuando las ondas se propagan en dirección al viento y hacia arriba cuando las ondas se propagan en dirección contraria al viento. De esta manera, la presión del sonido en dirección al viento desaparece más lentamente que en dirección contraria a este.

- Topografía

La topografía de un área y la forma de una zona excavada pueden tener un efecto de las ondas de aire. Algunos de estos efectos pueden ser útiles tales como las colinas, las pilas de desmonte grandes o la forma de un tajo. Otra topografía puede ser desfavorable como: los reflejos de una pared posterior alta o los reflejos provenientes de las paredes de un cañón estrecho.

Volumen de roca desplazada

Las sobrepresiones tienden a ser algo más altas para voladuras que desplazan grandes volúmenes de roca.

- Intervalo de retardo y orientación

La secuencia de salida y la posición relativa de las cargas a lo largo de una cara son muy importantes para generar o evitar sobrepresiones de aire.

2.2.10.2 Predicción de la onda aérea de presión

McKenzie (1994) determina que la siguiente ecuación es comúnmente usada para la predicción de sobre presión.

$$dB = 164.4 - 24 \log \left(\frac{D}{W^{\frac{1}{3}}}\right)$$

Donde dB es el nivel de decibeles de sobre presión (relación lineal), D es la distancia desde el taladro con carga(m), W es el peso del explosivo detonando por retardo (kg), El término D/W se refiere a la distancia escalar de la sobre presión, aunque el término es diferente al de la distancia escalar de la vibración.

2.2.10.3 Limitaciones normativas para la onda aérea de presión

ISEE (2008) en lo que refiere a las especificaciones para la voladura de construcción y de cantera, ha existido una larga historia respecto al empleo de 140 dB, como un límite para la sobrepresión. Recientemente, se ha vuelto más común emplear limitaciones más restrictivas que se desarrollaron para las operaciones de minería de superficie y aplicarlas a todas formas de voladura. una limitación común de la sobrepresión es de 134 dB, recomendada por el Buró de Minería, RI 8485(Siskind y otros, 1980). Ninguno de estos valores ha demostrado causar ruptura de ventanas ni daños estructurales.

Tabla N° 7: Criterios típicos para la Sobrepresión

CRITERIOS TÍPICOS PARA LA SOBREPRESIÓN

3.0 psi (180 dB) - Posibilidad de ciertos daños estructurales

1.0 psi (171 dB) - Rotura general de ventanas

0.1 psi (151 dB) - Rotura ocasional de ventanas

0.029 psi (140 dB) - Amplia experiencia en la aplicación de este criterio como una especificación segura para proyectos.

0.0145 psi (134 dB) - Recomendaciones del Buró de Minería para las operaciones de voladura en minería superficial de gran escala.

Fuente: Isee (2008),

2.2.11 Diseño de voladura mediante el software JK Simblast – 2DBench

Split Engineering (2012) expresa que el software JKSimBlast engloba el diseño, edición, simulación, análisis y administración de voladuras de minería y operaciones relacionadas. Los módulos principales de diseño se separan en 2 grandes áreas: minería a cielo abierto con el módulo 2DBench, y minería de interior y desarrollo de túneles con los módulos 2DRing y 2DFace, respectivamente. La administración de toda la información y diseños asociados a estos módulos se gestiona con el módulo JKBMS (Blast Management System). Estos 4 programas dan al ingeniero y al personal de voladura la habilidad de diseñar y optimizar el diseño y secuencia de iniciación de prácticamente la totalidad de las voladuras usadas en minería. Este permite:

- Diseñar un pattern o malla de voladura
- Cargar con decks de explosivo y otros materiales los taladros
- Instalar los retardos de fondo y superficie con boosters y detalles de la conexión
- Simular la detonación en la pantalla
- Importar y exportar información y datos e imprimir el diseño

Cada parámetro de la voladura es definido por el diseñador.

2DBench y JKBMS. El módulo 2DBench es una aplicación gráfica para el diseño y análisis de las voladuras en banco, en minería u operaciones a cielo abierto. Aunque la voladura se hace y visualiza en todo momento en planta de 2D, todos los datos son creados y guardados en coordenadas 3D (este, norte y nivel), consistiendo en barrenos, decks (cargas de explosivo y material inerte) y retardos tanto de fondo como de superficie y las conexiones pertinentes. Análisis básicos de volúmenes, factor de carga, costos totales, contornos de detonación y más, se complementan con análisis más avanzados que incluyen distribuciones de energía, contornos de vibración (en campo cercano y lejano), predicción de fragmentación.

A continuación, se realizará un ejemplo de voladura. Donde se mencionarán algunos pasos importantes que se debe tener en cuenta. Cabe recalcar que los valores tanto de los parámetros de perforación y voladura, la selección del explosivo y accesorio se ha realizado en gabinete.

2.2.11.1 Administración de base de datos

Para una mejor manipulación de información, se debe contar con una base de datos que consiste en el levantamiento topográfico de cada taladro de voladura en coordenadas UTM (Universal Transverse Mercator). Con la siguiente información básica (Numero de taladro, Norte, Este, Cota, altura de corte, tipo de taladro, burden y espaciamiento).

5 - 0 - = BASE DE DATOS.csv... Alex Ruben 囨 Inicio Diseño de página Vista ÇQué de: Insertar Fórmulas Revisar J40 × fx В C D F G Н E Nº ALTURA DE TIPO DE **ESPACIA** BURDEN NORTE **ESTE** COTA TALADRO CORTE TALADRO MIENTO 8444804.64 786868.035 4444.385 7.4 precorte 1.2 3 8444807.36 2 786871.523 4445.017 8.1 1.2 precorte 8444864.53 786852.495 4443.611 6.6 precorte 1.2 5 8444865.29 786851.915 1.2 4 4443.629 6.7 precorte precorte 8444863.64 786852.906 4443.516 6.6 1.2 6 8444862.76 786853.422 4443.479 6.5 precorte 1.2 8 8444861.93 786853.851 4443.347 6.4 precorte 1.2 8 8444860.93 4443.432 786854.266 6.5 precorte 1.2 10 9 8444860.18 786854.819 4443.441 6.5 1.2 precorte 11 10 8444859.31 786855.208 4443.444 6.5 precorte 1.2 precorte 12 11 8444858.5 786855.735 4443.45 6.5 1.2 13 12 8444857.64 786856.218 4443.514 6.6 1.2 precorte 14 13 8444856.66 786856.766 4443.578 6.6 producción 2.4 2.8 8444855.85 15 14 786857.19 4443,662 6.7 producción 2.4 2.8 16 8444855 786857.673 4443.826 6.9 producción 2.4 2.8 17 16 8444854.11 786858.167 4443.968 6.1 producción 2.4 2.8 18 8444853.12 17 786858.722 4444.154 2.8 6.3 producción 2.4 19 8444852.32 2.8 18 786859.177 4444.331 6.5 producción 2.4 20 19 8444851.46 4444.514 6.7 2.4 2.8 786859.67 producción 21 20 8444850.78 786860.074 4444.733 6.9 producción 2.4 2.8 22 21 8444849.7 786860.606 4444.894 6.9 producción 2.4 2.8 23 22 8444848.78 786861.167 4444.943 2.8 7 producción 2.4 24 23 8444847.96 786861.686 4445.116 6.2 producción 2.4 2.8 25 24 8444847.17 786862.148 4445.161 6.2 produc n 2.4 2.8 BASE DE DATOS 1

Tabla N° 8: Base de datos de levantamiento topográfico de taladros.

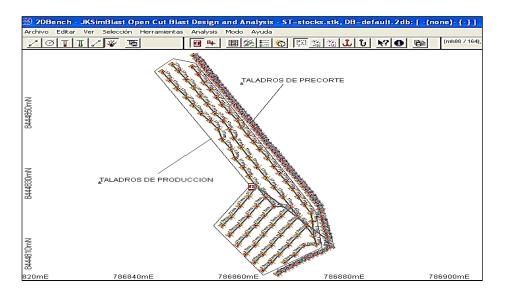
Fuente: Elaboración propia

2.2.11.2 Configuración de retardos

Una vez que los taladros son primados y los retardos de fondo insertados, el paso siguiente es ubicar las conexiones de superficie entre taladros y filas. Teniendo en cuenta la dirección de la salida de voladura ya sea en "V", paralelo, etc.

2DBench - JKSimBlast Open Cut Blast Design and Analysis - ST=stocks.stk, DB=default.2db: [-(none)- {-}] Retardo Conector TALADROS DE PRECORTE DYNO MS Connector г #42 Name 42.00 ns 🖨 Retardo 42 C bi-direccional @ uni-direccional ○ Entre-Barrenos ⓒ Entre-Fila Conector Special18 N/A m Aceptar Nuevos Valores Change Existing rellamar TALADROS DE PRODUCCION

Figura N° 16: Configuración de retardos en el software Jk Simblast

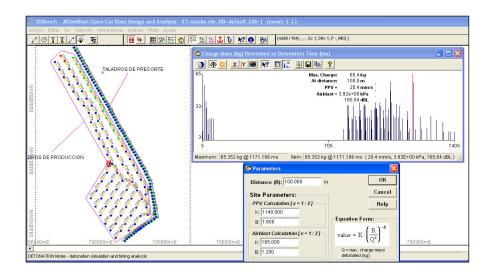

Fuente: Elaboración propia

2.2.11.3 Simulación de detonación

Una vez concluida el carguío, primado, atacado y amarre de taladros, el Ingeniero a cargo del diseño podrá visualizar la secuencia de detonación. La letra "I" representa el punto de inicio de la voladura. También se podrá manipular las opciones de la secuencia de detonación como:

- Mostrar todos los eventos como ellos ocurren, cada evento en la simulación es desplegado tal como ocurre.
- Mostrar todos los eventos en un cuadro de tiempo, los eventos son agrupados en sucesivos intervalos de tiempo, especificados en pasos cuadros de tiempo.
- Poniendo pausas entre los eventos, despliega la simulación lentamente para esta cantidad entre eventos.

Figura N° 17: Simulación de detonación en el software JK Simblast


Fuente: Elaboración propia

1.1.3.1 Análisis de resultados (Vibraciones a campo lejano)

En esta parte se predecirá el nivel de vibraciones a capo lejano, los valores de K y alfa se tomaron por defecto. Este análisis permite también conocer:

- Carga máxima por retardo (cuantos kilos de explosivo se detona en un determinado tiempo)
- Cantidad máxima de taladros que detonan en un tiempo,
- Conocer la VPP teórica, y analizar si este ocasionara daños a las estructuras cercanas.

Figura N° 18: Resultado de la VPP Teórica en el software JK Simblast

Fuente: Elaboración propia.

2.2.12 Evaluación del resultado de voladura

López (2003) indica que, una vez ejecutada una voladura, es necesario proceder a analizar los resultados obtenidos ya que su interpretación permitirá introducir modificaciones sucesivas en los parámetros de diseño, constituyendo esta, una etapa básica dentro del proceso de optimización.

Para realizar una evaluación de una voladura de acuerdo con nuestros objetivos debe analizarse los siguientes aspectos.

- Fragmentación y esponjamiento de la pila de escombro.
- Nivel de vibraciones
- El contorno de la obra civil ó Precorte

Para evaluar la fragmentación y el esponjamiento de la pila de escombro, se optó por:

2.2.12.1 Método de análisis cuantitativo visual mediante fotografías

López (2003) señala que este es el sistema ampliamente utilizado y en la mayoría de los casos el único que se aplica. La pila de escombro y aspecto general de la voladura. es observada inmediatamente después de efectuarse el disparo realizándose por el técnico responsable una valoración y evaluación subjetiva. Sin embargo. Solo pueden apreciarse cambios en la fragmentación cuando las diferencias son muy acusadas, incluso con una gran experiencia del personal responsable. La aplicación de esta técnica tiene poco rigor, no permite establecer una distribución de tamaños precisa y con frecuencia no queda constancia escrita de los resultados. En general, solo sirve para que los especialistas tengan una primera toma de contacto con los resultados de la voladura con vistas a la realización de un estudio completo.

2.2.12.2 Contorno de la obra civil ó Precorte

Konya (1998) las fórmulas descritas en el diseño de voladura de precorte se utilizan para aproximar las cargas de explosivo y los espaciamientos, para las técnicas de voladura controlada. Después de que se efectúen las voladuras de prueba, el operador puede evaluar los resultados y determinar si se necesitan cambios en el diseño de voladura. Si la roca es masiva y tiene pocas discontinuidades geológicas, se puede evaluar, si el espaciamiento es el adecuado al observar el plano de fractura que se ha formado. Los resultados que se obtienen, en las operaciones mineras la evaluación de los resultados obtenidos en una

voladura de contorno puede hacerse de forma cuantitativa y cualitativa estas evaluaciones se basan en:

- Factor de cañas visibles.
- Métodos fotográficos.
- Estudio topográfico.

2.2.12.3 Impacto ambiental

Registros de vibraciones

López (2003) si el tiempo de retardo y la secuencia de encendido de una voladura no es la adecuada, se producirán entre otros, los siguientes resultados:

- Niveles de vibración elevados.
- Proyecciones incontroladas de trozos de roca.

Mediante el análisis de las vibraciones registradas con un sismógrafo y posterior modificación de las variables indicadas, puede conseguirse un mayor aprovechamiento de la energía desarrollada por el explosivo, traduciéndose todo ello en una mejora de la granulometría del material y unas perturbaciones de menor intensidad y frecuencia de vibración más elevada que son potencialmente menos peligrosas.

Registros de onda aérea de presión

Se tomará como límites máximos permisibles a los valores que se indican en la *tabla 7* – *Criterios típicos para la Sobrepresión*. Previa evaluación del tipo de estructura cercana al proyecto de voladura civil y la medición de las ondas aéreas se realizará mediante un micrófono que se encuentra como accesorio independiente en el kit del sismógrafo, los mismos que se registran juntamente con el nivel de vibraciones.

2.3 Marco Conceptual

2.3.1 Plano de obra civil

Los planos de construcción son dibujos que muestran la localización, las formas, dimensiones y detalles del trabajo que va a realizarse.

Los planos de construcción civil durante la construcción de Planta Concentradora definirán la geometría de la obra de construcción incluyendo dimensiones, formas y detalles. Los cuales nos ayudaran a diferenciar el tipo de obra civil ya sean (zanjas ó cimentaciones)

para luego, realizar un adecuado diseño de voladura considerando parámetros tales como el ángulo de inclinación de las paredes, la altura de corte, el ancho y longitud de la obra civil.

2.3.2 Propiedades de los explosivos:

2.3.2.1 Velocidad de detonación (VOD)

McKenzie (1994) nos indica que es una medida de la razón a que la reacción de la detonación procede por la columna del explosivo. Típicamente, el VOD variará de alrededor de 3000 m/s para Anfo en hoyos de voladura de diámetros pequeños a alrededor de 6000 m/s para emulsión en hoyos de voladura de diámetros más grandes. Se considera un indicador del potencial de fragmentación de un explosivo, con el potencial creciente para un VOD creciente. Varios autores han sugerido que cuando se reduce el VOD, también se reduce la fracción de energía de la onda de choque. La velocidad de detonación es considerada por muchos el mejor "barómetro" para estimar la performance y consistencia de formulaciones de explosivo a granel, pero no es, en sí mismo, una medida de la energía total disponible del explosivo.

2.3.2.2 Presión de detonación

McKenzie (1994) precisa que es la presión que existe en el plano Chapman – Jouget "CJ" detrás del frente de detonación, en el recorrido de la onda de detonación. Es función de la densidad del explosivo y del cuadrado de velocidad de detonación y su valor se expresa en kilobares (kbar) o en megapascales (MPa). Así, en los explosivos comerciales varía entre 500 y 1500 MPa. Es un indicador significativo de la capacidad de fragmentación que posee un explosivo. Generalmente se considera a la presión de detonación responsable del fracturamiento de la roca alrededor del taladro. Rocas masivas de resistencia alta, usualmente requieren una presión de detonación alta para una fragmentación óptima.

$$PD = 1/4 \times \rho_e \times (VOD)^2 \times 10^{-5}$$

Donde:

PD : Presión de detonación, en Kbar

Pe : Densidad del explosivo, en g/cc

VOD: Velocidad de detonación, en m/s

10⁻⁵ : Factor de conversión

2.3.2.3 Presión de taladro o explosión

McKenzie (1994) indica que es la presión ejercida contra las paredes del taladro como consecuencia de la acción expansiva de los gases producto de la detonación del explosivo. este término se usa para referirse a la máxima presión (peack) desarrollada detrás de la zona de reacción primaria en la columna del explosivo. La presión de taladro generalmente es aproximadamente un 45% de la presión de detonación. Se considera que esta presión es la que produce el esfuerzo para levantar el burden, y dilatación de fracturas en la masa rocosa que rodea un taladro de tronadura.

2.3.2.4 Energía del explosivo

McKenzie (1994) señala que la energía del explosivo se puede definir en términos del trabajo de expansión de los gases de alta presión.

Ames (2008), indica que la energía es la característica más importante de una mezcla explosiva. La energía explosiva está almacenada como energía química, y durante la detonación es liberada y usada en eventos como los mostrados en la Tabla N° 9.

Tabla N° 9: Distribución de la energía en diferentes eventos

EVENTO	%
Desmenuzamiento de la pared del taladro	5
Formación de fractura (radial y de tensión)	10
Corte	5
Calor y Luz	20
Movimiento de la masa rocosa	15
Vibración del terreno	30
Presión de aire	15
TOTAL	100

Fuente: Ames (2008)

Hagan (1977) estima que el 15% de la energía total generada en la voladura es aprovechada en los mecanismos de fracturamiento y desplazamiento de la roca. Según Rascheff y Goemans (1977) han establecido que la energía aprovechada varía entre el 5% y 50% de la energía total dependiendo del tipo y la clase de explosivo utilizado.

2.3.2.5 Explosivos utilizados en el proyecto minero las Bambas

Tabla N° 10: Lista de explosivos y accesorios

EXPLOSIVOS	
NOMBRE	
COMERCIAL	CARACTERÍSTICAS
SUPERFAM DOS	ANFO
DINAMITA SG 65	7/8" x 7"
EMULFAN 300 (S)	3" x 16"
BOOSTER HDP	1/2 ACP
CORDÓN DETONANTE	5P
ACCESORIOS	
NOMBRE	
MOMBKE	
COMERCIAL	CARACTERÍSTICAS
	CARACTERÍSTICAS 800/17ms
COMERCIAL	
FANEL DUAL	800/17ms
FANEL CTD	800/17ms 25ms
FANEL DUAL FANEL CTD FANEL CTD	800/17ms 25ms 35ms
FANEL CTD FANEL CTD FANEL CTD	800/17ms 25ms 35ms 42ms
FANEL DUAL FANEL CTD FANEL CTD FANEL CTD FANEL CTD	800/17ms 25ms 35ms 42ms
FANEL CTD	800/17ms 25ms 35ms 42ms 65ms

Fuente: Elaboración propia.

2.3.3 Resistencia del macizo rocoso

2.3.3.1 Resistencia a la compresión

McKenzie (1994) señala que la resistencia de una roca es función de un número de factores que incluyen el origen, mineralogía y el estado de la meteorización. Rangos típicos de resistencia usados para la clasificación de resistencia de rocas están dados en la Tabla N° 11.

Tabla N° 11: Tabla de resistencia de la roca

CLASIFICACIÓN	DESCRIPCIÓN	UCS (Mpa)
MUY DÉBIL	Se puede cortar con un cuchillo	1 - 25
MODERADAMENTE DÉBIL	Un golpe fuerte con un martillo provoca una marca profunda	25 - 50
MODERADAMENTE FUERTE	Marcas poco profundas con un golpe firme del martillo	50 - 100

FUERTE	La muestra se quiebra con el golpe firme del martillo	100 - 200
MUY FUERTE	Se requieren muchos golpes para quebrar la roca	>200

Fuente: McKenzie (1994)

2.3.3.2 Resistencia a la tensión

Es el máximo esfuerzo de tracción que un cuerpo puede soportar antes de romperse mientras se estira, también se define como la resistencia de un material a una fuerza estática o aplicada lentamente. sus unidades de medida son (psi y MPa).

2.3.3.3 Ripiabilidad de los materiales de excavación

MWH (2011) indica que la excavabilidad de los materiales se refiere a la mayor o menor dificultad para acometer la excavación de un material in situ. La ripiabilidad es la capacidad de remover los materiales de excavación por medio de un bulldozer equipado con un escarificador (Ripper). Una roca es ripiable cuando puede ser excavada por medios mecánicos sin el uso de explosivos.

Uno de los parámetros más representativos para definir la excavabilidad y ripiabilidad de los materiales de fundación y la profundidad hasta donde el terreno podría ser excavable por medios mecánicos o requiere el uso de explosivos, es la velocidad de propagación de la onda de compresión (Vp). Como regla general se tiene que para velocidades inferiores a 2000 m/s un material es ripiable sin mayor dificultad (Ver Tabla N°12).

Tabla N° 12: Criterio general de excavabilidad en función a la Vp

Vp (m/s)	EXCAVABILIDAD		
< 1500	Rocas excavables con excavadores o tractores. No requiere uso de explosivos		
1500 - 2000	Ripiado fácil. Excavación de estratos sin volar.		
2000 - 2500	Ripiado difícil. Requiere acompañamiento con voladuras ligeras.		

2500 - 3000 Requiere el uso de voladuras ligeras. Ripiado muy difícil; depende de la potencia del equipo

> 3000 No es ripiable. Requiere el uso de voladuras intensas

Fuente: MWH (2011)

La ripiabilidad depende de la calidad del material a remover (dureza, compacidad, grado de fracturamiento, etc.), potencia del equipo de arrastre y habilidad del operador. De manera específica, los fabricantes de equipo de construcción ponen a disponibilidad sus cuadros de ripiabilidad en función del tipo de roca a excavar, velocidad Vp y la potencia o tipo de bulldozer a utilizar.

2.3.4 Burden

Enaex (2002) nos indica que el burden de un taladro se refiere a la dimensión lineal entre el taladro y la cara libre y se mide perpendicular a la dirección de la línea de taladros que constituyen una fila. El término burden generalmente se refiere al burden perforado, y la dimensión lineal se hace a la cara libre existente del banco.

2.3.5 Espaciamiento

McKenzie (1994) el espaciamiento para un hoyo de tronadura se refiere a la dimensión lineal entre hoyos de tronadura adyacentes que forman una fila, y se mide usualmente paralelo a la cara libre. El término usualmente se refiere al espaciamiento de la perforación.

2.3.6 Carga operante

Es la mayor cantidad de explosivo que detona en un determinado tiempo durante el proceso de voladura, se considera como tiempo máximo de 8 ms por el traslape de taladros, es decir es la mayor sumatoria de kilos de explosivos detonados de varios taladros en un tiempo de 8 ms.

2.3.7 Carga desacoplada

McKenzie (1994) El desacoplamiento se refiere a la práctica de usar una carga de diámetro más pequeño que la del hoyo de tronadura en que se pone. La reducción en diámetro sirve primero al propósito de reducir la presión efectiva de la detonación (daño reducido), con reducción de la presión de taladro de hoyo. La reducción en presión es mayor que la estimada

en virtud de la razón de desacople debido al efecto de confinamiento reducido en la velocidad de detonación (VOD) del explosivo.

Este término se usa para describir la combinación de una columna explosiva y una sección vacía no cargada del taladro, La cámara de aire se usa para reducir el impacto de una columna explosiva en la roca adyacente, y al mismo tiempo para extender la región de influencia del explosivo sobre la parte superior de él. La presencia de una cámara de aire reduce la presión de taladro efectiva de hoyo,

2.3.8 Campo lejano

McKenzie (1994) un término que se usa en este texto para describir la distancia a que el nivel de vibración se puede describir por la ecuación convencional del peso de la carga escalar (elevada a una potencia). En esta región el comportamiento de la onda vibracional se puede tomar como elástica o inelástica. A distancias más cercanas al hoyo de tronadura (campo cercano), los niveles de vibración tienen que describirse usando ecuaciones complejas que toman en consideración la longitud de la columna del explosivo y no se pueden describir usando ecuaciones de elasticidad. En el campo lejano el daño a las estructuras rocosas se espera que ocurra principalmente por deslizamiento inducido por la vibración a lo largo de las superficies de las diaclasas existentes.

2.4 Planteamiento de la hipótesis

2.4.1 Hipótesis general

Con un diseño adecuado, se realizará voladuras de obra civil tipo zanjas, cimentaciones y muro, en zonas cercanas a la infraestructura de planta concentradora del proyecto minero las Bambas. Con un control del nivel de vibraciones, proyección de rocas y con una fragmentación de tamaño regular.

2.4.2 Hipótesis específicas

- a. Con una correcta distribución de carga explosiva y configuración en los tiempos de retardo, Se controlará el nivel de vibraciones.
- b. Con la aplicación del factor de seguridad y recubrimiento de voladura, se minimizará la proyección de rocas cercanas a la infraestructura de planta concentradora.

2.4.3 Operacionalización de variables

2.4.3.1 Variable dependiente

El diseño de voladura de obra civil, con un adecuado control en el nivel de vibraciones y proyección de rocas.

2.4.3.2 Variable independiente

- Parámetros de diseño de voladura.
- Dimensiones geométricas del plano de construcción civil.

2.4.3.3 Matriz de la operacionalización de variables

Tabla N° 13: Operacionalización de variables

VARIABLES	DIMENSIÓN	INDICADORES	ESCALA DE MEDICIÓN	
* VARIABLES INDEPENDIENTES				
		Diámetro de perforación	Pulgadas	
		Burden	Metros	
		Espaciamiento	Metros	
		Profundidad de perforación	Metros	
		Factor de carga	Kg/m ³	
		Densidad de carga lineal	Kg/m	
PARÁMETROS DE DISEÑO	Parámetros de	Longitud de carga	Metros	
DE VOLADURA	diseño	Longitud de Taco	Metros	
		Longitud de cámara de aire	Metros	
		Carga Operante	Kg/retardo(8ms)	
		Configuración de retardos	Milisegundos(ms)	
		Taladros Precorte	Varios	
		Taladros Buffer	Varios	
		Propiedades macizo rocoso	Varios	
	Dimensiones geométricas	Largo	Metros	
DIMENSIONES		Ancho	Metros	
GEOMÉTRICAS DEL		Altura de corte	Metros	
PLANO DE OBRA CIVIL		Distancia critica	Metros	
		Angulo de inclinación	Grados	
* VARIABLE DEPENDIENTE				
DISEÑO Y EVALUACIÓN DE VOLADURA DE OBRA CIVIL, CON UN	Vibraciones	Limites máximo permisibles	Velocidad Pico Partícula (VPP)	
ADECUADO CONTROL EN EL NIVEL DE VIBRACIONES Y PROYECCIÓN DE ROCAS	Proyección de rocas	Factor de seguridad (SD)	(0.92 - 144)	

Fuente: Elaboración propia

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1 Ubicación del proyecto minero las Bambas

Las Bambas, es una mina de cobre de gran envergadura ubicada a más de 4.000 m.s.n.m. entre las Provincias de Cotabambas y Grau, Región Apurímac. Situada a 260 km de la ciudad de Cusco por carretera y con coordenadas UTM E790,000 y N8,441.000, como podemos observar en la figura N° 19.

3.1.1 Ubicación de planta concentradora

Se ubica dentro de la jurisdicción del proyecto las Bambas. Estratégicamente se sitúa entre los tajos ferrobamba, quien actualmente está en operación y los tajos chalcobamba y sulfobamba que aún continúan en la etapa de exploración.

3.2 Geología y caracterización geotécnica de planta concentradora.

3.2.1 Geología de planta concentradora

La geología de esta zona está delineada por afloramientos de rocas intrusivas granodioríticas (Tim-gd), suelos residuales de las mismas rocas (Q-rc) y, en menor proporción, por depósitos de suelos aluviales (Q-al) y morrénicos (Q-mo). Los sectores más bajos, cercanos al cauce, están ocupados por un extenso bofedal (Qbo).

La unidad de mayor extensión corresponde a las rocas granodioríticas, ya que la mayor parte del área aparece cubierta por suelos residuales de estas mismas rocas, de reducido espesor. Los afloramientos rocosos son reducidos. En el área se identificaron lineamientos morfoestructurales de hasta unos 600 m de longitud, los que fueron identificados mediante la observación de fotografías aéreas y el estudio de campo. La principal dirección de estos alineamientos es NW-SE, con una dirección de esfuerzo tectónico compresional NE-SW. Durante el cartografiado geológico, no fueron observadas estructuras geológicas activas de extensión regional o local. Dos de estos lineamientos principales, de rumbo NW, parecen controlar la ocurrencia de afloramientos de aguas subterráneas asociadas al bofedal.

Los sistemas estructurales observados en terreno presentan las siguientes características. Estas estructuras presentan aberturas que llegan hasta los 5 mm, Las estructuras se presentan rellenadas con óxidos, arcillas y arenas que generalmente presentan un espesor de 2 a 5 mm. Las paredes de las fracturas se encuentran ligeramente rugosas a rugosas. La roca se presenta sana o ligeramente alterada en los alrededores de estas estructuras

En general, la ubicación de las instalaciones de la planta se encuentra sobre terreno estable, debido a que no existen riesgos de geodinámica externa, tales como la ocurrencia de aluviones o huaycos, erosiones o inundaciones. Los taludes tienen pendientes en el orden de 12° a 16°, lo que indican que el sector es estable. Tampoco existe el riesgo de la presencia de sumideros de karst, ya que estos no se presentan en rocas intrusivas, que son las que constituyen el sector. A continuación, se muestra la Figura N° 21 – Caracterización geológica de planta concentradora.

LEYETCH

LEYETCH

LA MAR

CUSCO

ULBARA

LINE Department

Line Totald

Figura N° 19: Ubicación del proyecto minero las Bambas

Fuente: Internet

Figura N° 20: Ubicación de planta concentradora – Las Bambas

Fuente: Elaboración propia

Fuente: MWH (2011) BOFEDALES, SECTORES SATURADOS CON PRESENCIA DE FINOS, SONDAJE GEOTECNICO EJECUTADO CALICATA EJECUTADA SIMBOLOGÍA ESTRUCTURAL

Figura N° 21: Caracterización geológica de planta concentradora

9/

3.2.2 Caracterización geotécnica por sectores

MWH (2011) indica que a partir de los resultados de las exploraciones de campo y ensayos in situ y de laboratorio efectuados en las distintas muestras recuperadas, es posible hacer la caracterización de los materiales que componen los suelos y rocas de cimentación para las diferentes obras auxiliares, y a su vez asignar las propiedades geomecánicas para los materiales que se requerirán para el diseño de las estructuras. En este numeral solo se incluye la descripción del material encontrado, perfil de estratificación y condiciones del agua donde fue registrado.

3.2.2.1 Planta de flotación (celdas)

Perfil estratigráfico: La información de calicatas y sondeos en el sitio permitieron identificar el siguiente perfil estratigráfico aproximado:

0,00-0,30 m: Suelo Orgánico.

0,30-5,70 m: Suelo residual. Arenas limosas con pocas gravas, en estado denso. El ensayo de Proctor sobre este material dio como resultado una máxima densidad seca de compactación de 1,8 gr/cm³ con una humedad óptima de 13,8%. La humedad natural (w) es de 5%, aproximadamente. En nivel freático varía entre los 6,16 m y los 7,63 m de profundidad. En la perforación SPP-16 se realizó un ensayo de penetración estándar (SPT) el cual tuvo como resultado rechazo (N>50). Las velocidades de onda compresional (Vp) en este material y profundidad alcanzan valores de hasta 1200 m/s, mientras que las velocidades de onda de corte (Vs) alcanzan valores hasta de 400 m/s en los primeros 3 m y a mayor profundidad de 700 m/s. Los valores de permeabilidad estimados para estos materiales a partir de los ensayos muestran valores del orden de 10-3 y 10-4 cm/s.

>5,70 m: Roca Granodiorita. El contacto de la roca se reportó a los 5,70 m de profundidad. El grado de fracturamiento del macizo es alto, y bajo el contacto suelo roca se registraron valores de RQD bajos hasta de 0% entre 9,5m y 13 m de profundidad. Se reporta como una posible zona de falla a esa profundidad. Con la profundidad mejoran las condiciones de la Roca. A diferencia del Sondeo, donde hay solo un tramo de RQD bajo, en el Sondeo SPP-17 hay sectores localizados de calidad baja con RQD de 0% a lo largo de toda la perforación. Las velocidades de onda compresional (Vp) en este material alcanzan valores de hasta 1200 m/s (7m bajo el contacto) y aumenta a mayor profundidad, mientras que las velocidades de onda de corte (Vs) alcanzan valores hasta de 700 m/s en los primeros

y aumentando con la profundidad. Los valores de permeabilidad estimados para estos materiales a partir de los ensayos muestran valores entre 10-4 y 10-5 cm/s.

3.2.2.2 Espesadores de concentrado y poza de emergencia

La excavación se hará en roca granodiorita en mayor parte y se espera que quede apoyada en roca de mejor calidad que la superficial, la cual presenta RQD menores de 55%. No se conoce el nivel de apoyo para la poza de emergencia por lo cual no se discute al respecto. Se asume que el máximo esfuerzo principal menor no será mayor de 1.0 MPa bajo las solicitaciones transmitidas por las estructuras que componen los espesadores de concentrados.

Perfil estratigráfico:

0,00-0,40 m: Suelo Orgánico encontrado en la Calicata CPP-30. En la perforación no se encontró este horizonte.

0,40-0,70: Suelo residual. En la Calicata CPP-30 se presenta este material de arena limosa con grava, de color marrón claro, medianamente densa, ligeramente húmeda, con presencia de bolones (30%), gravas (10%) de forma angulosa, arenas (50%) y finos (10%) de plasticidad media, hasta los 3,50 de profundidad (no se encontró el contacto con la roca de mejor calidad). Mientras en la perforación SPP-20, este espesor se limita a 70 cm. Se estima que las velocidades de onda compresional (Vp) en este material alcanzan valores de hasta 1200 m/s mientras que las velocidades de onda de corte (Vs) alcanzan valores hasta de 400 m/s en los primeros y aumentando con la profundidad.

>0,70 m: Roca Granodiorita. El grado de fracturamiento del macizo es alto, y bajo el contacto suelo roca se registraron valores de RQD menores de 55% hasta los 7 m de profundidad. A mayor profundidad hay RQD entre 60 y 100 %, con un sector puntual con valores hasta de 0% entre los 33 y 41m. Los valores de permeabilidad estimados para estos materiales a partir de los ensayos muestran valores entre 10-3 y 10-4 cm/s al inicio del contacto con la roca y van variando, aumentando hasta 10-8 cm/s con la profundidad. Se estima que las velocidades de onda compresional (Vp) en este material alcanzan valores de 1800 m/s y aumenta a mayor profundidad, mientras que las velocidades de onda de corte (Vs) alcanzan valores hasta de 700 m/s en los primeros y aumentando con la profundidad.

3.2.2.3 Zona de remoliendas

Perfil estratigráfico

La información de calicatas y sondeos en el sitio permitieron identificar el siguiente perfil estratigráfico aproximado:

0,0-2,1 m: Suelo residual. Arena limosa con presencia de gravas tamaño máximo de 7 cm, de color marrón claro a gris claro, medianamente densa, de plasticidad media a baja. La profundidad del suelo residual es variable encontrándose entre 2.1 m y 2.4 m en las calicatas, mientras que en la perforación se encontró a 4.5 m de profundidad. Esto indica un patrón de meteorización variable en el sector.

>2,1m: Roca Granodiorita de color gris fracturada, alterada de muy dura a dura con RQD promedio de 48% en 17 m de longitud. Los valores de permeabilidad estimados para estos materiales a partir de los ensayos muestran valores entre 10-4 y 10-5 cm/s al inicio del contacto con la roca y van variando, disminuyendo hasta 10-8 cm/s con la profundidad. Se estima que las velocidades de onda compresional (Vp) en este material alcanzan valores de 1800 m/s y aumenta a mayor profundidad hasta 3800 m/s, mientras que las velocidades de onda de corte (Vs) alcanzan valores hasta de 700 m/s en los primeros y aumentando con la profundidad hasta 1800 m/s. En nivel freático se detectó a 8,20 m de profundad el cual parece estar controlado.

3.2.2.4 Parámetros geomecánicos

De las siguientes Tablas N° 14, N° 15 y N° 16, Se obtendrá la información de la resistencia a la compresión (UCS), la densidad de la roca y la resistencia a la tracción.

Tabla N° 14: Parámetros geomecánicos zona de remoliendas

Propiedades de Resistencia	
Cohesión (c)	570 (Kpa)
Angulo de Fricción	50°
Resistencia a la compresión No Confinada (UCS)	95 (Mpa)
Coeficientes de Empuje	
Angulo de Fricción Roca - Hormigón	35°
Coeficiente de Presión Activo, Coulomb (Ka)	0.13
Coeficiente de Presión Pasivo, Coulomb (Kp)	416.47
Coeficiente de Presión Activo Dinámico, Mononobe Okabe (KAB)	0.36
Coeficiente de Presión Pasivo Dinámico, Mononobe Okabe (KPB)	303.43
Módulos	
Módulo de Deformación	2065
Modulo de Deformación	(MPa)
Módulo de Poisson	0.3
Módulo de rigidez Estático	794 (Mpa)

Propiedades de Laboratorio	
Densidad Seca	$2.64 (T/m^3)$
Humedad de Absorción	0.0062
Gravedad Especifica	$2.68 (T/m^3)$
Fuente: MWH (2011)	

Tabla N° 15: Parámetros geomecánicos celdas de Flotación

Propiedades de Resistencia	
Cohesión (c)	660 (Kpa)
Angulo de Fricción	46°
Resistencia a la compresión No Confinada (UCS)	112(Mpa)
Coeficientes de Empuje	
Angulo de Fricción Roca - Hormigón	35°
Coeficiente de Presión Activo, Coulomb (Ka)	0.16
Coeficiente de Presión Pasivo, Coulomb (Kp)	124.85
Coeficiente de Presión Activo Dinámico, Mononobe Okabe (KAB)	0.41
Coeficiente de Presión Pasivo Dinámico, Mononobe Okabe (KPB)	88.26
Módulos	
Módulo de Deformación	2741(MPa)
Módulo de Poisson	0.3
Módulo de rigidez Estático	1054 (Mpa)
Propiedades de Laboratorio	
Densidad Seca	2.64 (T/m ³)
Humedad de Absorción	0.76%
Gravedad Especifica	2.69 (T/m ³)

Fuente: MWH (2011)

Tabla N° 16: Resultados de la resistencia a la Tracción

RESUMEN DE RESULTADOS - TRACCIÓN INDIRECTA PLANTA CONCENTRADORA

Sondaje	Profundidad de muestra (m)	Probeta	Diámetro (cm)	Longitud (cm)	Carga	Resistencia a la tracción (Kg/cm²)	Resistencia a la tracción (Mpa)
CDDA		A	6.12	3.03	2800	96.13	9.43
SPPA- 01	29.15 - 29.50	В	6.12	3.17	2850	93.52	9.17
01		C	6.12	3.24	2300	73.84	7.24
SPPA- 02	29.90 - 30.32	A	6.17	3.26	2850	90.2	8.85

Fuente; MWH (2013)

3.3 Descripción de los proyectos de voladura de obra civil.

Los proyectos de voladura se realizaron de acuerdo con la información de los planos de obra civil. Pudimos identificar diferentes tipos de obras, en formas geométricas similares a la de un cuadrado, rectángulo y otros de figura amorfa, siendo estos en su mayoría la base de cimentaciones para la instalación de estructuras, plataformas para base de concreto y otros como zanjas para la instalación de tuberías de diferentes medidas. En la siguiente Tabla N° 17, se hace mención de todas las voladuras con diferentes alturas de excavación.

Tabla N° 17: Variabilidad de parámetros y total de voladuras

N°	TIPO DE OBRA		PREC	ORTE	В	UFFE	R	PRO	DUCC	IÓN
VOLADURA	DE CIVIL	(M^3)	S	Н	В	S	Н	В	S	Н
Voladura N° 1	MURO	5,417.42	0.9	12.4	2.5	2.5	2.6	1.5	3.0	7.0
Voladura N° 2	ZANJA	369.69	-	-	-	-	-	0.8	1.5	1.8
Voladura N° 3	ZANJA	1,933.96	-	-	-	-	-	1.5	1.8	2.4
Voladura N° 4	CIMENTACIÓN	9,731.17	1.0	6.5	2.0	2.5	5.9	2.8	3.2	6.4
Voladura N° 5	CIMENTACIÓN	3,768.19	1.2	2.8	1.8	2.0	2.8	2.0	2.4	2.8
Voladura N° 6	CIMENTACIÓN	2,649.18	1.2	2.7	1.8	2.0	2.7	2.0	2.4	2.7
V-1- 1 NO 7	CIMENTACIÓN	1,860.63	1.2	2.7	-	-	-	2.1	2.4	3.0
Voladura N° 7	CIMENTACIÓN	1,170.89	1.2	1.8	-	-	-	1.5	1.8	1.8
Voladura N° 8	CIMENTACIÓN	4,499.56	1.0	2.7	1.5	1.8	2.6	1.6	2.0	1.9
X/ 1 1 NO 0	CIMENTACIÓN	854.00	1.0	2.8	1.5	1.8	3.0	2.1	2.4	3.1
Voladura N° 9	CIMENTACIÓN	5,185.78	1.0	1.8	-	-	-	1.4	1.8	1.8
Voladura N° 10	CIMENTACIÓN	3,320.58	1.2	2.5	1.5	1.0	1.9	1.8	2.2	2.4
Voladura N°	CIMENTACIÓN	3,774.01	1.0	2.2	1.0	1.8	1.8	1.5	1.8	1.9
11	ZANJA	2,700.70	1.0	1.8	-	-	-	0.9	1.8	1.8
Protocolo N°	CIMENTACIÓN	4,747.09	1.0	2.0	1.5	1.8	1.8	1.5	1.8	2.0
12	ZANJA	4,044.71	1.0	2.0	-	-	-	1.2	1.8	2.2
Voladura N° 13	ZANJA	3,297.05	1.0	2.4	-	-	-	1.5	1.8	2.4
Voladura N° 14	ZANJA	3,033.21	1.0	4.1	-	-	-	1.5	1.8	4.2
Voladura N° 15	ZANJA	2,140.35	1.0	2.6	-	-	-	1.5	1.8	2.6
Voladura N° 16	ZANJA	4,862.88	1.0	2.5	-	-	-	1.5	1.8	2.5
Voladura N° 17	ZANJA	6,023.70	1.0	3.3	-	-	-	1.5	1.8	3.4
Voladura N° 18	ZANJA	5,942.61	1.0	1.9	-	-	-	1.5	1.8	1.9
Voladura N° 19	ZANJA	5,054.04	1.0	3.0	-	-	-	1.5	1.8	3.0
Voladura N° 20	ZANJA	3,232.41	1.0	3.3	-	-	-	1.5	1.8	3.3
Voladura N° 21	ZANJA	1,068.05	1.0	3.0	-	-	-	1.5	1.8	2.8
Voladura N° 22	ZANJA	1,651.05	1.0	2.3	-	-	-	1.5	1.8	2.3
Voladura N° 23	ZANJA	1,122.43	1.0	4.5	-	-	-	1.5	1.8	4.5
VOLUME	N TOTAL(M³)	93,455.34								

Fuente: Pevoex Contratistas SAC

3.4 Distancias de los proyectos de voladura hacia la infraestructura

3.5 Diseño metodológico de investigación

El diseño de investigación para el presente proyecto corresponde a una **investigación descriptiva.** Según, Hernández (1991) indica que los estudios descriptivos buscan especificar las propiedades importantes de personas, grupos, comunidades o cualquier otro fenómeno que sea sometido a análisis. Miden o evalúan diversos aspectos, dimensiones o componentes del fenómeno o fenómenos a investigar. Desde el punto de vista científico, describir es medir. Por tratarse de voladuras de obra civil cercanas a la infraestructura de planta concentradora del proyecto minero las Bambas. El objetivo fundamental de la voladura será controlar el nivel de vibraciones, además de controlar las proyecciones de roca para no dañar las estructuras. Entonces, se describirá cómo influye la relación de la carga máxima por retardo y la configuración de los intervalos de retardo en el sistema de iniciación no eléctrica dual. Siendo este, la causa principal del fenómeno de vibraciones. Además, de evaluar el diseño de voladura y medir tal fenómeno mediante los reportes de vibración emitidos por un sismógrafo.

3.6 Tipo de investigación

Según, Zorrilla (1993) la investigación se clasifica en cuatro tipos: básica, aplicada, documental, de campo o mixta. La investigación aplicada, guarda íntima relación con la básica, pues depende de los descubrimientos y avances de la investigación básica y se enriquece con ellos, pero se caracteriza por su interés en la aplicación, utilización y consecuencias prácticas de los conocimientos. La investigación aplicada busca el conocer para hacer, para actuar, para construir, para modificar.

Aplicada: De acuerdo con los objetivos trazados, este proyecto de investigación persigue fines de aplicación directos e inmediatos. Entonces un adecuado diseño de voladura será aquella que cumple con las dimensiones geométricas de la obra civil controlando los impactos negativos de vibración y proyección de rocas. Para lo cual el nivel máximo de vibraciones será de 20mm/s, valor obtenido de la norma técnica DIN 4150 por considerarse una clase de construcción tipo 1, edificaciones industriales con diseños robustos. Una vez calculado las variables independientes cuales son los parámetros de voladura. Se simulará en el software Jksimblast de donde se obtendrá una VPP teórica y si el resultado está por debajo de los 20 mm/s. Se aplicará a los diferentes proyectos de voladura de obra civil pendientes de excavación entre ellos zanjas, cimentaciones y muro.

3.6.1 Pasos para diseñar y evaluar voladuras de obra civil.

- Se determina el tipo de roca y algunos parámetros geomecánicos como la resistencia a la compresión, resistencia a la tensión, densidad de la roca y el RQD.
 Esta información se obtuvo de un estudio denominado. Estudios Geotécnicos Adicionales "On Site" Facilities Proyecto Las Bambas informe de prospecciones geotécnicas realizado por MWH (2013), también un estudio similar denominado, estudios geotécnicos on site facilities proyecto las bambas caracterización geotécnica de los materiales de fundación volumen I, también realizado por MWH (2011).
- Mediante las áreas de Topografía y Pervol Pevoex se analizó los planos de construcción donde se determinó el tipo de obra civil entre zanjas y cimentaciones de donde se obtuvo la altura de corte ó excavación, el largo, ancho y ángulos de inclinación de los taludes de contorno. Como también, las distancias desde las estructuras a proteger hacia la zona de voladura.
- La determinación del diámetro de perforación se hizo mediante los recursos disponibles, equipos de perforación hidráulica Rock Drill DX 800, por su capacidad se estableció diámetros entre (3.5" y 4"). Sin embargo, para alturas de corte por debajo de 2m lo ideal es usar equipos de menor diámetro de perforación al no contar con tales recursos se optó por otras formas de excavación.
- El cálculo de la carga operante (carga máxima por retardo) es el factor fundamental para diseñar voladuras que están cerca de estructuras e instalaciones, este valor se puede obtener haciendo un despeje al modelo de predicción de vibraciones a campo lejano propuesto por *Devine*, para ello necesariamente se tiene que conocer la distancia de la zona de voladura hacia la estructura más cercana, la velocidad pico partícula limite de acuerdo con una norma técnica. Para este caso la norma técnica Alemana DIN 4510 establece que para estructuras de tipo industrial con construcciones robustas no debe exceder en más de 20 mm/s. y las constantes K y α.
- Para cada proyecto de voladura de obra civil, se identificó la necesidad de aplicar técnicas de voladuras de precorte para la uniformidad en las paredes de los taludes en el contorno de la obra civil. Como también aplicar voladuras amortiguadas (buffer).

- Para el diseño de la malla de voladura, la variable a considerar fue la altura de excavación al estar ya definida por el área civil se convierte en una medida no modificable, por lo tanto, la malla de voladura debe ajustarse a la altura de corte y a los limites geométricos del plano civil, el modelo propuesto por Andersen (1952), señala que, considerando variables como el diámetro de perforación y altura de corte se puede calcular el burden, sin embargo la relación de rigidez propuesto por Konya (1998) indica que la relación entre la altura de corte y el burden debería resultar 3 como optimo, sin embargo cuando se tiene alturas de corte menores esta relación debe resultar mayor que 1. Para el cálculo del espaciamiento se consideró utilizar una malla alterna (triangular), haciendo un despeje a la relación de S/B = 1.15. Es posible su cálculo.
- Para la distribución de carga en el taladro se debe tener en cuenta el cálculo de la carga máxima por retardo, el cual no debe exceder la cantidad calculada. Esto implica usar factores de carga mínimos. Y con referente a los explosivos la empresa Pevoex Contratistas contaba con stock de Anfo y Emulsión encartuchada. Ideales para el carguío ya sea en terreno seco o con presencia de agua y por, sobre todo, sus propiedades uno con mayor densidad que el otro lo que supone que su velocidad y presión de detonación también serán mayores. Cabe recalcar que el diseño de carga será diferente para cada tipo de taladro (precorte, buffer y producción)
- El cálculo de la longitud del taco será una de las prioridades al igual que el cálculo de la carga máxima, ya que mantendrá relación directa con el control de la proyección de rocas. *Frank Chiapetta*, mediante su teoría de cráter nos muestra un procedimiento de cálculo por tipo de explosivo, que consiste en obtener un factor de seguridad (SD). Para controlar la proyección de rocas los valores de este factor deben estar en el rango de (0.92 1.40). valores bajos generaran excesivo flyrock mientras tanto valores medios controlaran la proyección de rocas como también se logrará una buena fragmentación y esponjamiento del material.
- Para la configuración de retardos en la conexión de taladros y el diseño de salida, el uso del sistema no eléctrico dual ó pirotécnico resulta el adecuado. No solo por la maniobrabilidad en los tiempos de retardo si no, por la detonación secuencial que nos ofrece. Sin embargo, una desventaja es el grado de dispersión que por naturaleza presentan los accesorios duales y CTDs. La selección de los intervalos

de retardo entre filas y taladros es una tarea complicada, pero se hizo mediante una tabla matriz otorgado por la empresa Famesa Explosivos. La secuencia de salida se diseñará de acuerdo con las condiciones que presenta el frente de voladura. (disponibilidad de cara libre, voladura confinada entre otros).

- Simulación en el software Jksimblast, el software resulta una gran herramienta de diseño por su flexibilidad y eficacia, nos da una clara visión del resultado esperando en una voladura, Una vez definido los parámetros de diseño de voladura tal información se ingresa al sistema se configura y se simula el evento de voladura. De esta forma se puede obtener hasta la velocidad pico partícula teórica. Por tratarse de las primeras voladuras a realizarse en el entorno de estructuras cercanas. Se necesita un grado de confiabilidad, al margen de haber calculado la carga operante máxima, el uso de factores de carga mínimos, la detonación secuencial que nos ofrece los faneles duales. El resultado en el software con niveles de vibración por debajo de la norma técnica resulta gratificante.
- Para la evaluación de las voladuras diseñadas y ejecutadas, se recolectaron registros fotográficos del (antes y después), del área de Perforación y Voladura de la empresa Pevoex Contratistas. Donde se observa el grado de fragmentación, desplazamiento, esponjamiento y los resultados de la voladura de precorte. Y para comprobar que el nivel de vibración de la voladura estuvo por debajo de los límites máximos permisibles de acuerdo con la Norma DIN 4510, se recolecto los reportes de vibración emitidos por un sismógrafo de marca instantel.

3.7 Población

Wigodski (2010) precisa que la población es el conjunto total de individuos, objetos o medidas que poseen algunas características comunes observables en un lugar y en un momento determinado. Para el presente estudio de investigación, La población está constituido por los proyectos de voladura de obra civil que en su totalidad fueron 23 entre ellos de tipo zanjas, cimentaciones y una voladura de precorte para el muro "R", realizados por la empresa Pevoex Contratistas SAC, en zonas aledañas a la infraestructura de planta concentradora del proyecto minero las Bambas.

3.8 Muestra

Wigodski (2010) define a la muestra como un subconjunto fielmente representativo de la población. Hay diferentes tipos de muestreo. El tipo de muestra que se seleccione dependerá de la calidad y cuán representativo se quiera sea el estudio de la población. Para el presente trabajo de investigación se tomarán por muestra a 03 voladuras por tipo de obra civil de las diversas que hubo, es decir 01 voladura de tipo zanjas, 01 voladura de tipo cimentación y por último la voladura de precorte en muro. Siendo estas las más críticas por la distancia corta hacia la infraestructura de planta concentradora. Y para la evaluación de la voladura los registros de vibraciones y fotografías de los eventos de voladura recolectados del área de perforación y voladura de la empresa Pevoex Contratistas SAC.

3.9 Técnica de recolección de datos

Para la recolección de datos se utilizó la técnica de observación aplicativa, pero con mayor orientación a ser analítico ya que consiste en juntar la información necesaria para realizar el diseño de voladura. Como información de entrada tenemos planos de obra civil otorgado por Bechtel Incorp. Suc. del Perú, luego los *Estudios Geotécnicos Adicionales "On Site" Facilities proyecto Las Bambas* – informe de prospecciones geotécnicas realizado por MWH y para la recolección de datos operativos de diseño se recurrió a la información de las áreas involucradas a los trabajos de diseño de voladura de la empresa Pevoex Contratistas SAC. entre ellos tenemos:

Área de topografía:

Información: Levantamiento topográfico de taladros y la zona de voladura.

Área de perforación y voladura

Información:

- Parámetros de diseño de perforación voladura
- Registros fotográficos
- Registros de control de vibraciones

3.10 Instrumentos de recolección

Los instrumentos utilizados en la presente investigación fueron los siguientes:

TESIS UNA - PUNO

- Software de voladuras (Jksimblast).
- Planos de construcción civil
- Sismógrafo Instantel Minimate PlusTM.
- Graficadores (AutoCAD y Excel).
- Hojas de cálculo Excel.
- Cámara fotográfica.
- Computadora Personal (Laptop).

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1 Diseño de la malla de voladura para obras civiles

4.1.1 Consideraciones de diseño

Por tratarse de voladuras de obra civil, cercanas a la infraestructura de planta concentradora. Se enfatizó controlar el nivel de vibraciones y proyección de rocas producto de la voladura; un exceso podría ocasionar daños a las estructuras. Entonces, un factor determinante será el cálculo de la carga máxima por retardo, Este valor se obtiene del modelo de vibraciones a campo lejano propuesto por Devine, en el informe de Scherpenisse (2000). Un exceso en la cantidad del explosivo calculado generaría mayor vibración en la roca. Y para el control de las proyecciones de roca se tiene que calcular la distancia adecuada del taco de tal manera que retenga los gases producto de la detonación, esto se puede lograr con la aplicación del factor de seguridad de Frank Chiapetta, también se empleara el recubrimiento para mitigar por completo el riesgo de fly rock. Otra de las consideraciones para el diseño de la voladura es que la malla de voladura se debe ajustar a los limites geométricos del plano de obra civil, de tal manera, que una vez excavado el material volado este cumpla con las dimensiones geométricas del plano de obra civil, evitando así la sobrerotura por lo que fue necesario recurrir a diferentes tipos de mallas y técnicas de voladura controlada (precorte, taladros buffer). Para la distribución de la columna de carga de voladura se consideró como regla el

valor de la carga operante y el uso de factores de carga mínimos, previo cálculo. En resumen, el diseño será eficiente cuando cumpla las siguientes consideraciones:

- Control del nivel de vibraciones
- Control de la proyección de rocas
- Fragmentación de roca de tamaño regular
- Taludes estables en el contorno de la obra civil

Una vez calculado los parámetros de voladura, se debe realizar una simulación de voladura con el diseño establecido, en el software JK SimBlast. Esto con la finalidad de determinar la configuración de los tiempos de retardos entre taladros y entre filas. Como también, el secuenciamiento de detonación y el punto de iniciación de la voladura. Por las facultades del software JkSimblast también se predecirá el nivel de vibraciones "teórica" expresado como la velocidad pico partícula de acuerdo con la norma técnica alemana DIN 4170 en estructuras cercanas a voladura clase 1 no deberá exceder los 20 mm/s. Para cada proyecto de voladura es importante contar con las dimensiones e información del plano de obra civil en el cual se detalla el largo, ancho, altura de corte y el ángulo de inclinación de las paredes de la obra civil, como también, la distancia entre la estructura a proteger y la zona de voladura. A continuación, doy a conocer algunos aspectos como diseños independientes pero que tendrán relación en el diseño integral de voladura tanto en zanjas, cimentaciones y el muro "R".

4.1.1.1 Parámetros resistivos al macizo rocoso

De acuerdo con los informes de la empresa MWH (2011) y MWH (2013) cuyos títulos son Caracterización geotécnica de los materiales de fundación Volumen I. y el Informe de prospecciones geotécnicas estudios geotécnicos adicionales on-site facilities. Proyecto Las Bambas. Respectivamente. Se pudo, conseguir el resumen de las propiedades geomecánicas del macizo rocoso en la siguiente Tabla N° 18.

Tabla N° 18: Resumen de las propiedades geomecánicas

PROPIEDADES GEOMECÁNICAS					
Tipo de Roca	Granodiorita				
Densidad	2.62 TM/m^3				
Resistencia a la compresión	95 MPa				
Resistencia a la tracción	8.0 MPa				
RQD	50-55% (Normal)				

TESIS UNA - PUNO

Velocidad de onda compresional > a 1800m/s

Fuente: Elaboración propia

De donde: Se determina que nos encontramos ante una roca moderadamente dura.

4.1.1.2 Diámetro de perforación

Por muchos aspectos el diámetro de taladro es el factor con mayor importancia en el diseño de voladura, ya que influye directamente en el cálculo del burden y la distribución de carga explosiva, en general afecta a la eficiencia de toda la operación. Para voladuras en obras civiles, el diámetro de perforación debe ser pequeño entre los rangos de 50 mm hasta 125mm esto según Exsa (2009), precisamente para un mejor dimensionamiento de los demás parámetros.

La decisión para elegir el diámetro de perforación en las voladuras de obra civil, aledañas a la infraestructura de planta concentradora, se basaron en los siguientes factores:

- 1. La disponibilidad y aplicabilidad del equipo de perforación, Contractualmente la empresa Pevoex contratistas, estuvo realizando trabajos de voladura en otros frentes de trabajo (explotación de canteras) disponiendo así; equipos de perforación hidráulica modelo DX-800, con el siguiente performance. Rango del diámetro de perforación (76.2mm 127mm), Este equipo sería aplicable por encontrase dentro del rango de diámetros menores. Sin embargo, se tiene que evaluar en función a la altura de corte el cual se explica en el punto 3.
- 2. Control en la exactitud de perforación, El equipo de perforación DX-800, cuenta con un sistema automatizado para controlar la desviación de perforación en taladros con un ángulo de inclinación, lo que supone que reduce la desviación. A diferencia de los equipos manuales donde la fuerza y criterio humano son los mecanismos para tal propósito. Uno de los objetivos tras la voladura en obras civiles es que las paredes de los taludes sean estables y uniformes, para ello, se tuvo que emplear los taladros de precorte, como estos taladros necesitan una precisión en la perforación, el equipo DX-800 resultaba el adecuado.
- 3. **Altura de corte proyectada y la envergadura de la voladura.** De acuerdo con las especificaciones del plano de obra civil, Se pudo identificar alturas de corte variables desde 1 m a 10 m, esto según el tipo de obra civil. (zanjas = altura promedio 2.8 m, plataformas para cimentaciones = altura promedio 4 m y muro = 10 m). Como la altura de corte debe estar en proporción al diámetro de taladro se tiene que:

$$\emptyset = \frac{H}{60}$$

Donde:

Ø: Diámetro de taladro (m)

H : Altura de corte promedio (m)

Reemplazando valores se tiene:

Zanjas: $2.5/60 = 0.045 \text{m} \sim 45 \text{mm} \sim 2.0$ "

Cimentaciones: $4.0/60 = 0.067 \text{m} \sim 67 \text{mm} \sim 2.5$ "

Muros: $10./60 = 0.166 \text{m} \sim 166 \text{mm} \sim 6.5$ "

Por la variabilidad de alturas de corte y el resultado de diámetros de taladro, se necesitaría diferentes equipos de perforación desde perforadoras manuales, hasta equipos rockdrill. Sin embargo, por la disponibilidad de recursos en el proyecto y versatilidad para realizar trabajos de precorte, se consideró tomar a los equipos de perforación DX-800. Según el análisis de la altura de corte, este equipo con capacidad de perforación (76.2 mm – 127 mm) sería aplicable para los trabajos en muros. y para los demás tipos de obra civil, donde se tenían alturas de corte menores a 4 m, también fue posible su aplicación siempre y cuando la altura sea mayor a 2 m por cuestiones de diseño, lo que implica ajustar la malla de voladura y desacoplar el explosivo en la columna de carga. Para efectos de diseño de voladura y su aplicación en campo. Se decidió que, para los taladros de precorte se usaría como diámetro de perforación 3.5" y para las voladuras principales 4.0".

4.1.1.3 Explosivos utilizados en las Bambas

A continuación, se hace una breve descripción de los explosivos y accesorios cuales influirán en el diseño de voladura .

Breve análisis de explosivos

- Superfam DOS: En zonas donde la roca granodiorita presenta fracturas, el Anfo fue la mejor opción a elegir, por su buen desempeño con la expansión de gases, además por su densidad baja 0.8 g/cm² y una presión de detonación baja 51 Kbar.
- Emulfan 300: Ante la presencia de agua y zonas donde la roca granodiorita era compacta. La emulsión encartuchada (emulfan) era el adecuado, por su alta resistencia en el agua, alta densidad 1.24 g/cm², alta presión de detonación 94 Kbar

y un alto poder rompedor (potencia). Así mismo, el uso de este explosivo fue muy útil para realizar maniobras en el diseño de carga; por ejemplo, reducir el factor de carga en metro lineal, esto por sus dimensiones del cartucho 3" de diámetro por 16" de longitud.

- Dinamita SG: Para el diseño de precorte, fue indispensable el uso de dinamitas encartuchadas, por ser de un diámetro menor 7/8" al diámetro de taladro 3.5", el cual hace que haya desacoplamiento con el diámetro de taladro, con ello, podemos reducir la presión de explosión.
- **Booster HDP 1/2:** Compuesto básicamente por pentolita un explosivo muy potente, usualmente es conocido como cebo ó prima, de peso 225 gramos. Se utilizó para iniciar la columna de carga en este caso Anfo y Emulfan 300, posee una gran adaptación a los fulminantes con retardo de fondo que se encuentran en faneles duales.

Actualmente en el mercado de ventas de explosivos existen una gran variedad y a diferentes precios, a libre elección del interesado según sus requerimientos. Considerando sus propiedades y dimensiones la gama de explosivos se adecuaban para los trabajos de voladura en obra civil. Estos mismos fueron tomados del stock de explosivos almacenados en el polvorín de la empresa Pevoex Contratistas ya que también estos abastecían para voladuras en otros frentes de trabajo.

Breve análisis de los accesorios y tiempos de retardo

Este análisis se hace con la finalidad de conocer los periodos de retardo óptimos para realizar la configuración del amarre y secuencia de detonación. Al estar disponibles una gama de accesorios tipo faneles duales y CTDs. El Sistema de iniciación de la voladura vendría a ser de tipo dual ó pirotécnico. Debido a su flexibilidad y seguridad en el amarre y manejo de tiempos de retardo, nos ofrece una secuencia de detonación pausada entre taladros, es decir (la detonación es taladro por taladro) con esto logramos controlar la carga operante a un tiempo de intervalo determinado. Sin embargo, el grado de dispersión en los retardos es un factor que considerar. Se sabe que una excesiva carga operante y un inadecuado tiempo de retardo son los responsables del descontrol de vibraciones en una voladura. Otra de las consideraciones fue determinar el tiempo de retardo entre filas y entre taladros. Para ello, se tuvo que recurrir al estudio de la *Tabla N*° 2 – *Matriz de Tiempos de retardo*. Otorgado por asistencia técnica de una empresa especializada, en donde, según a

las necesidades de voladura de obra civil se pudo determinar la siguiente $Tabla N^{\circ} 19 - Selección de retardos óptimos$.

Tabla N° 19: Selección de retardos óptimos

SELECCIÓN DE RETARDOS ÓPTIMOS						
RETARDO ENTRE FILAS:	45	MS	65	MS	70	MS
Retardo entre taladros máximo:	23	MS	33	MS	35	MS
Retardo entre taladros mínimo:	15	MS	22	MS	23	MS
RETARDO ENTRE TALADROS OPTIMO:	17	MS	25	MS	30	MS

Fuente: Elaboración propia

De acuerdo con estos resultados se pudo determinar que existen 03 tiempos de retardos entre filas que serán óptimos para el control de vibraciones cuales son de 45ms, 65ms y 70ms, siendo el más relevante el de 65ms. Así mismo, se determinó 03 tiempos de retardo entre taladros (17ms, 25ms y 30ms) siendo el más adecuado el de 25ms. Sin embargo, por la disponibilidad en el stock de explosivos de la empresa Pevoex se decidió utilizar faneles duales de 17ms de superficie y 800ms de retardo de fondo y el conector troncal para el retardo de filas fue de 65ms esto para sumar tiempos mayores, aunque en la práctica para flexibilidad en el diseño de secuenciamiento de salida se seleccionaran los 03 tiempos (35,42,65) de retardo. Líneas abajo se muestra la *Tabla Nº 18* con los retardos seleccionados y los criterios de selección.

Tabla N°20: Criterios de selección de retardos.

TIEMPOS DE RETARDOS SELECCIONADOS		Retardo entre filas	- PERIODO	Retardo entre taladros		
		MS/fila	LKIODO	Min (MS/tal)	Max (MS/tal)	
	Masiva	45	MS min	15	23	
	Masiva	210	MS máx.	70	105	
Tipo de Roca	Muchas Fracturas	17	MS min	6	9	
Tipo de Roca		65	MS máx.	22	33	
	Fisuras débiles	17	MS min	6	9	
		45	MS máx.	15	23	
Condiciones de	I lana da Aaya	17	MS min	6	9	
Agua	Lleno de Agua	50	MS máx.	17	25	
Evelosivos	Dansidad N.1.2 alaa	17	MS min	6	9	
Explosivos	Densidad >1.3g/cc	65	MS máx.	22	33	
	Composto	17	MS min	6	9	
	Compacto	30	MS máx.	10	15	

Perfil de	Cualta	30	MS min	10	15
	Suelto	80	MS máx.	27	40
Material Detonado	1	80	MS min	27	40
Detonado	Desparramado	210	MS máx.	70	105
	Fragmentación	30	MS min	10	15
	Promedio	70	MS máx.	23	35
Eficiencias de	Buena	45	MS min	15	23
	Fragmentación	120	MS máx.	40	60
	Sobrerotura hasta el fondo	65	MS min	22	33
Voladura		210	MS máx.	70	105
	Control de Flyrock	45	MS min	15	23
		150	MS máx.	50	75
	Vibraciones	65	MS min	22	33
	Mínimas	220	MS máx.	73	110

Fuente: Elaboración propia

- Fanel Dual 17/800ms: Este accesorio tiene la función de retardar la detonación entre taladros, Básicamente está compuesto por una manguera fanel y 2 fulminantes retardados en ambos extremos, el primero es un fulminante N° 03 superficial que lleva un conectador plástico tipo "hongo" con un elemento de retardo de 17 ms, con el cual activaremos la onda de choque que será conducido por la manguera nonel para secuenciar al siguiente taladro, también actuara como línea descendiente de la columna de carga para activar al segundo fulminante N° 12 de profundidad, que viene ensamblado al otro extremo de la manguera y que posee un elemento de retardo de 800 ms, el cual activara al cebo. Se eligió un retardo de 800 por la cantidad de taladros que detonaran que están en el rango de 60 a 150 taladros. La longitud del fanel dual fue de 12 m, esto por la suma entre la variedad de altura de corte y espaciamiento.
- CTD: (Conector Troncal Dual), Los CTDs tienen la función de conectar e iniciar el secuenciamiento entre filas, está compuesto por una manguera fanel y un fulminante N° 03, en uno de los extremos lleva ensamblado el conectador tipo hongo y según el resultado de retardos obtenidos, su elemento de retardo será de 45, 60 y 70 ms. Para tener mayor fluidez con la secuencia de salida también se solicitó CTDs de 35 ms. la longitud del fanel fue de 5 m.
- Fanel LSEF: Fanel Línea Silenciosa, es un accesorio diseñado para el inicio de detonación de la voladura integral, está compuesto por una manguera fanel de 500 m de longitud y en uno de sus extremos lleva ensamblado el fulminante № 06 con su respectivo conector y en el otro extremo viene sellado por ultrasonido.

- **PENTACORD 5P:** ó cordón detonante, Su uso principal fue para el diseño de precorte tanto de la línea troncal y como línea descendente para activar a las dinamitas, sus características básicas son su alta velocidad 7000 m/s, 5P (5 gramos de pentrita por metro lineal), fácil manipuleo y seguridad
- RETARDO FANEL MS CONECTOR: Es un retardo bidireccional, diseñado para amarrar en ambos extremos al Cordón Detonante en un punto que se desea retardar.
 Su función para este proyecto fue la de retardar paquetes de taladros en el diseño de precorte. Se solicitaron retardos de tiempo de 17, 25, y 35 ms.
- **BALÍN:** Fulminante balístico ó detonante fiochi, es un accesorio que en su interior contiene un alto explosivo que una vez golpeada mediante un percutor genera una explosión y da inicio a la deflagración de la línea silenciosa.
- **PERCUTOR:** Es un dispositivo metálico y su función es generar una impulsión en el balín mediante la fuerza humana, basta un golpe.

4.1.1.4 Diseño de taladros de precorte

Como parte del diseño integral de voladuras de obras civiles en planta concentradora, Los taladros de precorte controlaron el daño hacia la pared de los taludes y precisamente en proyectos de carácter civil, el valor de la voladura esta en generar paredes uniformes con cortes exactos, evitando así la sobrerotura. Un buen diseño de voladura en obra civil es aquella que cumple con las dimensiones geométricas descritas en un plano, tras su ejecución. Es decir, si se tiene una zanja de 15m de largo x 3m de ancho y una altura de corte de 3m y un ángulo de inclinación de las paredes 75°, el diseño de voladura tiene que adecuarse a estos límites geométricos, como también al control de vibraciones y proyección de rocas por encontrarse en una zona critica. Conociendo algunas propiedades del explosivo y características geomecánicas del macizo rocoso se calcula la presión del taladro, que debe resultar menor a la resistencia de compresión de la roca y el espaciamiento entre taladros que debe ser el ideal para la formación de la grieta. A continuación, se realizará el cálculo de los taladros de precorte para la inclinación del muro R, el mismo que se usará de referencia para las demás obras civiles.

Cálculo de la presión de taladro desacoplado.

$$P_{t}=110*f^{n}*\delta_{exp}*VOD^{2}$$

Donde:

Pt : Presión de taladro (MPa)

fⁿ : Razón de desacoplamiento, **0.06** (ver cálculo en líneas abajo)

δexp : Densidad de explosivo (g/cm³), Dinamita SG 65 7/8" x 7" Equivalente a

 1.15 g/cm^3

VOD : Velocidad de detonación (km/s), equivalente a 5.0 km/s

Además, para los valores de "n", se debe considerar:

Taladro seco: n = 1.25

Taladro con agua: n = 0.9

Reemplazando valores se tiene:

$$P_t = 110*(0.06)^{1.25}*1.15*(5.0)^2$$

$$P_t = 93.91 \text{ MPa}$$

Con este valor calcularemos el espaciamiento entre taladros, cabe recalcar que la presión de taladro está por debajo de la resistencia a la compresión de la roca granodiorita que esta en promedio de 95 Mpa.

Cálculo de la razón de desacoplamiento.

Se utiliza la siguiente expresión:

$$F = (D_e^2 * L) / (D_h^2 * H)$$

Donde:

D_e : Diámetro del explosivo en (mm), el explosivo a utilizar es la dinamita SG 65 7/8" x 7", equivalente a **22.25 mm**

 D_h : Diámetro del taladro en (mm), el diámetro de perforación fue de 3.5" equivalente a $88.9 \ mm$

L : Longitud de la carga explosiva (m) equivalente a 11 m.

H : Longitud del taladro (m) equivalente a 12 m.

Reemplazando valores se tiene:

$$F = (22.5^2 * 11) / (88.9^2 * 12)$$

$$F = 0.06$$

Cálculo del espaciamiento.

$$S = \emptyset x \frac{(Pt + Rt)}{Rt}$$

Donde:

S: Es el espaciamiento entre taladros que se desea calcular, expresado en (mm),

Ø : Diámetro de taladro (mm), Para todos los proyectos se perforó con un

diámetro de 3.5" equivalente a 88.9 mm

Pt : Presión de taladro (MPa), Equivalente a **93.91 MPa**

Rt : Resistencia a la tracción de la roca (MPa), De acuerdo con el estudio

geomecánico, su valor es de un promedio de 8.0 Mpa en roca granodiorita.

Reemplazando valores se tiene:

$$S = 88.9 \times \frac{(93.91 + 8.0)}{8.0}$$

$$S = 1132.4 \text{ mm} \sim 1.1 \text{ m}$$

Para efectos de aplicación en el diseño de precorte de zanjas, cimentaciones y el muro R, se debe considerar que este valor del espaciamiento variara de 0.8 m a 1.2 m. por razones de que esta definición de espaciamiento no considera las características estructurales de la roca. en rocas masivas de 0.8 m a 1.0 m y rocas fracturadas de 1.1 m a 1.2 m.

Distribución de carga.

Para una mejor maniobrabilidad del diseño en la distribución de carga se realiza en un formato Excel. Sabemos que la presión de taladro desacoplado con la dinamita SG 65 es de 93 Mpa menor a la resistencia de la compresión de la granodiorita (95 Mpa), esto da a entender que la dinamita sería el explosivo adecuado para generar el plano de precorte en la roca y para su iniciación instantánea necesariamente debe estar amarrado al cordón 5P por su propiedad fundamental la VOD (7000 m/s) es mayor al de la dinamita (5000 m/s).

Para la distribución de la columna de carga se necesitará de la siguiente información, cabe recalcar que algunos valores se calcularon y otros se obtuvieron de fichas técnicas del explosivo:

H (Altura de taladro) : 12 m

TESIS UNA - PUNO

E (Espaciamiento) : 0.9 m

Lc (Longitud de carga) : 11 m

Tv (Taco vacío) : 1 m

Wc (Peso de cartucho) : 0.08 g/cc

Lcc (Longitud de cartucho) : 0.18 m

Espaciamiento entre cartuchos = ?

Espaciamiento entre cartuchos = Longitud de cartucho = 0.20 m

Con la aclaración de que puede variar dependiendo de la calidad y propiedades del macizo rocoso, roca masiva (0.15 - 0.20); roca diaclasada (hasta 0.25)

N (Cantidad de cartuchos) = ?

N (Cantidad de cartuchos) =
$$\frac{Lc}{Lcc + Espaciamiento entre cartuchos}$$

N (Cantidad de cartuchos) =
$$\frac{11}{0.18 + 0.20}$$

N (Cantidad de cartuchos) = 29 cartuchos

Factor de carga $(Kg/m^2) = ?$

La densidad de carga lineal para la dinamita incluyendo el espaciamiento entre cartuchos es de 0.24 kg/m.

$$Factor\ de\ carga = \frac{\frac{Kg}{m}*N*l_{cc}}{E*H}$$

Factor de carga =
$$\frac{0.24 * 29 * 0.18}{0.9 * 12}$$

Factor de carga = 0.12
$$\frac{Kg}{m^2}$$

Figura N° 23: Distribución de carga en taladros de Precorte

Fuente: Elaboración propia

4.1.2 Diseño de voladura precorte para el muro "R"

4.1.2.1 Aspectos generales.

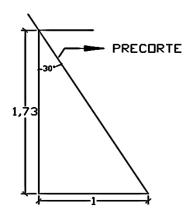
La zona de voladura al cual denominaremos "MURO R", Separa la plataforma de las celdas de flotación y la plataforma de las instalaciones de remolienda. y como información se tiene que el muro es inestable con presencia de fracturas y rocas sueltas, por lo tanto, se requiere inclinar el ángulo de reposo del muro de 90° a 60°. Mediante la aplicación de voladura controlada (precorte) consiguiendo generar una pared uniforme y estable. Como información crítica se tiene que la zona de voladura se encuentra a 30m de la primera estructura a proteger donde se tiene tanques instalados de las celdas de flotación construidos en una base de concreto y a 90m se tiene la estructura principal de molienda construido con material de acero debidamente calibrado, y a 46m una grúa estacionaria. Al frente de la cara libre del

muro a 30m se tiene un pedestal (base de concreto para una grúa estacionaria) entre armazones de fierro, equipos y materiales de construcción. Entonces por la cercanía de estructuras el diseño de voladura debe garantizar el control en el nivel de vibraciones que de acuerdo con la norma DIN 4150 no debería exceder en 20 mm/s. Para ello, teniendo la distancia más cercana cuál es de 30m la carga máxima por retardo resultaría en 16 kilos/retardo. De acuerdo con la *Tabla N*° 23 – Calculo de la carga máxima con diferentes distancias.

Como primer paso se obtuvo las dimensiones geométricas del plano civil del "MURO R", (largo, ancho y altura de corte), *ver figura N° 25*, luego se constató tal información en la zona de voladura. En la figura N° 24, se muestra un muro bastante irregular e inestable con presencia de rocas sueltas, fracturamiento y presencia de agua en las zonas laterales. Por lo que fue necesario hacer la limpieza tanto por un tema de seguridad en la perforación y voladura como también de obtener una geometría uniforme del muro.

Figura N° 24: Estado inicial del muro "R"

Fuente: Pevoex contratistas



4.1.2.2 Diseño del taladro precorte

Según las especificaciones del plano el ángulo de reposo del muro tiene que ser de 60° respecto a la horizontal a una altura de corte de 10.5m, mediante la relación (1:1.73), sin embargo, el ángulo de perforación ó precorte debe ser respecto a la vertical y una de las formas para determinar el ángulo de precorte es usando la función arco tangente, como también haciendo el uso del programa AutoCAD mediante dibujos en función a las especificaciones.

$$4_{perforación} = \tan^{-1}\left(\frac{1}{1.73}\right)$$

$$\Delta_{perforación} = 30^{\circ}$$

Conociendo la altura de corte (10.5m) y el ángulo de inclinación del precorte se puede obtener la altura de perforación del taladro precorte, para ello se debe usar la siguiente relación trigonométrica:

$$\cos \alpha = \frac{Altura\ de\ corte}{Altura\ de\ precorte}$$
 $\cos 30^{\circ} = \frac{10.5}{Altura\ de\ precorte}$
 $\frac{1.73}{2} = \frac{10.5}{Altura\ de\ precorte}$
Altura de precorte = 12.13m

Se considero 0.9m de espaciamiento entre taladros, esto de acuerdo con el cálculo realizado en el *Item 4.1.1.4 (diseño de taladros de precorte)*.

4.1.2.3 Cálculo de malla en taladros buffer:

Para este cálculo se debe considerar el ancho del muro medidos desde la cresta hacia la fila de precorte el cual es variable (de 4m hasta 6.5m). por el diámetro de taladro 4" esto implicaría usar 2 filas de taladros. Los primeros taladros para diseñar serian aquellos que se ubicarían cerca a la cresta del muro a los cuales denominaremos taladros de amortiguación

(buffer 1), ya que tendrán la función de minimizar el impacto de la detonación para proteger la superficie del precorte, evitar la proyección de rocas producto de un burden inadecuado en la pared irregular del muro y de crear fracturas radiales en los taladros a fin de tener un mínimo desplazamiento del material volado. Entonces para la estimación del burden se debe considerar que se tiene una pared bastante irregular en algunas zonas con vacíos situados en la parte alta del muro y en la zona baja con frentes sobredimensionados. La manera práctica para su estimación es multiplicando en 0.5 a 0.8 veces el burden de los taladros de producción (en este caso al no contar con un cuerpo para los taladros de producción se asumirá el burden óptimo para un taladro de 4") y el espaciamiento del orden de 1.25 veces el burden definido para las filas amortiguadas, generalmente el espaciamiento es mayor que el burden dicho esto se tiene:

Burden del taladro buffer 1: $B_{buffer} = 0.6(2.5)$

 $B_{buffer} = 1.5m$

Espaciamiento del taladro buffer 1:

$$S_{buffer} = 1.25(2.5)$$

$$S_{buffer} = 3.0m$$

Otra de las consideraciones a tener en cuenta es la inclinación de la superficie precorte (60°), al ser un muro ligeramente echado se corre el riesgo de que la altura de taladro buffer 1 roce la superficie del precorte y la onda de detonación afecte la pared y peor aún, al detonar los taladros de precorte estas inicien por simpatía a los taladros buffer. La medida que se tomó es acortar la altura de taladro buffer en 0.5 veces el burden. Por lo que la distancia de separación entre la superficie de precorte y el toe de los taladros buffer resultaba en 0.8m. A manera de referencia para determinar la malla de los taladros buffer, es necesario conocer el burden óptimo para un taladro de 4", de acuerdo a los trabajos en canteras por la empresa Pevoex Contratistas se tenía de burden 2.5m calculado mediante el modelo matemático propuesto por Konya y Walter, con el cual se obtuvo buenos resultados en los taludes de canteras con alturas de corte de a 6.0m, con explosivos tipo Anfo ó Emulsión como columna de carga.

4.1.2.4 Vista perfil y planta de taladros.

A partir de los cálculos establecidos se procedió a diseñar los taladros de acuerdo con la geometría del muro. Teniendo así la figura N° 26 siguiente:

Figura N° 26: Vista perfil del diseño de taladros en el "muro R"

Fuente: Elaboración propia

El espaciamiento de los taladros de precorte se definió de acuerdo con el cálculo en *el* (*Ítem 4.1.1.4 Diseño de taladros precorte*) que resulta en 0.9m, y por contar con un cuerpo reducido para la fragmentación, la dimensión del burden de los taladros buffer de la primera fila fue critica, ya que un burden corto ocasionaría proyección de rocas, se determinó 1.5m según cálculo lineas arriba al ser un burden reducido se debe condicionar que la columna de carga necesariamente tiene que ser desacoplada.

Figura N° 27: Vista planta del diseño de taladros en el muro "R" y vistas en 3D

La vista planta se hizo mediante un levantamiento topográfico de taladros el mismo que se indica en el *Anexo B - Tabla B.1 – Levantamiento topográfico de taladros Muro R.*

Una vez definida la malla para la primera fila Buffer 1, restaría una distancia de 4.5m entre la primera fila y la línea del precorte se consideró tomar el punto medio para la 2da fila esto para contar con más área de taladro y ganar mayor altura; considerando que por debajo del toe de estos taladros, estaba adyacente la superficie del precorte, resultando así 2m de burden para la 2da fila de taladros. Para la estimación del espaciamiento de la 2da fila de buffer se consideró utilizar el 1.25 del burden definido (2.0m), resultado así 2.5m y para la primera fila se consideró 3m de espaciamiento según cálculo, la idea para este tipo de voladuras es hacer una cantidad menor de taladros posible a fin de evitar el confinamiento de explosivos en todo el cuerpo de roca.

De acuerdo con las figuras en 3D, se tiene un ancho bastante irregular, es por esta razón que existen espacios en blanco entre los taladros de la primera fila, ya que, asignar taladros en esta área comprometían con la seguridad. Porque generaba un burden mínimo (0.5m).

4.1.3 Diseño de voladura para cimentaciones

4.1.3.1 Aspectos generales.

Este tipo de voladura se caracteriza por ser de área cerrada y no contar con cara libre disponible como también, por tener diseños geométricos específicos y alturas de taladro cortos (menores a 4m). Entonces el diseño de la malla de perforación se debe realizar en base a la geometría descrita en los planos de construcción civil.

Para este caso, el diseño de voladura se hizo para la instalación de tanques y columnas de celda, la estructura a proteger se encuentra ubicado a 62m de la voladura, por lo tanto, la carga máxima por retardo resultaría en 64.0 kilos/retardo. De acuerdo con la *Tabla N*° 20 – *Calculo de la carga máxima con diferentes distancias*. A continuación, en la Figura N° 28 se muestra las dimensiones geométricas del plano y su ubicación.

4.1.3.2 Diseño de taladros precorte.

De acuerdo con la información se tiene una relación de 1:3 como inclinación del talud, se calcula la longitud é inclinación para los taladros precorte de la siguiente manera.

Conociendo la altura de corte (2.6m) y el ángulo de inclinación del precorte se obtiene la altura de perforación del taladro precorte, para ello se debe usar la siguiente relación trigonométrica:

$$\cos \alpha = \frac{Altura\ de\ corte}{Altura\ de\ precorte}$$
 $\cos 18^{\circ} = \frac{2.6}{Altura\ de\ precorte}$
 $\frac{3}{3.16} = \frac{2.6}{Altura\ de\ precorte}$
Altura de precorte = 2.74 m

El espaciamiento entre los taladros de precorte fue de 1m, esto de acuerdo con el cálculo realizado en el *Ítem 4.1.1.4 (diseño de taladros de precorte)*.

4.1.3.3 Cálculo del burden en taladros de producción

Por el diámetro de perforación disponible y la variabilidad de la altura de taladro (alturas de corte menores de 2m a 4m). Andersen (1952) nos muestra una ecuación para el cálculo del burden considerando estas variables.

$$B = \sqrt{DxL}$$

Donde:

B : Burden (pies)

D : Diámetro del taladro (4")

L : Longitud del taladro (pies), 3.0 m ~ 9.8 pies

Reemplazando:
$$B = \sqrt{4x9.8}$$

$$B = 6.3 \ pies \sim \ 1.9 \ m$$

Por la variabilidad en la altura de corte se estandarizaron los siguientes intervalos.

4.1.3.4 Cálculo del espaciamiento en taladros de producción

El espaciamiento se calculó en base a la geometría de la malla triangular, en donde su relación respecto al burden es:

$$\frac{S}{B} = 1.15$$

Despejando S, Tenemos:

$$S = 1.15B$$

 $S = 1.15(2.2)$
 $S = 2.5m$

De la misma manera se creó intervalos de acuerdo con las diferencias de altura y el burden calculado. De donde se obtuvieron los siguientes valores:

4.1.3.5 Diseño de taladros buffer.

Con la finalidad de proteger la pared y el nivel piso (pie) del talud, fue necesario el uso de taladros de amortiguación (buffer). Como se había mencionado tienen la función de amortiguar la acción de la presión de detonación proveniente de los taladros de producción.

El burden debe estar en el rango de 0.5 a 0.8 veces el burden de los taladros de producción y el espaciamiento del orden de 1.25 veces el burden definido.

Burden del taladro buffer: $B_{buffer} = 0.6(2)$

 $B_{buffer} = 1.2m$

Espaciamiento del taladro buffer:

 $S_{buffer} = 1.25(2)$

 $S_{buffer} = 2.5m$

Algo muy importante, la ubicación de estos taladros buffer debe estar próximo al pie de talud, de 0.40 a 0.60m con cargas desacopladas, precisamente para generar superficies uniformes de acuerdo con el diseño civil.

4.1.3.6 Vista perfil y planta de taladros.

Figura Nº 29: Vista perfil de taladros tipo cimentaciones

Taladros Precorte

Numocophy B

National Service Servi

Figura N° 30: Vista en Planta de taladros tipo cimentaciones

La vista planta se hizo mediante un levantamiento topográfico de taladros el mismo que se indica en el *Anexo B - Tabla B.2 – Levantamiento topográfico de taladros cimentaciones*. La ubicación de los taladros buffer debe realizarse en paralelo con los taladros de precorte, estos deben ser precisos en sus dimensiones ya que de ambos dependerán la uniformidad en las paredes de los taludes. Se considero 0.20m como sobreperforación, para lograr una superficie regular y alcanzar el nivel piso deseado.

Al no contar con una cara libre disponible, el direccionamiento del burden y espaciamiento es indiferente, ya que el inicio de detonación será en el centro del polígono. Sin embargo, para una mejor distribución en el amarre de taladros se consideró espaciar a los taladros en el lado más largo del proyecto.

4.1.4 Diseño de voladura para zanjas.

4.1.4.1 Aspectos generales

La excavación de zanjas se hizo con el propósito de instalar 03 tipos de tuberías la primera tubería para la línea contraincendio, la 2da tubería para los derrames de remolienda y la 3ra tubería para aguas servidas. Para la ejecución de esta voladura se tiene como información critica la estructura de remolienda en plena construcción ubicada a 15m de la zona de detonación, como también instalaciones y equipos en un radio de 50m.

El otro factor que considerar es que las dimensiones de la zanja de la tubería de remolienda son sobredimensionadas con una altura de corte de 4.5m y un ancho superior de 5m, distinta a una zanja común, no se dispone de una cara libre disponible por lo que implicaría usar factores de carga altos. Sin embargo, De acuerdo con la *Tabla N° 23 – Calculo de la carga máxima con diferentes distancias*. a 15m no se debe exceder más de 4.0 Kg. de explosivo. A continuación, en la Figura N°31 y N°32, se muestra la ubicación y especificaciones de la sección de la zanja.

4.1.4.2 Diseño de precorte en zanjas

De acuerdo con la relación del talud 1:4, la inclinación del taladro precorte seria:

Conociendo la altura de corte (4.5m) y el ángulo de inclinación del precorte se puede obtener la altura de perforación del taladro precorte, para ello se debe usar la siguiente relación trigonométrica:

$$\cos \alpha = rac{Altura\ de\ corte}{Altura\ de\ precorte}$$
 $\cos 14^\circ = rac{4.5}{Altura\ de\ precorte}$
 $rac{4}{4.12} = rac{4.5}{Altura\ de\ precorte}$

$$Altura\ de\ precorte = 4.64\ m$$

El espaciamiento entre los taladros de precorte fue de 1m, esto de acuerdo con el cálculo realizado en el *Ítem 4.1.1.4 (diseño de taladros de precorte)*.

4.1.4.3 Diseño de malla de voladura

Se considero diseñar una malla de doble hilera alterna (dos bolillos), 2 filas por el ancho de la zanja y alterno por el secuenciamiento pausado de detonación y para la estimación del burden se tomó como referencia al diseño de zanja propuesto por el *Isee* (2008) - *Figura N*° 3 – *Diseño de una malla típica para zanja con diámetro de 3*". Ya que hace mención de la aplicación de diámetros medianos tal es así, para 3" de diámetro la longitud del burden varia de 1 a 1.5m, se consideró usar el valor más alto (1.5m), para acercar al diámetro de perforación de 3.5", no obstante, fue necesario evaluar esta longitud mediante el factor de rigidez propuesto por Konya (1998), en donde se obtuvo como resultado el valor de (3) siendo óptimo.

$$\frac{H}{B} = K \rightarrow \frac{4.5}{1.5} = 3 \rightarrow B = 1.5m$$

El espaciamiento depende del ancho inferior de la zanja 2.8m, y para su cálculo se debe partir del eje de la zanja teniendo en cuenta que el toe de los taladros no empalme con la superficie o pie del talud ya que por la detonación provocaría la inestabilidad del talud. Su ubicación entre taladros se realiza en medio del burden definido esto, con la finalidad de que la malla resulte alterna. En 1.5m de burden la ubicación de la segunda fila estaría a 0.80m. Su longitud se debe calcular desde el eje de la zanja. Resultando así 1.8m.

4.1.4.4 Vista planta y perfil de taladros

Ver, Anexo B - Tabla B.3 – Levantamiento topográfico de taladros para Zanjas.

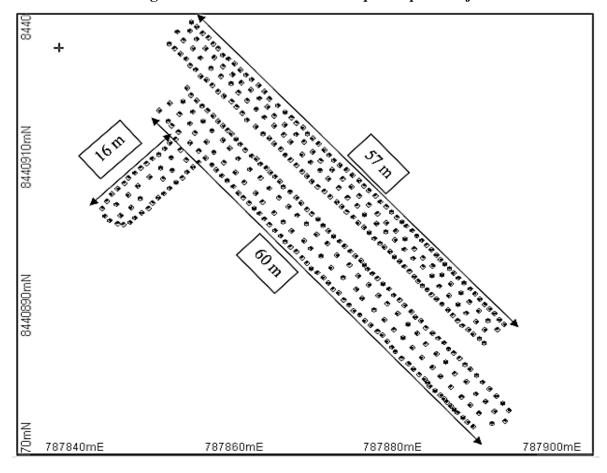


Figura N° 32: Vista de taladros en planta para zanjas

Figura Nº 33: Plano vista perfil de taladros para zanjas

4.1.5 Discusión de resultados

Respecto al diseño de malla planteado por Fernández (2012), en su tesis "Voladura para la instalación de ductos enterrados", nuestra malla es mayor en el burden e igual en el espaciamiento esta variabilidad se debe básicamente al diámetro de taladro y ancho superior de la zanja (Ver Tabla 21 – Comparación de resultados diseño de malla en zanjas). Ambos utilizamos una malla triangular y con referente al factor de carga utilizado Fernández (2012) utilizó 0.20Kg/m³ un valor menor al que proponemos 0.28 Kg/m³. Para ambos casos los resultados fueron los deseados con respecto a la fragmentación. Así mismo, aplicando el sistema de iniciación no eléctrico dual y CTDs obtuvo resultados favorables en cuanto al control de vibraciones, y para el control de proyección de rocas le resulto eficiente el uso del recubrimiento de la zona de voladura. Para nuestro caso por ser una zanja sobredimensionada se consideró aplicar taladros de precorte en el contorno de la zanja a un espaciamiento de 1m. para obtener taludes con paredes uniformes

Tabla N° 21: Comparación de resultados diseño de malla en zanjas

Diseño propuesto	Diámetro ('')	B (m)	S (m)	Altura de corte (m)	Ancho de zanja (m)	Factor de carga (Kg/m³)	Fanel dual
Fernandez (2012)	2.5"	1.20	1.80	2.10	1.80	0.20	25ms/600
Tesista	3.5"	1.50	1.80	4.50	5.00	0.28	17ms/800

Fuente: Elaboración propia

4.2 Control de vibraciones

4.2.1 Regulación mediante norma técnica DIN 4170

La razón por el cual se desea limitar el nivel de vibración es por la preocupación de la integridad estructural de la infraestructura de planta concentradora del proyecto minero las Bambas, un descontrol o niveles altos de la vibración puede ocasionar un daño a la estructura que al final resultaría en gastos para la empresa. Una manera de controlar tal daño es encontrar los limites apropiados mediante la aplicación de la norma internacional DIN 4170. Para esto se determina el tipo de estructura de acuerdo con la (*Tabla N*° 6 – *Valores guía máximos para la velocidad de partícula DIN4150:1999*) y se obtiene la siguiente *Tabla N*° 22, con los valores de la velocidad pico partícula seleccionados de acuerdo con el tipo de estructura que posee la infraestructura de planta concentradora.

Tabla N° 22: Valores de velocidad pico partícula seleccionados

Clase de construcción	Free	Nsa		
- Cluse de constitucción	1 a 10 Hz	10 a 50 Hz	50 a 100 Hz	TFb
1 Edificaciones industriales, oficinas y similares o con diseños robustos.	20*	20 - 40	40 - 50	40
2 Edificaciones residenciales y construcciones similares.	5	5 - 15	15 - 20	15
3 Otras edificaciones sensibles a vibraciones o las no incluidas en las dos anteriores clases	3	3 - 8	8 - 10	8

Adaptado de DIN (2001a).

Fuente: Elaboración propia

La construcción de la infraestructura de planta concentradora está compuesta por estructuras metálicas debidamente calibradas entre sí, en una base de concreto. Por las características de los materiales y dimensiones se le considera como una instalación de tipo industrial. Entonces de acuerdo con la (*Tabla N*° 06) de valoración, la planta concentradora del proyecto minero las Bambas pertenece a la clase de construcción N° 1 (Edificaciones industriales, oficinas y similares ó con diseños robustos), en donde el valor máximo permisible de la velocidad pico partícula es de 20 mm/s. en frecuencias entre (1 a 10 Hz) y de 20 mm/s a 40 mm/s en frecuencias hasta los 50 Hz y Si, el nivel de vibraciones de nuestros proyectos de voladura está por debajo de este valor garantizaremos la integridad de las estructuras de planta concentradora.

4.2.2 Cálculo de la carga máxima por retardo

Según, Scherpenisse (2000). Mediante el modelo de vibraciones a campo lejano propuesto por Devine. Se puede estimar la cantidad de explosivo que detonara en un tiempo de retardo, el necesario para no exceder el nivel de vibraciones de acuerdo con la norma DIN 4170 (20mm/s). Para ello se debe realizar un despeje de la variable "W" en la ecuación propuesta por Devine.

$$VPP = K * \left[\frac{d}{W^{1/2}}\right]^{-\infty}$$

a Nivel superior componente horizontal

b Todas las frecuencias

^{*} Velocidades de partícula en mm/s

Despejando "W" de la ecuación tenemos que:

$$W = d^2 \left[\frac{VPP}{K} \right]^{2/\infty}$$

De donde:

W : Carga máxima por retardo el que se desea calcular.

VPP: La velocidad pico partícula de acuerdo con la norma alemana DIN 4170 es de 20 mm/s como límite máximo permisible.

d: La distancia entre la estructura que se desea proteger y la zona de voladura, Para este valor consideraremos la distancia del muro "R" cual es de 30m hacia la estructura de las celdas de flotación planta concentradora.

K: Para determinar los valores "K" y "α", lo correcto es modelar las vibraciones a partir de una data de monitoreo de vibraciones preexistentes en la misma zona geológica, tipo de explosivo, geometría y condiciones de voladura, Para este caso tales datos de monitoreo de vibraciones no se realizaron por ser las primeras voladuras en la zona y el criterio para la designación de sus valores fueron tomados en base a estudios de vibraciones de otras minas, tales como: *Scherpenisse (2000). Monitoreo y Modelamiento de Vibraciones por Voladura. ASP BLASTRONICS S.A.* y estudios de la empresa Orica en su Aplicación denominada *Orica (2017). Pocket Blast Guide. América Latina* y experiencias de técnicos basados en el modelamiento de vibraciones. Por lo tanto, El valor para "k" es igual a 500, porque las voladuras a diseñar se consideran de confinamiento bajo ya que se aplicará voladura controlada con factores de carga mínimos y también por estar dentro del rango (99 a 700) según la (*Tabla N*° 3 – *Variabilidad de los factores "K" y "Alfa"*) y para "α" - 1.6 como dato usual. Reemplazando valores se tiene:

$$W = (30)^2 \left[\frac{20}{500} \right]^{2/1.6}$$

$$W = 16.10 \text{ kg/retardo}$$

Por lo tanto: A 30m de la zona de voladura, no se debe exceder más de 16.10 Kg, de explosivo. Con esta forma de cálculo se hizo la Tabla N° 23, para diferentes distancias.

Tabla N° 23: Cálculo de la carga máxima con diferentes distancias

Distancia (m)	W (carga máxima) (kg/retardo)	VPP (mm/seg)	"K"	"-α"
5	0.45	20	500	1.6
10	1.79	20	500	1.6
15	4.02	20	500	1.6
20	7.16	20	500	1.6
25	11.18	20	500	1.6
30	16.10	20	500	1.6
35	21.91	20	500	1.6
40	28.62	20	500	1.6
45	36.22	20	500	1.6
50	44.72	20	500	1.6
55	54.11	20	500	1.6
60	64.40	20	500	1.6
65	75.58	20	500	1.6
70	87.65	20	500	1.6
75	100.62	20	500	1.6
80	114.49	20	500	1.6
85	129.24	20	500	1.6
90	144.90	20	500	1.6
95	161.44	20	500	1.6
100	178.89	20	500	1.6
105	197.22	20	500	1.6
110	216.45	20	500	1.6
115	236.58	20	500	1.6
120	257.60	20	500	1.6
125	279.51	20	500	1.6
130	302.32	20	500	1.6
135	326.02	20	500	1.6
140	350.62	20	500	1.6

4.2.3 Factor de carga

Para voladuras en obras civiles situados en medios urbanos, para nuestro caso cercanas a instalaciones e infraestructura de planta concentradora, el control de vibraciones resulta imponente respecto a los demás impactos. Dicho esto, con la finalidad de reducir el daño en las estructuras debido a las vibraciones del suelo, se tendrá que usar factores de carga mínimos entre los siguientes rangos (0.20 – 0.30 kg/m³) en algunos casos hasta menores, además de las vibraciones, cuando los taladros son de alturas de corte bajos (2m a 4m) implica que también se tiene que usar factores de carga reducidos. El uso de estos factores de carga al margen de reducir las vibraciones ocasiona que la fragmentación del macizo rocoso resulte de tamaño regular. Caso contrario ocurre cuando se usan factores de carga altos (0.35 a más) optimizan la fragmentación de la roca dependiendo de las propiedades del

macizo rocoso. Entonces el factor de carga se convierte en un punto de partida para diseñar la distribución de la columna de carga.

Como ejemplo práctico y darle el uso correcto a la formulación del factor de carga, Se necesita determinar la longitud de carga en taladros de voladura para cimentaciones en base a un factor de carga de 0.30 kg/m³ para lo cual se tiene la siguiente información: taladro de 2.8m de profundidad, con una malla de 2m*2.3m, diámetro de taladro 4", tipo de explosivo Anfo.

Esto se podría calcular de la siguiente manera:

Factor de carga =
$$\frac{\text{Cantidad de explosivo, en Kg}}{\text{Volumen del taladro, en } m^3}$$

Reemplazando valores y despejando los Kg. de explosivo se tendría:

$$0.30 = \frac{\text{cantidad de explosivo, en Kg}}{13.8}$$

0.30(13.8) = cantidad de explosivo, en Kg

4.14 Kg = cantidad de explosivo a utilizar

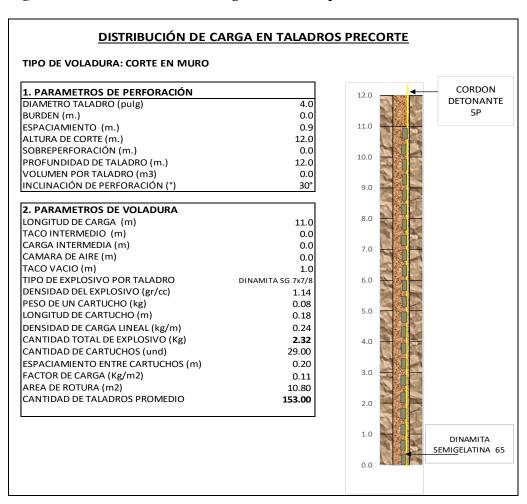
Para conocer la equivalencia con respecto a la distancia de la columna de carga se tiene que dividir los 4.14Kg entre la densidad de carga lineal del Anfo en un taladro de 4", resultando lo siguiente.

$$Longitud\ de\ carga = \frac{Cantidad\ de\ explosivo\ a\ un\ factor\ de\ 0.30}{Densidad\ de\ carga\ lineal}$$

Longitud de carga =
$$\frac{4.14 \text{ Kg}}{6.48 \text{ Kg/ml}}$$

Longitud de carga =
$$0.63 m$$

De este resultado se puede interpretar lo siguiente, Para mantener un factor de carga de 0.30 Kg/m³ en un taladro de 2.8m, se usará 4.14 Kg de ANFO a una longitud de carga de 0.63m. Esta forma de cálculo resulta práctico en una plantilla Excel, como también al momento de realizar el carguío de taladros en campo.


4.2.4 Distribución de carga y configuración de retardos para el muro "R"

4.2.4.1 Distribución de la carga explosiva

Una vez definida la malla de voladura, se pudo identificar 3 tipos de taladro (buffer 1, buffer 2 y precorte) cada uno con diferentes parámetros de malla. Por lo tanto, la distribución de carga será distinto para cada tipo de taladro una manera práctica es hacerlo mediante una plantilla en Excel el mismo que se ilustra a continuación en la Figura N° 34.

4.2.4.2 Distribución de carga en taladros de precorte

Figura N° 34: Distribución de carga en taladros precorte del Muro "R"

Fuente: Elaboración Propia

El dato relevante está en determinar la cantidad de explosivo a detonar, según el diseño propuesto resultaría en 2.32 kg/taladro. Si detonamos instantáneamente toda la línea de precorte generaríamos un exorbitante nivel de vibraciones (355Kg/retardo). Según la estimación de la carga máxima por retardo a 30m no se debe exceder la cantidad de 16 Kg.

Esto implica que los taladros de precorte se deben agrupar cada 7 taladros a fin de no exceder más de 20 mm/s y solo de esta manera se controlaría el daño de la vibración hacia la estructura.

4.2.4.3 Distribución de carga en taladros buffer 1

La distribución de carga para este taladro necesariamente tuvo que ser controlada mediante cargas desacopladas, por situarse en el límite de la cresta del muro, esto implica un peligro latente de proyección de rocas en la pared irregular del muro. Una forma práctica de desacoplamiento es usar espacios de aire dentro del taladro, con ello se reduce la presión de explosión y se logra una mejor distribución de la energía en el taladro. Con esta aplicación solamente se genera fracturas radiales en el entorno del taladro, la fragmentación de la roca se reduce, pero se controla la proyección de rocas y se consigue un desplazamiento mínimo del material volado. Según, Enaex (2002), hace referencia que la presión de detonación que se debe alcanzar en un taladro debería ser del orden de 1 a 2 veces la resistencia de compresión de la roca, Como dato geotécnico se tiene que la resistencia a la compresión de la roca granodiorita es de 95 Mpa con variaciones entre (80-120 Mpa), por lo tanto, la presión de explosión debería estar en el rango de (95Mpa a 240 Mpa).

La presión de explosión por teoría se sabe que es el 45% de la presión de detonación. Por lo tanto, se plantea el siguiente cálculo:

$$PD = 1/4 \text{ x } \rho_{e} \text{ x } (VOD)^{2} \text{ x } 10^{-5}$$

Donde:

PD: Presión de detonación, en Kbar

Pe : Densidad del explosivo, en g/cc (emulfan 1.2)

VOD: Velocidad de detonación, en m/s (5500m/s)

10⁻⁵ : Factor de conversión

Reemplazando valores se tiene:

$$PD = 0.25 \times 1.2 \times (5500)^2 \times 10^{-5}$$

$$PD = 91Kbar \sim 9100Mpa$$

Presión de explosión 45% de la presión de detonación

Presión de explosión = 0.45(9100)

Presión de explosión = 4084 Mpa

Para reducir la presión de explosión al rango de la resistencia de compresión de la roca se debe calcular la longitud del espacio de aire de acuerdo con el siguiente gráfico propuesto por Fuentes (2005), referido en la *Figura N*° 13 – *Variación de la presión en el taladro por aumento de la cámara de aire*.

Se sabe que la presión de explosión del emulfan resulta 4084 Mpa el cual representa el 100%, para alcanzar al rango de la resistencia de compresión de la roca (95-120 Mpa) se tendría que usar el 5% de la presión de explosión el cual resultaría en 0.05(4084) = 204.2 Mpa este valor se encuentra en el rango requerido, por lo tanto, la longitud del espacio de aire sería de 3.3m el cual representa el 73% de la longitud de carga y la cantidad de explosivo a usar seria 6.14 Kg el cual representa el 27 % de la columna de carga y el factor de carga resultaría en 0.21 Kg/m³.

A continuación, se muestra la Figura N° 35 en donde se muestra la distribución de carga de los taladros buffer 1 incluyendo la longitud de cámara de aire, longitud de carga reducida y la longitud del taco de acuerdo con el *Ítem 4.3.1 Cálculo del taco adecuado*.

DISTRIBUCION DE CARGA EN TALADROS BUFFER 01 TIPO DE VOLADURA: PRECORTE EN MURO Fanel Dual 1. PARAMETROS DE PERFORACIÓN 800/17ms DIAMETRO TALADRO (pulg) 4.0 BURDEN (m.) 1.5 6.0 ESPACIAMIENTO (m.) 3.0 ALTURA DE CORTE (m.) 6.5 SOBREPERFORACIÓN (m.) 0.0 PROFUNDIDAD DE TALADRO (m.) 6.5 5.0 VOLUMEN POR TALADRO (m3) 29.3 INCLINACIÓN DE PERFORACIÓN (°) 90.0 2. PARAMETROS DE VOLADURA 4.0 LONGITUD DE CARGA DE FONDO (m) 1.2 27% TACO INTERMEDIO (m) 0.0 LONGITUD DE CARGA INTERMEDIA (m) 0.0 CAMARA DE AIRE (m) 3.3 73% 3.0 TACO FINAL (m) 2.0 TIPO DE EXPLOSIVO POR TALADRO **EMULFAN 300 S** DENSIDAD DEL EXPLOSIVO (gr/cc) 1.20 DENSIDAD DE ROCA (gr/cc): 2.62 DENSIDAD DE CARGA LINEAL (kg/m) 5.13 CANTIDAD TOTAL DE EXPLOSIVO (Kg) 6.14 TONELAJE (Ton) 76.6 FACTOR DE POTENCIA (Kg/Tn) 0.08 FACTOR DE CARGA (Kg/M3) 0.21 FULMINANTE CANTIDAD DE TALADROS 37.0 N° 12

Figura N° 35: Distribución de carga en taladros Buffer 1 del Muro "R"

4.2.4.4 Distribución de carga en taladros buffer 2

Para la distribución de carga en la 2da fila se debe considerar la cercanía a los taladros de precorte y la altura de corte bajo (short hole 2.5m) el riesgo en este tipo de taladros son los fly rocks y el daño hacia la pared del talud, por lo tanto, se debe considerar un factor de carga bajo para no afectar la pared y la longitud de taco tendría que ser el adecuado de acuerdo con el factor SD. A continuación, se detalla el esquema de carga en la Figura N° 36.

DISTRIBUCION DE CARGA EN TALADROS BUFFER 02 TIPO DE VOLADURA: PRECORTE EN MURO Fanel Dual 1. PARAMETROS DE PERFORACIÓN 2.5 800/17ms DIAMETRO TALADRO (pulg) 4.0 BURDEN (m.) 2.0 ESPACIAMIENTO (m.) 2.5 ALTURA DE CORTE (m.) 2.5 SOBREPERFORACIÓN (m.) 0.0 2.0 PROFUNDIDAD DE TALADRO (m.) 2.5 VOLUMEN POR TALADRO (m3) 12.5 INCLINACIÓN DE PERFORACIÓN (°) 90.0 2. PARAMETROS DE VOLADURA 1.5 LONGITUD DE CARGA DE FONDO (m) 0.6 TACO INTERMEDIO (m) 0.0 LONGITUD DE CARGA INTERMEDIA (m) 0.0 CAMARA DE AIRE (m) 0.0 TACO FINAL (m) 1.9 1.0 TIPO DE EXPLOSIVO POR TALADRO EMULFAN 300 S DENSIDAD DEL EXPLOSIVO (gr/cc) 1.20 DENSIDAD DE ROCA (gr/cc): 2.62 DENSIDAD DE CARGA LINEAL (kg/m) 5.13 CANTIDAD TOTAL DE EXPLOSIVO (Kg) 3.13 0.5 TONELAJE (Ton) 32.8 FACTOR DE POTENCIA (Kg/Tn) 0.10 FACTOR DE CARGA (Kg/M3) 0.25 FUI MINANTE CANTIDAD DE TALADROS 50.0 N° 12

Figura N° 36: Distribución de carga en taladros Buffer 2 del muro "R"

Fuente: Elaboración propia

4.2.4.5 Configuración de retardos en JkSimblast

Una condición favorable es la disposición de la cara libre a lo largo del muro "R". Por lo tanto, la dirección de la salida se orientó hacia ese lado y al contar con accesorios tipo fanel dual de características 17/800ms (17ms como retardo superficial y 800ms como retardo de fondo) se debe asegurar que el quemado de los retardos superficiales se realice antes de los 800ms esto con el fin de evitar el riesgo de tiros cortados. Al contar con una fila larga de

taladros necesariamente se tuvo que generar 2 paquetes con inicios tipo echelon para cada extremo.

Fila de precorte, la secuencia de detonación de toda la fila de precorte debe ser antes de la detonación de los taladros buffer, se configuro en paquetes de 7 taladros enlazados con cordón detonante 5p, resultando así 21 paquetes retardados con accesorios bidireccionales de 17ms. A continuación, se da a conocer el esquema de la configuración de retardos (Ver Figura N° 37) como también la sumatoria de los periodos de retardo para cada evento:

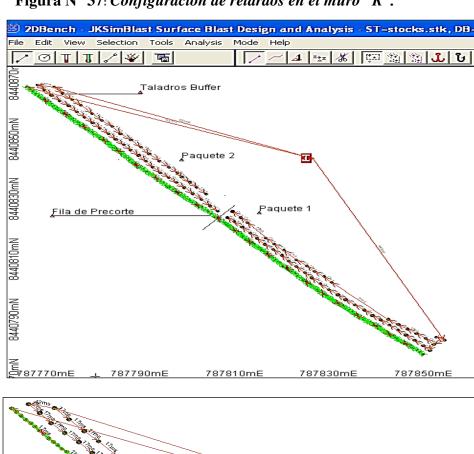


Figura N° 37: Configuración de retardos en el muro "R".

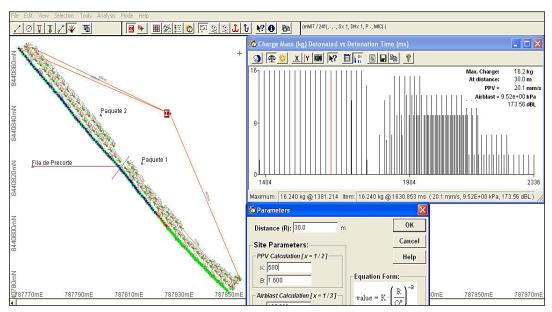
/011/2 ¥ **5** Fila de Precorte Fila de Precorte / Ø T T / 🐺 🖷 / Ø T T / W T <u>□</u> 📭 2113.333 ms 2216.667 ms Paquete 1 Fila de Precorte Fila de Precorte 2320.000 ms

Figura N° 38: Secuencia de detonación del muro "R"

Detonación del precorte = 17(21) = 357 ms

Tiempo de iniciación del precorte = (420+800) - (357+800)

Tiempo de iniciación del precorte = 1220 - 1157


Tiempo de iniciación del precorte = 63 ms

El 1er taladro buffer detonará en el tiempo de 1220 ms, después de la detonación total del precorte que será en 1157 ms. Por lo tanto, habrá una diferencia de 63 ms tiempo necesario para evitar el traslape entre los taladros de precorte y buffer.

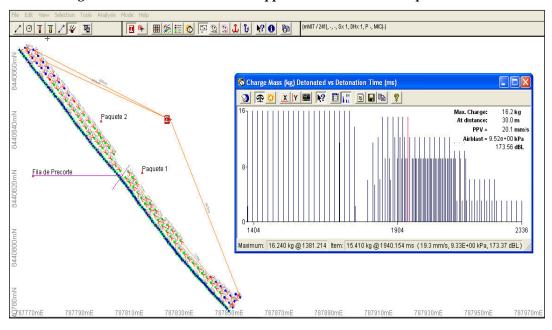
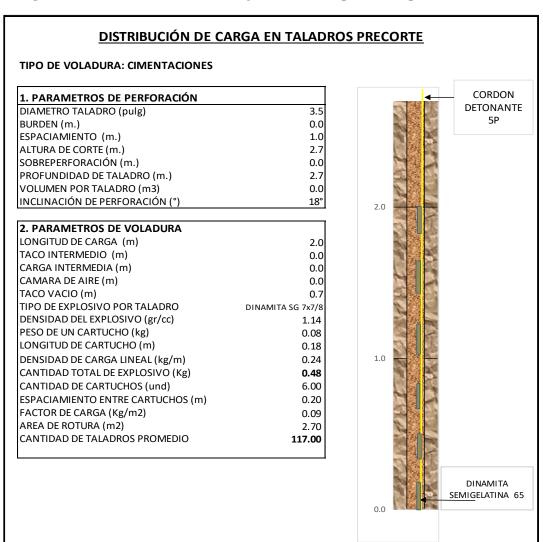

4.2.4.6 Simulación de la vibración teórica en Jksimblast

Figura N° 39: Simulación de la vpp teórica evaluación de precorte

Fuente: Elaboración propia

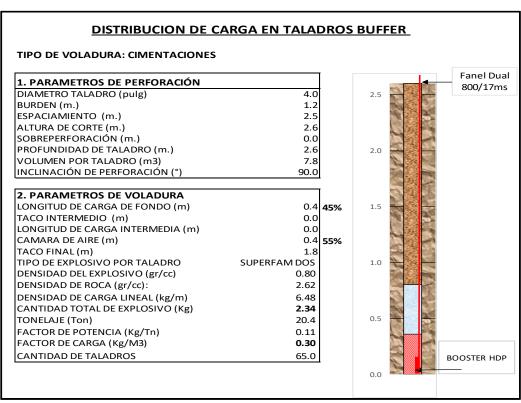
Figura N° 40: Simulación de la vpp teórica evaluación de precorte

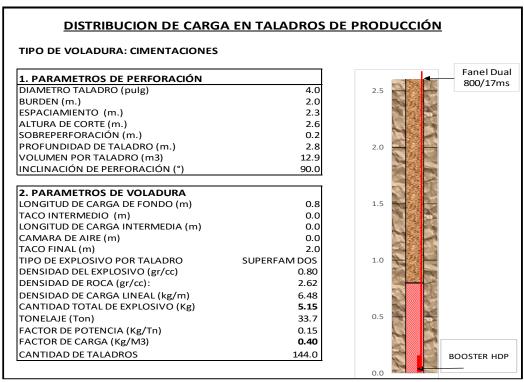


4.2.5 Distribución de carga y configuración de retardos en cimentaciones

4.2.5.1 Distribución de carga en taladros de precorte

A 62m no se debe exceder más de 64 Kg. de explosivo, considerando este valor, se tiene que en total hay 117 taladros de precorte cada uno se cargara con 0.50 Kg de dinamita lo que resultaría 58.5 Kg esta cantidad nos indica que todos los taladros de precorte pueden ser detonados en un solo tiempo, sin embargo, se debe tener en cuenta que la secuencia de detonación tipo diamante genera mayor traslape de taladros, por seguridad y para que el precorte no sume a la carga operante de los taladros de producción se detonará en 2 paquetes.


Figura N° 41 : Distribución de carga en taladros precorte tipo cimentaciones



4.2.5.2 Distribución de carga en taladros buffer y producción.

Figura N° 42: Distribución de carga en taladros de producción y buffer

4.2.5.3 Configuración de retardos en Jksimblast

Figura N° 43: Configuración de retardos en cimentaciones

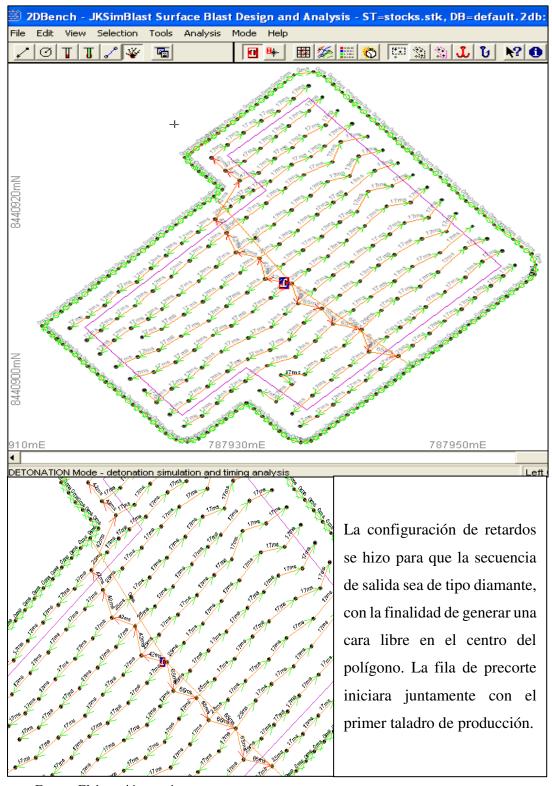
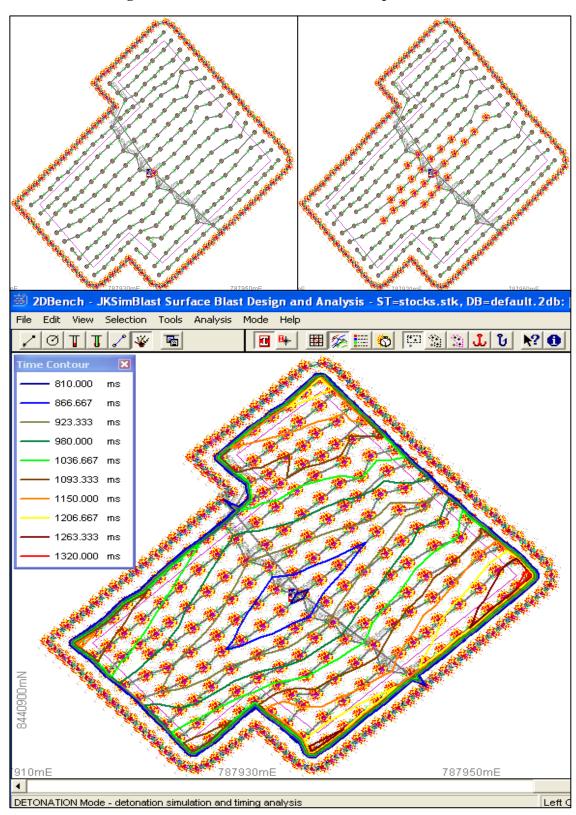



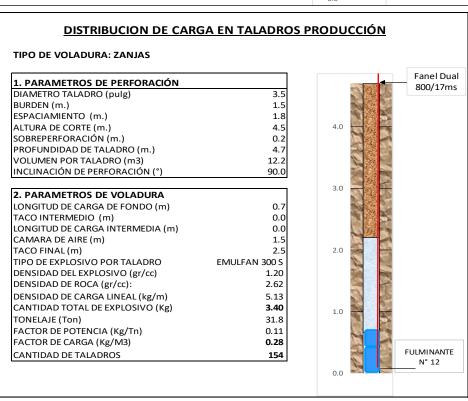
Figura N° 44: Secuencia de detonación tipo diamante

4.2.5.4 Simulación de la vibración teórica en Jksimblast

/0111/1 11.9 mm/s Airblast = 5.48e+00 kPa Maximum: 36.050 kg @ 969. Item: 36.050 kg @ 969.562 ms (11.9 mm/s, 5.48E+00 kPa, 168.76 dBL) **8** Parameters ОК Distance (R): 62.0 Cancel Site Parameters: PPV Calculation [x = 1/2] Help K: 500.000 B: 1.600 K: 185.000 787950mE B: 1.200 787934.859 mE

Figura N° 45: Simulación de la vpp teórica en cimentaciones


Fuente: Elaboración propia


4.2.6 Distribución de carga y configuración de retardos en zanjas

4.2.6.1 Distribución de carga en taladros precorte y producción

Figura N° 46: Diseño de carga explosiva en taladros de precorte y producción

4.2.6.2 Configuración de retardos en Jksimblast

Figura N° 47: Configuración de retardos de la fila de precorte en la zanja

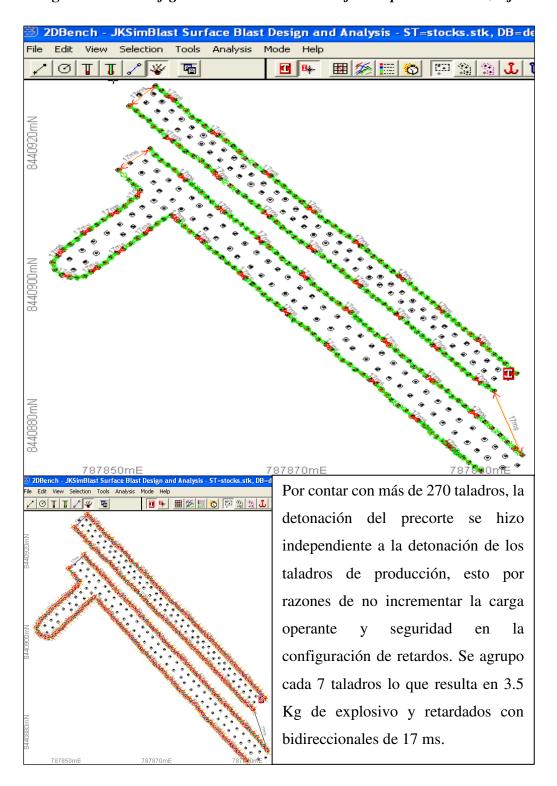
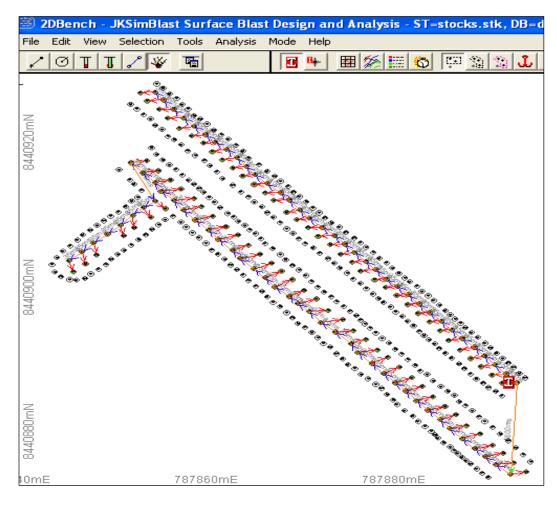
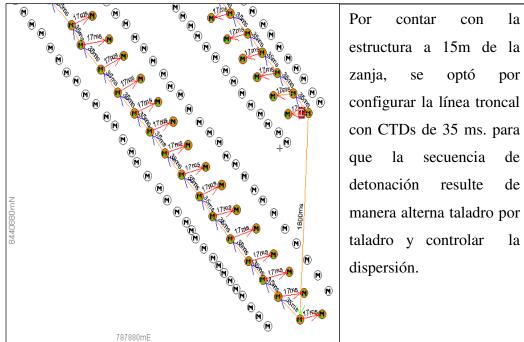




Figura N° 48: Configuración de retardos de los taladros de producción

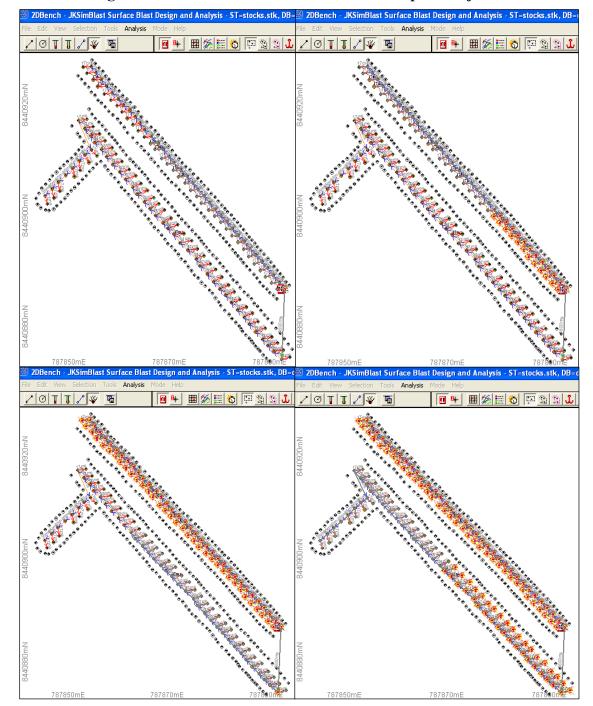


Figura N° 49 : Secuencia de detonación alterna para zanjas

Se puede observar que la detonación inicia sin antes haber quemado todos los retardos superficiales. Sin embargo, no hay riesgo de tiro cortados ya que la detonación tiene una secuencia lineal, la separación del 1er taladro con los retardos no iniciados son de 40m aprox. y además, de que todos los taladros amarrados se encuentran recubiertos.

| Column | C

Figura N° 50: Simulación de la Vpp teórica en zanjas

Fuente: Elaboración propia

4.2.6.3 Simulación de la vibración teórica en Jksimblast

4.2.7 Discusión de resultados

Delgado (2014) en su tesis "Estrategias en el diseño de perforación y voladura para estructuras aledañas controlando vibraciones y rocas al aire en minas a tajo abierto." Realizó el cálculo de la carga máxima mediante un modelo de predicción de vibraciones a campo lejano propio de la zona de mina teniendo como base un estudio previo de monitoreo de vibraciones, y aplicando el modelo a campo lejano de *Devine*, Así mismo hace uso del sistema de iniciación electrónica para la configuración de retardos, indicando que con este último se elimina la dispersión de los retardos. Aplicando tal modelo se obtiene que a 61 m de la zona de voladura no se debe exceder en 15 Kg de explosivo teniendo como límite máximo permisible 50 mm/s de Vpp con ello estaría asegurando no dañar la estructura cercana.

Tabla N° 24: Comparación de resultados en base a la carga máxima

LMP (vpp) mm/s	Distancia m	Carga máxima Kg	Estructura a proteger	Sistema de iniciación
50	61	15	Chancador Primario	Electrónico
20	15	4	Celdas de flotación	No eléctrico
20	30	16	estructura de remolienda	No eléctrico
20	62	64	estructura de remolienda	No eléctrico

De acuerdo con los valores de la *Tabla N*° 24, el valor como límite máximo permisible en la tesis de Delgado (2014), resulta 50mm/s el mismo que es mayor y holgado ya que usa un modelo predictivo propio de vibraciones, frente a nuestra propuesta 20mm/s. Por ser las primeras voladuras en planta concentradora del proyecto minero las Bambas y no contar con antecedentes y data de registros de vibraciones es imposible hacer un análisis y modelamiento de vibraciones propios de la zona, Sin embargo, el modelo de vibraciones a campo lejano propuesto por Devine nos permitió calcular la carga máxima por retardo (ver Tabla N° 23 – Calculo de la carga máxima con diferentes distancias.) y justamente para el control y evaluación de vibraciones frente a la infraestructura cercana y no generar daño alguno, la velocidad pico partícula no debe exceder en 20 mm/s. Tal es así, para la voladura en el muro "R" situado a 30m de la estructura no se debe superar los 16 Kg como carga explosiva, Para las cimentaciones un poco más alejado a 62m no se debe superar los 64 Kg y para las zanjas ubicado a 15m se tiene que usar 4 Kg de explosivo como cantidad máxima. A pesar de que la configuración de retardos y secuenciamiento de la detonación se hiso con el sistema no eléctrico dual el mismo que genera traslape o acoplamiento en los tiempos de retardo por el tema de dispersión. Se logró controlar la vibración que de acuerdo con los registros emitidos por el sismógrafo instantel podemos corroborar que la vpp está por debajo del límite máximo permisible 20 mm/s. Para ello es muy importante usar tiempos máximos de retardo, distribuir la carga explosiva con factores de carga bajos entre 0.20 y 0.30 Kg/m³ y analizar escenarios de carga operante en la simulación con el software JkSimblast.

Benjumea (2003). En su tesis "Vibraciones causadas por actividad humana". Caracterización, efectos y manejo en la Ingeniería Civil, Refiriéndose a la evaluación de vibraciones de voladuras sobre estructuras concluye, que el uso de la normatividad internacional (basadas en muchas observaciones), es el estándar de trabajo para la evaluación de los efectos de las vibraciones de voladura. Los resultados obtenidos mediante reportes de

vibraciones deben tener un punto de comparación, Dependiendo a la normatividad vigente en nuestro país, y si no se tuviera se debe recurrir a una norma internacional. Para nuestro caso de investigación se eligió a la Norma Alemana DIN 4170 por ser la más actualizada y severa con respecto al criterio de daño de la voladura hacia las estructuras tipo industriales, no superando los 20 mm/s de velocidad pico partícula. Este valor no solo sirvió para la evaluación de la vibración como límite máximo, sino también, para la estimación de la carga máxima por retardo mediante el modelo de vibraciones a campo lejano.

4.3 Control de proyección de rocas

4.3.1 Cálculo del taco adecuado

El control de las proyecciones de roca (fly rock), es un peligro latente por la cercanía de la infraestructura de planta concentradora exactamente a 30m y otros a 15m de la zona de voladura, para controlar tal perturbación se necesita calcular la distancia adecuada del taco y el uso de una mezcla entre material rocoso granulado y detritus de perforación. Para un correcto confinamiento. Para el cálculo de la distancia adecuada del taco se tuvo que recurrir al procedimiento que nos ofrece Alan Bauer y Frank Chappieta que consiste en calcular el factor de seguridad SD para un determinado taco, Para nuestro caso este factor debe estar entre los valores de (0.92 - 1.40) de acuerdo con la *Figura N* $^{\circ}$ 6 – *Valores del factor de seguridad para el cálculo de taco*.

Para realizar este procedimiento se necesita conocer algunos parámetros de diseño y propiedades de los explosivos disponibles entre Anfo y Emulfan de donde se obtuvo la siguiente información

Datos:

Explosivo : Anfo

Densidad de explosivo : 0.80 g/cc

Diámetro de taladro : 0.1016 m

Densidad de carga lineal : 6.48 Kg/m

Con esta información se calculará la SD (factor de seguridad) para evaluar un taco de 2m y definir las distancias mínimas y máximas de taco mediante la siguiente expresión:

Lw = 10 x (diámetro taladro) W = Lw*Dcl

Lw = 10x0.1016m W = 1.02m * 6.48 Kg/m

Lw = 1.02m W = 6.59Kg

$$D = T + 0.5(Lw)$$

$$D = 2.0 + 0.5(1.02m)$$

$$D = 2.51m$$

Cálculo de la SD:

$$SD = D / W^{1/3} \rightarrow SD = 2.51 \text{m} / (6.59)^{1/3} = SD = 1.34$$

Este valor esta dentro del rango limite, por lo tanto, un taco de 2m resultaría adecuado. Haciendo varias simulaciones en un cuadro Excel se determinó la siguiente $Tabla\ N^{\circ}\ 25$ – $valores\ del\ taco\ con\ explosivo\ Anfo.$

Tabla N° 25: Valores del taco con explosivo Anfo

	Taco Mínimo.	Taco Optimo	Taco máximo.
Longitud			
(m)	1.2	1.7	2.1
SD	0.91	1.16	1.40

Fuente: Elaboración propia

También se necesita el cálculo de la SD para el otro tipo de explosivo de mayor densidad, para este se también se consideró un taco de 2m.

Datos:

Explosivo : Emulfan

Densidad de explosivo : 1.24 g/cc

Diámetro de taladro : 0.1016 m

Densidad de carga lineal : 5.13 Kg/m

$$Lw = 10 x$$
 (diámetro taladro) $W = Lw*Dcl$

$$Lw = 10x0.1016m$$
 $W = 0.1016m * 5.13Kg/m$

$$Lw = 1.02 \text{ m}$$
 $W = 5.21 \text{Kg}$

D = T + 0.5(Lw)

$$D = 2.0 + 0.5(1.02)$$

D = 2.51m

Cálculo de la SD:

$$SD = D / W^{1/3} \rightarrow SD = 2.51 \text{m} / (5.21)^{1/3} = SD = 1.45$$

Por lo tanto, el taco de 2.0m estaría considerado en el otro rango de (1.44 a 1.8) pero para nuestro objetivo sería el adecuado como valor máximo. Haciendo varias simulaciones en un cuadro Excel se determinó la siguiente *Tabla N* $^{\circ}$ 26 – valores del taco con explosivo Emulfan.

Tabla N° 26: Valores del taco con explosivo Emulfan

	Taco Mínimo.	Taco Optimo	Taco máximo.
Longitud			_
(m)	1.1	1.6	1.95
SD	0.93	1.17	1.42

Fuente: Elaboración propia

Por cuestiones de seguridad ante el peligro de las proyecciones de rocas es necesario optar por valores conservadores, es decir, valores máximos la longitud de 2m de taco se encuentra dentro del rango del factor de seguridad además que también es maniobrable en la operación de carguío de taladros. Para taladros con altura de 2m el taco se disminuira hasta 1.5m como taco adecuado.

4.3.2 Recubrimiento de la zona de voladura

Con la finalidad de mitigar por completo el peligro de proyección de rocas se aplicó el siguiente procedimiento propuesto por Ttito (2014), Los materiales utilizados para recubrir el área de voladura fueron los siguientes:

- Manta Geotextil
- Malla olímpica con cocada de 2"x2" / alambre galvanizado N° 8
- Sacos de arena de 25kg aprox.

El procedimiento de recubrimiento consiste en: primero se tiende la manta geotextil al área para luego colocar encima de este la malla olímpica de cocada 2"x2" y por último los sacos de arena distribuidos preferiblemente en el collar de cada taladro del área recubierta. De esta manera se mitiga cualquier posible causa de proyección de rocas.

4.3.3 Discusión de resultados

La aplicación del criterio de cráter de *Frank Chappieta*, para la obtención de la altura del taco y controlar la proyección de rocas resulta el adecuado, Delgado (2014), en su tesis "Estrategias en el diseño de perforación y voladura para estructuras aledañas controlando vibraciones y rocas al aire en minas a tajo abierto." Obtuvo 6m y 5.5m de altura de taco con explosivos Flexigel60 y Anfo respectivamente diseñados en un taladro de 270mm. Para un factor SD de 1.4. Concluye que aplicando tal metodología le permitió controlar factores de eyección y efectuar disparos sin daños hacia las infraestructuras cercanas. Para nuestras voladuras de carácter civil el factor SD estuvo entre los valores de (0.92 – 1.40) de acuerdo con la *figura N*° 6 – Valores del factor de seguridad para el cálculo de taco. Aplicando tal criterio se obtuvo 2m de altura como taco adecuado (ver la tabla 27). Valor menor a lo propuesto por Delgado, tal diferencia se debe al diámetro de taladro, No obstante, para el confinamiento del taco se debe usar material seleccionado tipo rocoso granulado mezclados con detritus de perforación.

Tabla N° 27: Comparación del factor de seguridad (SD)

Factor de seguridad SD	Diámetro mm	Tipo de explosivo	Longitud de taco m
1.4	264	Anfo	5.5
0.92 - 1.4	101.6	Anfo	2

Fuente: Elaboración propia

Para mitigar por completo el peligro la proyección de rocas también se hizo el recubrimiento de la zona de voladura procedimiento que se señala en el *Ítem 4.3.2.* Recubrimiento de la zona de voladura. Los cuales dieron los resultados deseados. Asimismo, Fernández (2012), En su tesis "Voladura para la instalación de ductos enterrados" Refiriéndose a voladuras de obra civil, de tipo zanjas, indica que fue de mucho éxito aplicar el geotextil y la arena humectada, en voladuras cercanas a infraestructura evitando así posibles impactos mitigando el daño. Lo mismo afirma Ramírez (2012), En su curso de capacitación denominado "Perforación y voladura controlada, Fundamentos y aplicaciones en minería y obras civiles – Sesión N°3 Perforación y voladura controlada de proyección de rocas volantes (Fly Rocks)". Que el uso combinado de la técnica de voladura controlada y protecciones refiriéndose a (sacos de arena y mallas metálicas) es el método más efectivo y seguro frente al cuidado de estructuras cercanas.

4.4 Evaluación de resultados

La evaluación del diseño de voladura para obras civiles en el proyecto minero las Bambas, se realizó en base a los resultados obtenidos después de su ejecución por parte de la empresa Pevoex Contratistas SAC. Estos resultados se interpretaron en función a los objetivos trazados para cada evento de voladura:

Mediante la recolección de fotografías y haciendo uso del *método de análisis cuantitativo* visual, propuesto por López (2003), se evaluará la fragmentación y la pila del escombro. Así mismo, Konya (1998), nos propone evaluar las filas de precorte para el contorno de la obra civil con el factor de cañas visibles, una vez excavada los escombros de la voladura.

Para evaluar el nivel de vibraciones y la onda aérea de presión y cerciorar de que la infraestructura cercana no sufrió daño alguno, *López (2003), nos recomienda el uso de registros de vibraciones*. Para lo cual, se recolecto reportes de vibración del área de Pervol de la empresa Pevoex Contratistas medidos con un sismográfico de marca Instantel modelo BE18844. Así mismo, Benjumea (2003). En su tesis "Vibraciones causadas por actividad humana". Refiere que para la evaluación de vibraciones en voladuras sobre estructuras se debe usar como estándar de trabajo una normativa internacional. Para nuestro caso de investigación se aplicará la NORMA ALEMANA DIN 4170. Considerando que el nivel de vibraciones no supere los 20 mm/s.

4.4.1 Resultados fotográficos de la voladura de precorte en el muro "R"

Figura N° 51: Zona de voladura del muro R

En la figura N° 51, se aprecia las condiciones y la infraestructura cercana de planta concentradora, siendo más critica la estructura de las celdas de flotación a 30m de la zona de voladura.

Figura N° 52: Área de voladura con recubrimiento

Fuente: Vista fotográfica realizada por el investigador

En la figura N° 52, se muestra el área de voladura con recubrimiento esto con la finalidad de mitigar la proyección de rocas se hizo el recubrimiento de acuerdo con lo señalado en el *Ítem 4.3.2 recubrimiento de la zona de voladura*.

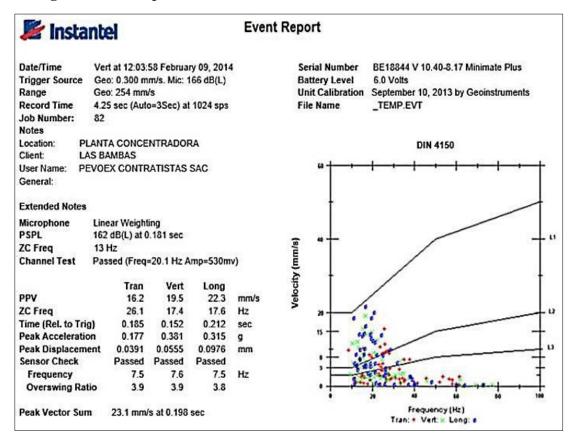
Figura N° 53: Escombros de voladura con una fragmentación excavable

Figura N° 54: Vista panorámica de la voladura en el Muro R

Fuente: Vista fotográfica realizada por el investigador

En la figura N° 54, se aprecia que tanto la infraestructura como equipos permanecen intactos. Después de la detonación de la voladura. Así mismo, se pudo controlar el desplazamiento con la secuencia de detonación tipo echelon, con uso de voladura amortiguada y factores de carga mínimos.

Figura N° 55: Estabilidad del Muro "R", tras la voladura


Figura N° 56: Visibilidad de las cañas producto de la voladura de precorte.

Fuente: Vista fotográfica realizada por el investigador

4.4.1.1 Reporte de vibración – muro "R"

Figura N° 57: Reporte de vibraciones del muro R - Fecha 09/02/2014

Fuente: Pevoex Contratistas SAC

4.4.2 Resultados fotográficos de voladura en cimentaciones

Figura N° 58: Zona de voladura recubierta

Fuente: Vista fotográfica realizada por el investigador

La zona de voladura esta lista para ser recubierta para evitar la proyección de rocas y en color rojo se aprecia el amarre de los faneles duales quedando lista para su detonación

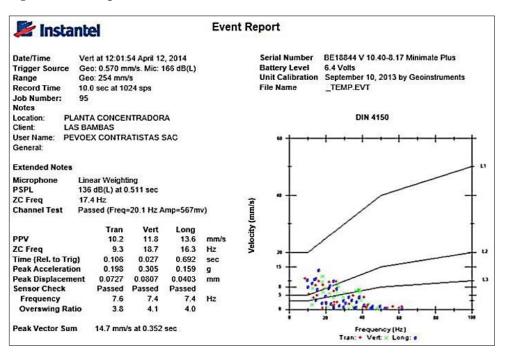
Figura N° 59: Pila de escombro de la voladura de cimentaciones

Fuente: Vista fotográfica realizada por el investigador

En la figura N° 59. Se observa que después de la detonación, la estructura principal de planta concentradora se encuentra en buen estado. Además, se puede observar que la acumulación del material se dio en el centro del área de voladura esto por la secuencia de detonación tipo diamante. Además, la pila de escombros muestra una altura de aprox. 2.0m

con una fragmentación excavable lo que da entender que en el fondo de la obra hubo remoción y esponjamiento del material rocoso.

Figura N° 60: Taludes estables en el contorno de cimentaciones



Fuente: Vista fotográfica realizada por el investigador

Se aprecia el buen trabajo de la voladura de precorte, con las paredes de los taludes estables conforme al plano de construcción civil y nivel piso deseado.

4.4.2.1 Reporte de vibración – CIMENTACIONES

Figura N° 61: Reporte de vibraciones voladura de cimentación - Fecha 12/04/2014

Fuente: Pevoex Contratistas SAC

4.4.3 Resultados fotográficos de voladura en zanjas

Figura N° 62: Zona de voladura de zanjas recubierta

Fuente: Vista fotográfica realizada por el investigador

En la figura N° 62. Se aprecia la estructura de remolienda a 15m de la zona de voladura de zanjas en plena construcción con andamios instalados, El recubrimiento de voladura fue imprescindible para mitigar la proyección de rocas al margen de tener el taco adecuado de acuerdo con el diseño y el factor de seguridad.

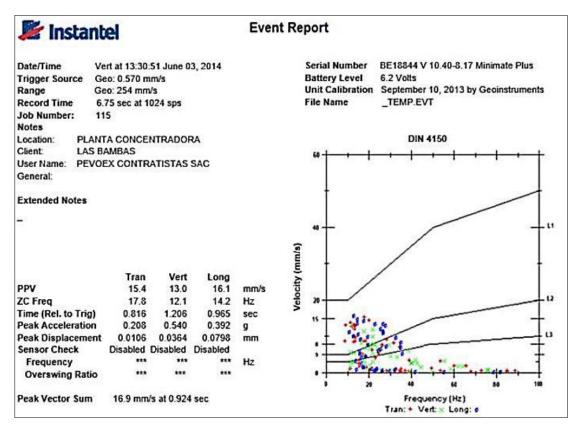
Figura N° 63: Pila de escombros tras la voladura.

Se puede apreciar el esponjamiento de la pila de escombros, lo que hace suponer que en el fondo de la zanja hubo la remoción del material rocoso orientado hacia la superficie.

Figura N° 64: Integridad de las estructuras cercanas tras la voladura

Fuente: Vista fotográfica realizada por el investigador

La estructura de remolienda con los andamios de construcción, se encuentran íntegros lo que da a entender que hubo control en el nivel de vibraciones, proyección de rocas y onda aérea de presión. Así mismo, la fragmentación resulto excavable.


Figura N° 65: Estabilidad de taludes en el contorno de la zanja.

En la figura N° 65. Tras la excavación del material fragmentado, no se puede apreciar la visibilidad de las cañas de precorte, básicamente por la mala calidad del macizo rocoso (roca fracturada). Pero se cumplió con el diseño propuesto de la zanja.

4.4.3.1 Reporte de vibración - ZANJAS

Figura N° 66: Reporte de vibraciones voladura de zanja - Fecha 03/06/2014

Fuente: Pevoex Contratistas SAC

4.4.4 Evaluación de impacto ambiental y criterios de daño

Cuando un explosivo detona se libera gran cantidad de energía que, a su vez, se distribuye de la siguiente forma; Energía mecánica (para la fragmentación del macizo rocoso) un 50%, energía sísmica (que se traduce en vibraciones ú ondas de esfuerzo que viajan por la corteza terrestre) un 30% y energía neumática (que se traduce en onda aérea, ruido y golpe) un 15%, Es importante controlarlos cuando se tienen estructuras cercanas al proyecto de voladura con la finalidad de evitar daño alguno en la estructuras.

Para las voladuras realizadas en la presente investigación, se identificó que la infraestructura de la construcción de planta concentradora está compuesta por estructuras metálicas sentadas en una base de concreto. lo que supone que, de acuerdo con la *Tabla N*° 06 de valoración,

se asuma que por las características de los materiales y dimensiones se considere como una instalación de edificación industrial con diseño tipo robusto. Con referente a las vibraciones, el valor máximo permisible del nivel de vibración no debe superar los 20 mm/s. en frecuencias entre (1 a 10 Hz) y de 20 a 40 mm/s en frecuencias hasta los 50 Hz.

Y para el criterio de daño de la onda aérea de presión, lo ideal es no superar los 151dB de acuerdo con la *Tabla 7 – Criterios típicos para la Sobrepresión*. Valores mayores dañarían las ventanas en instalaciones residenciales. Para los proyectos de voladura realizados en la periferie de la infraestructura de planta concentradora no se identificaron estructuras residenciales que ameriten el control del daño hacia ventanas, más que oficinas situados a 300m aprox. de la zona de voladura. Sin embargo, es importante diseñar voladuras que estén dentro del rango de (134 - 140dB) de onda aérea de presión cuando se tienen estructuras de tipo 2.

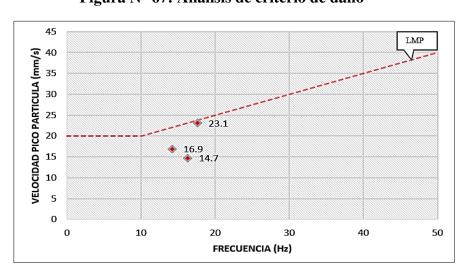

4.4.4.1 Resultados del nivel de vibraciones

Tabla N° 28: Análisis de los resultados de vibraciones

Tipo de	Vector Suma Distancia -		Onda 7	Onda Transversal Onda Vertical On			Onda Longitudinal		LIMITES MAXIMO PERMISIBLES			
voladura	de la VPP	(m)	VPP	Frecuencia	VPP	Frecuencia	VPP	Frecuencia	VPP	Frecuencia	VPP	Frecuencia
voiauura	(mm/s)	(11)	(mm/s)	(Hz)	(mm/s)	(Hz)	(mm/s)	(Hz)	(mm/s)	(Hz)	(mm/s)	(Hz)
Muro"R"	23.1	30	16.2	26.1	19.5	17.4	22.3	17.6				
Cimentación	14.7	62	10.2	9.3	11.8	18.7	13.6	16.3	20	1 - 10 Hz	20 - 40	10 - 50 Hz
Zanja	16.9	15	15.4	17.8	13	12.1	16.1	14.2				

Fuente: Elaboración propia

Figura N° 67: Análisis de criterio de daño

Fuente: Elaboración propia

4.4.4.2 Resultados de la onda aérea de presión

Los resultados de la onda aérea de presión. tanto para la voladura en el Muro "R" y Cimentación se obtuvieron de los reportes de vibración. Para la voladura en zanja no se midió tal resultado, pero se pudo estimar en base a la ecuación planteada en el *Ítem 2.2.10.2 Predicción de la onda aérea de presión*.

En donde:

$$dB = 164.4 - 24 \log \left(\frac{D}{W^{\frac{1}{3}}}\right)$$

$$dB = 164.4 - 24 \log \left(\frac{15}{3.4^{\frac{1}{3}}}\right)$$

$$dB = 140.4$$

Conociendo la carga máxima de acuerdo a los valores obtenidos en *la (Tabla 23 – Cálculo de la carga máxima con diferentes distancias)* y aplicando la formulación anteriormente descrita se puede obtener una correlación de la onda aérea de presión a diferentes distancias.

Tabla N° 29: Predicción de la onda aérea de presión

presion		
Distancia (m)	W (carga maxima) (kg/retardo)	Decibeles (dB)
5	0.45	145
10	1.79	142
15	4.02	141
20	7.16	140
25	11.18	139
30	16.10	139
35	21.91	138
40	28.62	138
45	36.22	137
50	44.72	137
55	54.11	136
60	64.40	136
65	75.58	136
70	87.65	136
75	100.62	135
80	114.49	135
85	129.24	135
90	144.90	135
95	161.44	135
100	178.89	134

Fuente: Elaboración propia

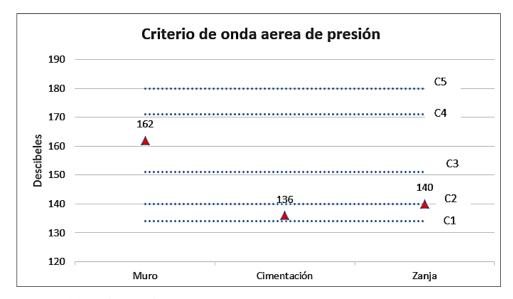


Tabla N° 30: Resultados de la onda aérea de presión y criterio de daño

Tipo de voladura	Valor monitoreo (dB)	Distancia (m)	C5	C4	С3	C2	C 1
Muro	162	30	180	171	151	140	134
Cimentación	136	62	180	171	151	140	134
Z anja	140 (teórico)	15	180	171	151	140	134

Fuente: Elaboración propia

Figura N° 68: Análisis de los resultados de onda aérea de presión

Fuente: Elaboración propia

CONCLUSIONES

- Se logró diseñar la malla de voladura de obra civil de acuerdo con las dimensiones geométricas de un plano en zonas cercanas a la infraestructura de planta concentradora. Sin el menor daño a las estructuras, controlando eficientemente tanto la vibración y proyección de rocas. El uso de la técnica de voladura de precorte sirvió para obtener taludes con paredes uniformes en el contorno de la obra civil; también, sirvió como un filtro para reducir la vibración tras el impacto de detonación de los taladros de producción. Así mismo, el uso de factores de carga mínimos entre 0.20 − 0.30 Kg/m³, resultaron adecuados para controlar la voladura, pero se compromete la fragmentación de la roca, resultando de tamaño regular ó excavable.
- Se logró controlar el nivel de vibración de las voladuras de obra civil cercanas a la infraestructura de planta concentradora, mediante el modelo de vibraciones a campo lejano de Devine estimando la cantidad de carga máxima por retardo con la correcta configuración de retardos con el sistema de iniciación no eléctrica dual. Se estableció 20 mm/s como valor máximo permisible de velocidad pico partícula según la Norma DIN 4170 para el cuidado de estructuras tipo 1 industrial y la configuración de la secuencia de detonación resulto taladro por taladro, esto se puede lograr usando retardos de periodo largo entre filas, evitando en lo posible el traslape de retardos o que existan 02 puntos de inicio. Aunque el grado de dispersión siempre generará gran incertidumbre aumentando la carga máxima por retardo, pero se puede controlar usando factores de carga mínimos. Los resultados de medición mediante un sismógrafo arrojaron los siguientes valores.
 - Voladura en el muro "R"; A una distancia de 30m de la estructura de las celdas de flotación, con 15 Kg de explosivo como carga máxima resultó,
 23 mm/s de vpp.
 - Voladura de cimentación; A una distancia de 62m de la estructura de remolienda, con 64 Kg de explosivo como carga máxima resultó, 14.7 mm/s de vpp.
 - Voladura de zanjas; A una distancia de 15m de la estructura de remolienda,
 con 4 Kg de explosivo como carga máxima resultó, 16.9 mm/s de vpp.

TESIS UNA - PUNO

Se minimizó el peligro de proyección de rocas mediante el cálculo del factor de seguridad SD obteniendo así, 2m como longitud adecuada del taco con un buen confinamiento, Además de usar el recubrimiento de voladura con el que se mitigo cualquier posible causa de proyección de rocas.

RECOMENDACIONES

- Con el resultado de los reportes de vibraciones, Se recomienda realizar un análisis y generar un modelo de vibraciones propio a campo lejano. Esto con la finalidad de obtener valores certeros de las constantes K y "alfa". Con ello se puede tener mayor confiabilidad en el criterio de daño hacia las estructuras a proteger como también conocer el comportamiento real del movimiento en el macizo rocoso. Aunque para esto se necesita mayores reportes de vibraciones, pero no deja de ser un motivo de incentivación a la investigación científica por parte de los profesionales o estudiantes interesados por el tema.
- Para voladuras de obras civiles donde amerite el cuidado de estructuras, se debe priorizar el control del nivel de vibraciones y proyección de rocas ya que son los peligros inminentes. El valor de este tipo de voladuras esta en obtener las paredes uniformes y el nivel piso deseado de acuerdo con las dimensiones geométricas solicitadas en un plano de construcción. El resultado de la fragmentación pasa a un 2do plano, pero no deja de ser importante.
- En lo posible, para un óptimo secuenciamiento en la detonación de taladros y despreocuparnos de la dispersión que por naturaleza posee el sistema de iniciación no eléctrico dual, se recomienda el uso de detonadores electrónicos con ello estaríamos eliminando el traslape o acoplamiento de los tiempos de retardo. Lo cual redundaría en un mejor control de las vibraciones. Y si por razones contrarias se persiste en el uso de faneles duales se debe usar tiempos de retardo de periodos largos 25ms entre taladros y 65ms a más entre filas.
- Para obtener taludes estables en el contorno de la obra civil es de mucha necesidad la aplicación de voladura precorte, no solo se logra una pared del talud uniforme, con la grieta generada también, se logra amortiguar el impacto de la detonación minimizando así el nivel de vibración.
- Se recomienda el uso del software JkSimblast para la simulación del diseño de la voladura, es una manera práctica y dinámica y nos da una clara visión del resultado esperado, más aún cuando se trata de las primeras voladuras a realizarse en el entorno

TESIS UNA - PUNO

de estructuras cercanas. Se necesita un grado de confiabilidad, al margen de haber calculado la carga operante máxima, el uso de factores de carga mínimos, la detonación secuencial que nos ofrece los faneles duales. El resultado en el software con niveles de vibración teóricos por debajo de la norma técnica resulta gratificante.

REFERENCIAS BIBLIOGRÁFICAS

- Benjumea, J. (2003). *Vibraciones causadas por actividad humana* (tesis de postgrado). Universidad del Valle. Santiago de Cali, Colombia.
- Delgado, M. (2014). Estrategias en el diseño de perforación y voladura para estructuras aledañas controlando vibraciones y rocas al aire en minas a tajo abierto (tesis de pregrado). Universidad Nacional de San Agustín. Arequipa, Lima.
- Centro de Innovación Tecnológica de Explosivos Enaex (2002). *Manual de Tronadura*. Gerencia Técnica, Chile.
- Exsa, S.A. (2009). Manual Práctico De Voladura. 3ra Edición. Lima, Perú.
- Fernandez, R. (2012). *Voladura para la instalación de ductos enterrados* (tesis de pregrado). Universidad Nacional de Ingeniería. Lima, Perú.
- Hernández, R., Fernández, C., Baptista, P. (1991). *Metodología de la Investigación*. Primera edición, México.
- Inocente, B. (2011). *Planeamiento de operaciones en perforación y voladura superficial* (tesis de pregrado). Pontificia Universidad Católica del Perú. Lima, Perú.
- International Society of Explosives Engineers (2008). *Manual del Especialista en Voladura*. 17ª Edición. Cleveland, Ohio EE.UU.
- Konya, J. C. y Albarrán, E. (1998). Diseño de voladuras. México. Cuarta edición.
- López, J. (2003). Manual de perforación y voladura de rocas. Madrid, España.
- McKenzie, (1994). Estado del arte de la Tronadura. ENAEX, Gerencia Técnica. Chile.
- Mucho, R y Puente, A. (2005). Perforación y Voladura II. Lima, Perú.
- MWH, (2011). Caracterización geotécnica de los materiales de fundación Volumen I. Proyecto Las Bambas. Apurímac, Perú.
- MWH, (2013). Informe de Prospecciones Geotécnicas Estudios Geotécnicos Adicionales On-Site Facilities. Proyecto Las Bambas. Apurímac, Perú.
- Norma DIN 4150-3 (1999). Structural Vibration. 3ra Edición, Alemania.
- Orica, (2017). Pocket Blast Guide. América Latina
- Orihuela, S. y Dapello, J. (2009). *Diseño de un modelo predictivo a partir de un estudio de vibraciones en una voladura en una mina modelo* (tesis de pregrado). Pontificia Universidad Católica del Perú. Lima, Perú.
- Ponce, F. (2012). *Perforación y voladura controlada, fundamentos y aplicaciones en minería y obras civiles* (curso taller). Instituto de capacitación minera, Lima, Perú.

- Scherpenisse, C. (2000). *Monitoreo y Modelamiento de Vibraciones por Voladura*. ASP BLASTRONICS S.A. Lima, Perú.
- Split Engineering (2012). Manual JK Simblast 2DBench.
- Ttito, R. (2014). Aplicación de voladura controlada precorte para la construcción e instalación de la chancadora primaria en el proyecto minero las Bambas (tesis de pregrado). Universidad Nacional del Altiplano, Puno, Perú.

ANEXOS

ANEXO A. Planos de obra civil emitidos por Bechtel

Fig. A.1 – Plano para la inclinación del Muro "R"

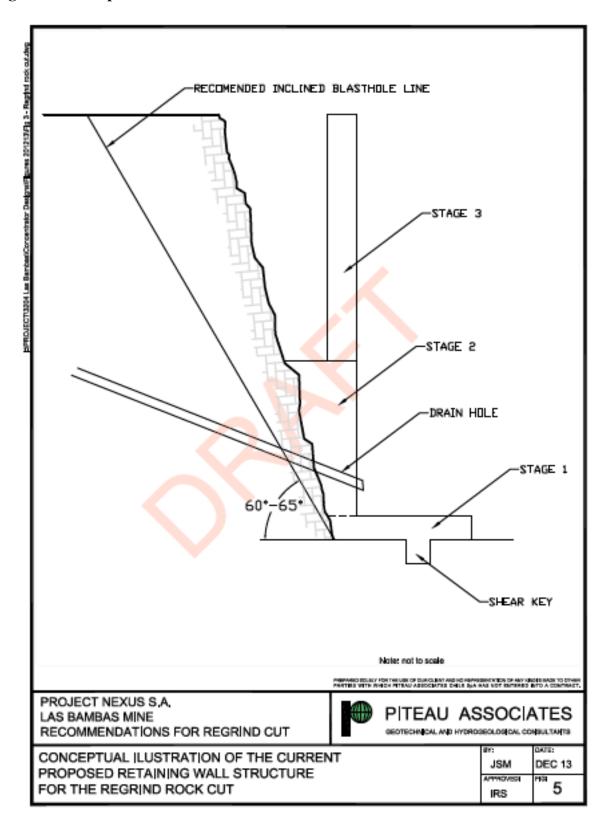


Fig. A.2 – Plano de cimentaciones

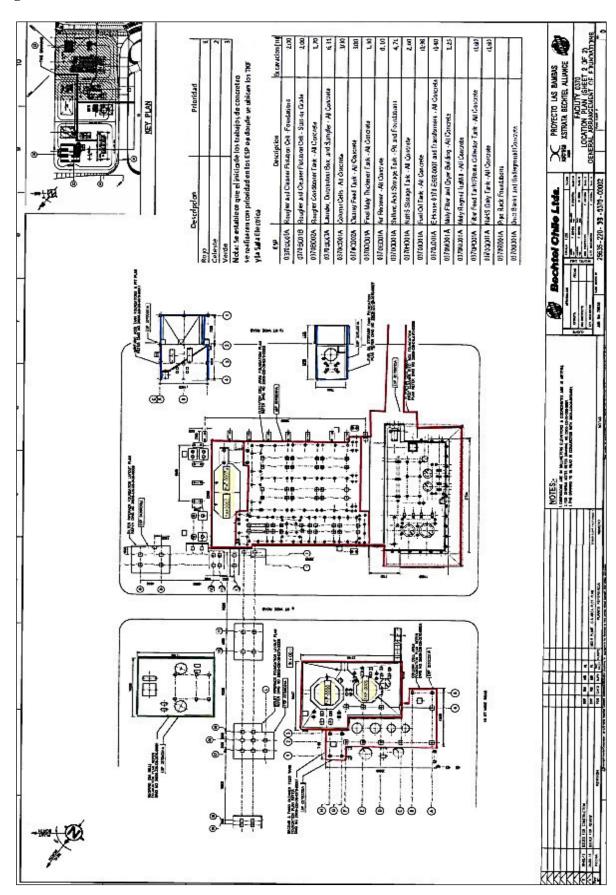
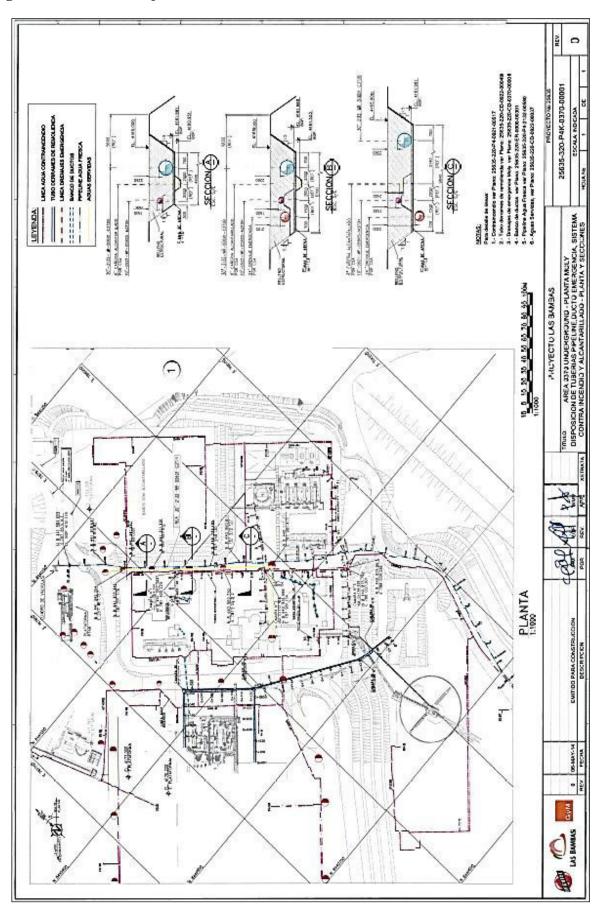



Fig. A.3 – Plano de Zanjas

ANEXO B. Levantamiento topográfico de taladros

Tabla B.1 – Levantamiento topográfico de taladros del muro "R"

	LEVANTA	LEVANTAMIENTO TOPOGRAFICO DE TALADROS (MURO R)											
N° Taladro	ESTE	NORTE	СОТА	TIPO DE TALADRO	COTA BASE	ALTURA DE CORTE	BURDEN	ESPACIA MIENTO					
1	787770.766	8440861.634	4175.784	Precorte	4163.05	12.7	-	0.9					
2	787771.93	8440860.374	4175.677	Precorte	4163.05	12.6	-	0.9					
3	787782.862	8440848.701	4174.674	Precorte	4163.05	11.6	-	0.9					
4	787784.53	8440846.685	4174.735	Precorte	4163.05	11.7	-	0.9					
5	787786.068	8440844.899	4174.908	Precorte	4163.05	11.9	-	0.9					
6	787788.314	8440842.149	4174.985	Precorte	4163.05	11.9	-	0.9					
7	787791.9183	8440838.267	4174.926	Precorte	4163.05	11.9	-	0.9					
8	787810.359	8440819.017	4175.303	Precorte	4163.05	12.3	-	0.9					
9	787812.51	8440816.429	4175.276	Precorte	4163.05	12.2	-	0.9					
10	787765.835	8440867.17	4176.142	Precorte	4163.05	13.1	-	0.9					
11	787766.469	8440866.486	4176.181	Precorte	4163.05	13.1	-	0.9					
12	787767.121	8440865.805	4176.196	Precorte	4163.05	13.1	-	0.9					
13	787767.696	8440865.054	4176.144	Precorte	4163.05	13.1	-	0.9					
14	787768.415	8440864.399	4176.061	Precorte	4163.05	13.0	-	0.9					
15	787768.926	8440863.81	4176.002	Precorte	4163.05	13.0	-	0.9					
16	787769.526	8440863.087	4175.902	Precorte	4162.25	13.7	-	0.9					
17	787770.13	8440862.423	4175.776	Precorte	4162.25	13.5	-	0.9					
18	787771.373	8440860.988	4175.677	Precorte	4162.25	13.4	-	0.9					
19	787772.479	8440859.718	4175.558	Precorte	4162.25	13.3	-	0.9					
20	787773.093	8440859.19	4175.539	Precorte	4162.25	13.3	-	0.9					
21	787773.666	8440858.572	4175.402	Precorte	4162.25	13.2	-	0.9					
22	787774.352	8440857.86	4175.278	Precorte	4162.25	13.0	-	0.9					
23	787774.85	8440857.301	4175.119	Precorte	4162.25	12.9	-	0.9					
24	787775.465	8440856.591	4174.914	Precorte	4162.25	12.7	-	0.9					
25	787775.974	8440855.973	4174.913	Precorte	4162.25	12.7	-	0.9					
26	787776.655	8440855.333	4174.983	Precorte	4162.25	12.7	-	0.9					
27	787777.204	8440854.684	4174.863	Precorte	4162.25	12.6	_	0.9					
28	787777.752	8440854.182	4174.775	Precorte	4162.25	12.5	_	0.9					
29	787778.358	8440853.477	4174.719	Precorte	4162.25	12.5	-	0.9					
30	787779.018	8440852.846	4174.664	Precorte	4162.25	12.4	_	0.9					
31	787779.7	8440852.182	4174.773	Precorte	4162.25	12.5	_	0.9					
32	787780.184	8440851.496	4174.632	Precorte	4162.25	12.4	-	0.9					
33	787780.726	8440851.009	4174.713	Precorte	4162.25	12.5	_	0.9					
34	787781.343	8440850.365	4174.64	Precorte	4162.25	12.4	_	0.9					
35	787781.998	8440849.692	4174.674	Precorte	4162.25	12.4	-	0.9					
36	787782.4817	8440849.155	4174.665	Precorte	4162.25	12.4	_	0.9					
37	787783.2193	8440848.179	4174.717	Precorte	4162.25	12.5	-	0.9					
38	787783.762	8440847.618	4174.692	Precorte	4162.25	12.4	_	0.9					
39	787784.0828	8440847.134	4174.706	Precorte	4162.25	12.5	_	0.9					
40	787784.9675	8440846.15	4174.759	Precorte	4162.25	12.5	_	0.9					
41	787784.3073	8440845.657	4174.899	Precorte	4162.25	12.6	_	0.9					
42	787786.618	8440844.219	4174.99	Precorte	4162.25	12.7	_	0.9					
43	787787.205	8440843.551	4175.034	Precorte	4162.25	12.7	-	0.9					
44	787787.735	8440842.83	4175.015	Precorte	4162.25	12.8	_	0.9					
77	, 5, 101.133	0-700-2.03	71/3.013	1100116	7102.23	12.0		0.5					

	Г				Г			<u> </u>
46	787789.3723	8440840.854	4175.068	Precorte	4162.25	12.8	-	0.9
47	787789.932	8440840.333	4175.078	Precorte	4162.25	12.8	-	0.9
48	787790.607	8440839.71	4175.178	Precorte	4162.25	12.9	-	0.9
49	787791.252	8440838.977	4175.176	Precorte	4163.05	12.1	-	0.9
50	787792.559	8440837.767	4174.966	Precorte	4163.05	11.9	-	0.9
51	787793.042	8440837.086	4175.016	Precorte	4163.05	12.0	-	0.9
52	787793.662	8440836.379	4175.066	Precorte	4163.05	12.0	-	0.9
53	787794.234	8440835.686	4175.141	Precorte	4163.05	12.1	-	0.9
54	787794.828	8440835.057	4175.008	Precorte	4163.05	12.0	-	0.9
55	787795.455	8440834.311	4174.885	Precorte	4163.05	11.8	-	0.9
56	787796.065	8440833.766	4174.764	Precorte	4163.05	11.7	-	0.9
57	787796.854	8440833.092	4174.532	Precorte	4163.05	11.5	-	0.9
58	787797.427	8440832.394	4174.784	Precorte	4163.05	11.7	-	0.9
59	787798.01	8440831.819	4174.873	Precorte	4163.05	11.8	-	0.9
60	787798.671	8440831.212	4175.111	Precorte	4162.45	12.7	-	0.9
61	787799.244	8440830.634	4174.948	Precorte	4162.45	12.5	-	0.9
62	787799.811	8440829.909	4174.755	Precorte	4162.45	12.3	-	0.9
63	787800.45	8440829.31	4174.718	Precorte	4162.45	12.3	-	0.9
64	787801.117	8440828.697	4174.596	Precorte	4162.45	12.1	-	0.9
65	787801.708	8440828.055	4174.54	Precorte	4162.45	12.1	-	0.9
66	787802.373	8440827.408	4174.458	Precorte	4162.45	12.0	-	0.9
67	787802.978	8440826.945	4174.442	Precorte	4162.45	12.0	-	0.9
68	787803.604	8440826.254	4174.535	Precorte	4162.45	12.1	-	0.9
69	787804.288	8440825.603	4174.556	Precorte	4162.45	12.1	-	0.9
70	787804.982	8440824.912	4174.666	Precorte	4162.45	12.2	-	0.9
71	787805.65	8440824.201	4174.864	Precorte	4162.45	12.4	-	0.9
72	787806.299	8440823.581	4174.828	Precorte	4162.45	12.4	-	0.9
73	787806.7478	8440822.992		Precorte	4162.45	12.2	-	0.9
74	787820.274	8440807.458		Precorte	4162.45	13.4	-	0.9
75	787823.345	8440804.182	4476.00	Precorte	4162.45	13.6	-	0.9
76	787826.0969	8440800.937	4176.413	Precorte	4162.45	14.0	-	0.9
77	787828.7271	8440798.065		Precorte	4162.45	13.9	-	0.9
78	787829.2479	8440797.568		Precorte	4162.45	13.9	-	0.9
79	787807.2059	8440822.35		Precorte	4162.45	12.1	-	0.9
80	787807.766	8440821.857		Precorte	4162.45	12.1	-	0.9
81	787808.209	8440821.427		Precorte	4162.45	12.1	-	0.9
82	787808.78	8440820.816		Precorte	4162.45	12.2	-	0.9
83	787809.369	8440820.15		Precorte	4162.45	12.3	-	0.9
84	787809.853	8440819.493		Precorte	4162.45	12.4	-	0.9
85	787810.7815	8440818.558		Precorte	4162.45	12.8	-	0.9
86	787811.1984	8440818.048		Precorte	4162.45	12.7	-	0.9
87	787811.6264	8440817.412		Precorte	4162.45	12.9	-	0.9
88	787811.0264	8440817.412		Precorte	4162.45	12.8	-	0.9
89				Precorte	4162.45	12.8	<u> </u>	0.9
90	787812.9137	8440815.866		Precorte	4162.45	12.8	-	0.9
91	787813.3443	8440815.212	4475 446	Precorte	4162.45	12.7		0.9
92	787813.826	8440814.726					-	0.9
93	787814.38	8440814.106	4475.000	Precorte	4162.45 4162.45	12.7	-	0.9
	787815.03	8440813.492		Precorte		12.8	-	
94	787815.592	8440812.911	4175.304	Precorte	4162.45	12.9		0.9

	I	Γ		T	1	ı	ı	
95	787816.183	8440812.39	4175.479	Precorte	4162.45	13.0	-	0.9
96	787816.776	8440811.566	4175.724	Precorte	4162.45	13.3	-	0.9
97	787817.433	8440810.771	4175.734	Precorte	4162.45	13.3	-	0.9
98	787817.878	8440810.255	4175.657	Precorte	4162.45	13.2	-	0.9
99	787818.469	8440809.605	4175.748	Precorte	4162.45	13.3	-	0.9
100	787819.114	8440808.826	4175.769	Precorte	4162.45	13.3	-	0.9
101	787819.641	8440808.25	4175.877	Precorte	4162.45	13.4	-	0.9
102	787820.994	8440806.834	4175.966	Precorte	4162.45	13.5	-	0.9
103	787821.486	8440806.309	4175.937	Precorte	4162.45	13.5	-	0.9
104	787822.041	8440805.665	4176.006	Precorte	4162.45	13.6	-	0.9
105	787822.735	8440804.967	4176.006	Precorte	4162.45	13.6	-	0.9
106	787823.9436	8440803.499	4176.116	Precorte	4162.45	13.7	-	0.9
107	787824.499	8440802.819	4176.219	Precorte	4162.45	13.8	-	0.9
108	787825.048	8440802.276	4176.237	Precorte	4162.45	13.8	-	0.9
109	787825.505	8440801.551	4176.322	Precorte	4162.45	13.9	-	0.9
110	787826.5906	8440800.505	4176.304	Precorte	4162.45	13.9	-	0.9
111	787827.0905	8440799.994	4176.364	Precorte	4162.45	13.9	-	0.9
112	787827.5562	8440799.542	4176.415	Precorte	4162.45	14.0	-	0.9
113	787827.9724	8440799.071	4176.43	Precorte	4162.45	14.0	-	0.9
114	787828.41	8440798.61	4176.407	Precorte	4162.45	14.0	-	0.9
115	787829.8574	8440797.008	4176.259	Precorte	4162.45	13.8	-	0.9
116	787831.1061	8440795.597	4176.102	Precorte	4162.45	13.7	-	0.9
117	787835.4437	8440791.466	4175.313	Precorte	4162.45	12.9	-	0.9
118	787836.9598	8440789.981	4174.857	Precorte	4162.45	12.4	-	0.9
119	787838.9751	8440788.255	4174.398	Precorte	4162.45	11.9	-	0.9
120	787840.9332	8440786.405	4173.707	Precorte	4162.45	11.3	-	0.9
121	787842.1329	8440785.208	4173.436	Precorte	4162.45	11.0	-	0.9
122	787843.401	8440784.033	4173.087	Precorte	4162.45	10.6	-	0.9
123	787845.5707	8440782.106	4172.841	Precorte	4162.45	10.4	-	0.9
124	787849.909	8440777.992	4174.598	Precorte	4162.45	12.1	-	0.9
125	787830.347	8440796.481	4176.214	Precorte	4162.45	13.8	-	0.9
126	787830.76	8440796.02	4176.106	Precorte	4162.45	13.7	-	0.9
127	787831.609	8440795.187	4175.979	Precorte	4162.45	13.5	-	0.9
128	787832.271	8440794.596	4175.939	Precorte	4162.45	13.5	-	0.9
129	787832.954	8440793.993	4175.864	Precorte	4162.45	13.4	-	0.9
130	787833.558	8440793.43	4175.694	Precorte	4162.45	13.2	-	0.9
131	787834.189	8440792.839	4175.527	Precorte	4162.45	13.1	-	0.9
132	787834.827	8440792.115	4175.329	Precorte	4162.45	12.9	-	0.9
133	787835.9792	8440790.964	4175.076	Precorte	4162.45	12.6	-	0.9
134	787836.3541	8440790.508	4174.813	Precorte	4162.45	12.4	-	0.9
135	787837.477	8440789.614	4174.744	Precorte	4162.45	12.3	-	0.9
136	787837.992	8440789.066	4174.618	Precorte	4162.45	12.2	-	0.9
137	787838.4356	8440788.674	4174.438	Precorte	4162.45	12.0	-	0.9
138	787839.5176	8440787.775	4174.233	Precorte	4162.45	11.8	-	0.9
139	787840.108	8440787.317	4173.986	Precorte	4162.45	11.5	-	0.9
140	787840.5479	8440786.831	4173.7	Precorte	4162.45	11.3	-	0.9
141	787841.3461	8440785.996	4173.571	Precorte	4162.45	11.1	-	0.9
142	787841.8078	8440785.568	4173.444	Precorte	4162.45	11.0	_	0.9
143	787842.5569	8440784.79	4173.224	Precorte	4162.45	10.8	_	0.9
143	,0,042.3303	0770704.73	71,3.224	TICCOILE	7102.43	10.0	<u> </u>	0.5

	1	T	1					
144	787842.9912	8440784.368	4173.089	Precorte	4162.45	10.6	-	0.9
145	787843.974	8440783.645	4173.033	Precorte	4162.45	10.6	-	0.9
146	787844.4913	8440783.059	4172.946	Precorte	4162.45	10.5	-	0.9
147	787845.0068	8440782.546	4172.82	Precorte	4162.45	10.4	-	0.9
148	787846.0869	8440781.689	4172.691	Precorte	4162.45	10.2	-	0.9
149	787846.6223	8440781.186	4172.619	Precorte	4162.45	10.2	-	0.9
150	787847.269	8440780.657	4172.508	Precorte	4162.45	10.1	-	0.9
151	787847.847	8440780.042	4172.482	Precorte	4162.45	10.0	-	0.9
152	787848.589	8440779.435	4172.421	Precorte	4162.45	10.0	-	0.9
153	787849.27	8440778.767	4172.489	Precorte	4162.45	10.0	-	0.9
1	787769.578	8440866.286	4176.181	Buffer2	4172.794	3.4	2.5	2.5
2	787771.084	8440864.417	4176.374	Buffer2	4173.674	2.7	2.5	2.5
3	787772.849	8440862.622	4176.41	Buffer2	4173.674	2.7	2.5	2.5
4	787774.728	8440860.962	4175.494	Buffer2	4172.994	2.5	2.5	2.5
5	787776.468	8440858.983	4175.831	Buffer2	4173.674	2.2	2.5	2.5
6	787768.074	8440867.922	4175.976	Buffer2	4173.674	2.3	2.5	2.5
7	787778.136	8440857.08	4175.901	Buffer2	4173.674	2.2	2.5	2.5
8	787779.842	8440855.297	4176.069	Buffer2	4173.674	2.4	2.5	2.5
9	787781.389	8440853.461	4176.164	Buffer2	4173.674	2.5	2.5	2.5
10	787783.129	8440851.632	4176.177	Buffer2	4173.674	2.5	2.5	2.5
11	787784.716	8440849.789	4176.258	Buffer2	4173.674	2.6	2.5	2.5
12	787786.362	8440847.874	4176.3	Buffer2	4173.674	2.6	2.5	2.5
13	787787.931	8440846.158	4175.482	Buffer2	4172.674	2.8	2.5	2.5
14	787789.567	8440844.378	4175.395	Buffer2	4172.674	2.7	2.5	2.5
15	787791.051	8440842.428	4175.331	Buffer2	4172.674	2.7	2.5	2.5
16	787796.01	8440836.956	4174.823	Buffer2	4172.674	2.1	2.5	2.5
17	787797.565	8440835.252	4174.428	Buffer2	4171.674	2.8	2.5	2.5
18	787799.301	8440833.599	4175.195	Buffer2	4172.674	2.5	2.5	2.5
19	787792.596	8440840.471	4175.226	Buffer2	4172.674	2.6	2.5	2.5
20	787794.136	8440838.608	4174.991	Buffer2	4172.674	2.3	2.5	2.5
21	787814.722	8440816.712	4175.321	Buffer2	4172.674	2.6	2.5	2.5
22	787813.213	8440818.453	4175.338	Buffer2	4172.674	2.7	2.5	2.5
23	787801.075	8440831.536	4175.282	Buffer2	4172.674	2.6	2.5	2.5
24	787802.946	8440829.681	4174.767	Buffer2	4172.674	2.1	2.5	2.5
25	787804.6659	8440827.479	4174.751	Buffer2	4172.674	2.1	2.5	2.5
26	787806.391	8440825.792	4174.678	Buffer2	4172.674	2.0	2.5	2.5
27	787808.415	8440823.621	4174.749	Buffer2	4172.674	2.1	2.5	2.5
28	787809.783	8440822.258	4175.077	Buffer2	4172.674	2.4	2.5	2.5
29	787811.529	8440820.434	4175.31	Buffer2	4172.674	2.6	2.5	2.5
30	787816.312	8440814.658	4175.412	Buffer2	4172.674	2.7	2.5	2.5
31	787818.19	8440812.874	4175.205	Buffer2	4172.674	2.5	2.5	2.5
32	787819.957	8440811.015	4175.453	Buffer2	4172.674	2.8	2.5	2.5
33	787813.337	8440809.11	4175.91	Buffer2	4172.674	2.2	2.5	2.5
34	787823.114	8440809.11	4175.596	Buffer2	4173.874	2.7	2.5	2.5
35		8440807.193	-	Buffer2	4172.874			2.5
	787824.818	8440803.24	4175.649			2.8	2.5	
36	787826.325		4175.876	Buffer2	4173.874	2.0	2.5	2.5
37	787828.093	8440801.56	4176.478	Buffer2	4173.874	2.6	2.5	2.5
38	787829.892	8440799.581	4176.494	Buffer2	4173.874	2.6	2.5	2.5
39	787851.401	8440779.195	4172.644	Buffer2	4169.874	2.8	2.5	2.5

		•		•		ı		1
40	787849.965	8440780.847	4172.361	Buffer2	4169.874	2.5	2.5	2.5
41	787848.16	8440782.611	4172.485	Buffer2	4169.874	2.6	2.5	2.5
42	787846.309	8440784.369	4172.805	Buffer2	4169.874	2.9	2.5	2.5
43	787844.534	8440786.034	4173.101	Buffer2	4170.874	2.2	2.5	2.5
44	787842.726	8440787.71	4173.538	Buffer2	4170.874	2.7	2.5	2.5
45	787840.965	8440789.448	4174.15	Buffer2	4171.874	2.3	2.5	2.5
46	787839.181	8440790.892	4174.787	Buffer2	4171.874	2.9	2.5	2.5
47	787837.512	8440792.7	4175.122	Buffer2	4172.874	2.2	2.5	2.5
48	787835.404	8440794.483	4175.632	Buffer2	4172.874	2.8	2.5	2.5
49	787833.52	8440796.176	4175.82	Buffer2	4172.874	2.9	2.5	2.5
50	787831.8963	8440797.782	4176.147	Buffer2	4172.874	3.3	2.5	2.5
1	787803.8806	8440831.477	4176.333	Buffer1	4169.333	7.0	1.5	3
2	787801.911	8440833.714	4177.712	Buffer1	4169.333	8.4	1.5	3
3	787797.8288	8440838.631	4176.282	Buffer1	4169.333	6.9	1.5	3
4	787796.069	8440840.389	4176.241	Buffer1	4169.333	6.9	1.5	3
5	787794.018	8440842.501	4177.695	Buffer1	4169.333	8.4	1.5	3
6	787790.038	8440847.162	4174.857	Buffer1	4169.333	5.5	1.5	3
7	787787.974	8440849.534	4177.847	Buffer1	4169.333	8.5	1.5	3
8	787783.939	8440854.042	4174.935	Buffer1	4167.333	7.6	1.5	3
9	787781.742	8440856.137	4176.393	Buffer1	4169.333	7.1	1.5	3
10	787779.775	8440858.371	4174.9	Buffer1	4169.333	5.6	1.5	3
11	787775.418	8440862.944	4176.457	Buffer1	4169.333	7.1	1.5	3
12	787771.528	8440867.21	4176.153	Buffer1	4169.333	6.8	1.5	3
13	787773.44	8440865.125	4176.309	Buffer1	4169.333	7.0	1.5	3
14	787777.339	8440861.07	4176.317	Buffer1	4169.333	7.0	1.5	3
15	787785.719	8440851.592	4176.422	Buffer1	4169.333	7.1	1.5	3
16	787791.807	8440844.836	4176.186	Buffer1	4169.333	6.9	1.5	3
17	787800.3982	8440835.43	4176.203	Buffer1	4169.333	6.9	1.5	3
18	787798.753	8440837.076	4174.194	Buffer1	4167.333	6.9	1.5	3
19	787809.513	8440825.67	4175.589	Buffer1	4169.333	6.3	1.5	3
20	787811.284	8440823.606	4176.263	Buffer1	4169.333	6.9	1.5	3
21	787812.69	8440821.878	4175.647	Buffer1	4169.333	6.3	1.5	3
22	787816.562	8440816.824	4174.964	Buffer1	4167.333	7.6	1.5	3
23	787818.322	8440814.823	4175.221	Buffer1	4167.333	7.9	1.5	3
24	787820.3825	8440812.712	4175.337	Buffer1	4168.333	7.0	1.5	3
25	787823.103	8440809.502	4175.57	Buffer1	4168.333	7.2	1.5	3
26	787825.313	8440807.422	4175.133	Buffer1	4167.333	7.8	1.5	3
27	787826.863	8440805.688	4175.898	Buffer1	4168.333	7.6	1.5	3
28	787828.852	8440803.988	4175.853	Buffer1	4168.333	7.5	1.5	3
29	787830.51	8440802.048	4176.312	Buffer1	4168.833	7.5	1.5	3
30	787852.23	8440781.3	4172.546	Buffer1	4165.833	6.7	1.5	3
31	787850.547	8440783.229	4172.393	Buffer1	4165.833	6.6	1.5	3
32	787848.57	8440784.925	4172.578	Buffer1	4165.833	6.7	1.5	3
33	787854.473	8440782.591	4172.812	Buffer1	4165.833	7.0	1.5	3
34	787852.685	8440783.705	4172.583	Buffer1	4165.833	6.8	1.5	3
35	787846.56	8440786.422	4172.988	Buffer1	4165.833	7.2	1.5	3
36	787844.677	8440787.934	4173.379	Buffer1	4165.833	7.5	1.5	3
37	787842.546	8440789.667	4173.379	Buffer1		7.3	1.5	
5/	/0/042.340	0440/03.00/	41/3.99	Builett	4166.833	1.2	1.3	3

Tabla B.2 – Levantamiento topográfico de taladros de cimentaciones

ECTE	NODTE	COTA	TIPO DE	COTA BACE	ALTURA DE	DIIDDEN	ESPACIA
ESIE	NORTE	COTA	TALADRO	COTA BASE	CORTE	BURDEN	MIENTO
787935.125	8440934.356	4164.896	PRECORTE	4162.1	2.796	-	1
787936.871	8440934.695	4164.833	PRECORTE	4162.1	2.733	-	1
787937.824	8440934.173	4164.861	PRECORTE	4162.1	2.761	-	1
787938.665	8440933.273	4164.772	PRECORTE	4162.1	2.672	-	1
787939.46	8440932.375	4164.88	PRECORTE	4162.1	2.78	-	1
787940.293	8440931.397	4164.834	PRECORTE	4162.1	2.734	-	1
787941.01	8440930.656	4164.786	PRECORTE	4162.1	2.686	-	1
787941.84	8440929.703	4164.837	PRECORTE	4162.1	2.737	-	1
787942.704	8440928.777	4164.818	PRECORTE	4162.1	2.718	-	1
787943.505	8440927.936	4164.778	PRECORTE	4162.1	2.678	-	1
787944.257	8440927.119	4164.79	PRECORTE	4162.1	2.69	-	1
787944.993	8440926.187	4164.882	PRECORTE	4162.1	2.782	-	1
787945.845	8440925.455	4164.977	PRECORTE	4162.1	2.877	-	1
787946.586	8440924.438	4165.023	PRECORTE	4162.1	2.923	-	1
787947.558	8440923.607	4165.099	PRECORTE	4162.1	2.999	-	1
787948.399	8440922.757	4165.065	PRECORTE	4162.1	2.965	-	1
787949.197	8440921.863	4165.065	PRECORTE	4162.1	2.965	-	1
787949.984	8440920.954	4164.955	PRECORTE	4162.1	2.855	-	1
787950.715	8440920.057	4165.021	PRECORTE	4162.1	2.921	-	1
787951.724	8440919.183	4165.025	PRECORTE	4162.1	2.925	-	1
787952.464	8440918.395	4165.065	PRECORTE	4162.1	2.965	-	1
787953.315	8440917.333	4165.072	PRECORTE	4162.1	2.972	-	1
787954.064	8440916.733	4164.982	PRECORTE	4162.1	2.882	-	1
787955.03	8440915.743	4164.948		4162.1	2.848	-	1
787955.804	8440914.869	4164.948	PRECORTE	4162.1	2.848	-	1
						-	1
						-	1
787957.015					2.871	-	1
						-	1
						-	1
						-	1
						-	1
						-	1
						_	1
						_	1
						_	1
						_	1
						_	1
							1
						_	1
						_	1
							1
							1
787943.481	8440898.96	4164.925	PRECORTE	4162.1	2.825	ı -	1
787942.593	8440898.169	4164.938	PRECORTE	4162.1	2.838		1
	787936.871 787937.824 787938.665 787939.46 787940.293 787941.01 787941.84 787942.704 787943.505 787944.993 787945.845 787946.586 787947.558 787949.197 787949.984 787950.715 787953.315 787955.03 787955.03 787955.03 787955.03 787955.03 787955.03 787955.03 787955.03	787935.125 8440934.356 787936.871 8440934.695 787937.824 8440934.173 787938.665 8440932.375 787940.293 8440931.397 787941.01 8440930.656 787941.84 8440929.703 787942.704 8440927.936 787943.505 8440927.119 787944.993 8440926.187 787945.845 8440925.455 787946.586 8440922.757 787948.399 8440922.757 787949.197 8440921.863 787949.984 8440920.057 787950.715 8440912.83 787951.724 8440918.395 787953.315 8440917.333 787955.03 8440915.743 787955.03 8440915.743 787955.03 8440914.869 787956.69 8440914.031 787957.015 8440910.876 787956.23 8440910.876 787955.362 8440910.876 787955.995 8440905.291 787955.995 8440900.476	787935.125 8440934.356 4164.896 787936.871 8440934.695 4164.833 787937.824 8440934.173 4164.861 787938.665 8440932.375 4164.772 787939.46 8440932.375 4164.834 787940.293 8440930.656 4164.786 787941.01 8440928.777 4164.818 787942.704 8440927.936 4164.778 787943.505 8440927.119 4164.778 787944.257 8440927.119 4164.79 787944.993 8440925.455 4164.977 787945.845 8440925.455 4165.023 787945.845 8440923.607 4165.023 787949.197 8440921.863 4165.065 787949.984 8440920.057 4165.065 787950.715 8440910.954 4165.021 787951.724 8440918.395 4165.065 787953.315 8440917.333 4165.025 787954.064 8440916.733 4164.948 787955.03 8440911.734 4164.948	787935.125 8440934.356 4164.896 PRECORTE 787936.871 8440934.356 4164.833 PRECORTE 787937.824 8440934.173 4164.861 PRECORTE 787938.665 8440932.375 4164.881 PRECORTE 787939.46 8440931.397 4164.834 PRECORTE 787941.01 8440930.656 4164.834 PRECORTE 787941.84 8440929.703 4164.837 PRECORTE 787942.704 8440927.73 4164.818 PRECORTE 787943.505 8440927.936 4164.79 PRECORTE 787945.845 8440927.119 4164.79 PRECORTE 787945.845 8440927.119 4164.79 PRECORTE 787945.845 8440927.11 4164.97 PRECORTE 787945.845 8440921.663 4165.023 PRECORTE 787948.399 8440921.663 4165.025 PRECORTE 787949.949 8440921.863 4165.065 PRECORTE 787950.715 8440920.954 4164.955 PRECORTE <	787935.125 8440934.356 4164.896 PRECORTE 4162.1 787936.871 8440934.695 4164.833 PRECORTE 4162.1 787937.824 8440934.173 4164.861 PRECORTE 4162.1 787938.665 8440932.375 4164.88 PRECORTE 4162.1 787940.293 8440931.397 4164.834 PRECORTE 4162.1 787941.01 8440930.656 4164.786 PRECORTE 4162.1 787941.84 8440929.703 4164.837 PRECORTE 4162.1 787942.704 8440927.793 4164.778 PRECORTE 4162.1 787943.505 8440927.119 4164.778 PRECORTE 4162.1 787944.257 8440927.119 4164.797 PRECORTE 4162.1 787945.845 8440925.455 4164.977 PRECORTE 4162.1 787946.586 8440924.438 4165.023 PRECORTE 4162.1 787948.399 8440921.863 4165.065 PRECORTE 4162.1 787949.984 8440921.863	787935.125 8440934.356 4164.896 PRECORTE 4162.1 2.796 787935.125 8440934.495 4164.833 PRECORTE 4162.1 2.733 78793.824 8440934.173 4164.861 PRECORTE 4162.1 2.672 787939.65 8440932.375 4164.881 PRECORTE 4162.1 2.73 787940.293 8440931.397 4164.834 PRECORTE 4162.1 2.734 787941.81 8440929.703 4164.837 PRECORTE 4162.1 2.737 787942.704 8440928.777 4164.818 PRECORTE 4162.1 2.737 787943.505 8440927.936 4164.778 PRECORTE 4162.1 2.678 787944.993 8440927.119 4164.79 PRECORTE 4162.1 2.69 787945.845 8440925.438 4165.092 PRECORTE 4162.1 2.782 787945.845 8440922.438 4165.093 PRECORTE 4162.1 2.923 787949.977 844092.438 4165.099 PRECORTE	TALLADRO

	1	,				T		
47	787940.849	8440896.596	4164.917	PRECORTE	4162.1	2.817	-	1
48	787939.963	8440895.791	4164.937	PRECORTE	4162.1	2.837	-	1
49	787939.108	8440895.005	4164.874	PRECORTE	4162.1	2.774	-	1
50	787938.281	8440894.224	4164.774	PRECORTE	4162.1	2.674	-	1
51	787937.49	8440893.559	4164.718	PRECORTE	4162.1	2.618	-	1
52	787936.675	8440892.83	4164.729	PRECORTE	4162.1	2.629	-	1
53	787935.704	8440892.664	4164.72	PRECORTE	4162.1	2.62	-	1
54	787934.605	8440893.109	4164.705	PRECORTE	4162.1	2.605	-	1
55	787933.78	8440893.944	4164.721	PRECORTE	4162.1	2.621	-	1
56	787932.972	8440894.81	4164.781	PRECORTE	4162.1	2.681	-	1
57	787932.212	8440895.617	4164.65	PRECORTE	4162.1	2.55	-	1
58	787931.454	8440896.475	4164.706	PRECORTE	4162.1	2.606	-	1
59	787930.756	8440897.128	4164.693	PRECORTE	4162.1	2.593	-	1
60	787929.819	8440896.22	4164.722	PRECORTE	4162.1	2.622	-	1
61	787928.907	8440895.31	4164.7	PRECORTE	4162.1	2.6	-	1
62	787928.081	8440894.616	4164.732	PRECORTE	4162.1	2.632	-	1
63	787927.258	8440893.793	4164.765	PRECORTE	4162.1	2.665	-	1
64	787926.4	8440893.093	4164.762	PRECORTE	4162.1	2.662	-	1
65	787925.397	8440892.731	4164.863	PRECORTE	4162.1	2.763	-	1
66	787924.355	8440892.954	4164.862	PRECORTE	4162.1	2.762	-	1
67	787923.432	8440893.696	4164.846	PRECORTE	4162.1	2.746	-	1
68	787922.666	8440894.496	4164.764	PRECORTE	4162.1	2.664	-	1
69	787921.954	8440895.371	4164.608	PRECORTE	4162.1	2.508	-	1
70	787921.197	8440896.156	4164.71	PRECORTE	4162.1	2.61	-	1
71	787920.421	8440896.952	4164.773	PRECORTE	4162.1	2.673	-	1
72	787919.588	8440897.837	4164.746	PRECORTE	4162.1	2.646	-	1
73	787918.803	8440898.684	4164.827	PRECORTE	4162.1	2.727	-	1
74	787917.976	8440899.539	4164.793	PRECORTE	4162.1	2.693	-	1
75	787917.211	8440900.402	4164.855	PRECORTE	4162.1	2.755	-	1
76	787916.35	8440901.284	4164.794	PRECORTE	4162.1	2.694	-	1
77	787915.59	8440902.17	4164.834	PRECORTE	4162.1	2.734	-	1
78	787914.819	8440903.006	4164.931	PRECORTE	4162.1	2.831	-	1
79	787914.038	8440903.808	4164.872	PRECORTE	4162.1	2.772	-	1
80	787913.501	8440904.414	4164.864	PRECORTE	4162.1	2.764	-	1
81	787912.78	8440905.151	4164.779	PRECORTE	4162.1	2.679	-	1
82	787912.162	8440905.894	4164.907	PRECORTE	4162.1	2.807	-	1
83	787913.02	8440906.627	4164.843	PRECORTE	4162.1	2.743	-	1
84	787913.937	8440907.53	4164.876	PRECORTE	4162.1	2.776	-	1
85	787914.77	8440908.336	4164.878	PRECORTE	4162.1	2.778	-	1
86	787915.646	8440909.011	4164.997	PRECORTE	4162.1	2.897	-	1
87	787916.507	8440909.948	4164.939	PRECORTE	4162.1	2.839	-	1
88	787910.307	8440910.778	4164.964	PRECORTE	4162.1	2.864	-	1
89	787918.225	8440911.564	4164.963	PRECORTE	4162.1	2.863	-	1
90	787919.146	8440912.376	4165.015	PRECORTE	4162.1	2.915	-	1
91	787919.146	8440913.167	4165.037	PRECORTE	4162.1	2.937	_	1
91	787920.048	8440913.167	4164.999	PRECORTE	4162.1	2.899	_	1
							-	
93	787921.807	8440914.84	4164.99	PRECORTE	4162.1	2.89	_	1
94	787922.674	8440915.752	4164.934	PRECORTE	4162.1	2.834	_	1
95	787923.512	8440916.59	4164.95	PRECORTE	4162.1	2.85		1

	1	I	T			Г	1	T
96	787924.376	8440917.324	4164.943	PRECORTE	4162.1	2.843	-	1
97	787925.207	8440918.237	4164.943	PRECORTE	4162.1	2.843	-	1
98	787926.097	8440918.977	4164.961	PRECORTE	4162.1	2.861	-	1
99	787926.912	8440919.766	4164.982	PRECORTE	4162.1	2.882	-	1
100	787927.806	8440920.559	4164.975	PRECORTE	4162.1	2.875	-	1
101	787928.577	8440921.334	4164.986	PRECORTE	4162.1	2.886	-	1
102	787927.11	8440922.804	4165.059	PRECORTE	4162.1	2.959	-	1
103	787925.8	8440925.612	4165.172	PRECORTE	4162.1	3.072	-	1
104	787927.839	8440922.059	4165.036	PRECORTE	4162.1	2.936	-	1
105	787925.124	8440924.978	4165.083	PRECORTE	4162.1	2.983	-	1
106	787925.825	8440924.157	4165.101	PRECORTE	4162.1	3.001	-	1
107	787926.433	8440923.403	4165.034	PRECORTE	4162.1	2.934	-	1
108	787926.682	8440926.463	4165.139	PRECORTE	4162.1	3.039	-	1
109	787927.351	8440927.01	4165.153	PRECORTE	4162.1	3.053	-	1
110	787928.197	8440927.73	4165.157	PRECORTE	4162.1	3.057	-	1
111	787929.073	8440928.591	4165.145	PRECORTE	4162.1	3.045	-	1
112	787929.976	8440929.341	4165.091	PRECORTE	4162.1	2.991	-	1
113	787930.828	8440930.21	4165.057	PRECORTE	4162.1	2.957	-	1
114	787934.2682	8440933.516	4164.896	PRECORTE	4162.1	2.796	-	1
115	787933.4115	8440932.676	4164.896	PRECORTE	4162.1	2.796	-	1
116	787932.5547	8440931.835	4164.896	PRECORTE	4162.1	2.796	-	1
117	787931.698	8440930.995	4164.896	PRECORTE	4162.1	2.796	-	1
1	787937.668	8440931.801	4164.873	BUFFER	4162.1	2.773	1.2	2.5
2	787939.061	8440930.308	4164.855	BUFFER	4162.1	2.755	1.2	2.5
3	787940.396	8440928.809	4164.809	BUFFER	4162.1	2.709	1.2	2.5
4	787941.802	8440927.355	4164.758	BUFFER	4162.1	2.658	1.2	2.5
5	787943.172	8440925.8	4164.83	BUFFER	4162.1	2.73	1.2	2.5
6	787944.545	8440924.368	4164.94	BUFFER	4162.1	2.84	1.2	2.5
7	787945.912	8440923.015	4165.071	BUFFER	4162.1	2.971	1.2	2.5
8	787947.207	8440921.611	4165.037	BUFFER	4162.1	2.937	1.2	2.5
9	787948.513	8440920.179	4164.917	BUFFER	4162.1	2.817	1.2	2.5
10	787949.845	8440918.633	4164.982	BUFFER	4162.1	2.882	1.2	2.5
11	787951.322	8440917.19	4165.058	BUFFER	4162.1	2.958	1.2	2.5
12	787952.66	8440915.757	4165.046	BUFFER	4162.1	2.946	1.2	2.5
13	787954.037	8440914.375	4164.933	BUFFER	4162.1	2.833	1.2	2.5
14	787955.204	8440912.752	4164.968	BUFFER	4162.1	2.868	1.2	2.5
15	787954.12	8440911.576	4164.99	BUFFER	4162.1	2.89	1.2	2.5
16	787952.984	8440910.434	4164.992	BUFFER	4162.1	2.892	1.2	2.5
17	787951.57	8440909.094	4164.969	BUFFER	4162.1	2.869	1.2	2.5
18	787948.817	8440906.455	4164.941	BUFFER	4162.1	2.841	1.2	2.5
19	787947.397	8440905.019	4164.911	BUFFER	4162.1	2.811	1.2	2.5
20	787945.907	8440903.68	4164.914	BUFFER	4162.1	2.811	1.2	2.5
21	787944.567	8440903.08	4164.853	BUFFER	4162.1	2.753	1.2	2.5
22							1.2	2.5
23	787942.946	8440900.986	4164.862	BUFFER	4162.1	2.762	1.2	2.5
24	787941.635	8440899.714	4165.013	BUFFER	4162.1	2.913	1.2	2.5
	787928.897	8440923.495	4165.181	BUFFER	4162.1	3.081	1.2	2.5
25	787933.659	8440930.229	4164.883	BUFFER	4162.1	2.783	1.2	2.5
26	787932.17	8440929.153	4164.917	BUFFER	4162.1	2.817		
27	787929.056	8440926.409	4165.148	BUFFER	4162.1	3.048	1.2	2.5

	Т			1				
28	787940.088	8440898.377	4164.862	BUFFER	4162.1	2.762	1.2	2.5
29	787938.691	8440896.983	4164.792	BUFFER	4162.1	2.692	1.2	2.5
30	787937.177	8440895.622	4164.741	BUFFER	4162.1	2.641	1.2	2.5
31	787935.675	8440894.518	4164.735	BUFFER	4162.1	2.635	1.2	2.5
32	787933.467	8440897.305	4164.67	BUFFER	4162.1	2.57	1.2	2.5
33	787931.965	8440898.554	4164.673	BUFFER	4162.1	2.573	1.2	2.5
34	787930.658	8440899.632	4164.613	BUFFER	4162.1	2.513	1.2	2.5
35	787929.392	8440898.491	4164.635	BUFFER	4162.1	2.535	1.2	2.5
36	787928.073	8440897.105	4164.639	BUFFER	4162.1	2.539	1.2	2.5
37	787926.709	8440895.692	4164.76	BUFFER	4162.1	2.66	1.2	2.5
38	787925.08	8440894.514	4164.803	BUFFER	4162.1	2.703	1.2	2.5
39	787923.814	8440895.844	4164.757	BUFFER	4162.1	2.657	1.2	2.5
40	787922.625	8440897.196	4164.681	BUFFER	4162.1	2.581	1.2	2.5
41	787921.462	8440898.573	4164.719	BUFFER	4162.1	2.619	1.2	2.5
42	787920.224	8440899.87	4164.745	BUFFER	4162.1	2.645	1.2	2.5
43	787918.903	8440901.235	4164.77	BUFFER	4162.1	2.67	1.2	2.5
44	787917.48	8440902.701	4164.797	BUFFER	4162.1	2.697	1.2	2.5
45	787920.776	8440910.855	4164.996	BUFFER	4162.1	2.896	1.2	2.5
46	787922.086	8440912.387	4165.03	BUFFER	4162.1	2.93	1.2	2.5
47	787923.46	8440913.864	4165.026	BUFFER	4162.1	2.926	1.2	2.5
48	787917.873	8440908.219	4164.921	BUFFER	4162.1	2.821	1.2	2.5
49	787919.129	8440909.752	4164.958	BUFFER	4162.1	2.858	1.2	2.5
50	787916.364	8440906.88	4164.922	BUFFER	4162.1	2.822	1.2	2.5
51	787914.726	8440905.643	4164.851	BUFFER	4162.1	2.751	1.2	2.5
52	787924.873	8440915.259	4164.946	BUFFER	4162.1	2.846	1.2	2.5
53	787926.364	8440916.53	4164.938	BUFFER	4162.1	2.838	1.2	2.5
54	787927.928	8440917.994	4164.946	BUFFER	4162.1	2.846	1.2	2.5
55	787929.358	8440919.43	4164.956	BUFFER	4162.1	2.856	1.2	2.5
56	787930.436	8440920.511	4165.014	BUFFER	4162.1	2.914	1.2	2.5
57	787927.611	8440924.955	4165.086	BUFFER	4162.1	2.986	1.2	2.5
58	787930.529	8440927.778	4165.044	BUFFER	4162.1	2.944	1.2	2.5
59	787935.0603	8440931.656	4164.883	BUFFER	4162.1	2.783	1.2	2.5
60	787936.4616	8440933.083	4164.883	BUFFER	4162.1	2.783	1.2	2.5
61	787916.2606	8440904.286	4164.797	BUFFER	4162.1	2.697	1.2	2.5
62	787934.9316	8440895.943	4164.67	BUFFER	4162.1	2.57	1.2	2.5
63	787950.3244	8440907.77	4164.941	BUFFER	4162.1	2.841	1.2	2.5
64	787930.1716	8440922.38	4165.181	BUFFER	4162.1	3.081	1.2	2.5
65	787931.4174	8440921.26	4165.181	BUFFER	4162.1	3.081	1.2	2.5
1	787937.9802	8440928.657	4164.871	PRODUCCION	4162.1	2.771	2	2.3
2	787936.4645	8440930.287	4164.819	PRODUCCION	4162.1	2.719	2	2.3
3	787934.599	8440928.579	4164.78	PRODUCCION	4162.1	2.68	2	2.3
4	787934.9727	8440926.122	4164.786	PRODUCCION	4162.1	2.686	2	2.3
5	787932.0643	8440926.015	4164.947	PRODUCCION	4162.1	2.847	2	2.3
6	787936.072	8440927.41	4164.779	PRODUCCION	4162.1	2.679	2	2.3
7	787933.3459	8440924.876	4164.957	PRODUCCION	4162.1	2.857	2	2.3
8	787930.576	8440924.555	4165.114	PRODUCCION	4162.1	3.014	2	2.3
9	787939.353	8440924.333	4164.788		4162.1	2.688	2	2.3
							2	2.3
10	787940.966	8440925.114	4164.777	PRODUCCION	4162.1	2.677	2	2.3
11	787942.453	8440923.508	4164.877	PRODUCCION	4162.1	2.777		2.3

	T		ı	Г				
12	787944.024	8440921.745	4164.891	PRODUCCION	4162.1	2.791	2	2.3
13	787945.718	8440919.867	4164.729	PRODUCCION	4162.1	2.629	2	2.3
14	787947.359	8440918.169	4164.914	PRODUCCION	4162.1	2.814	2	2.3
15	787948.988	8440916.586	4165.047	PRODUCCION	4162.1	2.947	2	2.3
16	787950.707	8440914.716	4165.045	PRODUCCION	4162.1	2.945	2	2.3
17	787952.25	8440913.199	4164.882	PRODUCCION	4162.1	2.782	2	2.3
18	787950.664	8440911.363	4164.99	PRODUCCION	4162.1	2.89	2	2.3
19	787948.843	8440909.724	4164.968	PRODUCCION	4162.1	2.868	2	2.3
20	787944.493	8440908.958	4164.969	PRODUCCION	4162.1	2.869	2	2.3
21	787943.035	8440907.651	4164.909	PRODUCCION	4162.1	2.809	2	2.3
22	787944.7443	8440905.733	4164.9	PRODUCCION	4162.1	2.8	2	2.3
23	787946.0043	8440906.782	4164.9	PRODUCCION	4162.1	2.8	2	2.3
24	787947.073	8440908.056	4164.959	PRODUCCION	4162.1	2.859	2	2.3
25	787943.565	8440904.646	4164.824	PRODUCCION	4162.1	2.724	2	2.3
26	787941.927	8440902.981	4164.886	PRODUCCION	4162.1	2.786	2	2.3
27	787940.215	8440901.368	4165.042	PRODUCCION	4162.1	2.942	2	2.3
28	787938.496	8440899.736	4164.864	PRODUCCION	4162.1	2.764	2	2.3
29	787936.802	8440897.998	4164.812	PRODUCCION	4162.1	2.712	2	2.3
30	787920.603	8440908.152	4164.946	PRODUCCION	4162.1	2.846	2	2.3
31	787921.8324	8440906.653	4164.946	PRODUCCION	4162.1	2.846	2	2.3
32	787921.281	8440904.575	4164.819	PRODUCCION	4162.1	2.719	2	2.3
33	787922.794	8440903.108	4164.806	PRODUCCION	4162.1	2.706	2	2.3
34	787923.062	8440905.509	4164.826	PRODUCCION	4162.1	2.726	2	2.3
35	787923.07	8440907.788	4164.938	PRODUCCION	4162.1	2.838	2	2.3
36	787922.287	8440909.85	4165.007	PRODUCCION	4162.1	2.907	2	2.3
37	787923.941	8440911.493	4165.041	PRODUCCION	4162.1	2.941	2	2.3
38	787924.6	8440909.354	4165.027	PRODUCCION	4162.1	2.927	2	2.3
39	787925.103	8440907.187	4164.877	PRODUCCION	4162.1	2.777	2	2.3
40	787924.868	8440904.724	4164.813	PRODUCCION	4162.1	2.713	2	2.3
41	787917.561	8440905.364	4164.918	PRODUCCION	4162.1	2.818	2	2.3
42	787918.752	8440904.245	4164.833	PRODUCCION	4162.1	2.733	2	2.3
43	787920.9163	8440902.342	4164.728	PRODUCCION	4162.1	2.628	2	2.3
44	787922.3708	8440900.677	4164.746	PRODUCCION	4162.1	2.646	2	2.3
45	787923.9569	8440898.772	4164.772	PRODUCCION	4162.1	2.672	2	2.3
46	787925.496	8440897.368	4164.658	PRODUCCION	4162.1	2.558	2	2.3
47	787927.239	8440899.017	4164.662	PRODUCCION	4162.1	2.562	2	2.3
48	787925.316	8440899.726	4164.709	PRODUCCION	4162.1	2.609	2	2.3
49	787924.312	8440901.736	4164.786	PRODUCCION	4162.1	2.686	2	2.3
50	787918.983	8440906.704	4164.945	PRODUCCION	4162.1	2.845	2	2.3
51	787925.592	8440913.301	4165.017	PRODUCCION	4162.1	2.917	2	2.3
52	787927.316	8440914.908	4164.957	PRODUCCION	4162.1	2.857	2	2.3
53	787928.991	8440916.444	4164.961	PRODUCCION	4162.1	2.861	2	2.3
54	787930.755	8440918.169	4164.981	PRODUCCION	4162.1	2.881	2	2.3
55	787932.556	8440919.784	4165.021	PRODUCCION	4162.1	2.921	2	2.3
56	787931.8957	8440923.207	4165.02	PRODUCCION	4162.1	2.92	2	2.3
57	787934.333	8440921.499	4164.938	PRODUCCION	4162.1	2.838	2	2.3
58	787932.955	8440922.269	4164.929	PRODUCCION	4162.1	2.829	2	2.3
59	787936.007	8440923.028	4164.8	PRODUCCION	4162.1	2.7	2	2.3
60	787936.658	8440925.082	4164.754	PRODUCCION	4162.1	2.654	2	2.3

	,	,	1			Т		
61	787938.595	8440924.476	4164.779	PRODUCCION	4162.1	2.679	2	2.3
62	787937.893	8440926.282	4164.636	PRODUCCION	4162.1	2.536	2	2.3
63	787938.179	8440922.251	4164.763	PRODUCCION	4162.1	2.663	2	2.3
64	787940.171	8440922.919	4164.788	PRODUCCION	4162.1	2.688	2	2.3
65	787941.831	8440921.131	4164.721	PRODUCCION	4162.1	2.621	2	2.3
66	787945.143	8440917.564	4164.792	PRODUCCION	4162.1	2.692	2	2.3
67	787941.539	8440917.209	4164.74	PRODUCCION	4162.1	2.64	2	2.3
68	787943.8	8440916.292	4164.864	PRODUCCION	4162.1	2.764	2	2.3
69	787936.58	8440920.669	4164.887	PRODUCCION	4162.1	2.787	2	2.3
70	787938.659	8440919.869	4164.734	PRODUCCION	4162.1	2.634	2	2.3
71	787937.175	8440918.499	4164.827	PRODUCCION	4162.1	2.727	2	2.3
72	787939.242	8440917.633	4164.691	PRODUCCION	4162.1	2.591	2	2.3
73	787939.919	8440915.56	4164.862	PRODUCCION	4162.1	2.762	2	2.3
74	787942.291	8440915.001	4164.993	PRODUCCION	4162.1	2.893	2	2.3
75	787942.761	8440912.741	4165.025	PRODUCCION	4162.1	2.925	2	2.3
76	787944.278	8440913.962	4165.02	PRODUCCION	4162.1	2.92	2	2.3
77	787946.722	8440915.754	4165.002	PRODUCCION	4162.1	2.902	2	2.3
78	787948.374	8440914.169	4165.025	PRODUCCION	4162.1	2.925	2	2.3
79	787945.876	8440912.627	4164.921	PRODUCCION	4162.1	2.821	2	2.3
80	787944.273	8440910.933	4164.875	PRODUCCION	4162.1	2.775	2	2.3
81	787946.545	8440910.378	4165.037	PRODUCCION	4162.1	2.937	2	2.3
82	787948.186	8440911.977	4164.925	PRODUCCION	4162.1	2.825	2	2.3
83	787942.104	8440909.197	4164.918	PRODUCCION	4162.1	2.818	2	2.3
84	787941.105	8440910.976	4164.987	PRODUCCION	4162.1	2.887	2	2.3
85	787940.362	8440913.14	4164.962	PRODUCCION	4162.1	2.862	2	2.3
86	787938.188	8440913.78	4164.981	PRODUCCION	4162.1	2.881	2	2.3
87	787937.654	8440916.024	4164.85	PRODUCCION	4162.1	2.75	2	2.3
88	787935.436	8440916.715	4164.973	PRODUCCION	4162.1	2.873	2	2.3
89	787934.875	8440919.004	4164.93	PRODUCCION	4162.1	2.83	2	2.3
90	787933.292	8440917.414	4164.971	PRODUCCION	4162.1	2.871	2	2.3
91	787935.89	8440914.494	4164.975	PRODUCCION	4162.1	2.875	2	2.3
92	787933.789	8440915.136	4164.989	PRODUCCION	4162.1	2.889	2	2.3
93	787931.582	8440915.871	4165.011	PRODUCCION	4162.1	2.911	2	2.3
94	787929.818	8440914.242	4164.997	PRODUCCION	4162.1	2.897	2	2.3
95	787931.947	8440913.576	4164.966	PRODUCCION	4162.1	2.866	2	2.3
96	787934.16	8440912.887	4164.987	PRODUCCION	4162.1	2.887	2	2.3
97	787936.45	8440912.237	4164.98	PRODUCCION	4162.1	2.88	2	2.3
98	787938.688	8440911.617	4164.962	PRODUCCION	4162.1	2.862	2	2.3
99	787939.285	8440909.36	4164.982		4162.1	2.882	2	2.3
100	787940.507	8440907.714	4164.874		4162.1	2.774	2	2.3
101	787936.995	8440910.029	4165.004	PRODUCCION	4162.1	2.904	2	2.3
102	787934.866	8440910.702	4164.995	PRODUCCION	4162.1	2.895	2	2.3
103	787937.605	8440907.863	4164.987	PRODUCCION	4162.1	2.887	2	2.3
104	787938.688	8440906.105	4164.906		4162.1	2.806	2	2.3
105	787939.664	8440903.634	4164.843	PRODUCCION	4162.1	2.743	2	2.3
106	787937.714	8440901.993	4164.859	PRODUCCION	4162.1	2.759	2	2.3
107	787936.068	8440900.391	4164.705	PRODUCCION	4162.1	2.605	2	2.3
108	787935.22	8440902.347	4164.735	PRODUCCION	4162.1	2.635	2	2.3
109	787934.668	8440904.365	4164.722	PRODUCCION	4162.1	2.622	2	2.3
109	/0/334.000	3440304.303	7104.722	I NODOCCION	4102.1	2.022		5

			-					
110	787937.011	8440904.195	4164.861	PRODUCCION	4162.1	2.761	2	2.3
111	787935.992	8440906.219	4164.864	PRODUCCION	4162.1	2.764	2	2.3
112	787935.458	8440908.423	4164.939	PRODUCCION	4162.1	2.839	2	2.3
113	787934.255	8440907.206	4164.924	PRODUCCION	4162.1	2.824	2	2.3
114	787933.035	8440905.748	4164.774	PRODUCCION	4162.1	2.674	2	2.3
115	787931.321	8440907.467	4164.843	PRODUCCION	4162.1	2.743	2	2.3
116	787933.027	8440909.07	4165.022	PRODUCCION	4162.1	2.922	2	2.3
117	787932.505	8440911.237	4165.013	PRODUCCION	4162.1	2.913	2	2.3
118	787930.845	8440909.69	4165.038	PRODUCCION	4162.1	2.938	2	2.3
119	787928.957	8440908.127	4164.885	PRODUCCION	4162.1	2.785	2	2.3
120	787926.831	8440908.631	4165.039	PRODUCCION	4162.1	2.939	2	2.3
121	787928.488	8440910.279	4165.05	PRODUCCION	4162.1	2.95	2	2.3
122	787930.201	8440911.919	4165.014	PRODUCCION	4162.1	2.914	2	2.3
123	787928.043	8440912.603	4165.007	PRODUCCION	4162.1	2.907	2	2.3
124	787926.419	8440910.979	4165.022	PRODUCCION	4162.1	2.922	2	2.3
125	787927.348	8440906.453	4164.874	PRODUCCION	4162.1	2.774	2	2.3
126	787927.725	8440904.821	4164.85	PRODUCCION	4162.1	2.75	2	2.3
127	787926.067	8440903.132	4164.763	PRODUCCION	4162.1	2.663	2	2.3
128	787926.743	8440901.15	4164.744	PRODUCCION	4162.1	2.644	2	2.3
129	787929.022	8440900.711	4164.717	PRODUCCION	4162.1	2.617	2	2.3
130	787928.481	8440902.987	4164.811	PRODUCCION	4162.1	2.711	2	2.3
131	787929.403	8440905.893	4164.729	PRODUCCION	4162.1	2.629	2	2.3
132	787930.922	8440904.507	4164.703	PRODUCCION	4162.1	2.603	2	2.3
133	787930.893	8440902.088	4164.709	PRODUCCION	4162.1	2.609	2	2.3
134	787932.883	8440903.132	4164.573	PRODUCCION	4162.1	2.473	2	2.3
135	787934.8842	8440899.234	4164.618	PRODUCCION	4162.1	2.518	2	2.3
136	787933.8953	8440900.332	4164.673	PRODUCCION	4162.1	2.573	2	2.3
137	787932.6707	8440901.38	4164.613	PRODUCCION	4162.1	2.513	2	2.3
138	787941.2212	8440905.46	4164.843	PRODUCCION	4162.1	2.743	2	2.3
139	787943.529	8440919.435	4164.721	PRODUCCION	4162.1	2.621	2	2.3
140	787940.8459	8440918.88	4164.734	PRODUCCION	4162.1	2.634	2	2.3
141	787920.3001	8440905.623	4164.833	PRODUCCION	4162.1	2.733	2	2.3
142	787934.9182	8440924.181	4164.929	PRODUCCION	4162.1	2.829	2	2.3
143	787933.4671	8440927.357	4164.947	PRODUCCION	4162.1	2.847	2	2.3
144	787939.8355	8440920.809	4164.734	PRODUCCION	4162.1	2.634	2	2.3

Tabla B.3 – Levantamiento topográfico de taladros de zanjas

N° TALADRO	ESTE	NORTE	СОТА	TIPO DE TALADRO	COTA BASE	ALTURA DE CORTE	BURDEN	ESPACIA MIENTO
1	787,856.34	8,440,909.68	4,166.75	PRODUCCION	4,162.25	4.5	1.5	1.8
2	787,857.18	8,440,908.81	4,166.81	PRODUCCION	4,162.25	4.6	1.5	1.8
3	787,857.75	8,440,908.12	4,166.75	PRODUCCION	4,162.25	4.5	1.5	1.8
4	787,858.42	8,440,907.35	4,166.74	PRODUCCION	4,162.25	4.5	1.5	1.8
5	787,859.12	8,440,906.68	4,166.76	PRODUCCION	4,162.25	4.5	1.5	1.8
6	787,859.88	8,440,905.89	4,166.78	PRODUCCION	4,162.25	4.5	1.5	1.8
7	787,860.48	8,440,904.95	4,166.79	PRODUCCION	4,162.25	4.5	1.5	1.8
8	787,861.13	8,440,904.39	4,166.85	PRODUCCION	4,162.25	4.6	1.5	1.8
9	787,861.87	8,440,903.67	4,166.97	PRODUCCION	4,162.25	4.7	1.5	1.8
10	787,862.51	8,440,902.87	4,166.73	PRODUCCION	4,162.25	4.5	1.5	1.8
11	787,863.16	8,440,902.23	4,166.72	PRODUCCION	4,162.25	4.5	1.5	1.8
12	787,863.80	8,440,901.50	4,166.71	PRODUCCION	4,162.25	4.5	1.5	1.8
13	787,864.42	8,440,900.73	4,166.67	PRODUCCION	4,162.25	4.4	1.5	1.8
14	787,865.17	8,440,899.94	4,166.61	PRODUCCION	4,162.25	4.4	1.5	1.8
15	787,865.87	8,440,899.20	4,166.63	PRODUCCION	4,162.25	4.4	1.5	1.8
16	787,866.40	8,440,898.45	4,166.63	PRODUCCION	4,162.25	4.4	1.5	1.8
17	787,867.03	8,440,897.70	4,166.59	PRODUCCION	4,162.25	4.3	1.5	1.8
18	787,867.79	8,440,897.11	4,166.64	PRODUCCION	4,162.25	4.4	1.5	1.8
19	787,868.49	8,440,896.27	4,166.73	PRODUCCION	4,162.25	4.5	1.5	1.8
20	787,869.12	8,440,895.54	4,166.64	PRODUCCION	4,162.25	4.4	1.5	1.8
21	787,869.70	8,440,894.75	4,166.73	PRODUCCION	4,162.25	4.5	1.5	1.8
22	787,870.44	8,440,894.22	4,166.60	PRODUCCION	4,162.25	4.3	1.5	1.8
23	787,859.62	8,440,912.98	4,166.91	PRODUCCION	4,162.25	4.7	1.5	1.8
24	787,860.22	8,440,912.25	4,166.89	PRODUCCION	4,162.25	4.6	1.5	1.8
25	787,860.79	8,440,911.60	4,166.92	PRODUCCION	4,162.25	4.7	1.5	1.8
26	787,861.38	8,440,910.85	4,166.93	PRODUCCION	4,162.25	4.7	1.5	1.8
27	787,862.20	8,440,910.02	4,166.85	PRODUCCION	4,162.25	4.6	1.5	1.8
28	787,862.79	8,440,909.54	4,166.89	PRODUCCION	4,162.25	4.6	1.5	1.8
29	787,863.33	8,440,908.92	4,166.92	PRODUCCION	4,162.25	4.7	1.5	1.8
30	787,864.00	8,440,908.38	4,166.90	PRODUCCION	4,162.25	4.7	1.5	1.8
31	787,864.56	8,440,907.75	4,166.94	PRODUCCION	4,162.25	4.7	1.5	1.8
32	787,865.15	8,440,907.23	4,166.92	PRODUCCION	4,162.25	4.7	1.5	1.8
33	787,865.73	8,440,906.52	4,166.87	PRODUCCION	4,162.25	4.6	1.5	1.8
34	787,866.17	8,440,905.86	4,166.93	PRODUCCION	4,162.25	4.7	1.5	1.8
35	787,867.01	8,440,905.16	4,166.94	PRODUCCION	4,162.25	4.7	1.5	1.8
36	787,867.82	8,440,904.32	4,166.89	PRODUCCION	4,162.25	4.6	1.5	1.8
37	787,868.37	8,440,903.60	4,166.92	PRODUCCION	4,162.25	4.7	1.5	1.8
38	787,869.11	8,440,902.82	4,166.91	PRODUCCION	4,162.25	4.7	1.5	1.8
39	787,869.80	8,440,902.21	4,166.90	PRODUCCION	4,162.25	4.6	1.5	1.8
40	787,870.54	8,440,901.40	4,166.94	PRODUCCION	4,162.25	4.7	1.5	1.8
41	787,889.01	8,440,881.80	4,166.85	PRODUCCION	4,162.25	4.6	1.5	1.8
42	787,888.29	8,440,882.63	4,166.82	PRODUCCION	4,162.25	4.6	1.5	1.8
43	787,887.61	8,440,883.38	4,166.81	PRODUCCION	4,162.25	4.6	1.5	1.8
44	787,886.94	8,440,883.89	4,166.73	PRODUCCION	4,162.25	4.5	1.5	1.8
45	787,886.39	8,440,884.75	4,166.85	PRODUCCION	4,162.25	4.6	1.5	1.8

			ı	ı			1	
46	787,885.68	8,440,885.35	4,166.83	PRODUCCION	4,162.25	4.6	1.5	1.8
47	787,882.24	8,440,888.94	4,166.80	PRODUCCION	4,162.25	4.5	1.5	1.8
48	787,882.74	8,440,888.17	4,166.83	PRODUCCION	4,162.25	4.6	1.5	1.8
49	787,883.50	8,440,887.68	4,166.83	PRODUCCION	4,162.25	4.6	1.5	1.8
50	787,884.13	8,440,886.78	4,166.81	PRODUCCION	4,162.25	4.6	1.5	1.8
51	787,884.94	8,440,885.99	4,166.83	PRODUCCION	4,162.25	4.6	1.5	1.8
52	787,881.45	8,440,889.75	4,166.86	PRODUCCION	4,162.25	4.6	1.5	1.8
53	787,880.78	8,440,890.54	4,166.83	PRODUCCION	4,162.25	4.6	1.5	1.8
54	787,880.10	8,440,891.18	4,166.82	PRODUCCION	4,162.25	4.6	1.5	1.8
55	787,879.43	8,440,892.04	4,166.84	PRODUCCION	4,162.25	4.6	1.5	1.8
56	787,878.68	8,440,892.68	4,166.85	PRODUCCION	4,162.25	4.6	1.5	1.8
57	787,878.00	8,440,893.44	4,166.85	PRODUCCION	4,162.25	4.6	1.5	1.8
58	787,877.41	8,440,894.11	4,166.86	PRODUCCION	4,162.25	4.6	1.5	1.8
59	787,876.84	8,440,894.71	4,166.86	PRODUCCION	4,162.25	4.6	1.5	1.8
60	787,876.37	8,440,895.24	4,166.93	PRODUCCION	4,162.25	4.7	1.5	1.8
61	787,875.93	8,440,895.84	4,166.90	PRODUCCION	4,162.25	4.6	1.5	1.8
62	787,878.61	8,440,885.76	4,166.52	PRODUCCION	4,162.25	4.3	1.5	1.8
63	787,879.21	8,440,884.90	4,166.57	PRODUCCION	4,162.25	4.3	1.5	1.8
64	787,879.87	8,440,884.13	4,166.58	PRODUCCION	4,162.25	4.3	1.5	1.8
65	787,880.25	8,440,883.52	4,166.59	PRODUCCION	4,162.25	4.3	1.5	1.8
66	787,881.06	8,440,882.65	4,166.68	PRODUCCION	4,162.25	4.4	1.5	1.8
67	787,881.94	8,440,881.89	4,166.66	PRODUCCION	4,162.25	4.4	1.5	1.8
68	787,882.50	8,440,881.16	4,166.59	PRODUCCION	4,162.25	4.3	1.5	1.8
69	787,883.27	8,440,880.45	4,166.76	PRODUCCION	4,162.25	4.5	1.5	1.8
70	787,883.94	8,440,879.80	4,166.76	PRODUCCION	4,162.25	4.5	1.5	1.8
71	787,884.62	8,440,878.83	4,166.81	PRODUCCION	4,162.25	4.6	1.5	1.8
72	787,885.24	8,440,878.20	4,166.90	PRODUCCION	4,162.25	4.6	1.5	1.8
73	787,885.94	8,440,877.60	4,166.73	PRODUCCION	4,162.25	4.5	1.5	1.8
74	787,887.21	8,440,876.17	4,166.73	PRODUCCION	4,162.25	4.5	1.5	1.8
75	787,888.12	8,440,875.26	4,166.85	PRODUCCION	4,162.25	4.6	1.5	1.8
76	787,888.76	8,440,874.55	4,166.74	PRODUCCION	4,162.25	4.5	1.5	1.8
77	787,889.36	8,440,873.97	4,166.60	PRODUCCION	4,162.25	4.3	1.5	1.8
78	787,890.01	8,440,873.39	4,166.68	PRODUCCION	4,162.25	4.4	1.5	1.8
79	787,875.26	8,440,896.45	4,166.91	PRODUCCION	4,162.25	4.7	1.5	1.8
80	787,874.57	8,440,897.13	4,166.88	PRODUCCION	4,162.25	4.6	1.5	1.8
81	787,873.84	8,440,897.81	4,166.90	PRODUCCION	4,162.25	4.6	1.5	1.8
82	787,873.24	8,440,898.47	4,166.84	PRODUCCION	4,162.25	4.6	1.5	1.8
83	787,872.48	8,440,899.12	4,166.93	PRODUCCION	4,162.25	4.7	1.5	1.8
84	787,871.83	8,440,899.82	4,166.95	PRODUCCION	4,162.25	4.7	1.5	1.8
85	787,871.16	8,440,900.61	4,166.90	PRODUCCION	4,162.25	4.6	1.5	1.8
1	787,852.99	8,440,913.25	4,166.64	PRECORTE	4,162.25	4.4	-	1
2	787,852.17	8,440,914.10	4,166.59	PRECORTE	4,162.25	4.3	-	1
3	787,851.72	8,440,914.70	4,166.53	PRECORTE	4,162.25	4.3	-	1
4	787,850.59	8,440,916.11	4,166.58	PRECORTE	4,162.25	4.3	-	1
5	787,849.60	8,440,916.77	4,166.56	PRECORTE	4,162.25	4.3	-	1
6	787,848.92	8,440,917.72	4,166.62	PRECORTE	4,162.25	4.4	-	1
7	787,855.96	8,440,916.78	4,166.76	PRECORTE	4,162.25	4.5	_	1
8	787,855.25	8,440,917.47	4,166.70	PRECORTE	4,162.25	4.4	_	1
9	787,854.59	8,440,918.23	4,166.87	PRECORTE	4,162.25	4.6	-	1
10	787,854.05	8,440,919.15	4,166.86	PRECORTE	4,162.25	4.6	_	1
11	787,853.46	8,440,919.81	4,166.86	PRECORTE	4,162.25	4.6	_	1
12	787,852.65	8,440,920.44	4,166.81	PRECORTE	4,162.25	4.6	-	1
13	787,852.02	8,440,921.21	4,166.83	PRECORTE	4,162.25	4.6	-	1
4.4			4.466.07	DDECODE	4 4 6 2 2 5	1.0		- 1
14	787,851.39	8,440,921.98	4,166.87	PRECORTE	4,162.25	4.6	-	1

	1							
16	787,849.95	8,440,923.47	4,166.76	PRECORTE	4,162.25	4.5	-	1
17	787,849.30	8,440,924.19	4,166.85	PRECORTE	4,162.25	4.6	-	1
18	787,871.19	8,440,893.51	4,166.73	PRECORTE	4,162.25	4.5	-	1
19	787,871.82	8,440,892.79	4,166.64	PRECORTE	4,162.25	4.4	-	1
20	787,872.40	8,440,892.00	4,166.73	PRECORTE	4,162.25	4.5	-	1
21	787,873.14	8,440,891.47	4,166.60	PRECORTE	4,162.25	4.3	-	1
22	787,873.80	8,440,890.56	4,166.73	PRECORTE	4,162.25	4.5	-	1
23	787,874.43	8,440,889.84	4,166.64	PRECORTE	4,162.25	4.4	-	1
24	787,875.01	8,440,889.05	4,166.73	PRECORTE	4,162.25	4.5	-	1
25	787,875.75	8,440,888.51	4,166.60	PRECORTE	4,162.25	4.3	-	1
26	787,876.42	8,440,887.68	4,166.73	PRECORTE	4,162.25	4.5	-	1
27	787,877.19	8,440,887.09	4,166.64	PRECORTE	4,162.25	4.4	-	1
28	787,878.01	8,440,886.30	4,166.73	PRECORTE	4,162.25	4.5	-	1
29	787,857.31	8,440,915.37	4,166.70	PRECORTE	4,162.25	4.4	_	1
30	787,858.00	8,440,914.65	4,166.76	PRECORTE	4,162.25	4.5	_	1
31	787,856.67	8,440,916.16	4,166.87	PRECORTE	4,162.25	4.6	_	1
32	<u> </u>			PRECORTE	4,162.25	4.4	-	1
-	787,859.14	8,440,913.51	4,166.70					
33	787,858.58	8,440,914.08	4,166.87	PRECORTE	4,162.25	4.6	-	1
34	787,884.33	8,440,879.31	4,166.81	PRECORTE	4,162.25	4.6	-	1
35	787,886.38	8,440,877.11	4,166.81	PRECORTE	4,162.25	4.6	-	1
36	787,886.74	8,440,876.67	4,166.81	PRECORTE	4,162.25	4.6	-	1
37	787,887.66	8,440,875.69	4,166.81	PRECORTE	4,162.25	4.6	-	1
38	787,889.64	8,440,881.15	4,166.85	PRECORTE	4,162.25	4.6	-	1
39	787,890.47	8,440,880.35	4,166.85	PRECORTE	4,162.25	4.6	-	1
40	787,891.29	8,440,879.41	4,166.85	PRECORTE	4,162.25	4.6	-	1
41	787,892.14	8,440,878.48	4,166.85	PRECORTE	4,162.25	4.6	-	1
42	787,892.95	8,440,877.49	4,166.85	PRECORTE	4,162.25	4.6	-	1
43	787,893.74	8,440,876.53	4,166.85	PRECORTE	4,162.25	4.6	-	1
44	787,894.55	8,440,875.57	4,166.85	PRECORTE	4,162.25	4.6	-	1
45	787,874.47	8,440,895.28	4,166.81	PRECORTE	4,162.25	4.6	-	1
46	787,873.70	8,440,893.57	4,166.96	PRECORTE	4,162.25	4.7	-	1
47	787,875.63	8,440,893.78	4,166.87	PRECORTE	4,162.25	4.6	-	1
48	787,876.93	8,440,892.54	4,166.74	PRECORTE	4,162.25	4.5	-	1
49	787,875.37	8,440,891.97	4,167.15	PRECORTE	4,162.25	4.9	-	1
50	787,876.07	8,440,890.75	4,166.93	PRECORTE	4,162.25	4.7	-	1
51	787,878.18	8,440,891.09	4,166.90	PRECORTE	4,162.25	4.6	-	1
52	787,879.27	8,440,890.07	4,166.71	PRECORTE	4,162.25	4.5	-	1
53	787,877.57	8,440,889.23	4,166.91	PRECORTE	4,162.25	4.7	-	1
54	787,880.54	8,440,888.67	4,166.79	PRECORTE	4,162.25	4.5	-	1
55	787,878.82	8,440,887.80	4,166.82	PRECORTE	4,162.25	4.6	_	1
56	787,881.83	8,440,887.23	4,166.80	PRECORTE	4,162.25	4.5	-	1
57	787,880.07	8,440,886.52	4,166.87	PRECORTE	4,162.25	4.6	-	1
58	787,882.96	8,440,886.01	4,166.70	PRECORTE	4,162.25	4.4	-	1
59	787,881.22	8,440,885.40	4,167.01	PRECORTE	4,162.25	4.8	-	1
60	787,884.08	8,440,884.57	4,166.85	PRECORTE	4,162.25	4.6	-	1
61	787,882.34	8,440,884.06	4,167.02	PRECORTE	4,162.25	4.8	-	1
62	787,883.59	8,440,882.73	4,166.94	PRECORTE	4,162.25	4.7	-	1
63	787,885.39	8,440,883.22	4,166.76	PRECORTE	4,162.25	4.5	-	1
64	787,886.57	8,440,882.11	4,166.87	PRECORTE	4,162.25	4.6	-	1
65	787,884.93	8,440,881.40	4,166.97	PRECORTE	4,162.25	4.7	_	1
66	787,885.91	8,440,880.17	4,167.08	PRECORTE	4,162.25	4.8	_	1
67	787,883.51	8,440,880.58	4,166.83	PRECORTE	4,162.25	4.6	-	1
68	787,889.15	8,440,879.43	4,166.82	PRECORTE	4,162.25	4.6	-	1
69	787,883.13	8,440,873.43	4,166.87	PRECORTE	4,162.25	4.6	_	1
						4.6	_	1
70	787,888.58	8,440,877.40	4,166.85	PRECORTE	4,162.25	4.0		1

71	787,889.66	8,440,876.26	4,166.94	PRECORTE	4,162.25	4.7	-	1
72	787,890.45	8,440,877.82	4,166.85	PRECORTE	4,162.25	4.6	-	1
73	787,891.62	8,440,876.75	4,166.77	PRECORTE	4,162.25	4.5	-	1
74	787,890.78	8,440,875.21	4,166.81	PRECORTE	4,162.25	4.6	-	1
75	787,892.73	8,440,875.44	4,166.71	PRECORTE	4,162.25	4.5	-	1
76	787,894.06	8,440,874.14	4,166.85	PRECORTE	4,162.25	4.6	-	1
77	787,892.42	8,440,873.81	4,166.90	PRECORTE	4,162.25	4.6	-	1
78	787,868.76	8,440,898.51	4,166.81	PRECORTE	4,162.25	4.6	-	1
79	787,867.24	8,440,899.84	4,167.01	PRECORTE	4,162.25	4.8	-	1
80	787,866.16	8,440,901.12	4,167.07	PRECORTE	4,162.25	4.8	-	1
81	787,865.00	8,440,902.34	4,167.08	PRECORTE	4,162.25	4.8	-	1
82	787,863.52	8,440,903.78	4,167.21	PRECORTE	4,162.25	5.0	-	1
83	787,862.72	8,440,904.94	4,167.53	PRECORTE	4,162.25	5.3	-	1
84	787,861.20	8,440,906.45	4,167.31	PRECORTE	4,162.25	5.1	-	1
85	787,860.12	8,440,907.74	4,167.08	PRECORTE	4,162.25	4.8	-	1
86	787,858.73	8,440,909.13	4,167.28	PRECORTE	4,162.25	5.0	-	1
87	787,857.43	8,440,910.51	4,167.36	PRECORTE	4,162.25	5.1	-	1
88	787,856.47	8,440,911.85	4,167.11	PRECORTE	4,162.25	4.9	-	1
89	787,855.07	8,440,913.14	4,167.05	PRECORTE	4,162.25	4.8	-	1
90	787,853.53	8,440,917.36	4,166.87	PRECORTE	4,162.25	4.6	-	1
91	787,851.86	8,440,917.08	4,167.05	PRECORTE	4,162.25	4.8	-	1
92	787,853.12	8,440,915.68	4,167.05	PRECORTE	4,162.25	4.8	_	1
93	787,854.79	8,440,915.96	4,166.87	PRECORTE	4,162.25	4.6	_	1
94	787,856.07	8,440,914.66	4,166.87	PRECORTE	4,162.25	4.6	_	1
95	787,854.41	8,440,914.38	4,167.05	PRECORTE	4,162.25	4.8	_	1
96	787,857.18	8,440,913.41	4,167.05	PRECORTE	4,162.25	4.8	_	1
97	787,858.60	8,440,912.14	4,167.05	PRECORTE	4,162.25	4.8	_	1
98	787,859.39	8,440,911.01	4,167.05	PRECORTE	4,162.25	4.8	_	1
99	787,860.56	8,440,909.65	4,167.05	PRECORTE	4,162.25	4.8	_	1
100	787,862.01	8,440,908.19	4,167.05	PRECORTE	4,162.25	4.8	_	1
101	787,863.30	8,440,907.05	4,167.05	PRECORTE	4,162.25	4.8	-	1
102	787,864.36	8,440,905.64	4,167.05	PRECORTE	4,162.25	4.8	_	1
103	787,872.90	8,440,903.76	4,166.89	PRECORTE	4,164.44	2.5	_	1
104	787,872.01	8,440,904.53	4,166.88	PRECORTE	4,164.44	2.4	_	1
105	787,872.01	8,440,905.26	4,166.90	PRECORTE	4,164.44	2.5	-	1
106	787,871.32	8,440,905.87	4,166.89	PRECORTE	4,164.44	2.5	_	1
107	787,869.77	8,440,906.55	4,166.89	PRECORTE	4,164.44	2.5		1
108	787,869.16	8,440,900.33	4,166.88	PRECORTE	4,164.44	2.4	_	1
109	787,868.49	8,440,907.27	4,166.87	PRECORTE	4,164.44	2.4	-	1
1109	787,867.79	8,440,907.90	4,166.87	PRECORTE	4,164.44	2.4	-	1
111	787,867.06	8,440,909.50	4,166.87	PRECORTE	4,164.44	2.4		1
112	787,866.42	8,440,910.14	4,166.87	PRECORTE	4,164.44	2.4	_	1
113	787,865.83	8,440,910.14	4,166.80	PRECORTE	4,164.44	2.4	_	1
114	787,865.02		4,166.82	PRECORTE		2.4	_	1
115	787,864.41	8,440,911.62 8,440,912.35	4,166.77	PRECORTE	4,164.44 4,164.44	2.4	-	1
116				PRECORTE	4,164.44	2.3	_	1
117	787,863.61 787,862.72	8,440,913.02 8,440,913.95	4,166.85 4,166.81	PRECORTE	4,164.44	2.4	-	1
118			4,166.85			2.4	-	1
	787,861.65	8,440,914.87		PRECORTE	4,164.44		-	
119	787,891.44	8,440,884.73	4,166.85	PRECORTE	4,164.44	2.4	-	1
120	787,890.82	8,440,885.33	4,166.81	PRECORTE	4,164.44	2.4		1

				T			ı	
121	787,890.02	8,440,885.86	4,166.81	PRECORTE	4,164.44	2.4	-	1
122	787,889.46	8,440,886.47	4,166.81	PRECORTE	4,164.44	2.4	-	1
123	787,888.74	8,440,887.04	4,166.81	PRECORTE	4,164.44	2.4	-	1
124	787,888.09	8,440,887.75	4,166.81	PRECORTE	4,164.44	2.4	-	1
125	787,887.46	8,440,888.50	4,166.81	PRECORTE	4,164.44	2.4	-	1
126	787,886.88	8,440,889.15	4,166.81	PRECORTE	4,164.44	2.4	-	1
127	787,886.10	8,440,889.96	4,166.82	PRECORTE	4,164.44	2.4	-	1
128	787,885.43	8,440,890.63	4,166.82	PRECORTE	4,164.44	2.4	-	1
129	787,883.67	8,440,892.50	4,166.81	PRECORTE	4,164.44	2.4	-	1
130	787,883.15	8,440,893.07	4,166.83	PRECORTE	4,164.44	2.4	-	1
131	787,882.63	8,440,893.67	4,166.84	PRECORTE	4,164.44	2.4	-	1
132	787,882.02	8,440,894.42	4,166.83	PRECORTE	4,164.44	2.4	-	1
133	787,881.39	8,440,895.07	4,166.85	PRECORTE	4,164.44	2.4	-	1
134	787,880.81	8,440,895.73	4,166.86	PRECORTE	4,164.44	2.4	-	1
135	787,880.13	8,440,896.34	4,166.85	PRECORTE	4,164.44	2.4	-	1
136	787,879.58	8,440,897.06	4,166.86	PRECORTE	4,164.44	2.4	-	1
137	787,878.82	8,440,897.67	4,166.87	PRECORTE	4,164.44	2.4	-	1
138	787,878.31	8,440,898.21	4,166.86	PRECORTE	4,164.44	2.4	-	1
139	787,877.68	8,440,898.83	4,166.89	PRECORTE	4,164.44	2.5	-	1
140	787,876.98	8,440,899.58	4,166.89	PRECORTE	4,164.44	2.5	-	1
141	787,876.35	8,440,900.31	4,166.90	PRECORTE	4,164.44	2.5	-	1
142	787,873.55	8,440,903.11	4,166.74	PRECORTE	4,164.44	2.3	-	1
143	787,857.93	8,440,918.74	4,166.81	PRECORTE	4,164.44	2.4	-	1
144	787,857.20	8,440,919.57	4,166.78	PRECORTE	4,164.44	2.3	_	1
145	787,856.48	8,440,920.27	4,166.78	PRECORTE	4,164.44	2.3	_	1
146	787,855.81	8,440,920.74	4,166.79	PRECORTE	4,164.44	2.4	_	1
147	787,855.17	8,440,921.68	4,166.82	PRECORTE	4,164.44	2.4	_	1
148	787,854.45	8,440,922.25	4,166.78	PRECORTE	4,164.44	2.3	-	1
149	787,853.94	8,440,923.14	4,166.75	PRECORTE	4,164.44	2.3	-	1
150	787,853.19	8,440,923.77	4,166.78	PRECORTE	4,164.44	2.3	_	1
151	787,852.49	8,440,924.56	4,166.74	PRECORTE	4,164.44	2.3	_	1
152	787,852.43	8,440,925.18	4,166.79	PRECORTE	4,164.44	2.3	_	1
153	787,851.82	8,440,918.09	4,166.78	PRECORTE	4,164.44	2.3	-	1
154	787,859.70	8,440,917.38	4,166.81	PRECORTE	4,164.44	2.4	-	1
155	787,861.02	8,440,917.38	4,166.81	PRECORTE	4,164.44	2.4		1
156		8,440,915.65	4,166.78		4,164.44	2.3		1
157	787,860.29		4,166.74	PRECORTE PRECORTE	4,164.44			
158	787,874.17	8,440,902.47				2.3	-	1
1	787,874.94	8,440,901.75	4,166.74	PRECORTE PRODUCCION	4,164.44 4,164.44	2.5	1.5	1.8
	787,875.57	8,440,900.94	4,166.90			2.3		
2	787,884.78	8,440,891.29	4,166.81	PRODUCCION	4,164.44		1.5	1.8
3	787,884.28	8,440,891.91	4,166.83	PRODUCCION	4,164.44	2.4	1.5	1.8
4	787,875.70	8,440,906.63	4,166.89	PRODUCCION	4,164.44	2.5	1.5	1.8
5	787,874.81	8,440,907.40	4,166.88	PRODUCCION	4,164.44	2.4	1.5	1.8
6	787,874.11	8,440,908.13	4,166.90	PRODUCCION	4,164.44	2.5	1.5	1.8
7	787,873.28	8,440,908.74	4,166.89	PRODUCCION	4,164.44	2.5	1.5	1.8
8	787,872.57	8,440,909.42	4,166.89	PRODUCCION	4,164.44	2.5	1.5	1.8
9	787,871.95	8,440,910.14	4,166.88	PRODUCCION	4,164.44	2.4	1.5	1.8
10	787,871.29	8,440,910.78	4,166.87	PRODUCCION	4,164.44	2.4	1.5	1.8
11	787,870.59	8,440,911.66	4,166.87	PRODUCCION	4,164.44	2.4	1.5	1.8
12	787,869.86	8,440,912.37	4,166.87	PRODUCCION	4,164.44	2.4	1.5	1.8
13	787,869.21	8,440,913.01	4,166.87	PRODUCCION	4,164.44	2.4	1.5	1.8
14	787,868.62	8,440,913.82	4,166.80	PRODUCCION	4,164.44	2.4	1.5	1.8
15	787,867.82	8,440,914.50	4,166.82	PRODUCCION	4,164.44	2.4	1.5	1.8

				T			1	
16	787,867.20	8,440,915.22	4,166.77	PRODUCCION	4,164.44	2.3	1.5	1.8
17	787,866.40	8,440,915.89	4,166.85	PRODUCCION	4,164.44	2.4	1.5	1.8
18	787,865.52	8,440,916.82	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
19	787,864.45	8,440,917.74	4,166.85	PRODUCCION	4,164.44	2.4	1.5	1.8
20	787,893.94	8,440,887.21	4,166.85	PRODUCCION	4,164.44	2.4	1.5	1.8
21	787,893.32	8,440,887.81	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
22	787,892.71	8,440,888.66	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
23	787,892.14	8,440,889.27	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
24	787,891.53	8,440,889.91	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
25	787,890.89	8,440,890.62	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
26	787,890.26	8,440,891.37	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
27	787,889.68	8,440,892.02	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
28	787,888.89	8,440,892.83	4,166.82	PRODUCCION	4,164.44	2.4	1.5	1.8
29	787,888.22	8,440,893.50	4,166.82	PRODUCCION	4,164.44	2.4	1.5	1.8
30	787,886.47	8,440,895.37	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
31	787,885.94	8,440,895.95	4,166.83	PRODUCCION	4,164.44	2.4	1.5	1.8
32	787,885.43	8,440,896.54	4,166.84	PRODUCCION	4,164.44	2.4	1.5	1.8
33	787,884.82	8,440,897.29	4,166.83	PRODUCCION	4,164.44	2.4	1.5	1.8
34	787,884.19	8,440,897.94	4,166.85	PRODUCCION	4,164.44	2.4	1.5	1.8
35				PRODUCCION	4,164.44	2.4	1.5	1.8
	787,883.61	8,440,898.61	4,166.86 4,166.85					
36	787,882.93	8,440,899.21		PRODUCCION	4,164.44	2.4	1.5	1.8
37	787,882.38	8,440,899.93	4,166.86	PRODUCCION	4,164.44	2.4	1.5	1.8
38	787,881.62	8,440,900.54	4,166.87	PRODUCCION	4,164.44	2.4	1.5	1.8
39	787,881.10	8,440,901.08	4,166.86	PRODUCCION	4,164.44	2.4	1.5	1.8
40	787,880.47	8,440,901.70	4,166.89	PRODUCCION	4,164.44	2.5	1.5	1.8
41	787,879.78	8,440,902.45	4,166.89	PRODUCCION	4,164.44	2.5	1.5	1.8
42	787,879.14	8,440,903.18	4,166.90	PRODUCCION	4,164.44	2.5	1.5	1.8
43	787,876.34	8,440,905.98	4,166.74	PRODUCCION	4,164.44	2.3	1.5	1.8
44	787,860.72	8,440,921.61	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
45	787,860.00	8,440,922.44	4,166.78	PRODUCCION	4,164.44	2.3	1.5	1.8
46	787,859.27	8,440,923.14	4,166.78	PRODUCCION	4,164.44	2.3	1.5	1.8
47	787,858.60	8,440,923.62	4,166.79	PRODUCCION	4,164.44	2.4	1.5	1.8
48	787,857.97	8,440,924.55	4,166.82	PRODUCCION	4,164.44	2.4	1.5	1.8
49	787,857.32	8,440,925.17	4,166.78	PRODUCCION	4,164.44	2.3	1.5	1.8
50	787,856.74	8,440,926.01	4,166.75	PRODUCCION	4,164.44	2.3	1.5	1.8
51	787,855.99	8,440,926.64	4,166.78	PRODUCCION	4,164.44	2.3	1.5	1.8
52	787,855.28	8,440,927.43	4,166.74	PRODUCCION	4,164.44	2.3	1.5	1.8
53	787,854.61	8,440,928.05	4,166.79	PRODUCCION	4,164.44	2.3	1.5	1.8
54	787,862.26	8,440,920.35	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
55	787,861.53	8,440,920.96	4,166.78	PRODUCCION	4,164.44	2.3	1.5	1.8
56	787,863.81	8,440,918.69	4,166.81	PRODUCCION	4,164.44	2.4	1.5	1.8
57	787,863.08	8,440,919.52	4,166.78	PRODUCCION	4,164.44	2.3	1.5	1.8
58	787,876.96	8,440,905.34	4,166.74	PRODUCCION	4,164.44	2.3	1.5	1.8
59	787,877.74	8,440,904.62	4,166.74	PRODUCCION	4,164.44	2.3	1.5	1.8
60	787,855.75	8,440,923.27	4,167.08	PRODUCCION	4,164.44	2.6	1.5	1.8
61	787,857.05	8,440,921.87	4,167.14	PRODUCCION	4,164.44	2.7	1.5	1.8
62	787,858.32	8,440,920.81	4,167.08	PRODUCCION	4,164.44	2.6	1.5	1.8
63	787,859.61	8,440,919.81	4,167.08	PRODUCCION	4,164.44	2.6	1.5	1.8
64	787,860.54	8,440,918.62	4,167.08	PRODUCCION	4,164.44	2.6	1.5	1.8
65	787,861.64	8,440,917.50	4,167.08	PRODUCCION	4,164.44	2.6	1.5	1.8
66	787,862.76	8,440,916.34	4,167.08	PRODUCCION	4,164.44	2.6	1.5	1.8
67	787,863.79	8,440,915.24	4,167.08	PRODUCCION	4,164.44	2.6	1.5	1.8
68	787,865.02	8,440,914.06	4,167.08	PRODUCCION	4,164.44	2.6	1.5	1.8
69	787,865.02			PRODUCCION	4,164.44	2.6	1.5	1.8
		8,440,912.92	4,167.08					
70	787,867.11	8,440,911.86	4,167.08	PRODUCCION	4,164.44	2.6	1.5	1.8
71	787,868.50	8,440,910.19	4,167.08	PRODUCCION	4,164.44	2.6	1.5	1.8

					,		ı	
1	787,869.58	8,440,909.16	4,167.08	PRECORTE	4,164.44	2.6	-	1
2	787,870.79	8,440,908.08	4,167.08	PRECORTE	4,164.44	2.6	-	1
3	787,871.85	8,440,906.87	4,167.08	PRECORTE	4,164.44	2.6	-	1
4	787,873.16	8,440,905.71	4,167.08	PRECORTE	4,164.44	2.6	-	1
5	787,874.24	8,440,904.38	4,167.08	PRECORTE	4,164.44	2.6	-	1
6	787,875.45	8,440,903.30	4,167.08	PRECORTE	4,164.44	2.6	-	1
7	787,876.37	8,440,902.04	4,167.08	PRECORTE	4,164.44	2.6	-	1
8	787,877.89	8,440,900.82	4,167.08	PRECORTE	4,164.44	2.6	-	1
9	787,879.04	8,440,899.77	4,167.08	PRECORTE	4,164.44	2.6	-	1
10	787,880.24	8,440,898.63	4,167.08	PRECORTE	4,164.44	2.6	_	1
11	787,881.39	8,440,897.38	4,167.08	PRECORTE	4,164.44	2.6	_	1
12	787,882.52	8,440,896.15	4,167.08	PRECORTE	4,164.44	2.6	_	1
13	787,883.75	8,440,895.02	4,167.08	PRECORTE	4,164.44	2.6	_	1
14	787,883.73	8,440,893.76				2.6	_	1
15		· · ·	4,167.08	PRECORTE	4,164.44			1
	787,885.79	8,440,892.41	4,167.08	PRECORTE	4,164.44	2.6	-	
16	787,886.98	8,440,891.10	4,167.08	PRECORTE	4,164.44	2.6	-	1
17	787,888.16	8,440,889.89	4,167.08	PRECORTE	4,164.44	2.6	-	1
18	787,889.21	8,440,888.76	4,167.08	PRECORTE	4,164.44	2.6	-	1
19	787,890.42	8,440,887.58	4,167.08	PRECORTE	4,164.44	2.6	-	1
20	787,891.53	8,440,886.48	4,167.08	PRECORTE	4,164.44	2.6	-	1
21	787,854.43	8,440,926.91	4,166.86	PRECORTE	4,164.44	2.4	-	1
22	787,855.32	8,440,925.81	4,166.99	PRECORTE	4,164.44	2.6	-	1
23	787,856.40	8,440,924.51	4,167.13	PRECORTE	4,164.44	2.7	-	1
24	787,857.45	8,440,923.32	4,167.08	PRECORTE	4,164.44	2.6	-	1
25	787,858.60	8,440,922.15	4,167.14	PRECORTE	4,164.44	2.7	-	1
26	787,859.83	8,440,921.01	4,167.08	PRECORTE	4,164.44	2.6	-	1
27	787,860.84	8,440,919.93	4,167.08	PRECORTE	4,164.44	2.6	-	1
28	787,862.08	8,440,918.93	4,167.08	PRECORTE	4,164.44	2.6	-	1
29	787,863.19	8,440,917.80	4,167.08	PRECORTE	4,164.44	2.6	-	1
30	787,864.17	8,440,916.60	4,167.08	PRECORTE	4,164.44	2.6	-	1
31	787,865.05	8,440,915.45	4,167.08	PRECORTE	4,164.44	2.6	-	1
32	787,866.39	8,440,914.19	4,167.08	PRECORTE	4,164.44	2.6	-	1
33	787,867.85	8,440,912.94	4,167.08	PRECORTE	4,164.44	2.6	-	1
34	787,868.76	8,440,911.93	4,167.08	PRECORTE	4,164.44	2.6	_	1
35	787,869.91	8,440,910.55	4,167.08	PRECORTE	4,164.44	2.6	_	1
	i	8,440,909.39		PRECORTE	4,164.44	2.6	-	
36	787,870.89		4,167.08				-	1
37	787,872.31	8,440,908.11	4,167.08	PRECORTE	4,164.44	2.6	-	1
38	787,873.60	8,440,906.96	4,167.08	PRECORTE	4,164.44	2.6	-	1
39	787,874.69	8,440,905.78	4,167.08	PRECORTE	4,164.44	2.6	-	1
40	787,875.74	8,440,904.62	4,167.08	PRECORTE	4,164.44	2.6	-	1
41	787,876.94	8,440,903.41	4,167.08	PRECORTE	4,164.44	2.6	-	1
42	787,877.99	8,440,902.22	4,167.08	PRECORTE	4,164.44	2.6	-	1
43	787,879.12	8,440,900.93	4,167.08	PRECORTE	4,164.44	2.6	-	1
44	787,880.27	8,440,899.88	4,167.08	PRECORTE	4,164.44	2.6	-	1
45	787,881.47	8,440,898.75	4,167.08	PRECORTE	4,164.44	2.6	-	1
46	787,882.62	8,440,897.49	4,167.08	PRECORTE	4,164.44	2.6	-	1
47	787,883.75	8,440,896.27	4,167.08	PRECORTE	4,164.44	2.6	-	1
48	787,884.97	8,440,895.13	4,167.08	PRECORTE	4,164.44	2.6	-	1
49	787,843.42	8,440,902.96	4,166.81	PRECORTE	4,164.56	2.3	-	1
50	787,844.57	8,440,904.81	4,166.69	PRECORTE	4,164.56	2.1	-	1
51	787,845.34	8,440,905.54	4,166.78	PRECORTE	4,164.56	2.2	-	1
52	787,846.71	8,440,907.06	4,166.79	PRECORTE	4,164.56	2.2	-	1
53	787,847.51	8,440,907.70	4,166.70	PRECORTE	4,164.56	2.1	-	1
54	787,848.23	8,440,908.39	4,166.64	PRECORTE	4,164.56	2.1	-	1
55	787,848.96	8,440,909.02	4,166.63	PRECORTE	4,164.56	2.1	-	1
56	787,849.69	8,440,909.66	4,166.69	PRECORTE	4,164.56	2.1	-	1
20	101,043.03	0,440,303.00	4,100.09	FNECOKIE	4,104.30	۷. ۲	_	1

	,						ı	
57	787,850.50	8,440,910.23	4,166.64	PRECORTE	4,164.56	2.1	-	1
58	787,851.30	8,440,910.98	4,166.51	PRECORTE	4,164.56	2.0	-	1
59	787,851.92	8,440,911.76	4,166.58	PRECORTE	4,164.56	2.0	-	1
60	787,852.58	8,440,912.28	4,166.50	PRECORTE	4,164.56	1.9	-	1
61	787,843.73	8,440,901.87	4,166.66	PRECORTE	4,164.56	2.1	-	1
62	787,844.38	8,440,901.26	4,166.68	PRECORTE	4,164.56	2.1	-	1
63	787,845.33	8,440,900.86	4,166.66	PRECORTE	4,164.56	2.1	-	1
64	787,846.03	8,440,900.76	4,166.67	PRECORTE	4,164.56	2.1	-	1
65	787,846.94	8,440,901.02	4,166.77	PRECORTE	4,164.56	2.2	-	1
66	787,847.56	8,440,901.63	4,166.68	PRECORTE	4,164.56	2.1	_	1
67	787,848.36	8,440,902.28	4,166.73	PRECORTE	4,164.56	2.2	_	1
68	787,849.19	8,440,902.95	4,166.75	PRECORTE	4,164.56	2.2	_	1
69	<u> </u>					2.2	_	1
	787,849.74	8,440,903.68	4,166.71	PRECORTE	4,164.56			
70	787,850.43	8,440,904.35	4,166.70	PRECORTE	4,164.56	2.1	-	1
71	787,851.13	8,440,904.92	4,166.68	PRECORTE	4,164.56	2.1	-	1
72	787,851.90	8,440,905.63	4,166.61	PRECORTE	4,164.56	2.0	-	1
73	787,852.68	8,440,906.40	4,166.67	PRECORTE	4,164.56	2.1	-	1
74	787,853.43	8,440,907.07	4,166.69	PRECORTE	4,164.56	2.1	-	1
75	787,854.10	8,440,907.82	4,166.56	PRECORTE	4,164.56	2.0	-	1
76	787,854.80	8,440,908.45	4,166.59	PRECORTE	4,164.56	2.0	-	1
77	787,855.50	8,440,909.16	4,166.63	PRECORTE	4,164.56	2.1	-	1
78	787,846.15	8,440,906.34	4,166.79	PRECORTE	4,164.56	2.2	-	1
79	787,843.97	8,440,903.89	4,166.79	PRECORTE	4,164.56	2.2	-	1
80	787,854.45	8,440,911.75	4,166.59	PRECORTE	4,164.56	2.0	-	1
81	787,855.54	8,440,910.69	4,166.66	PRECORTE	4,164.56	2.1	-	1
82	787,853.19	8,440,910.85	4,166.62	PRECORTE	4,164.56	2.1	-	1
83	787,853.97	8,440,909.48	4,166.64	PRECORTE	4,164.56	2.1	-	1
84	787,852.07	8,440,909.78	4,166.64	PRECORTE	4,164.56	2.1	-	1
85	787,852.19	8,440,908.06	4,166.71	PRECORTE	4,164.56	2.2	-	1
86	787,850.73	8,440,908.38	4,166.67	PRECORTE	4,164.56	2.1	-	1
87	787,851.08	8,440,906.93	4,166.66	PRECORTE	4,164.56	2.1	-	1
88	787,849.36	8,440,907.14	4,166.61	PRECORTE	4,164.56	2.1	_	1
89	787,847.87	8,440,905.92	4,166.77	PRECORTE	4,164.56	2.2	-	1
90	787,848.18	8,440,904.28	4,166.80	PRECORTE	4.164.56	2.2	_	1
	- /	, ,			,		_	
91	787,846.64	8,440,904.70	4,166.80	PRECORTE	4,164.56	2.2	-	1
92	787,847.00	8,440,903.03	4,166.79	PRECORTE	4,164.56	2.2	-	1
93	787,845.71	8,440,901.93	4,166.70	PRECORTE	4,164.56	2.1	-	1
94	787,845.25	8,440,903.46	4,166.73	PRECORTE	4,164.56	2.2	-	1
95	787,848.27	8,440,916.90	4,166.57	PRECORTE	4,163.92	2.7	-	1
96	787,847.57	8,440,916.29	4,166.56	PRECORTE	4,163.92	2.6	-	1
97	787,846.95	8,440,915.69	4,166.59	PRECORTE	4,163.92	2.7	-	1
98	787,846.23	8,440,914.95	4,166.61	PRECORTE	4,163.92	2.7	-	1
99	787,845.57	8,440,914.29	4,166.68	PRECORTE	4,163.92	2.8	-	1
100	787,844.85	8,440,913.50	4,166.72	PRECORTE	4,163.92	2.8	-	1
101	787,843.58	8,440,912.18	4,166.80	PRECORTE	4,163.92	2.9	-	1
102	787,842.98	8,440,911.46	4,166.84	PRECORTE	4,163.92	2.9	-	1
103	787,842.29	8,440,910.72	4,166.91	PRECORTE	4,163.92	3.0	-	1
104	787,841.60	8,440,910.03	4,166.93	PRECORTE	4,163.92	3.0	_	1
105	787,841.05	8,440,909.34	4,166.94	PRECORTE	4,163.92	3.0	-	1
106	787,840.35	8,440,908.62	4,166.87	PRECORTE	4,163.92	2.9	-	1
107	787,839.60	8,440,907.85	4,166.87	PRECORTE	4,163.92	2.9	-	1
108	787,839.04	8,440,907.16	4,166.82	PRECORTE	4,163.92	2.9	-	1
109	787,844.28	8,440,912.91	4,166.72	PRECORTE	4,163.92	2.8	-	1
110	787,854.45	8,440,911.75	4,166.59	PRECORTE	4,163.92	2.7	_	1
	, 0,,054.45	0, 770, 311.73	7, 100.33	INLCONIL	7,100.02	۷. /	L	

ANEXO C. Certificado de calibración del Sismógrafo.

