

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA, ELECTRÓNICA Y SISTEMAS

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

"DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN AGUA-AIRE PARA EL SECTOR QUIRÚRGICO DEL MEGA LABORATORIO CLÍNICO UNIVERSITARIO DE LA UNA PUNO".

TESIS

PRESENTADO POR:

FRANK ROLEXS CRUZ YUCRA

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO MECÁNICO ELECTRICISTA

Puno-Perú 2017

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA, ELECTRÓNICA Y SISTEMAS

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

DISEÑO DE UN SISTEMA DE CLIMATIZACIÓN AGUA-AIRE PARA EL SECTOR QUIRÚRGICO DEL MEGA LABORATORIO CLÍNICO UNIVERSITARIO DE LA UNA PUNO

TESIS PRESENTADA POR:

FRANK ROLEXS CRUZ YUCRA

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO MECÁNICO ELECTRICISTA

APROBADA POR EL JURADO REVISOR CONFORMADO POR:

PRESIDENTE

M.Sc. WALTER OSWALDO PAREDES

PAREJA

PRIMER MIEMBRO

Ing. LEONEL MARINO CASTILLO

ENRÍQUEZ

SEGUNDO MIEMBRO

M.Sc ALVARO P. CAMACHO

ASTOQUILCA

DIRECTOR DE TESIS

M.Sc. JOSE MANUEL RAMOS

CUTIPA

Puno-Perú 2017

ÁREA : MECÁNICA. TEMA : CLIMATIZACIÓN.

DEDICATORIA

Dedico este trabajo y todas mis metas cumplidas a

Dios por ser fuente de fe y fortaleza y permitirme

compartir mis alegrías con las personas que más

amo, mi familia.

A mis padres: Lucio Cruz y Melida Yujra que me han brindado su infinito amor y apoyo incondicional, por educarme con sus valores para ser una persona de bien, con inmensa gratitud por el aliento para la culminación de esta profesión.

A mis hermanos: Yisela, Melisa, Elizabeth, Richard y Diana.

AGRADECIMIENTOS

En primer lugar, quiero agradecer a Dios por brindarme la oportunidad de la vida, llenarme de bendiciones y haber culminado mis estudios.

A mis padres Lucio y Melida por haberme brindado todo el apoyo, comprensión, cariño y aguante de todos estos años, por sus sabios consejos y hacer de mi un hombre de bien al igual que a mis hermanas Yisela, Melisa, Elizabeth, Richard y Diana, por haberme acompañado en todo este camino, por las risas compartidas en los momentos difíciles por el apoyo moral e incondicional que siempre me brindaron.

A mi director de tesis ingeniero José Ramos, por su comprensión, paciencia y apoyo en todo momento para la culminación de la tesis.

Al ingeniero Armado Cruz, por sus sabios consejos y apoyo a resarcir las ideas de la presente tesis.

A los ingenieros Miguel Tupayachi y Néstor Tapia, encargados de la ejecución de la obra en estudio, quienes fueron los que impulsaron la idea de tesis y su apoyo incondicional en todo momento.

A mis amigos y compañeros de trabajo Rosita, Melisa, Cesar y Henry que siempre estuvieron impulsando la culminación de esta tesis.

Muchas Gracias, Frank Cruz Julio, 2017

ÍNDICE

INDICE	5
RESUMEN	. 15
ABSTRACT	. 16
INTRODUCCIÓN	. 17
CAPÍTULO I PLANTEAMIENTO DEL PROBLEMA	. 19
DESCRIPCIÓN DE LA REALIDAD DEL PROBLEMA DE INVESTIGACIÓN	. 19
FORMULACIÓN DEL PROBLEMA	. 20
1.1.1. PROBLEMA GENERAL	. 20
1.1.2. PROBLEMAS ESPECÍFICOS	. 20
1.1.3. JUSTIFICACIÓN DE LA INVESTIGACIÓN	. 20
OBJETIVOS DE LA INVESTIGACIÓN	. 21
1.1.4. OBJETIVO GENERAL	. 21
1.1.5. OBJETIVOS ESPECÍFICOS	. 21
CAPÍTULO II MARCO TEÓRICO	. 23
2.1. ANTECEDENTES DE LA INVESTIGACIÓN	. 23
2.2. GLOSARIO DE TÉRMINOS BÁSICOS	. 24
2.3. HIPÓTESIS DE LA INVESTIGACIÓN	. 26
2.3.1. HIPÓTESIS GENERAL	. 26
2.3.2. HIPÓTESIS ESPECÍFICAS	. 26
2.4. OPERACIONALIZACIÓN DE VARIABLES	. 26

2.5. INTRODUCCION AL ACONDICIONAMIENTO DE AIRE	. 26
2.6. COMPOSICIÓN DEL AIRE	. 28
2.7. CONDICIONES DE BIENESTAR	. 28
2.8. EFECTO DE LA DISTRIBUCIÓN DE TEMPERATURAS	. 30
2.9. NECESIDAD DE VENTILAR UN LOCAL	. 31
2.10. PROPIEDADES DEL AIRE	. 32
2.11. ESTUDIO DEL LOCAL, CARACTERÍSTICAS DEL LOCAL Y FUENTES DE CARGA TÉRMICA	
2.12. ESTIMACIÓN DE LA CARGA DE ACONDICIONAMIENTO DEL RECINTO	. 34
2.13. ÁREAS HOSPITALARIAS Y SUS NECESIDADES	. 35
2.14. CLIMATIZACIÓN HOSPITALARIA	. 36
2.14.1. RESTRICCIONES DE LA CLIMATIZACIÓN SEGÚN ÁREAS DE RIESGO	. 37
2.15. SISTEMAS DE CLIMATIZACIÓN HOSPITALARIA	. 37
2.15.1. CLASIFICACIÓN	. 37
2.15.2. FUNCIONES BÁSICAS	40
2.15.3. MECANISMO DE TRANSFERENCIA DE CALOR	. 41
2.15.4. ELEMENTOS Y EQUIPOS DE CLIMATIZACIÓN	43
CAPÍTULO III DISEÑO METODOLÓGICO DE INVESTIGACIÓN	. 49
3.1. TIPO DE INVESTIGACIÓN	49
3.2. DISEÑO DE INVESTIGACIÓN	49
3.3. POBLACIÓN Y MUESTRA DE INVESTIGACIÓN	. 50

3.4. UBICACION Y DESCRIPCION DE LA POBLACION	50
3.5. TÉCNICAS E INSTRUMENTOS PARA RECOLECTAR INFORMACIÓN.	50
3.6. TÉCNICAS PARA EL PROCESAMIENTO Y ANÁLISIS DE DATOS	51
3.7. PLAN DE TRATAMIENTO DE DATOS	51
3.8. DISEÑO ESTADÍSTICO PARA LA PRUEBA DE HIPÓTESIS	52
CAPÍTULO IV ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS DE LA INVESTIGACIÓN	
4.1. DESCRIPCIÓN DEL EDIFICIO	53
4.1.1. CONDICIONES INTERIORES	55
4.1.2. CONDICIONES EXTERIORES	56
4.2. MÉTODOS DE CÁLCULO	59
4.3. CÁLCULO DE COEFICIENTE DE TRANSMISIÓN DE CALOR U DE LOS CERRAMIENTOS	
4.4. CÁLCULO DE LA DEMANDA DE ENERGÍA DE CALEFACCIÓN	64
4.4.1. PÉRDIDAS POR TRANSMISIÓN Y CONVECCIÓN	65
4.4.2. PÉRDIDAS POR INFILTRACIÓN	65
4.4.3. PÉRDIDAS POR RENOVACIÓN DE AIRE	65
4.5. CÁLCULO DE LA DEMANDA DE ENERGÍA DE AIRE ACONDICIONADO	
4.5.1. CARGA TÉRMICA SENSIBLE	68
4.5.2. CARGA TÉRMICA LATENTE	71
4.6. CÁLCULO DE LA POTENCIA DE HUMIDIFICACIÓN	78
4.7 DISEÑO DEL CIRCUITO HIDRÁULICO	84

4.7.1. CALCULO DE PERDIDAS DE CARGA EN TUBERIAS	35
4.8. CÁLCULO DE PÉRDIDAS DE CALOR EN TUBERÍAS DE AGUA CALIENTE	88
4.8.1. CÁLCULO DE ESPESORES MÍNIMOS DE AISLAMIENTO TÉRMICO EN TUBERÍAS	90
4.9. DISEÑO DE LOS CONDUCTOS DE VENTILACIÓN	92
4.9.1. DISEÑO DE CONDUCTOS QUIRÓFANO 1 Y 2	94
4.9.2. DISEÑO DE CONDUCTOS SALA DE PREPARACIÓN Y RECUPERACIÓN	95
4.9.3. DISEÑO DE CONDUCTOS SALA DE UNIDAD DE CUIDADOS INTENSIVOS	98
4.9.4. DISEÑO DE CONDUCTOS AISLADO MEDICINA Y CIRUGÍA GENERA10	
4.10. CALCULO DE PÉRDIDAS DE CALOR EN LOS CONDUCTOS DE VENTILACIÓN	02
CONCLUSIONES	11
RECOMENDACIONES	12
BIBLIOGRAFÍA	13

ÍNDICE DE TABLAS

Tabla 1: Operacionalización de variables.	26
Tabla 2: Composición del aire en volumen	28
Tabla 3: Principales áreas hospitalarias	35
Tabla 4: Renovaciones, temperatura y humedad en establecimientos de salu	bı
del segundo nivel de atención	48
Tabla 5: Área y volumen de ambientes a climatizar	55
Tabla 6: Condiciones interiores por ambientes	56
Tabla 7: Coeficiente global U muro de cabeza al interior	61
Tabla 8: Coeficiente global U muro de cabeza al exterior	61
Tabla 9: Coeficiente global U muro doble de soga al interior con lámina de ai	ire
	62
Tabla 10: Coeficiente global U muro doble de soga al exterior con lámina de	
aire	62
Tabla 11: Coeficiente global U muro de soga en el interior	62
Tabla 12: Coeficiente global U piso de concreto acabado en vinílico	63
Tabla 13: Coeficiente global U piso de concreto acabado en porcelanato	63
Tabla 14: Coeficiente global U puerta contraplacada MDF	63
Tabla 15: Coeficiente global U losa aligerada con tarrajeo interior	63
Tabla 16: Coeficiente global U losa aligerada con baldosa suspendida	64
Tabla 17: Resumen de coeficientes de trasmisión total U para los cerramient	tos.
	64
Tabla 18: Pérdidas de calor por transferencia en cerramietos de la sala de	
cuidados intensivos	67
Tabla 19: Resumen de carga térmica de calefacción por ambientes	67

Tabla 20: Resumen de cálculos de ganancias de calor sensible.	76
Tabla 21: Resumen de cálculo de ganancias de calor latente y total	76
Tabla 22: Resumen cálculo de potencia de humidificación	83
Tabla 23: Longitud equivalente para accesorios y equipos	87
Tabla 24: Pérdidas de carga en tuberías de agua caliente	87
Tabla 25: Cálculo de coeficiente de convección del agua	90
Tabla 26: Espesor mínimo de aislamiento y pérdidas de calor en tuberías	91
Tabla 27: Caudal para los ambientes a ventilar	93
Tabla 28: Velocidades máximas recomendadas para sistemas de baja	
velocidad m/s	94
Tabla 29: Dimensionamiento conducto de inyección para quirófano 1 y 2	95
Tabla 30: Dimensionamiento conducto de extracción para quirófano 1	95
Tabla 31: Dimensionamiento rejilla de inyección y extracción quirófanos 1 y 2	2
	95
Tabla 32: Dimensionamiento conducto de extracción para quirófano 2	95
Tabla 33: Dimensionamiento conducto de inyección de la sala de preparació	n y
recuperación	97
Tabla 34: Dimensionamiento conductos de extracción de la sala de	
preparación y recuperación	97
Tabla 35: Dimensionamiento difusor y rejilla en sala de prepparación y	
recuperación	98
Tabla 36: Dimensionamiento conductos de inyección de la unidad de cuidad	os
intensivos	98
Tabla 37: Dimensionamiento conductos de extracción de la unidad de cuidad	sob
intensivos	100

TESIS UNA - PUNO

Tabla 38: Dimensionamiento difusor y rejilla de inyección y extracción	100
Tabla 39: Dimensionamiento conductos de inyección aislado medicina y cir	ugía
general	101
Tabla 40: Dimensionamiento conductos de extracción aislado medicina y	
cirugía general	102
Tabla 41: Dimensionamiento difusor y rejilla de inyección y extracción	102
Tabla 42: Pérdidas de calor en conductos de ventilación	104
Tabla 43: Capacidad de diseño mínimo para la selección de los equipos de	aire
acondicionado y calefacción	107
Tabla 44: cuadro de cargas, por ambientes climatizados	108
Tabla 45: Equipos de calefacción recomendados	109
Tabla 46: Equipos de aire acondicionado recomendados para quirófanos	110

ÍNDICE DE FIGURAS

Figura 1: Zonas de confort de temperatura y humedad de aire en interiores 30
Figura 2: Efecto de la distribución de temperaturas
Figura 3: Componentes de la ganancia de calor del recinto
Figura 4: Sistema autónomo o unitario
Figura 5: Sistema todo agua
Figura 6: Sistema todo aire
Figura 7: Sistema aire-agua
Figura 8: Esquema básico de ventilación en un sistema típico de climatización
41
Figura 9: Esquema básico de una unidad manejadora de aire caliente UMAC
44
Figura 10: Partes de un ventilador centrífugo
Figura 11: Ciclo de refrigeración mecánica
Figura 12: Vías de acceso al Megalaboratorio clínico universitario de la UNA-
Puno
Figura 13: Ubicación del Mega-laboratorio clínico universitario de la UNA-Puno
54
Figura 14: Ubicación de la zona quirúrgica dentro del Mega-laboratorio clínico
universitario de la UNA-Puno
Figura 15: Temperaturas promedio mensual máximas
Figura 16: Temperaturas promedio mensual mínimas
Figura 17: Humedad relativa promedio mensual 57
Figura 18: Temperatura de bulbo húmedo promedio mensual a las 13 horas
del día 58

Figura 19: Métodos de calculo de carga térmica y su complejidad	. 59
Figura 20: Ganancias de calor sensible.	. 77
Figura 21: Ganancias de calor lantente	. 78
Figura 22: Diagrama psicrométrico (software Buy CYTSoft Psychrometric Cl	hart
2.2)	. 79
Figura 23: Datos para el cálculo del flujo de masa del humidificador	. 82
Figura 24: Esquema circuito hidráulico	. 84
Figura 25: Componentes de la tubería de agua caliente	. 88
Figura 26: Esquema de conductos de aire en la sala de preparación y	
recuperación	. 96
Figura 27: Esquema de conductos de aire en la sala de unidad de cuidados	
intensivos.	. 99
Figura 28: Esquema de conductos de aire en aislados medicina y cirugía	
general	101
Figura 20: Porcentaje de nérdidas de calor de todo el sistema	106

ÍNDICE DE ANEXOS

Anexo A: Tabla de resistencia térmica R de materiales de construcción y de	
aislamiento (°C m^2h/ kcal)1	116
Anexo B: Conductividad térmica de materiales utilizados en cerramientos 1	119
Anexo C: Tabla de aportaciones solares a través de vidrio sencillo	121
Anexo D: Tabla de las máximas aportaciones solares a través de cristal	
sencillo1	124
Anexo E: Tabla de correcciones de las diferencia equivalentes de temperatu	ıra
	125
Anexo F: Tabla de correcciones de las condiciones de proyecto en función d	lel
mes considerado1	125
Anexo G: Diferencia equivalente de temperatura1	126
Anexo H: Espesor (mm) según la temperatura del fluido, para condiciones	
estándar1	127
Anexo I: Historial de temperaturas en la ciudad de puno 1	128
Anexo J: Planillas de cálculos carga térmica de calefacción y aire	
acondicionado1	129
Anexo K: PRESUPUESTO1	138
Anexo L: Ficha técnica de equipos recomendados aire acondicionado 1	141
Anexo M: Ficha técnica unidades manejadoras de aire	144
Anexo N: Ficha técnica calentador de agua1	147
Anexo O: PLANOS	148

RESUMEN

El presente trabajo de investigación tiene como objetivo diseñar un sistema climatización agua-aire para el sector quirúrgico del mega-laboratorio clínico universitario de la UNA-Puno. Para dar confort en los ambientes de tratamiento de salud. Se tiene como muestra de estudio el sector quirúrgico del Megalaboratorio clínico, y la población es toda la infraestructura el cual cuenta con 8 sectores, el tipo de investigación a desarrollar es descriptivo no experimental, se realiza los cálculos de carga térmica de calefacción y aire acondicionado, potencia de humidificación, pérdidas de calor en tubería de agua y conductos de ventilación, para este fin se tomó datos de tablas del manual de aire acondicionado de Carrier, fichas técnicas de materiales y datos meteorológicos proporcionados por el SENAMHI. El diseño del sistema de climatización aqua-aire, asegurara las condiciones de confort con un rendimiento energético de 73.64%, brindando los parámetros adecuados de temperatura, humedad relativa, ventilación y tratamiento de aire. La carga térmica de aire acondicionado es -16536 Kcal/h esto indica que no tiene influencia en la climatización, al contrario, se requiere calefacción; el cual influye en un 100% en la climatización del sector quirúrgico con una carga térmica total de 82548.00Kcal/h. Las pérdidas de calor en las tuberías de agua caliente, influyen en un 5.58% en el rendimiento total del sistema agua-aire, cuantificando esta energía es 4005.68Kcal/h. Las pérdidas de calor se en los conductos de aire influyen en un 7.73% en el rendimiento total del sistema aqua-aire, cuantificando esta energía es 5552.85Kcal/h.

PALABRAS CLAVE: Climatización, carga térmica, calefacción, aire acondicionado, temperatura de confort, humidificación, ventilación.

ABSTRACT

The present research work aims to design an air-conditioning system for the surgical sector of the university clinical mega-laboratory of the UNA-Puno. To give comfort in the environments of health treatment. The study shows the surgical sector of the clinical Megalaboratorio, and the population is the entire infrastructure which has 8 sectors, the type of research a development is nonexperimental descriptive, calculations of heating and air conditioning, Humidification power, heat losses in water pipes and ventilation ducts, for this purpose, board data was taken from Carrier's air conditioning manual, material data sheets and meteorological data provided by SENAMHI. The design of the air conditioning system ensures comfort conditions with an energy efficiency of 73.64%, providing the appropriate parameters of temperature, relative humidity, ventilation and air treatment. The thermal load of the air conditioning is -16536 Kcal/h this indicates that it has no influence on the air conditioning, on the contrary, the heating is required; Which influences 100% in the air conditioning of the surgical sector with a total thermal load of 82548.00Kcal/h. Heat losses in the hot water pipelines, influence the 5.58% in the total yield of the water system, quantifying this energy is 4005.68Kcal/h. The heat losses in the air ducts influence 7.73% in the total water system performance, quantifying this energy is 5552.85Kcal / h.

Key words: Air conditioning, thermal load, heating, air conditioning, comfort temperature, humidification, ventilation.

INTRODUCCIÓN

Los sistemas de acondicionamiento de aire y climatización en los centros de salud son un requisito muy indispensable en la actualidad, debido a que gracias a estas instalaciones se crea un ambiente no solo de confort, sino que también propicio para los tratamientos de salud, debido a que los ambientes requieren ciertos requisitos de temperatura, humedad relativa y pureza del aire según los reglamentos vigentes.

Por esto, día a día van tomando parte del paquete de requerimientos básicos de una edificación de salud. Por otro lado, el uso del aire acondicionado y climatización debe realizarse con un buen juicio debido a que ellos causan un importante consumo energético sobre todo cuando se utilizan de manera indiscriminada o sobredimensionada.

En la ciudad de Puno, se tiene un ambiente muy frígido en los meses de junio y julio, con temperaturas mínimas de hasta bajo cero, por lo cual para estos meses es de vital importancia un sistema de calefacción que es parte de un sistema de climatización. Y ya para los meses más calurosos por decirlo así, debido a que las temperaturas son las máximas en la ciudad de Puno, y que son en los meses de noviembre y diciembre, pero no llegan a las temperaturas establecidas por el reglamento, por ende, aún se sigue necesitando calefacción, pero con menos consumo energético.

La presente tesis, tiene como objetivo diseñar un sistema de climatización, para el mega-laboratorio clínico universitario de la Universidad Nacional del

TESIS UNA - PUNO

Universidad Nacional del Altiplano

Altiplano de la ciudad de Puno, centrándose en el área de mayor cuidado de este

centro de salud que vendría a ser el centro quirúrgico.

Capítulo I: En este capítulo se da una breve descripción del entorno del

problema para luego ser planteado posteriormente se traza los objetivos de la

presente tesis.

Capítulos II y III: Se plasma el marco teórico, empezando con los

antecedentes a la presente investigación, la hipótesis y la operacionalización de

variables posteriormente se da las principales definiciones sobre climatización,

aire acondicionado, calefacción; también sobre las necesidades de climatizar un

ambiente, así como lo que establecen los reglamentos nacionales e

internacionales sobre el tema.

Capítulo IV: En este capítulo se define el diseño metodológico de

investigación, describiendo brevemente el tipo y diseño de investigación, la

población y muestra de investigación, así como la ubicación y descripción de la

misma.

Capítulo V: Este capítulo fue destinado netamente a los cálculos de carga

térmica (calefacción y aire acondicionado), potencia de humidificación, diseño

del circuito hidráulico, pérdidas de calor en tuberías de agua, dimensionamiento

de conductos, pérdidas de calor en conductos.

Capítulo VI: Se interpreta los resultados.

18

CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

DESCRIPCIÓN DE LA REALIDAD DEL PROBLEMA DE INVESTIGACIÓN

Actualmente se viene realizando la construcción del megalaboratorio clínico de la universidad Nacional del Altiplano Puno, el cual estará al servicio de los estudiantes de la universidad, así como también a la población en general. Este megalaboratorio clínico contará con 120 camas de hospitalización aproximadamente en su etapa completa, el nivel de este establecimiento de salud según la clasificación del ministerio de salud es un hospital de nivel II-1.

Dentro de los establecimientos de salud es muy importante el confort, así como la reducción de la concentración de agentes contaminantes, tales como microorganismos, polvo, gases narcóticos, desinfectantes, sustancias odoríferas u otras sustancias contenidas dentro de los ambientes de un establecimiento de salud.

El sector quirúrgico contempla todo el primer nivel del sector D del megalaboratorio y tiene comprendido en sus instalaciones, dos salas de operaciones, un área para preparación y recuperación, una unidad de cuidados intensivos (UCI), aislados medicina general y cirugía general. Adicionalmente cuenta con áreas complementarias.

Este proyecto de tesis pretende dar una solución Óptima al sistema de climatización del sector quirúrgico del mega-laboratorio clínico de la Universidad Nacional del Altiplano Puno cumpliendo con todos los requisitos mínimos que establecen las normas nacionales e internacionales, para lo cual se calculará la

carga térmica del sector en mansión tomando en cuenta los datos proporcionados por SENAMHI y las tablas proporcionadas por los fabricantes. Luego de obtener las cargas térmicas de acuerdo a los ambientes de estudio se realizará el planteamiento y cálculo de las redes de agua y aire para cada ambiente.

FORMULACIÓN DEL PROBLEMA

1.1.1.PROBLEMA GENERAL

¿De qué manera el diseño de un sistema de climatización agua - aire del sector quirúrgico del Mega laboratorio clínico universitario de la UNA Puno, asegura las condiciones de confort?

1.1.2.PROBLEMAS ESPECÍFICOS

- a) ¿En qué medida influirá la carga térmica de refrigeración y calefacción en la climatización del sector quirúrgico?
- b) ¿En qué medida influirá las pérdidas de calor del circuito hidráulico de agua en rendimiento total?
- c) ¿En qué medida influirá las pérdidas de calor de los conductos de ventilación y extracción de aire en el rendimiento total?

1.1.3. JUSTIFICACIÓN DE LA INVESTIGACIÓN

En la actualidad en la región Puno, se viene realizando la construcción de varios establecimientos de salud, como también la elaboración de expedientes técnicos para la construcción de nuevos establecimientos de salud. En muchos

casos de esta falta la afianza de la normativa vigente, y el diseño del sistema de climatización según los parámetros ambientales de la región de Puno.

Este proyecto de investigación servirá, para obtener conocimiento de las normativas vigentes nacionales e internacionales y llevar a cabo un buen diseño de las instalaciones de climatización de un establecimiento de salud en la región de Puno.

El proyecto de investigación beneficiara a la sociedad de Puno, tanto pacientes, profesionales y familiares del paciente, ya que recibirán una atención de calidad en los establecimientos de salud. Y también para profesionales de la escuela profesional de ingeniería mecánica eléctrica y profesiones afines que se dediquen a la climatización hospitalaria.

OBJETIVOS DE LA INVESTIGACIÓN

1.1.4. OBJETIVO GENERAL

Diseñar un sistema de climatización agua - aire para el sector quirúrgico del Mega laboratorio Clínico universitario de la UNA Puno, para asegurar las condiciones de confort.

1.1.5.OBJETIVOS ESPECÍFICOS

- a) Determinar la influencia de la carga térmica de refrigeración y calefacción en la climatización sector quirúrgico.
- b) Determinar la influencia de las pérdidas de calor del circuito hidráulico de agua en el rendimiento total

TESIS UNA - PUNO

c) Determinar la influencia de las pérdidas de calor de los ductos de ventilación y extracción de aire en el rendimiento total.

CAPÍTULO II

MARCO TEÓRICO

2.1.ANTECEDENTES DE LA INVESTIGACIÓN

(Beltran Castañon & Illacutipa Mamani, 2000)La investigación realizada en la escuela profesional de Ingeniería Mecánica Eléctrica está relacionada al tema de climatización HVAC por sus siglas en inglés que significa Calefacción, Ventilación y Aire Acondicionado. El nombre de la tesis es: "Diseño, Selección, Montaje e Instalación de un Módulo de Laboratorio de Refrigeración y Aire Acondicionado para la C.P.I.M.E." El cual tiene como objetivo conocer el sistema de refrigeración y aire acondicionado de parte de los futuros profesionales de la CPIME, para desarrollar trabajos orientados a prestar servicios a la comunidad y por ende se incentivará a que la población aproveche esta tecnología en sus diferentes aplicaciones para la mejora de la calidad de vida de los pobladores de la zona.

(Dorregaray Portilla, 2008)En la ciudad de Lima, Universidad Pontificia Católica del Perú, se realizó una investigación sobre Diseño del sistema de aire acondicionado de una oficina zonal publica en Pucallpa, elaborado por Gustavo Dorregaray Portilla, el cual como por la zona de estudio fue netamente aire acondicionado debido a que en estos lugares es necesario disminuir la temperatura y la Humedad Relativa, lo cual será todo lo contrario en la ciudad de Puno. El objetivo principal fue realizar una evaluación económica de la opción seleccionada comparándola con una opción más eficiente la cual lamentablemente no se utilizó por el espacio disponible. Se incluyen precios de adquisición, instalación, ingeniería, operación y mantenimiento.

(Rodriguez Calva & Solis Cordova, 2012)El objetivo principal del proyecto de tesis fue diseñar, construir e instalar un sistema de calefacción con suministro de energía solar. El diseño es basado en una variante de la calefacción de un sistema por piso radiante, debido a las fluctuaciones en el comportamiento de las condiciones climáticas de la localidad (provincia de Chimborazo, cantón Riobamba 2750 m.s.n.m. Ecuador). Para el presente proyecto se tomó como antecedente la premisa anterior debido a que analiza la carga térmica de los ambientes en tratamiento a una considerable altitud sobre el nivel del mar, y es más llega a la conclusión de dar calefacción.

2.2.GLOSARIO DE TÉRMINOS BÁSICOS

CAPACIDAD: Potencial de refrigeración o calefacción del equipo de Aire Acondiciona- do. La capacidad se puede medir de diferentes maneras: kW, kcal/h, Btu/h.

CLIMATIZADOR: Aparato que sirve para que el aire de una sala, estancia o recinto cerrado tenga unas condiciones de temperatura y humedad convenientes para la salud y el confort.

AIRE DE EXTRACCIÓN: Aire, normalmente viciado, que se expulsa al exterior.

AIRE DE IMPULSIÓN: Aire que se introduce en los espacios acondicionados.

AIRE DE RECIRCULACION: Aire de retorno que se vuelve a introducir en los espacios acondicionados.

AIRE DE RETORNO: Aire procedente de los espacios acondicionados. El aire de retorno estará constituido por el aire de recirculación y, eventualmente, por el aire de expulsión.

AIRE EXTERIOR: Aire del ambiente exterior que se introduce en el circuito de climatización.

KILOCALORÍA / HORA (kcal/h): Unidad de potencia de calor 1 kcal/h = 1'163 W = 3'968 BTU/h.

BOMBA DE CALOR: Acondicionador de aire reversible. La refrigeración absorbe el calor del interior para cederlo al exterior. Mediante un sistema de válvulas, las bombas de calor invierten el ciclo para absorber calor del exterior y llevarlo al interior.

CALOR LATENTE: El calor latente es la cantidad de calor necesario para cambiar el estado de un cuerpo sin alterar su temperatura. Éste calor no es percibido por el cuerpo humano.

HUMEDAD RELATIVA: Es la cantidad de agua en forma de vapor que contiene un determinado estado de aire húmedo. Tiene un valor comprendido entre 0% y 100% y nos indica el grado de saturación. Cuando la humedad supera el 100% aparece el fenómeno niebla.

AISLANTE TÉRMICO: Es todo material que posee un bajo coeficiente de conductividad térmica.

2.3.HIPÓTESIS DE LA INVESTIGACIÓN

2.3.1.HIPÓTESIS GENERAL

El diseño del sistema de climatización agua-aire para el sector quirúrgico del Mega laboratorio Clínico universitario de la UNA Puno, asegura las condiciones de confort.

2.3.2.HIPÓTESIS ESPECÍFICAS

- a) La carga térmica de invierno es mucho más influyente en el cálculo que la carga térmica de verano.
- b) Las pérdidas de calor en el circuito hidráulico de agua son poco influyentes en el rendimiento total.
- c) Las pérdidas de calor de los ductos de ventilación y extracción de aire influyen en gran medida sobre el rendimiento total.

2.4.OPERACIONALIZACIÓN DE VARIABLES

Tabla 1: Operacionalización de variables.

Variable (es)	Dimensiones	Indicadores
Climatización (independiente)	Temperatura en el recinto, humedad relativa y ventilación mecánica	T (°C), HR (%) y RAH (m³/h)
Rendimiento energético del sistema agua-aire (dependiente)	Energía útil, Energía Total	$E_{u}(J), E_{T}(J)$
(dependiente) Elaboración: Propia		

2.5.INTRODUCCIÓN AL ACONDICIONAMIENTO DE AIRE

El acondicionamiento de aire es un proceso que consiste en tratar un ambiente interior con el objetivo de establecer y mantener unas determinadas

condiciones de temperatura, humedad, limpieza y movimiento del aire. Los procesos para la obtención de cada una de estas condiciones se realizan de la siguiente manera (Gonzales, 2013)

- Temperatura: Calentando o enfriando (eliminando calor) el aire del ambiente.
- Humedad: Agregando (humidificación) o eliminando (deshumidificación) vapor de agua al aire del ambiente.
- Movimiento del aire: Dimensionando el sistema de distribución y difusión de aire, de manera que la velocidad del aire no sea molesta.

En general, un sistema de calefacción y/o enfriamiento tiene los siguientes componentes:

- Producción de calor y/o frío: El equipo de producción de calor agrega calor a un fluido (aire, agua, glicol), y el equipo de producción de frío elimina calor de un fluido.
- Sistema de distribución: Transporta el calor y/o el frio mediante una red de conductos (aire) o tuberías (agua, glicol) hacia los recintos a calentar o enfriar. Este sistema de incorpora un equipo de circulación para mover el aire (ventilador) o el agua (bomba).
- Transmisión de calor y / o frío: Transmite el calor y/o el frío entre el fluido y el recinto, mediante equipos denominados unidades terminales (difusores, fan-coils, radiadores).

2.6.COMPOSICIÓN DEL AIRE

Desde el punto de vista práctico podemos considerar el aire húmedo atmosférico como una mezcla de dos gases, el aire seco y el vapor de agua. El primero de composición constante y el segundo de concentración variable.

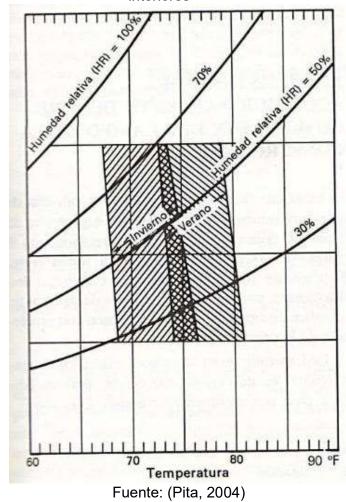
En la cuadro 2 se indica el contenido, en volumen, de los componentes del aire, sin contar con el vapor de agua.

Tabla 2: Composición del aire en volumen

GAS	CONTENIDO (%)
Nitrógeno	78.09
Oxigeno	20.95
Argón	0.93
Dióxido de carbono	0.03
Fuente: (Miranda, 2007)	

2.7.CONDICIONES DE BIENESTAR

Está demostrado que ciertas condiciones ambientales (aproximadamente 21°C y 50% de humedad relativa) proporcionan una sensación placentera. Es evidente que la temperatura será uno de los principales parámetros a tener en cuenta. Un ambiente seco produce una sensación más agradable, en general, que uno húmedo; sin embargo, si la sequedad del aire es demasiado, pronto se manifiestan ciertos inconvenientes, como sequedad en las mucosas, exceso de electricidad estática, entre otros.


Si el ambiente es muy húmedo tenemos una sensación de ahogo, con el agravante de que no puede eliminarse fácilmente el sudor corporal. Así pues, la humedad del aire será otro parámetro a tener en cuenta.

El aire puede llevar agentes patógenos o simplemente polvo o ciertos componentes que es necesario eliminar. No son éstos los únicos factores que han de tenerse en cuenta, pero sí los más importantes. Vamos a resumirlos.

- Temperatura.
- Humedad del aire.
- Ruido.
- Ventilación y purificación del aire.

El bienestar se determina experimentalmente sometiendo a una serie de sujetos a diferentes condiciones. El resultado se recoge en unos gráficos. Estos gráficos se llaman diagramas de confort. No existe un modelo único, sino varios que recogen experiencias realizadas por diversos laboratorios o países. Uno de los más utilizados es el confeccionado por ASHRAE (AMERICAN SOCIETY OF HEADTING AND AIR-CONDITIONING ENGINEERS) el mostrado en la figura 1.

Figura 1: Zonas de confort de temperatura y humedad de aire en interiores

2.8.EFECTO DE LA DISTRIBUCIÓN DE TEMPERATURAS

(Miranda, 2007) En una habitación acondicionada, la distribución de temperaturas no es uniforme. En general, dependerá del tipo de calefacción o refrigeración empleado. Este fenómeno es más crítico en el caso de la calefacción; la temperatura nos es la misma a medida que vamos subiendo.

En la figura 2 se representado la distribución ideal de temperatura:

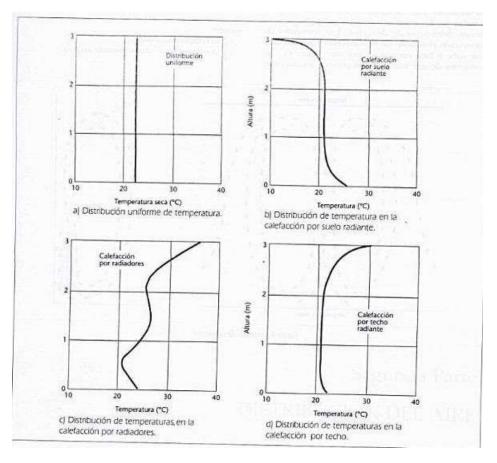


Figura 2: Efecto de la distribución de temperaturas

Fuente: (Carrier Air, 1980)

2.9.NECESIDAD DE VENTILAR UN LOCAL

La renovación del aire en cualquier local ocupado es necesaria para reponer el oxígeno y evacuar los subproductos de la actividad humana, o del proceso productivo, tales como el dióxido de carbono, el exceso de vapor de agua, los olores desagradables u otros contaminantes.

Debe entenderse siempre que la ventilación es sinónimo de renovación o reposición de aire sucio o contaminado por aire limpio, por ejemplo, un sistema de climatización con una recirculación del aire al 100% no puede considerarse como un sistema de ventilación. (DL2G Consultoría de Formación S.L, 2013)

2.10.PROPIEDADES DEL AIRE

Las propiedades físicas del aire atmosférico se definen como sigue:

- 1. Temperatura del bulbo seco (BS): Es la temperatura del aire, tal como la indica un termómetro. Las palabras temperatura y temperatura de bulbo seco se emplean para designar lo mismo tratándose del aire.
- 2. Temperatura del bulbo húmedo (BH): Es la temperatura que indica un termómetro cuyo bulbo está envuelto en una mecha empapada en agua, en el seno de aire en rápido movimiento.
- 3. Temperatura de punto de rocio (PR): Es la temperatura a la cual el vapor de agua en el aire se comienza a condensar si se enfría el aire a presión constante.
- 4. Relación de humedad (W): A la cual se la llama también humedad específica. Es el peso de vapor de agua por libra de aire seco, expresado en lb/lb de aire seco.
- 5. Humedad relativa (HR): Es la relación de presión real de vapor de agua en el aire con la presión de vapor de agua si el aire estuviera saturado a la misma temperatura de bulbo seco. Se expresa en porcentaje.
- **6. Volumen específico (v):** Es el volumen de aire por unidad de peso de aire seco. Se expresa generalmente en ft³/lb de aire seco.
- 7. Entalpía específica (v): Es el contenido de calor del aire, por unidad de peso. Generalmente se expresa en BTU/lb de aire seco. Esta entalpía es la entalpía del aire seco más la de su contenido de vapor de agua,

calculadas una temperatura arbitraria de referencia en la cual la entalpía tiene un valor de cero.

2.11.ESTUDIO DEL LOCAL, CARACTERÍSTICAS DEL LOCAL Y FUENTES DE CARGA TÉRMICA

(Carrier Air, 1980) Para una estimación realista de las cargas de refrigeración es requisito fundamental el estudio riguroso de las componentes de carga en el espacio que va a ser acondicionado. En todo caso deben considerarse los siguientes aspectos físicos:

- Orientación del edificio y situación del local a acondicionar
- Destino del local: oficina, hospital, local de ventas, etc.
- Dimensiones del local: largo, ancho y alto.
- Condiciones del entorno.
- Ventanas: dimensiones y situación, orientación hacia el exterior.
- Puertas: Situación, tipo, dimensiones y frecuencia de empleo.
- Escaleras y huecos verticales.
- Ocupantes:
- Alumbrado:
- Motores: situación, potencia nominal y régimen de trabajo.
- Equipos y utensilios diversos que funcionan dentro del recinto.

- Ventilación necesaria.
- Funcionamiento continuo o intermitente

2.12.ESTIMACIÓN DE LA CARGA DE ACONDICIONAMIENTO DEL RECINTO

(Carrier Air, 1980) Debe estimarse la carga de refrigeración de un recinto para poder dimensionar correctamente la instalación: potencia del equipo, conductos de aire.

Para ello debe escogerse unas condiciones interiores y exteriores de cálculo, que vienen determinadas en el reglamento de calefacción y refrigeración del país.

Q techo Alumbrado O O Q solar (vidrio) Q alumbrado Q vidrio O partición O infiltración O nared Equipo

Figura 3: Componentes de la ganancia de calor del recinto

Fuente: (Pita, 2004).

Es conveniente agrupar a las ganancias de calor en dos grupos distintos: ganancias de calor sensible y ganancias de calor latente. Las ganancias sensibles se deben al aumento de temperatura de aire mientras que las ganancias de calor latente se deben a la ganancia de vapor de agua del aire.

La conducción a través de paredes, techos, vidrios exteriores y alumbrado son ganancias de calor sensible; mientras que la ganancia de calor por las personas y las infiltraciones puede considerarse como calor sensible y parte de calor latente.

2.13.ÁREAS HOSPITALARIAS Y SUS NECESIDADES

Se define a un hospital como la demarcación geográfica para la gestión y administración de la asistencia sanitaria especializada a la población. Es el lugar en el cual se atiende a los individuos que padecen una determinada enfermedad y que acuden a él con el objetivo de recibir un diagnóstico y un posterior tratamiento para su afección.

En la tabla 3 muestra las principales áreas hospitalarias y sus respectivas divisiones.

	D · · ·	,	
Tabla 3:	Principales	areas	hospitalarias

Tabla 3. Fillicipales aleas hospitalanas			
Área	División		
	Quirófanos		
Cirugía y cuidados intensivos	salas de recuperación		
	traumatología		
	Hospitalización		
Enfermería	Cuidados intensivos y aislamiento		
Enlernena	sala de partos		
	Neonatología		
	Radiología		
Auxiliares	Laboratorios		
Auxiliares	Morgue		
	Farmacia		
Diagnástico y tratamiento	Consulta externa		
Diagnóstico y tratamiento	Urgencias		

Fuente: (Ministerio de salud, 2014)

Los aspectos principales que se toman en cuenta y que se consideran necesidades hospitalarias son: limpieza, control de infecciones, flexibilidad en los espacios, ambientación y climatización.

2.14.CLIMATIZACIÓN HOSPITALARIA

Las condiciones para climatizar ambientes hospitalarios son reguladas por organizaciones de alcance internacional y se establecen en función de las afecciones de los pacientes y de las actividades que se realiza dentro de cada área médica. Las organizaciones más importantes son: El Departamento de desarrollo Urbano y Vivienda (F.H.A), El Departamento de Salud y Servicios Humanos, la Comisión de Acreditación de Hospitales (JCAH), la Sociedad Americana de Ingenieros especializados en Calefacción, Refrigeración y Aire Acondicionado (ASHRAE) entre otras. Las normas y recomendaciones que estos desarrollan son adaptadas por otros países debido a la ausencia de organismos locales.

En el año 2014, el Ministerio de Salud del Perú publico la norma técnica de salud NTS N° 110-MINSA/DGIEM-V 01. El documento, tiene como finalidad contribuir a un adecuado dimensionamiento de la infraestructura y equipamiento de los establecimientos de salud del segundo nivel de atención del sector salud.

Lamentablemente no se profundiza en los aspectos relacionados con la climatización hospitalaria por lo cual se utilizan las recomendaciones de los organismos internacionales para su diseño y construcción.

2.14.1.RESTRICCIONES DE LA CLIMATIZACIÓN SEGÚN ÁREAS DE RIESGO

En la actualidad se han realizado muchos estudios que comprueban que aquellos pacientes que están dentro de ambientes controlados tienen un mejoramiento físico más rápido que aquellos que están dentro de ambientes no controlados. "Unas malas condiciones climáticas pueden incrementar el riesgo de enfermedades y contribuir las infecciones no relacionadas con el estado clínico que causa la hospitalización del paciente" (ASHRAE, 1999).

2.15.SISTEMAS DE CLIMATIZACIÓN HOSPITALARIA

La necesidad del hombre de crear un ambiente que le resulte cómodo ha fomentado el desarrollo de equipos que permitan alcanzar este propósito; el conjunto de equipos destinados a conseguir y mantener el confort ambiental se conoce como sistemas de calefacción, ventilación y aire acondicionado (HVAC) o sistemas de climatización.

2.15.1. CLASIFICACIÓN

Para climatizar ambientes hospitalarios es común diferenciar los sistemas de acuerdo al acondicionamiento y el tipo de fluidos de distribución del aire en los locales. Los principales sistemas son:

2.15.1.1 SISTEMAS UNITARIOS O AUTÓNOMOS

Estos sistemas consisten en equipos compactos comprados de fábrica con lo cual se eliminan los defectos del montaje. Se colocan en ventanas, paredes o en los mismos locales a servir, no utilizan conductos y si lo hace es solo para

pequeños tramos de distribución, empleando rejillas o plenos de distribución de aire.

2.15.1.2 SISTEMA TODO REFRIGERANTE

También conocidos como sistemas separados o split-systems, son unidades que constan de un serpentín de expansión directa con ventilador que recircula el aire, que es alimentado con refrigerante que proviene de una unidad condensadora.

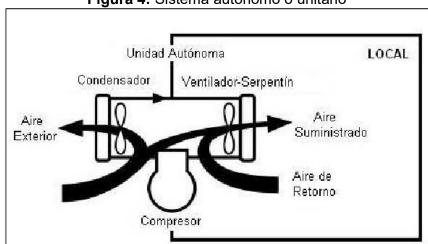


Figura 4: Sistema autónomo o unitario

Fuente: (Chamorro Sambache & Sandoval Condor, 2010)

2.15.1.3 SISTEMA TODO AGUA

Este sistema utiliza un serpentín donde se hace circular agua para enfriar o calentar el aire que va a ser distribuido en el ambiente mediante ventiladores. El agua que circula por el serpentín puede provenir de unidades refrigerantes calderas según las necesidades del ambiente.

Unidad Ventilador-Serpentín
(Fan Coil)

Aire
Exterior

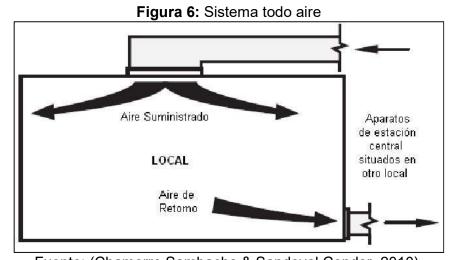

Agua Caliente o Fría
desde planta de acondicionamiento

Figura 5: Sistema todo agua

Fuente: (Chamorro Sambache & Sandoval Condor, 2010).

2.15.1.4 SISTEMAS TODO AIRE

Estos sistemas utilizan el aire como fluido termodinámico, tienen la capacidad de acondicionar el aire en unidades de tratamiento o manejadoras para luego ser suministrado a través de un sistema de ductos.

Fuente: (Chamorro Sambache & Sandoval Condor, 2010).

2.15.1.5 SISTEMAS AIRE-AGUA

Estos sistemas mixtos usan dos tipos de unidades para suministrar aire. El aire primario proviene de unidades de tratamiento y el aire secundario es servido por unidades terminales ubicadas dentro de los mismos locales. El agua es el fluido utilizado y puede provenir de calderas o unidades refrigerantes.

Agua caliente o
fría de la planta
de acondicionamiento

Aire Suministrado

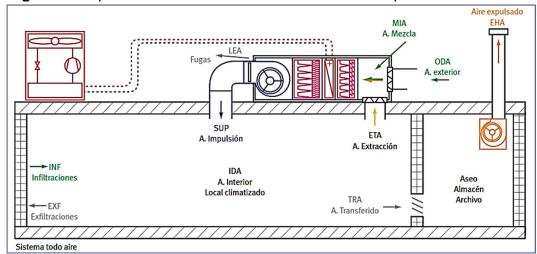
Aire de
Retorno

Aire caliente o frío
desde aparato de
estación central

Figura 7: Sistema aire-agua.

Fuente: (Chamorro Sambache & Sandoval Condor, 2010)

2.15.2.FUNCIONES BÁSICAS


Los sistemas climatización para áreas hospitalarias y otro tipo de edificaciones cumplen con las mismas funciones básicas, sin embargo el diseño y construcción de climatización para hospitales, clínicas y farmacéuticas poseen características muy particulares, especialmente por la delicadeza con la que debe realizarse cada función, además existen recomendaciones muy puntuales en cuanto a las diferentes salas de un hospital.

Estas funciones deben realizarse de forma autónoma y eficiente, sin generar ruidos molestos ni contaminación.

- Confort térmico y humedad del aire.
- Ventilación y calidad del aire.
- Limpieza del aire.

Figura 8: Esquema básico de ventilación en un sistema típico de climatización

Fuente: (Asociación técnica española de climatización y refrigeración, 2012)

2.15.3.MECANISMO DE TRANSFERENCIA DE CALOR

La convección es el modo de transferencia de energía por el cual el aire en movimiento absorbe o elimina el calor cuando atraviesa una superficie sólida. Este mecanismo involucra los efectos combinados de la conducción y del movimiento de un fluido. Ante la ausencia de cualquier movimiento la transferencia de calor se realiza por conducción pura. Cuanto mayor es el movimiento del fluido mayor es la transferencia de calor por convección, pero también complica la determinación de las tasas de transferencia de calor.

La tasa de transferencia de calor por convección C_{CONV} se determina por la ley de enfriamiento de Newton, que se expresa como:

$$C_{conv} = hA(T_S - T_F) \qquad ...(Ec-1)$$

Donde:

- h: Coeficiente de transferencia de calor por convección.
- A: Área de la superficie a través de la que ocurre la transferencia térmica.
- T_S: Temperatura de la superficie.
- T_F: Temperatura más allá de la superficie.

El coeficiente de transferencia de calor por convección h no es una propiedad del fluido. Es un parámetro determinado experimentalmente, cuyo valor depende de todas las variables que fluyen en la convección, como la geometría de la superficie, las propiedades del fluido, la velocidad volumétrica del fluido y el tipo de flujo del fluido. Para la convección forzada de gases oscila entre 25 y 250W/m².

El tipo de flujo de fluido lo indica el número de Reynolds (Re) que representa la relación que existe entre las fuerzas de inercia y las fuerzas viscosas que actúan sobre un elemento de volumen de un fluido.

$$Re = \frac{Fuerzas de Inercia}{Fuerzas Viscosas} = \frac{U_f L_c}{v} = \frac{\rho U_f L_C}{\mu} \qquad ...(Ec-2)$$

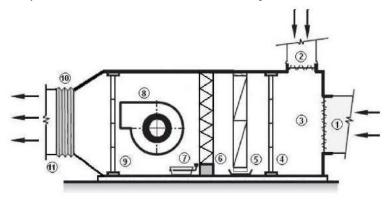
Dónde:

- ullet U_f : Velocidad del flujo del fluido a una distancia lo suficientemente alejada de la superficie.
- L_c: Longitud característica del conducto.
- v: Viscosidad cinemática.

Para conductos: si R_e < 2300 el flujo es laminar. Si 2300 < R_e < 10000 el flujo es de transición. Si R_e > 10000 el flujo es turbulento.

2.15.4. ELEMENTOS Y EQUIPOS DE CLIMATIZACIÓN

Los sistemas de climatización están constituidos de cuatro elementos importantes:


- Unidad de tratamiento de aire
- Sistema de circulación y distribución
- Sistema de generación de aire frío
- Sistema de generación de aire caliente

2.15.4.1 UNIDAD DE TRATAMIENTO DE AIRE

Los equipos de tratamiento obligan al aire a cumplir con varios procesos que comprenden su limpieza, control de temperatura y humedad. Son mejor conocidos como Unidades Manejadoras de Aire Caliente (UMAC), Pueden ser sistemas compactos modulares, elaborados de fábrica o construidos en unidades del tipo integral, capaces de contener todos los elementos necesarios como se muestra en la figura.

Figura 9: Esquema básico de una unidad manejadora de aire caliente UMAC

Fuente: (Asociación técnica española de climatización y refrigeración, 2012)

Donde:

- 1-Conducto de Retorno con Damper.
- 2-Conducto de toma de aire exterior con damper.
- 3-Pleno de mezcla.
- 4-Filtros primarios.
- 5-Serpent'ın de refrigeración.
- 6-Serpent'ın de calefacción.
- 7-Humectador por vaporización.
- 8-Ventilador centrifugo.
- 9-Filtros secundarios.
- 10-Cuello de Iona.
- 11-Conducto de suministro.

2.15.4.2 SISTEMA DE TRANSPORTE Y DISTRIBUCIÓN

La misión de este sistema es transportar el aire desde la unidad de tratamiento de aire hasta el recinto a climatizar y suele comprender los conductos de impulsión, los de retorno y extracción. Estos sistemas se clasifican en función

TESIS UNA - PUNO

Universidad Nacional del Altiplano

de la velocidad y de la presión en los conductos. En función de la velocidad del aire tenemos:

- Conductos de baja velocidad (< 12m/s, entre 6 y 12m/s)
- Conductos de alta velocidad (< 12m/s)

En función de la presión del aire en el conducto, se clasifican en baja, media y alta presión. Esta clasificación corresponde a la misma que utilizan los ventiladores:

- Baja presión: Hasta 90 mm.c.a.
- Media presión: Entre 90 y 180 mm.c.a.
- Alta presión: Entre 180 y 300 mm.c.a.

Ventiladores Son dispositivos encargados de producir el flujo de aire. El ventilador es un dispositivo que mueve el aire utilizando un impulsor de rotación, generalmente un motor eléctrico. El motor del ventilador puede ser conectado directamente a la turbina, a través de una caja de cambios o indirectamente por medio de un sistema de poleas con bandas. En los sistemas HVAC, los ventiladores centrífugos son los más utilizados.

Figura 10: Partes de un ventilador centrífugo

Fuente: (Asociación técnica española de climatización y refrigeración, 2012)

La carga de un ventilador se determina en función del requerimiento de ventilación es decir del volumen del local y del número de renovaciones de aire para cada caso específico. El caudal de aire requerido se determina a través de la siguiente expresión:

$$Q = Vn \qquad ...(Ec-3)$$

Donde:

- V : Volumen total del local (m³).
- n: Numero de renovaciones de aire por hora (cambios/hora)

Cuando varía la temperatura, la altitud de trabajo del ventilador, o ambas, se deben hacer correcciones oportunas sobre las condiciones estándar del ventilador. Los parámetros fundamentales a corregir son: la presión total y la potencia.

Tanto ductos como rejillas de aire no deben generar ruidos elevados por el paso de aire. La potencia sonora de una unidad terminal de impulsión de aire

dependerá de la misma velocidad de paso de aire de su geometría y del caudal de aire que pasa a través de la misma o sea de su sección efectiva. Para instalaciones hospitalarias el valor tolerable de ruido generado por estos equipos es de 30 a 40 dB.

2.15.4.3 SISTEMAS DE ENFRIAMIENTO DE AIRE

La refrigeración mecánica o por compresión es el sistema más utilizado para el enfriamiento del aire. Este tipo de sistemas está compuesto por los siguientes elementos: Compresor, condensador, dispositivo de expansión y evaporador

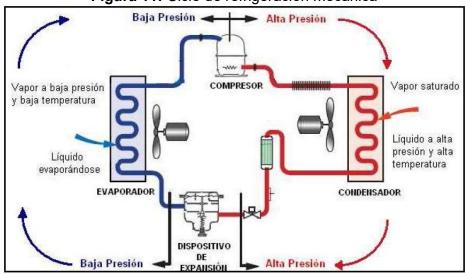


Figura 11: Ciclo de refrigeración mecánica

Fuente: (Renedo, 2009).

Tabla 4: Renovaciones, temperatura y humedad en establecimientos de salud del segundo nivel de atención

TABLA 6
Tabla de renovaciones, temperatura y humedad en establecimientos de salud del segundo nivel de atención

Ambiente	Renovaciones por hora (cantidad)	Caudal (minimo (CFM)	Temperatura del ambiente (°C)	Humedad relativa dentro del ambiente (%)
Sala de Operaciones (con filtros HEPA 99.97%; bolsa 60% y pre filtro 30%)	15	850 a 1200	22-25	55 a más
Sala de Parto	15	800	24-25	45-60
Salas de Cuidados Intensivos e Intermedios	12	750	18-25	40-60
Anatomia patológica, Patología Clinica, Histología y Citología (Extracción total)	12	750	18-25	40-60
Ambientes generales y de : tratamiento	2-3	700	24	45-60
Servicios Higiénicos	5-8	80	22	80-90
Cuartos de Limpieza y sépticos	8-15	100	20	40-60
Otros ambientes	5-7	500	18-25	40-60

(CFM): Unidad de caudal medida en ple³/minuto, que permite obtener el parámetro de medición del flujo de aire en las rejillas de inyección y extracción dentro de los ambientes del establecimiento de salud.

Referencias técnicas: ASHRAE (Sociedad Americana de los Ingenieros de Calefacción, Refrigeración y Aire Acondicionado), Normas UNE (Normas de la Unión Europea) y Norma EM.030 "instalaciones de Ventilación" del Reglamento Nacional de Edificaciones.

Fuente: (Ministerio de salud, 2014).

Todos los elementos, están incorporados en un circuito cerrado vinculados por tuberías de interconexión, que permiten hacer circular el fluido refrigerante durante el ciclo, de forma continua, empleando ventiladores en el evaporador y condensador, para favorecer la transferencia del calor mediante la circulación forzada del aire.

CAPÍTULO III

DISEÑO METODOLÓGICO DE INVESTIGACIÓN

3.1.TIPO DE INVESTIGACIÓN

Tipo de investigación a desarrollar, en la presente tesis es descriptivo no experimental, debido a que las variables no serán manipuladas, se describirán tal como se muestran en su ambiente natural. Y su metodología es fundamentalmente descriptivo, que se apoya en el contexto teórico para conocer, describir, relacionar o explicar una realidad, de acuerdo a lo planteado.

3.2.DISEÑO DE INVESTIGACIÓN

Por medio del diseño de investigación se obtendrá toda la información necesaria y requerida para aceptar o rechazar la hipótesis.

Esta investigación es de tipo, no experimental, descriptivo. No experimental por que no se puede manipular las variables, los datos a reunir se obtendrán del reporte meteorológico del SENAMHI, materiales utilizados en la construcción de la tabiquería de muros, techos, ventanas, pisos, dimensiones de los ambientes, otros.

La investigación no experimental es la que se realiza sin manipular deliberadamente las variables; lo que se hace en este tipo de investigación es observar fenómenos tal como se dan en su contexto natural, para después analizarlos.

3.3. POBLACIÓN Y MUESTRA DE INVESTIGACIÓN

La población es la infraestructura completa del mega-laboratorio clínico universitario, dentro de esta edificación se tiene la muestra de investigación, el cual es el sector quirúrgico en su primer nivel.

3.4. UBICACIÓN Y DESCRIPCIÓN DE LA POBLACIÓN

La zona del estudio se encuentra ubicada en la Universidad Nacional del Altiplano en la ciudad de Puno, distrito, provincia y región del mismo nombre.

Geográficamente se sitúa a 15°51'11" de Latitud Sur y a 70° 02'08" de Longitud Oeste, a una altura de 3812 m.s.n.m. La ciudad se desarrolla a lo largo del Lago Titicaca, en la Bahía de Puno, sobre un terreno accidentado, con zonas bajas, y rodeado de cerros y quebradas. Sus cotas van de los 3810 a 4050 m.s.n.m.

3.5.TÉCNICAS E INSTRUMENTOS PARA RECOLECTAR INFORMACIÓN

La técnica que se utilizó en el presento proyecto de investigación fue la toma de datos del lugar del proyecto, esta técnica nos permitió recoger la información sobre el proceso constructivo de los ambientes a climatizar tales como espesores de muros, dimensiones interiores y exteriores de los ambientes, áreas, volúmenes, materiales utilizados en la construcción, acabados.

Instrumentos

No se utilizó ningún tipo de instrumentos para la investigación de este trabajo, ya que los datos fueron obtenidos de:

- Historial de temperaturas máximas, mínimas, humedad relativa mensuales de los años 2011 2015 (fuente: estación CP. 100110 SENAMHI)
- Coeficiente de transferencia de calor de materiales en tablas de Carrier y catálogos.
- Dimensiones de los ambientes, áreas y volúmenes (planos de arquitectura).
- Renovaciones por hora de aire exterior en los ambientes (RNE)

3.6. TÉCNICAS PARA EL PROCESAMIENTO Y ANÁLISIS DE DATOS

La técnica para el procesamiento de datos, se realizará mediante la aplicación de ecuaciones teóricas e empíricas, de transferencia de calor, fluidos. También con ábacos, gráficos y tablas de datos de la bibliografía.

Una vez obtenido los resultados se procederá a realizar gráficos representativos con porcentajes, de las cargas térmicas, pérdidas de calor en tuberías y otros.

3.7. PLAN DE TRATAMIENTO DE DATOS

Se sistematizo la información del presente trabajo de investigación utilizando lo siguiente:

 Se solicitó información del promedio mensual de temperaturas máximas y mínimas, promedio mensual de la humedad relativa y

promedio mensual de temperatura de bulbo húmedo, todo esto al SENAMHI.

- Se recolecto datos de los materiales utilizados en la construcción de los ambientes, y por ende sus propiendas térmicas (conductividad térmica) de cada uno de ellos.
- Para limitar las renovaciones por hora de aire, temperatura de confort y humedad relativa, se revisó normativas vigentes.

3.8.DISEÑO ESTADÍSTICO PARA LA PRUEBA DE HIPÓTESIS

El diseño estadístico para la prueba de hipótesis no es factible, porque es una investigación descriptiva no experimental, por lo cual no se puede manipular deliberadamente las variables.

CAPÍTULO IV

ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS DE LA INVESTIGACIÓN

4.1.DESCRIPCIÓN DEL EDIFICIO

La zona quirúrgica del mega laboratorio clínico universitario de la UNA-Puno, se encuentra en la ciudad de Puno, a una Latitud sur: 15º 49' 24", Longitud oeste 70° 1' 5" y a una altitud aproximada de 3824 m.s.n.m.

El edificio consta de 1 nivel y en la terraza irán situados los equipos necesarios para la climatización del edificio. Arquitectónicamente se trata de un edificio con cualidades para la prestación de servicios de salud con las distribuciones adecuadas según el reglamento nacional de edificaciones.

Los ambientes a climatizar son: 02 salas de operaciones, 01 unidad de cuidados intensivos, 01 aislado medicina general, 01 aislado cirugía general y 01 ambiente de preparación y recuperación.

Figura 12: Vías de acceso al Megalaboratorio clínico universitario de la UNA-Puno

Fuente: GoogleMaps.

Figura 13: Ubicación del Mega-laboratorio clínico universitario de la UNA-Puno

Fuente: GoogleMaps.

SECTOR QUIRURGICO

Figura 14: Ubicación de la zona quirúrgica dentro del Mega-laboratorio clínico universitario de la UNA-Puno

Fuente: Planos de topografía.

Las superficies a climatizar se muestran en el cuadro siguiente.

Tabla 5: Área y volumen de ambientes a climatizar

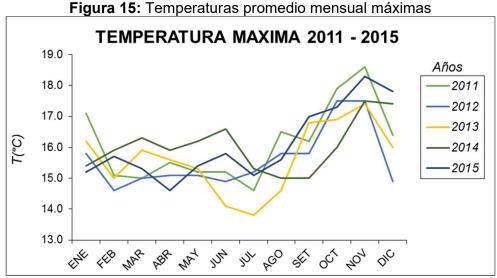
AMBIENTE	AREA (m2)	VOLUMEN (m3)
Quirófano 1	32.49	128.34
Quirófano 2	32.49	128.34
Preparación. y recuperación.	132.15	396.45
Unidad de cuidados intensivos	78.77	236.31
Aisl. med. General	16.40	49.20
Aisl. ciru. General	16.40	49.20

Fuente: Planos de arquitectura expediente técnico.

4.1.1.CONDICIONES INTERIORES

Para lograr dar las condiciones de confort necesarias en el local de trabajo estará determinado por la Norma Técnica de Salud Nº 110 - MINSA/DGIEM-V 01, el cual se muestra en el cuadro 4. Para fines de cálculo se toma los siguientes valores.

Tabla 6: Condiciones interiores por ambientes


Ambiente	T(°C)	HR (%)	R/H
Quirófano 1	22	55	15
Quirófano 2	22	55	15
Sala preparación y recup.	20	50	6
UCI	20	50	12
Aislado medicina General	20	50	12
Aislado cirugía General	20	50	12

Se asume que la temperatura para los ambientes con calefacción es de 19°C y 14 °C para los que no cuentan con calefacción.

4.1.2.CONDICIONES EXTERIORES

Las condiciones exteriores de cálculo se establecieron de acuerdo a los datos solicitados al SENAMHI de 5 años (2011 – 2015), ver anexos.

A continuación, se muestra en gráficos el comportamiento de estos datos en los 5 años y su variación según cada mes.

Fuente: Datos proporcionados por el SENAMHI.

TEMPERATURA MINIMA 2011 - 2015 8.0 Años 2011 6.0 2012 2013 4.0 2014 2.0 2015 0.0 -2.0 The bet the in in the str of to the

Figura 16: Temperaturas promedio mensual mínimas

Fuente: Datos proporcionados por el SENAMHI.

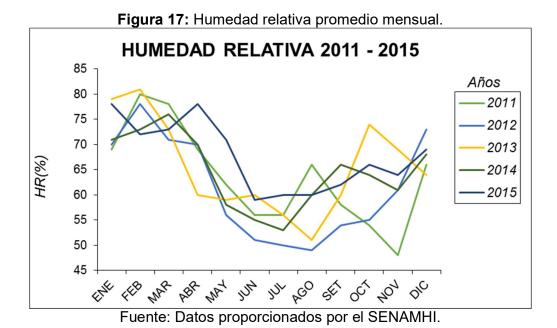
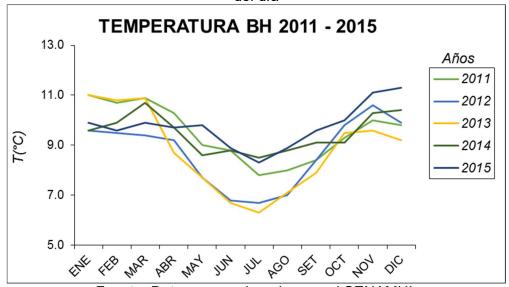



Figura 18: Temperatura de bulbo húmedo promedio mensual a las 13 horas del día

Fuente: Datos proporcionados por el SENAMHI.

Se toma en cuenta los picos de más desfavorables tanto para temperaturas mínimas como máximas, de los gráficos anteriores obtenemos, las condiciones exteriores que son en el mes de Noviembre (primavera) para aire acondicionado, y en el mes de julio (invierno) para calefacción. Para estas condiciones detallamos a continuación:

- 1. Para el mes de Noviembre (primavera).
 - Temperatura máxima promedio: 17.9°C
 - Temperatura mínima promedio: 5.8°C
 - Temperatura de bulbo húmedo: 10.3°C
 - Humedad relativa: 60.6%
- 2. Para el mes de Julio (invierno).
 - Temperatura máxima promedio: 14.8°C
 - Temperatura mínima promedio: 0.2°C
 - Temperatura de bulbo húmedo: 7.5°C
 - Humedad relativa: 55%

4.2.MÉTODOS DE CÁLCULO

Existen métodos muy complejos de cálculo las cuales en su mayoría son computacionales, los cuales se clasifican como se muestra la figura. Teniendo en cuenta la complejidad de cada caso se optó por utilizar el método de cálculo E-20 del manual de aire acondicionado de Carrier. Las fórmulas y/o planillas de cálculo son los expresados en dicho manual.

Precisión Ordenador Funciones de Transferencia ASHRAE CLTD/CLF E20 Carrier Cargas Instantáneas Complejidad Fuente: (Renedo, 2009)

Figura 19: Métodos de calculo de carga térmica y su complejidad

4.3.CÁLCULO DE COEFICIENTE DE TRANSMISIÓN DE CALOR U DE LOS **CERRAMIENTOS**

El cálculo de coeficientes U de transmisión de los cerramientos se realiza de acuerdo a las tablas que se encuentran en el manual de aire acondicionado de Carrier y las especificaciones de los materiales que componen el cerramiento, se empleará la fórmula siguiente:

$$U = \frac{1}{\frac{1}{h_i} + \frac{\epsilon_1}{\lambda_1} + \frac{\epsilon_2}{\lambda_2} + \dots + \frac{\epsilon_n}{\lambda_n} + \frac{1}{h_e}} \qquad \dots \text{(Ec-4)}$$

Donde:

- U: Coeficiente universal de transmisión en kcal/h m^2°C.
- h_i: Resistencia térmica superficial interior en m^2h°C/kcal.
- h_e: Resistencia térmica superficial exterior en m^2h°C/kcal.
- ε_n : Espesor del componente n del cerramiento en m.
- λ_n: Conductividad térmica del componente n en kcal/h m°C.

Dentro de la construcción del Megalaboratorio clínico universitario se tiene los siguientes tipos de cerramientos para los cuales se realizará el cálculo del coeficiente de transmisión, de acuerdo a tablas del manual de aire acondicionado de Carrier y tablas suministrados por fabricantes de los materiales, los cuales se encuentran ilustrados en el anexo.

- 1) Muro de cabeza al interior.
- 2) Muro de cabeza al exterior.
- 3) Muro de soga al interior.
- 4) Muro doble de soga al interior con lámina de aire 5cm.
- 5) Muro doble de soga al exterior con lámina de aire 5cm.
- 6) Piso de concreto acabado en vinílico.
- 7) Piso de concreto acabado en porcelanato.
- 8) Loza aligerada con tarrajeo interior.
- 9) Puerta contra placada MDF.
- 10) Loza aligerada con baldosa suspendida.
- 11) Ventana al exterior de vidrio sencillo

A continuación, se tiene el cálculo para todos los tipos de cerramiento existentes del proyecto, los datos para este cálculo se obtuvieron de las fichas técnicas de materiales y tablas expuestas en el manual de aire acondicionado de Carrier, (ver anexos).

Ejemplo de cálculo para el coeficiente global U para muro de cabeza al interior, se utiliza la ecuación (Ec-4) como sigue.

$$U = \frac{1}{0.14 + \frac{0.015}{1.2} + \frac{0.24}{0.65} + \frac{0.015}{1.2} + 0.14}$$

Tabla 7: Coeficiente global U muro de cabeza al interior

N°	Material	Espesor (mm)	K (kcal/hm°C)	R (m2h°C/kcal)
1	Tarrajeo exterior	15	1.2	
2	Ladrillo hueco	240	0.65	
3	Tarrajeo interior	15	1.2	
4	Rint			0.14
5	Rext			0.14
		U (kca	al/hm2°C)	1.48

Elaboración: Propia.

Tabla 8: Coeficiente global U muro de cabeza al exterior

	MURO DE CABEZA AL EXTERIOR					
N°	Material	Espesor (mm)	K (kcal/hm°C)	R (m2h°C/kcal)		
1	Tarrajeo exterior	15	1.2			
2	Ladrillo hueco	240	0.65			
3	Tarrajeo interior	15	1.2			
4	Rint			0.14		
5	Rext			0.052		
		U (kca	al/hm2°C)	1.71		

Elaboración: Propia.

Tabla 9: Coeficiente global U muro doble de soga al interior con lámina de aire

N°	Material	Espesor (mm)	K (kcal/hm°C)	R (m2h°C/kcal)
1	Tarrajeo exterior	15	1.2	
2	Ladrillo hueco	140	0.65	
3	Lamina de aire	50		0.199
4	Ladrillo hueco	140	0.65	
5	Tarrajeo interior	15	1.2	
6	Rint			0.14
7	Rext			0.14
		U (kca	al/hm2°C)	1.07

Tabla 10: Coeficiente global U muro doble de soga al exterior con lámina de aire

N°	Material	Espesor (mm)	K (kcal/hm°C)	R (m2h°C/kcal)
1	Tarrajeo exterior	15	1.2	
2	Ladrillo hueco	140	0.65	
3	Lamina de aire	50		0.199
4	Ladrillo hueco	140	0.65	
5	Tarrajeo interior	15	1.2	
6	Porcelanato superwait	13	2.24	
7	Rint			0.14
8	Rext			0.052
		U (kca	al/hm2°C)	1.17

Elaboración: Propia

Tabla 11: Coeficiente global U muro de soga en el interior

N°	Material	Espesor (mm)	K (kcal/hm°C)	R (m2h°C/kcal)
1	Tarrajeo exterior	15	1.2	
2	Ladrillo hueco	140	0.65	
3	Tarrajeo interior	15	1.2	
4	Rint			0.14
5	Rext			0.14
		U (kca	al/hm2°C)	1.92

Elaboración: Propia.

Tabla 12: Coeficiente global U piso de concreto acabado en vinílico

N°	Material	Espesor (mm)	K (kcal/hm°C)	R (m2h°C/kcal)
1	Vinílico	3	0.22	
2	Hormigón	150	1.4	
3	Rint			0.19
	U (kcal/hm2°C) 3.22			

Tabla 13: Coeficiente global U piso de concreto acabado en porcelanato

N°	Material	Espesor (mm)	K (kcal/hm°C)	R (m2h°C/kcal)
1	Vinilico	13	2.24	
2	Hormigon	150	1.4	
3	Rint			0.19
		U (kca	al/hm2°C)	3.30

Elaboración: Propia.

Tabla 14: Coeficiente global U puerta contraplacada MDF

N°	Material	Espesor (mm)	K (kcal/hm°C)	R (m2h°C/kcal)
1	MDF	5.5	1.55	_
2	Aire	39		0.199
3	MDF	5.5	1.55	
4	Rint			0.14
5	Rext			0.14
		U (kca	ıl/hm2°C)	2.06

Elaboración: Propia.

Tabla 15: Coeficiente global U losa aligerada con tarrajeo interior

N°	Material	Espesor (mm)	K (kcal/hm°C)	R (m2h°C/kcal)
1	recubrimiento hormigón	80	1.4	
2	Ladrillo hueco de techo	200	0.42	
3	Tarrajeo interior	15	1.2	
4	Rint			0.14
5	Rext			0.052
		U (kca	al/hm2°C)	1.36

Elaboración: Propia.

Tabla 16: Coeficiente global U losa aligerada con baldosa suspendida.

N°	Material	Espesor (mm)	K (kcal/hm°C)	R (m2h°C/kcal)
1	recubrimiento hormigon	80	1.4	
2	Ladrillo hueco de techo	200	0.42	
3	Aire quieto			0.125
4	Baldosa suspendida	15	0.16	
5	Rint			0.14
6	Rext			0.052
		U (kca	1.06	

Tabla 17: Resumen de coeficientes de trasmisión total U para los cerramientos.

Nº	DESCRIPCION	U(Kcal/hm2°C)
1	Muro de cabeza al interior.	1.48
2	Muro de cabeza al exterior.	1.71
3	Muro doble de soga con lámina de aire al interior.	1.07
4	Muro doble de soga con lámina de aire al exterior.	1.17
5	Muro de soga al interior.	1.92
6	Piso de concreto acabado en vinílico.	3.22
7	Piso de concreto acabado en porcelanato.	3.30
8	Puerta contra placada MDF.	2.06
9	Loza aligerada con tarrajeo interior.	1.36
10	Loza aligerada con baldosa suspendida.	1.06
_11	Ventana al exterior vidrio sencillo.	4.82

Elaboración: Propia.

4.4.CÁLCULO DE LA DEMANDA DE ENERGÍA DE CALEFACCIÓN

Para el cálculo de la demanda de calefacción no se considerarán las ganancias internas ni solares puesto que al suponer un aporte de energía quedarán como un factor de seguridad en el dimensionado del sistema de climatización; por otro lado tampoco se considera las pérdidas por infiltración debido a que los ambientes son herméticos y las puertas no son hacia el exterior.

$$P = P_{tc} + P_r + P_i \qquad \dots (Ec-5)$$

Donde:

• P : Pérdidas de calor sensible total kcal/h.

- P_{tc}: Pérdidas de calor sensible por transmisión y convección kcal/h.
- ullet P_r : Pérdidas de calor sensible por renovación de aire kcal/h.
- P_i: Pérdidas de calor sensible por infiltración de aire kcal/h.

4.4.1.PÉRDIDAS POR TRANSMISIÓN Y CONVECCIÓN

Las pérdidas de calor por transmisión y convección de cada uno de los cerramientos de un local se calculan de acuerdo a la ecuación.

$$P_{tc} = S \times U \times (T_i - T_e) \qquad ...(Ec-6)$$

Donde:

- Ptc: Pérdidas por transmisión y convección en kcal/h.
- S: Superficie del cerramiento en m^2.
- U: Coeficiente U del cerramiento en kcal/m^2h°C.
- T_i: Temperatura interior en °C.
- T_e: Temperatura exterior en °C.

4.4.2.PÉRDIDAS POR INFILTRACIÓN

$$P_{i} = 0.3 \times Q_{ir} \times (T_{i} - T_{e}) \qquad ...(Ec-7)$$

Donde:

- Pi: Pérdidas por infiltración en kcal/h.
- Q_{ir}: Caudal de infiltración real a m³/h.

4.4.3. PÉRDIDAS POR RENOVACIÓN DE AIRE

$$P_r = 0.3 \times V \times (T_i - T_e) \times N \qquad ...(Ec-8)$$

Donde:

- P_r: Pérdidas por renovación kcal/h.
- N: Número de renovaciones.
- V : Volumen del local m³.

Teniendo en cuenta las ecuaciones anteriores y coeficientes globales de transmisión, se procede a realizar el cálculo detallado como ejemplo para la unidad de cuidados intensivos, y posteriormente se detalla en un cuadro con los resultados de todos los ambientes.

Las pérdidas de calor por transferencia en un muro de soga hacia un ambiente con calefacción, con dimensiones de 3.0m de ancho y 18.68m de largo, U=1.92 Kcal/hm2°C, se reemplaza en la ecuación (Ec-6) obteniendo.

$$P_{tc} = 3.0 \times 18.68 \times 1.92 \times (20 - 14) = 645.58 \text{ Kcal/h}$$

A continuación se detalla el cálculo de pérdidas de calor por transferencia, del resto de cerramientos que compone la unidad de cuidados intensivos.

Las pérdidas de calor por infiltración no se consideran debido a que las puertas se encuentran en el interior del bloque, las ventanas hacia el exterior son herméticas y con poca frecuencia de apertura. Según las condiciones interiores se tendrá 12 renovaciones por hora para la ventilación para lo cual utilizamos la ecuación (Ec-8).

$$P_r = 0.3 \times 228.73 \times (20 - 0.2) \times 12 = 16282.19 \text{ Kcal/h}$$

 $P = 4973.75 + 16282.19 = 21255.64 \text{ Kcal/h}$

Se adicionará un factor de seguridad del 5% con lo cual las pérdidas de calor (carga térmica de calefacción del ambiente es de 22318.42 Kcal/h.

Tabla 18: Pérdidas de calor por transferencia en cerramietos de la sala de cuidados intensivos

Superficie	A(m)	L(m)	área	U	DT	P_tc
			(m2)	(kcal/h m2ºC)	(°C)	Kcal/h
Muro de soga con ambiente no calefactado	3	18.68	56.04	1.92	6	645.58
Muro doble de soga con lamina de aire (al exterior)	3	12.25	27.36	1.17	6	192.05
Piso de concreto acabado en porcelanato	6.43	12.25	78.77	3.22	6	1521.79
Techo al exterior con baldosa suspendida	6.43	12.25	78.77	1.06	19.8	1651.92
Puertas al interior con ambiente no calefactado	5.2	2.25	11.70	2.06	6	144.42
Ventana vidrio normal de 6mm	0.85	10.08	8.57	4.82	19.8	817.70
Total de pérdidas de calor por transferencia 4973.75						

Tabla 19: Resumen de carga térmica de calefacción por ambientes

AMBIENTE	AREA	VOL	P_tc	P_r	Р
	(m2)	(m3)	(kcal/h)	(kcal/h)	(Kcal/h)
Quirófano 1	32.49	128.34	3,256.28	10,071.00	13,993.64
Quirófano 2	32.49	128.34	2,384.04	10,071.00	13,077.79
Prepar. Y recupe.	132.15	396.45	8,626.51	13,658.50	23,399.25
UCI	78.77	236.31	4,973.45	16,282.19	22,318.42
Aisl. med. General	16.4	49.20	1,120.06	3,506.98	4,858.39
Aisl. ciru. General	16.4	49.20	1,194.46	3,506.98	4,936.50

Elaboración: propia.

4.5.CÁLCULO DE LA DEMANDA DE ENERGÍA DE AIRE ACONDICIONADO

Según el método E-20 del manual de aire acondicionado de Carrier, la carga de refrigeración y/o de aire acondicionado de un local viene expresado por:

$$Q_r = Q_s + Q_1 + Q_{ae}$$
 ...(Ec-9)

Donde:

- Q_r: Color total (kcal/h).
- Q_s: Calor sensible del local (kcal/h).
- Q₁: Calor latente del local (kcal/h).
- Q_{ae}: Calor latente y sensible del aire exterior (kcal/h).

4.5.1.CARGA TÉRMICA SENSIBLE

$$Q_s = Q_{sr} + Q_{str} + Q_{st} + Q_{si} + Q_{sci}$$
 ...(Ec-10)

Donde:

- Q_{sr}: Ganancia solar cristal (kcal/h).
- Q_{srt}: Ganancia solar y trasferencia paredes y techo exterior (kcal/h).
- Q_{st}: Ganancia por trasferencia cerramientos interiores kcal/h.
- Q_{si}: Ganancia por infiltración de aire exterior (kcal/h).
- Q_{sci}: Ganancia Calor interno (kcal/h).

4.5.1.1GANANCIA SOLAR CRISTAL

$$Q_{sr} = R \times A \times f_{cr} \times f_{at} \qquad ...(Ec-11)$$

- R: Aportación por radiación solar (kcal/hm^2).
 - Con almacenamiento, R Máxima aportación solar, a través de vidrio sencillo correspondiente a la orientación, mes y latitud considerados.
 - Sin almacenamiento, R Aportación solar, a través de vidrio sencillo correspondiente a la hora, orientación, mes y latitud considerados.
- A: Superficie de la ventana (m^2).

- f_{cr}: Factor de corrección de la radiación solar.
 - Marco metálico o ningún marco +17%.
 - Contaminación atmosférica (Limpidez) -15%.
 - Altitud +0.7% por cada 300m.
 - Punto de roció superior a 19.5°C -5% por 4 °C.
 - Punto de roció inferior a 19.5°C +5% por 4 °C.
- f_{at}: Factor global de insolación con o sin dispositivo de sombra o pantalla.

4.5.1.2 GANANCIA SOLAR Y TRANSFERENCIA POR PAREDES Y TECHOS (EXTERIOR)

$$Q_{sr} = U \times A \times \Delta T_e \qquad ...(Ec-12)$$

Donde:

- U : Coeficiente de trasmisión térmica del cerramiento (kcal/hm^2.C).
- A : Superficie del cerramiento m^2.
- ΔT_e: Diferencia equivalente de temperatura.

$$\Delta T_{e} = a + \Delta t_{es} + b \frac{R_{s}}{R_{m}} (\Delta t_{em} - \Delta t_{es}) \qquad ... (Ec-13)$$

- a: Corrección proporcionada por la tabla.
- Δt_{es} : Diferencia equivalente a la hora considerada para la pared a la sobra.
- \bullet Δt_{em} : Diferencia equivalente a la hora considerada para la pared soleada.
- b : Coeficiente de corrección que considera el color de la cara exterior del muro.
 - b=1: colores oscuros.

- b=0.78: colores medios.
- b=0.55: colores claros.
- R_s: Maxima insolación, correspondiente al mes y latitud supuestos, para la orientación considerada.
- R_m: Máxima insolación, correspondiente al mes de julio y latitud norte 40°.

4.5.1.3GANANCIA POR TRANSFERENCIA EN CERRAMIENTO INTERIOR

$$Q_{st} = U \times A \times (T_e - T_i) \qquad ...(Ec-14)$$

Donde:

- U : Coeficiente de trasmisión térmica del cerramiento (kcal/hm^2.C).
- A: Superficie del cerramiento (m^2).
- T_e: Temperatura exterior °C.
- T_i: Temperatura interior °C.

4.5.1.4GANANCIA POR INFILTRACIÓN DE AIRE EXTERIOR

$$Q_{si} = 0.3 \times V_{ae} \times (T_e - T_i)$$
 ...(Ec-15)

Donde:

- V_{ae}: Caudal de aire exterior que se introduce al local (m^3/h).
- T_e: Temperatura exterior °C.
- T_i: Temperatura interior °C.

5.1.5 GANANCIA CALOR INTERNO

$$Q_{sci} = Q_{sil} + Q_{sp} + Q_{sa}$$
 ...(Ec-16)

- Q_{sil} : Ganancia interna de calor por iluminación (kcal/h).
- Q_{sp} : Ganancia interna de calor debido a ocupantes (kcal/h).

• Q_{sa} : Ganancia interna debido a aparatos diversos (kcal/h).

5.1.6 CARGA TÉRMICA SENSIBLE EFECTIVA DEL LOCAL

$$Q_{se} = Q_s + Q_{sv}$$
 ...(Ec-17)

Donde:

- Q_s: Carga térmica sensible (kcal/h).
- $\bullet \ \ Q_{sv}$: Calor sensible por aire de ventilación a través del climatizador (kcal/h).

$$Q_{sv} = 0.3 \times V_{av} \times BF \times (T_e - T_i) \qquad ...(Ec-18)$$

Donde:

- V_{av}: Caudal de aire exterior necesario para la ventilación (m³).
- Q_{sv} : Calor sensible por aire de ventilación a través del climatizador (kcal/h).
- BF : Factor de by-pass del equipo acondicionador.

4.5.2.CARGA TÉRMICA LATENTE

$$Q_1 = Q_{1i} + Q_{1ai}$$
 ...(Ec-19)

Donde:

- Q_{li}: Calor latente por infiltraciones de aire exterior (kcal/h).
- Q_{lai}Calor latente por aportaciones internas (kcal/h).

4.5.2.1CALOR LATENTE POR INFILTRACIÓN DE AIRE EXTERIOR

$$Q_{li} = 0.72 \times V_{ai}(W_e - W_i)$$
 ...(Ec-20)

- V_{ai}: Caudal de aire de infiltración (kcal/h).
- W_e: Humedad absoluta del aire exterior (gw/Kga).

W_i: Humedad absoluta del aire interior (gw/Kga).

4.5.2.2 COLOR LATENTE POR APORTACIONES INTERNAS

$$Q_{lai} = Q_{lp} + Q_{lv}$$
 ...(Ec-21)

Donde:

Q_{lp}: Calor latente debido a ocupantes (kcal/h).

Q_{lv}: Calor latente por aparatos diversos (kcal/h).

4.5.2.3 CARGA TÉRMICA LATENTE EFECTIVO DEL LOCAL

$$Q_{le} = Q_l + Q_{lav}$$
 ...(Ec-22)

Donde:

Q₁: Carga térmica latente (kcal/h).

Q_{lav}: Calor latente por aire de ventilación a través del climatizador (kcal/h).

4.5.2.4 CALOR LATENTE POR AIRE DE VENTILACIÓN

$$Q_{lav} = 0.72 \times V_{av} \times BF \times (W_e - W_i) \qquad ...(Ec-23)$$

Donde:

- V_{av}: Caudal de aire exterior necesario para la ventilación (m³).
- BF: Factor de by-pass del equipo acondicionador.
- W_e: Humedad absoluta del aire exterior (gw/Kga).
- W_i: Humedad absoluta del aire interior (gw/Kga).

Se realizará un ejemplo de cálculo para el ambiente de la unidad de cuidados intensivos. Para la ganancia solar por radiación a través del cristal, se tomará en cuenta la tabla de máximas aportaciones solares a través del cristal

sencillo, para una latitud sur de 15° en el mes de noviembre, Tbs= 17.9 °C y Tpr=10.18°C. Y la ecuación (Ec-12)

Ganancia solar cristal.

- Aportación de radiación solar: 435 Kcal/hm2
- Superficie acristalada:8.56m2
- Marco metálico: 1.17
- Limpidez: 0.95
- Altitud: 1+0.007x (3824/300) =1.09
- Punto de rocio:1+0.14x (19.5-10.18) /14=1.09
- Factor de insolación sin dispositivo de sombra: 0.94

$$Q_{sr} = R \times A \times f_{cr} \times f_a = 435 \times 8.56 \times 1.32 \times 0.94 = 4632.26 \text{Kcal/h}$$

Ganancia solar y transferencia por paredes y techos (exterior)

Para el ambiente de cuidados intensivos se tiene un área de 28.19m2 de pared orientado al oeste y 78.77m2 de loza aligerada como techo.

- Coeficiente U pared: 1.17 Kcal/hm2°C
- Coeficiente U techo al sol: 1.36 Kcal/hm2°C
- Diferencia de temperatura equivalente se utiliza la ecuación (Ec-13):
 - a= -16°C se obtiene de las tablas corrección de condiciones de proyecto en función al mes considerado, corrección de la diferencia equivalente de temperatura.
 - o $\Delta t_{es} = 0$; $\Delta t_{em} = 3.9$: diferencia equivalente de temperatura muro soleados o en sombra a las 8 y 13 horas.
 - o b = 0.55: colores claros.
 - o $R_s = 435 R_m = 444$: Máximas aportaciones solares a través de cristal sencillo

$$\begin{split} \Delta T_e &= a + \Delta t_{es} + b \frac{R_s}{R_m} (\Delta t_{em} - \Delta t_{es}) \\ \Delta T_e &= -16 + 0 + 0.55 \frac{435}{444} (3.9 - 0) = -10.29 ^{\circ} \text{C (muro)} \\ \Delta T_e &= -16 + 12.2 + 0.78 \frac{674.5}{631} (3.9 - 12.2) = -10.72 ^{\circ} \text{C (techo)} \end{split}$$

$$Q_{sr} = 1.17 \times 28.19 \times (-10.29) + 1.36 \times 78.77 \times (-10.72) = -1487.76 \text{Kcal/h}$$

Guanacias de calor por transmisión reemplazando en la ecuación (Ec-14)

$$\begin{aligned} Q_{st} &= 8.56 \times 4.82 \times (17.9 - 22) = -169.16 \text{ kcal/h (vidrio)} \\ Q_{st} &= 56.04 \times 1.92 \times (17.9 - 22) = -441.15 \text{kcal/h (muro interior)} \\ Q_{st} &= 78.77 \times 3.3 \times (-2) = -519.88 \text{kcal/h (piso)} \\ Q_{st} &= -1130.19 \text{ kcal/h} \end{aligned}$$

Las ganancias de calor interno; los ocupantes tienen un grado de actividad de pie y en marcha lenta con una ganancia de calor sensible equivalente a 73Kcal/h. En lo que respecta a la iluminación se tiene 8 artefactos industrial AHP de T8/2x36W. y una ganancia adicional de 800Kcal/h por equipos diversos, estos datos se reemplazan en la ecuación (Ec-16).

$$Q_{sci} = 10 \times 73 \times 0.85 + 8 \times 2 \times 36 \times 0.86 * 1.25 + 800 = 2039.70$$
Kcal/h

Calor sensible por aire de ventilación (Ec-18)

$$\begin{aligned} Q_{sv} &= 0.3 \times V_{av} \times FB \times (T_e - T_i) \\ \\ Q_{sv} &= 0.3 \times 2741 \times 0.05 \times (17.9 - 22) = -168.57 \text{Kcal/h} \end{aligned}$$

Calor sensible efectivo del local: Es la suma de ganancias de calor sensible solar cristal, muros y techo exteriores, por transferencia de cerramientos

interiores y calor interno, todo esto multiplicado por un factor de seguridad de 5%, así como también un 5% por ganancias diversas en conductos de impulsión y el motor del ventilador, a todo esto se suma las ganancia de calor sensible por aire de ventilación (Ec-10).

$$Q_s = 1.05 * 1.05 * (4632.26 - 1487.76 - 1130.19 + 2039.70) - 168.57$$

$$Q_s = 4300.97 \text{Kcal/h}$$

Calor latente del local; es la suma de las aportaciones de calor por infiltración de aire exterior y las aportaciones internas, debido a que el ambiente se encuentra en el interior se considera despreciables las aportaciones por infiltración del aire exterior. Las aportaciones internas de calor latente solo serán de los ocupantes, 10 personas con un grado de actividad de pie y marcha lenta, 53Kcal/h haciendo una ganancia de calor latente de $Q_1 = 530$ kcal/h.

Calor latente efectivo del local (Ec-22);

$$\begin{aligned} Q_{le} &= Q_l + Q_{lav} \\ Q_{lav} &= 0.72 \times V_{av} \times BF \times (W_e - W_i) \\ Q_{lav} &= 0.72 \times 2741 \times 0.05 \times (12.54 - 13.36) = -80.91 \text{Kcal/h} \\ Q_{le} &= 1.1 \times 1.1 \times 530 - 80.91 = 560.39 \end{aligned}$$

Calor latente y sensible de aire exterior

$$\begin{split} Q_{sae} &= \ V_{av} \times (T_e - T_i) \times (1 - BF) \times 0.3 \\ Q_{sae} &= \ 2741 \times (17.9 - 22) \times (1 - 0.05) \times 0.3 = -3202.86 \text{Kcal/h} \\ Q_{lae} &= \ V_{av} \times (W_e - W_i) \times (1 - BF) \times 0.72 \\ Q_{lae} &= \ 2741 \times (12.54 - 13.36) \times (1 - 0.05) \times 0.72 = -1537.37 \text{Kcal/h} \end{split}$$

$$Q_{ae} = -3202.86 - 1537.37 = -4740.23 \text{ Kcal/h}$$

Ganancia de calor total; es la suma de las ganancias de calor efectiva sensible y latente más las ganancias de calor del aire exterior a través del climatizador (Ec-9).

$$Q_r = 4313.06 + 531.24 - 4740.23 = 204.06$$
Kcal/h

Tabla 20: Resumen de cálculos de ganancias de calor sensible.

Descripción	Ts	Gsc	Gste	Gctpi	Cis	Csl	Aes	Csel
Quirófano 01	24	0.00	-502.6890	-683.89	3672.75	2610.48	45.52	2564.95
Quirófano 02	24	0.00	-249.44	-853.79	3672.75	2698.00	41.15	2656.86
Sala de prep. y recup.	22	3644.57	-1756.32	-1612.22	3038.95	3480.73	-32.65	3513.37
UCI	22	4632.26	-1607.88	-1130.19	2039.70	4130.58	-37.96	4168.54
Aisl. medicina general	22	736.01	-237.75	-341.84	437.40	623.51	5.13	618.38
Aisl. cirugía general	22	736.01	-237.75	-341.84	437.40	623.51	5.13	618.38

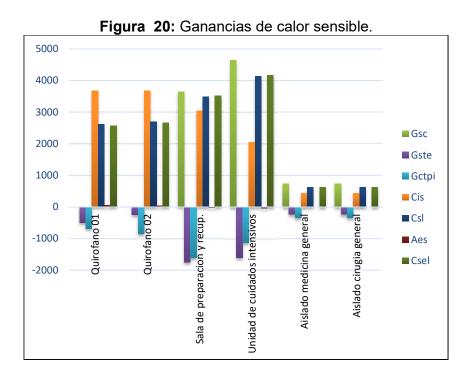
Elaboración: Propia-

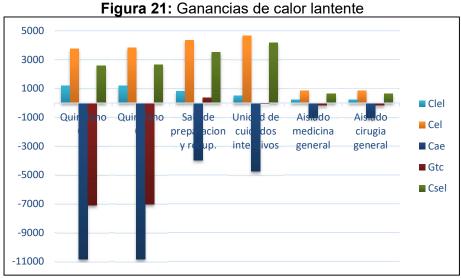
Tabla 21: Resumen de cálculo de ganancias de calor latente y total.

descripción	Ts	CII	Clav	Clel	Cel	Cae	Gtc
Quirófano 01	24	1041.60	-290.83	750.77	1505.77	-10851.13	-9345.36
Quirófano 02	24	1091.20	-285.87	805.33	1966.10	-10851.13	-8885.03
Sala de prep. y recup.	22	1407.00	4.94	1411.94	3638.12	-7953.21	-4315.10
UCI	22	616.00	-19.31	596.69	2154.19	-4740.23	-2586.04
Aisl. medicina general	22	760.20	58.59	818.79	906.74	-1021.03	-114.28
Aisl. cirugía general	22	760.20	58.59	818.79	906.74	-1021.03	-114.28

Elaboración: Propia.

En las tablas anteriores se muestra el resumen del cálculo de ganancias de calor latente y sensible por ambientes, para más detalles del cálculo, ver las planillas de cálculo de aire acondicionado en el anexo.


Donde:


- Gsc: Ganancia solar cristal (kcal/h).
- Gste: Ganancia solar y transferencia paredes y techo al exterior (kcal/h).
- Gctpi: Ganancia por transferencia cerramientos interiores (kcal/h).
- Cis: Ganancia Calor interno (kcal/h).

- Csl: Carga térmica local (kcal/h).
- Aes: Calor sensible por aire de ventilación (kcal/h).
- Csel: Carga térmica sensible efectivo del local (kcal/h).
- Cll: Calor latente del local (kcal/h).
- Clav: Calor latente aire de ventilación (kcal/h).
- Clel: Calor latente efectivo del local (kcal/h).
- Cel: Calor efectivo del local (kcal/h).
- Cae: Calor aire exterior (kcal/h).
- Gtc: Ganancia de calor total (kcal/h).

A continuación se tiene los gráficos comparativos de cada tipo de ganancia de calor por ambientes y su influencia en la carga térmica de aire acondicionado total.



4.6.CÁLCULO DE LA POTENCIA DE HUMIDIFICACIÓN

La potencia de humidificación estará relacionada con la cantidad de aire circulado en el ambiente y las condiciones exteriores. Para lo cual se realizará un balance de energía descrito a partir del grafico de la carta psicrometrica que se muestra en la figura.

Figura 22: Diagrama psicrométrico (software Buy CYTSoft Psychrometric Chart 2.2).

El punto 1 (EXT) son las condiciones exteriores de invierno según los datos del SENAMHI-Puno, del punto 1 (EXT) al punto 2 (CAL) se calienta con la batería de calor con humedad especifica constante, luego del punto 2 (CAL) al 3 (INT) se realiza la humidificación asumiendo a una temperatura constante. Las ecuaciones de balance de energía se describen a continuación:

$$M_1 + M_2 = M_3$$
 ...(Ec-24)

$$M_1 = M_a + M_a Y_1$$
 ...(Ec-25)

$$M_3 = M_a + M_a Y_3$$
 ...(Ec-26)

Donde:

- M_a : masa de aire seco.
- Y_n : humedad de corriente n.

Para poder realizar el cálculo de la masa de aire (M_a) se utilizará la siguiente ecuación:

$$M_a = \frac{V}{V_b} \qquad \dots \text{(Ec-27)}$$

Donde:

- V: Flujo volumétrico (m^3/h).
- V_h: Volumen húmedo.

$$V_h = V_a + \left(\frac{V_s - V_a}{Y_s}\right) Y \qquad \dots \text{(Ec-28)}$$

Donde:

- V_a : Volumen de aire seco.
- *Y_s*: Humedad de saturación.
- Y: Humedad en la corriente.
- *V_s*: Volumen de saturación.

El cálculo del volumen húmedo se obtiene del diagrama psicrométrico, y a su vez se obtendrá los datos de volumen de aire seco, humedad de saturación y la humedad en la corriente pero no se obtendrá el volumen de saturación, entonces se recurrirá a la siguiente ecuación:

$$Y_s = \frac{18}{29} \left(\frac{P_v}{P - P_v} \right)$$
 ...(Ec-29)

$$LnP_v = A - \frac{B}{T + C} \qquad \dots \text{(Ec-30)}$$

La potencia del humidificador está dada por la suma de la potencia de calentamiento sensible del agua y la potencia de calentamiento latente.

$$P_{th} = P_{csh} + P_{clh} \qquad \dots \text{(Ec-31)}$$

Donde:

- P_{th}: Potencia total de humidificación en KW.
- P_{cs} : Potencia de calentamiento sensible de humidificación en KW.
- *P_{clh}*: Potencia de calentamiento latente de humidificación en KW.

$$P_{csh} = \dot{m} Cp \Delta T$$
 ...(Ec-32)

Donde:

- m: Flujo de masa en Kg/s.
- Cp: Calor especifico del agua KJ/Kg °C.
- T: Diferencia de temperatura °C.

$$P_{clh} = \dot{m} \times Cl$$
 ...(Ec-33)

Donde:

ṁ: Flujo de masa en Kg/s.

Cl: Calor latente del agua KJ/Kg.

En la figura se muestra los datos tomados para el cálculo del ambiente para quirófanos,

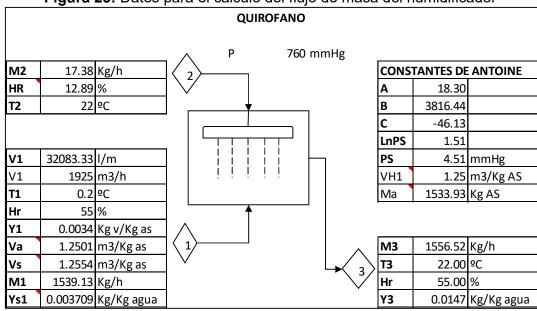


Figura 23: Datos para el cálculo del flujo de masa del humidificador

En el punto 1 conocemos el flujo volumétrico V1, la temperatura T1, y la humedad relativa Hr1, en el punto 3 conocemos la temperatura y la humedad relativa. Para obtener los datos humedad

Y1 y Y3, volumen de aire seco Va y volumen de saturación recurrimos a la carta psicrometrica utilizando el software Buy CYTSoft Psychrometric Chart 2.2 en su versión demo, estos datos están en la figura anterior. La humedad de saturación no se puede ver en la carta psicrometrica, por lo cual se utiliza la ecuación de Antoine Ec-29 y Ec-30.

$$LnP_v = A - \frac{B}{T + C}$$

$$LnPS = 18.30 - \left(\frac{3816.44}{0.2 + 273.15 - 46.13}\right) = 1.51$$

$$PS = 4.51 \ mmHg$$

$$Y_s = \frac{18}{29} \left(\frac{P_v}{P - P_v}\right) Y = \frac{18}{29} \left(\frac{4.51}{760 - 4.51}\right) = 0.003709$$

Luego calculamos el volumen húmedo con la ecuación Ec-28.

$$V_h = V_a + \left(\frac{V_s - V_a}{Y_s}\right)Y = 1.2501 + \left(\frac{1.2554 - 1.2501}{0.003709}\right)0.0034 = 1.25 \, m3/g$$

$$M_a = \frac{1925}{1.25} = 1533.93 \, Kg \, as$$

$$M_1 = 1533.93 + 1533.93 \times 0.0034 = 1539.13 \, Kg/h$$

$$M_3 = 1533.93 + 1533.93 \times 0.0147 = 1556.52 \, Kg/h$$

$$M_2 = M_3 - M_1 = 1556.52 - 1539.13 = 17.38 \, Kg/h$$

Teniendo en cuenta que el calor latente del agua es 2257 KJ/Kg, el calor especifico 4.19 KJ/Kg K y que el agua en la ciudad de puno hierve a 85 °C aproximadamente y la temperatura de la red es de 10°C.

$$P_{csh} = \dot{m}Cp \,\Delta T = \frac{17.38 \times 4.19 \times 75}{3600} = 1.52KW$$

$$P_{clh} = \dot{m}Cl = \frac{17.38 \times 2257}{3600} = 10.90 \,KW$$

$$P_t = 1.52 + 10.90 = 12.42 \,KW$$

Se realiza las mismas operaciones para el resto de ambientes, se resume los resultados la siguiente tabla.

Tabla 22: Resumen cálculo de potencia de humidificación

ITEM	AMBIENTE	Potencia Sensible (KW)	Potencia Latente (KW)	Potencia Total (KW)
1	Quirófano 1	1.52	10.90	12.42
2	Quirófano 2	1.52	10.90	12.42
3	Preparación y recuperación	1.34	9.64	10.98
4	UCI	1.60	11.49	13.08
5	Aislado Medicina general	0.34	2.47	2.82
6	Aislado cirugía general	0.34	2.47	2.82

4.7.DISEÑO DEL CIRCUITO HIDRÁULICO

Antes de empezar con el cálculo de la altura dinámica total se definirá la ubicación de los equipos de tratamiento de aire, los cuales estarán dispuestos en la azotea del edificio como se muestra en los planos.

El sistema optado para el circuito hidráulico será del tipo dos tubos con retorno directo, el cual partirá desde el cuarto de máquinas (área de servicio del mega laboratorio clínico) hasta la azotea del sector D (centro quirúrgico) como se muestra en la figura, donde se tiene el esquema con las distancias y el caudal necesario hacia cada una de las unidades manejadoras de aire, los caudales se obtuvieron de los catálogos de los equipos de acuerdo a la potencia térmica de cada equipo.

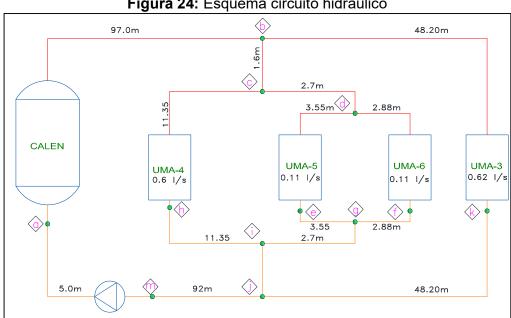


Figura 24: Esquema circuito hidráulico

4.7.1.CÁLCULO DE PÉRDIDAS DE CARGA EN TUBERÍAS

Para el cálculo de pérdidas en tubería se empleará la ecuación de Darcy Weibach. El factor de fricción f depende de varios factores $f = f(\rho, \mu, v, D, e)$, La fórmula más utilizada y con mejores resultados es la de Swamee Jain para flujos en tubería.

$$h = f\left(\frac{L \times v^2}{D \times 2g}\right) \qquad \dots \text{(Ec-34)}$$

$$f = \frac{0.25}{\left[log\left(\frac{1}{3.7D} + \frac{5.74}{Re^{0.9}}\right)\right]^2} \dots \text{(Ec-35)}$$

$$Re = \frac{V \times D}{\mu} \qquad \dots \text{(Ec-36)}$$

Donde:

- h : Pérdidas de carga mca.
- f: Coeficiente de fricción (adimensional).
- L: Longitud de la tubería m.
- V: Velocidad media m/s.
- D: Diámetro interno de la tubería m.
- ε: Rugosidad del material mm.
- Re: Numero de Reynolds.
- μ : Viscosidad cinemática.

Las condiciones que debe cumplir el sistema hidráulico es que tenga una velocidad de 1.22 a 1.83 m/s, y que no disminuya por debajo de 0.61 m/s para evitar el asentamiento de partículas o acumulación de aire en las tuberías (Morales Quispe, 2011).

La tubería seleccionada para la red será de polipropileno, ideal para sistemas de calefacción y con baja conductividad térmica.

La longitud equivalente, se obtiene a partir de catálogos para los equipos y tablas para los accesorios, ver anexo.

La viscosidad cinemática es 0.364×10^{-6} m2/s, y la rugosidad de la tubería a utilizar es de 0.015mm

Realizaremos un cálculo como ejemplo para el tramo a-b del circuito de suministro o ida, tenemos los siguientes datos.

- Caudal: 1.44 l/s
- Longitud de la tubería: 97 m
- Longitud equivalente por pérdidas por accesorios: 50.70 m

Seleccionaremos un diámetro nominal de 50mm (DI=36.2mm), esto con la finalidad de cumplir las condiciones de un sistema hidráulico, para el cálculo utilizamos las ecuaciones Ec-34, Ec-35 y Ec-36.

$$V = \frac{4000 \times 1.44}{\pi \times 36.2^{2}} = 1.40 \, m/s$$

$$Re = \frac{V \times D}{\mu} = \frac{1.40 \times 36.2}{1000 \times 0.364 \times 10^{-6}} = 139148$$

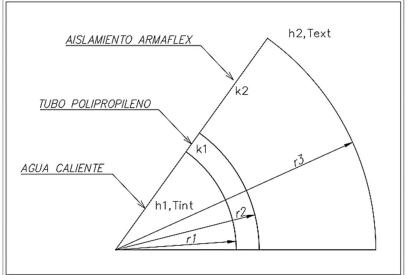
$$f = \frac{0.25}{\left[log\left(\frac{1}{3.7D} + \frac{5.74}{Re^{0.9}}\right)\right]^{2}} = \frac{0.25}{\left[log\left(\frac{1}{3.7 \times 36.2} + \frac{5.74}{139148^{0.9}}\right)\right]^{2}} = 0.0192$$

$$h = f\left(\frac{L \times v^{2}}{D \times 2g}\right) = 0.0192 \left(\frac{(97 + 50.7) \times 1.40^{2} \times 1000}{36.2 \times 2 \times 9.8}\right) = 7.83 \, mca$$

Tabla 23: Longitud equivalente para accesorios y equipos

ACCESORIO	D	Leq		.9				·	TRAN	ИOS						
S	D	Leq	a-b	b-c	c-d	d-e	d-f	c-h	b-k	e-g	f-g	g-i	h-i	i-j	k-j	j-m
	1/2"	0.6				2	3		1	2	3				1	
	1 1/4"	1.2			:			2	5				2		5	
Codo 90	1 1/2"	1.5		2										2		
	2"	2.1 5	14													18
	3/4"	0.2 5			1							1				
Те	1 1/2"	0.4 5		1										1		
	2"	0.6	1													1
Válvula	1/2"	4.6				1	1	1	1	1	1		1		1	
	3/4"	0.2				1	1			1	1					
Reducción	1 1/4"	0.3 9						1	1				1		1	
Reduccion	1 1/2"	0.5			1			1	1			1	1		1	
	2"	0.6 1		1										1		
Calentador	2"	20	1													
		0.2				1	1									
UMA		2.8						1								
		2.8 5							1							
Total			50.7 0	4.0 6	0.7 5	6.2 2	6.8 2	10.6 9	14.9 4	6.0 2	6.6 2	0.7 5	7.8 9	4.0 6	12.0 9	39.3 0

Tabla 24: Pérdidas de carga en tuberías de agua caliente


	Tabla 24: Perdidas de carga en lubertas de agua callente											
Tramo	Q	L	Leq	DN	DI	Vel.	ε	Re	f	h		
	(I/s)	(m)	(m)	(mm)	(mm)	(m/s)	(mm)			(mca)		
Circuito de suministro												
a-b 1.44 97.00 50.70 50.00 36.20 1.40 0.015 139148 0.0192												
b-c	0.82	1.60	4.06	40.00	29.00	1.24	0.015	98909	0.0205	0.31		
c-d	0.22	2.70	0.75	20.00	14.40	1.35	0.015	53442	0.0241	0.54		
d-e	0.11	3.55	6.22	16.00	11.60	1.04	0.015	33171	0.0264	1.23		
d-f	0.11	2.88	6.82	16.00	11.60	1.04	0.015	33171	0.0264	1.22		
c-h	0.60	11.35	10.69	32.00	23.20	1.42	0.015	90466	0.0213	2.08		
b-k	0.62	48.20	14.94	32.00	23.20	1.47	0.015	93481	0.0212	6.33		
				Circu	ito de r	etorno	1					
e-g	0.11	3.55	6.02	16.00	11.60	1.04	0.015	33171	0.0264	1.20		
f-g	0.11	2.88	6.62	16.00	11.60	1.04	0.015	33171	0.0264	1.20		
g-i	0.22	2.70	0.75	20.00	14.40	1.35	0.015	53442	0.0241	0.54		
h-i	0.6	11.35	7.89	32.00	23.20	1.42	0.015	90466	0.0213	1.81		
i-j	0.82	1.60	4.06	40.00	29.00	1.24	0.015	98909	0.0205	0.31		
k-j	0.62	48.20	12.09	32.00	23.20	1.47	0.015	93481	0.0212	6.04		
j-m	1.44	92.00	39.30	50.00	36.20	1.40	0.015	139148	0.0192	6.96		
TOTAL										37.61		

4.8.CÁLCULO DE PÉRDIDAS DE CALOR EN TUBERÍAS DE AGUA CALIENTE

Las pérdidas de calor en las tuberías están dadas por trasmisión y convección, apreciar el gráfico, así las pérdidas de calor en la tubería se obtienen con la expresión líneas abajo.

Figura 25: Componentes de la tubería de agua caliente.

Elaboracion Propia.

$$Q_{tub} = \frac{T_{ext} - T_{int}}{\frac{1}{h_1 2\pi \ r_1 L} + \frac{ln\left(\frac{r_2}{r_1}\right)}{2\pi \ k_1 L} + \frac{ln\left(\frac{r_3}{r_2}\right)}{2\pi \ k_2 L} + \frac{1}{h_2 2\pi \ r_3 L}} \qquad ...(\text{Ec-37})$$

Donde:

- Q_{tub}: Pérdidas de calor en tubería Kcal/h.
- T_{ext}: Temperatura en el exterior 80°C.
- T_{int}: Temperatura en el interior del tubo 0.2°C.
- h₁: Coeficiente de convección del agua Kcal/hm²K.
- h₂: Coeficiente de convección del aire 0.014Kcal/hm²K.
- k_1 : Conductividad térmica de la tubería 0.198Kcal/hmK.

• k_2 : Conductividad térmica armaflex (aislamiento) 0.034Kcal/hmK.

Para determinar, el coeficiente de convección h_1 del agua, se tomara en cuenta la siguientes expresiónes.

$$h_1 = k_{agua} \times \frac{Nu}{D_i}$$
 ...(Ec-38)
 $Nu = 0.023Re_D^{0.8}Pr^n$...(Ec-39)

Donde:

- k_{agua} : coeficiente de conductividad térmica del agua 0.499Kcal/hmK.
- Nu: Numero de Nusselt (adimensional).
- Re: Numero de Reynolds (adimensional).
- Pr: Numero de Prandtl 2.56.
- n= 0.3 cuando el fluido se enfría.
- n=0.4 cuando el fluido se calienta.
- D_i: Diámetro interno de la tubería.

Una vez teniendo estos datos se reemplaza en las ecuaciones EC-38, Ec-39 y se procesa los resultados para hallar el coeficiente de convección del agua para el tramo a-b, y el resto de resultados se resumen en tabla 25.

$$Nu = 0.023 \ 139148^{0.8} \ 2.56^{0.3} = 397.16$$

$$h_1 = 0.499 \times \frac{397.13 \times 1000}{36.20} = 5474.63 \, Kcal/hm2K$$

Tabla 25: Cálculo de coeficiente de convección del agua

Tramo	L (m)	DI	e (mm)	Re	Nu	h1
	, ,	(mm)	, ,			Kcal/hm2°K
		Circ	uito de su	ministro		
a-b	97.00	36.20	6.9	139148	397.16	5474.63
b-c	1.60	29.00	5.5	98909	302.25	5200.85
c-d	2.70	14.40	2.8	53442	184.71	6400.67
d-e	3.55	11.60	2.2	33171	126.12	5425.37
d-f	2.88	11.60	2.2	33171	126.12	5425.37
c-h	11.35	23.20	4.4	90466	281.43	6053.17
b-k	48.20	23.20	4.4	93481	288.91	6214.05
		Ci	rcuito de r	etorno		
e-g	3.55	11.60	2.2	33171	126.12	5425.37
f-g	2.88	11.60	2.2	33171	126.12	5425.37
g-i	2.70	14.40	2.8	53442	184.71	6400.67
h-i	11.35	23.20	4.4	90466	281.43	6053.17
i-j	1.60	29.00	5.5	98909	302.25	5200.85
k-j	48.20	23.20	4.4	93481	288.91	6214.05
j-m	92.00	36.20	6.9	139148	397.16	5474.63

4.8.1.CÁLCULO DE ESPESORES MÍNIMOS DE AISLAMIENTO TÉRMICO EN TUBERÍAS

Para el cálculo del espesor de aislamiento de las tuberías de agua caliente, se tomará en cuenta el cuadro 59 el cual indica espesores que son válidos para materiales con conductividad térmica de referencia $\lambda_{ref}=0.040~W/(mK)$ a 20 °C. Si se emplean materiales con conductividad térmica distinta a la de referencia, el espesor mínimo de aislamiento se calcula mediante la siguiente ecuación:

$$e_{aisl} = \frac{D_i}{2} \left[EXP \left(\frac{\lambda}{\lambda_{ef}} ln \frac{D_i + 2e_{ref}}{D_i} \right) - 1 \right]$$
 ...(Ec-40)

Donde:

- e_{aisl}: Espesor mínimo de aislamiento mm.
- e_{ref} : Espesor mínimo de aislamiento de referencia mm.
- λ : Conductividad térmica del material W/mK.

- λ_{ref} : Conductividad térmica de referencia W/mK.
- D_i : Diámetro interno mm.

Los datos empleados son:

- ullet e_{ref} : Indicado en el cuadro mm.
- λ: 0.039 W/mK.
- λ_{ref} : 0.040W/mK.

Reemplazamos los datos en la ecuación EC-40, calculamos el espesor mínimo para el tramo a-b.

$$e_{aisl} = \frac{36.2}{2} \left[EXP\left(\frac{0.039}{0.04} ln \frac{36.2 + 2 \times 30}{36.2}\right) - 1 \right] = 28.84 mm$$

Para este resultado seleccionamos una medida comercial superior el cual es 35mm

Tabla 26: Espesor mínimo de aislamiento y pérdidas de calor en tuberías

TRAMO	L (m)	<i>D_i</i> (mm)	e _{aisl} (mm)	e seleccionado (mm)	<i>U</i> (Kcal/hK)	$Q_{tub} \ ext{(Kcal/h)}$
			Circuito	de suministro		
a-b	97.00	36.20	28.84	35	18.80	1278.66
b-c	1.60	29.00	28.77	35	0.27	18.53
c-d	2.70	14.40	19.11	25	0.36	24.53
d-e	3.55	11.60	19.06	25	0.43	28.95
d-f	2.88	11.60	19.06	25	0.35	23.49
c-h	11.35	23.20	19.22	25	1.95	132.77
b-k	48.20	23.20	19.22	25	8.29	563.82
			Circuit	o de retorno		
e-g	3.55	11.60	19.06	25	0.43	28.95
f-g	2.88	11.60	19.06	25	0.35	23.49
g-i	2.70	14.40	19.11	25	0.36	24.53
h-i	11.35	23.20	19.22	25	1.95	132.77
i-j	1.60	29.00	28.77	35	0.27	18.53
k-j	48.20	23.20	28.69	35	7.26	493.94
j-m	92.00	36.20	28.84	35	17.83	1212.75
Total						4005.68

4.9.DISEÑO DE LOS CONDUCTOS DE VENTILACIÓN

El dimensionado de los conductos se ha realizado según el método de pérdida de carga constante. El cual consiste en dimensionar en primer lugar todos los conductos que abastecen el consumo con mayor pérdida de presión. Para ello se aumenta la sección hasta conseguir una velocidad máxima admisible. Posteriormente se dimensionan el resto de ramificaciones para que la pérdida de presión en el consumo sea lo más parecida posible a la del consumo más desfavorable.

Para los dos métodos también existe la posibilidad de dimensionar el tramo final con una velocidad determina con el fin de evitar ruidos excesivos.

El cálculo de la pérdida de presión en un tramo recto de conducto es muy parecido al que se realiza en las tuberías de agua. Se utiliza la fórmula de Darcy-Weisbach y el número de Reynolds del mismo modo. Sin embargo, existen ciertas diferencias que lo dificultan ya que el aire es un fluido compresible y, por tanto, la densidad puede variar.

En primer lugar el diámetro empleado para realizar todos los cálculos de pérdidas es un diámetro equivalente como se expresa en la ecuación:

$$D_e = \frac{1.3(A \times B)^{0.625}}{(A+B)^{0.25}} \qquad \dots \text{(Ec-41)}$$

Donde:

- D_e: Diámetro equivalente del conducto rectangular mm.
- A: Ancho del conducto mm.
- B: Altura del conducto mm.

La ecuación de Darcy-Weisbach puede adaptarse al cálculo de conductos de la siguiente forma:

$$\Delta P = \left(\frac{100fL}{Dh} + \sum C\right) \times \left(\frac{Pv^2}{2}\right) \qquad \dots \text{(Ec-42)}$$

Para la estimación del caudal se tendrá en cuenta el número de renovaciones por hora que exigen las normas de acuerdo al uso que se le dé a cada ambiente, podemos citar los cuadros del RNE y la Norma técnica de Salud vigentes en el Perú ver tablas adjuntas en el anexo.

Tabla 27: Caudal para los ambientes a ventilar

		ice ambientes		
AMBIENTE	AREA (m2)	VOLUMEN (m3)	REN/HR	CAUDAL (m3/h)
Quirófano 1	32.49	128.34	15.00	1924.88
Quirófano 2	32.49	128.34	15.00	1924.88
Prepar. y recupe.	132.15	396.45	6.00	2299.41
UCI	78.77	236.31	12.00	2741.11
Aisl. med. General	16.4	49.2	12.00	590.40
Aisl. ciru. General	16.4	49.2	12.00	590.40

Elaboración: Propia.

Para el cálculo de las pérdidas primarias por fricción podemos calcularla con la expresión:

$$h/100 = \frac{2.74 \left(\frac{V}{1000}\right)^{1.8}}{D^{1.22}}$$
 ...(Ec-43)

Para el dimensionamiento de los conductos debemos tener en cuenta la velocidad del aire en el conducto, de acuerdo la a siguiente tabla:

Tabla 28: Velocidades máximas recomendadas para sistemas de baja velocidad m/s

		FACTOR DE	CONTROL - F	OZAMIENTO EN	CONDUCTO	
APLICACIÓN	PACTOR DE CONTROL DEL NIVEL DE RUIDO	Conductos	principales	Conductos	derivados	
	(conductos principales)	Suministro	Retorno	Suministro	Retorno	
Residencies	3	5	4	3	3	
Apartementos Dormitorios de hotel Dormitorios de hospital	5	7,5	6,5	6	- 5	
Oficinas particulates Despachos de directores Bibliotecas	6	10	7,5	8	6	
Salas de cino y teatro Auditorios	4	6,5	5,5	5	4	
Oficinas públicas Restaurantes de primera categoría Comercios de primera categoría Bancos	7,5	10	7,5	8	6	
Comercios de categoría madia Cafeterias	9.	10	7,5	8	6	
Locales industriales	12,5	15	9	11	7,5	

Fuente: (Carrier Air, 1980).

Las pérdidas secundarias se pueden obtener de los cuadros adjuntos al anexo. El método de cálculo optado será el método de pérdidas de carga constante. Para cada ambiente se mostrará un esquema preliminar de la distribución de los conductos sin dimensionar y posteriormente un cuadro de cálculo con las dimensiones de cada tramo, el cual estará plasmado en los planos.

4.9.1.DISEÑO DE CONDUCTOS QUIRÓFANO 1 Y 2

Para los quirófanos uno y dos se realizará un único calculo debido a que estos presentan las mismas características en cuanto a área y volumen, y no es necesario un esquema de distribución de conductos ya que posee una sola entrada (inyección) por la parte superior del ambiente y una salida (extracción) por la parte inferior.

Tabla 29: Dimensionamiento conducto de inyección para quirófano 1 y 2

Tramo	Q (m3/h)	L (m)	Α	В	D_{eq} (mm)	Ar	V (m/s)
			(mm)	(mm)	1	(m2)	
AB	1924.9	6.6	400	300	377.7	0.11	4.46
	Nº Codos	L_{eq} (m)	h_{rej}	$oldsymbol{h_{fil}}$	L_t (m)	h/m	h(mmca)
AB	8.5	4.4	1.2 [´]	30	44.0	0.07	34.10

Tabla 30: Dimensionamiento conducto de extracción para quirófano 1

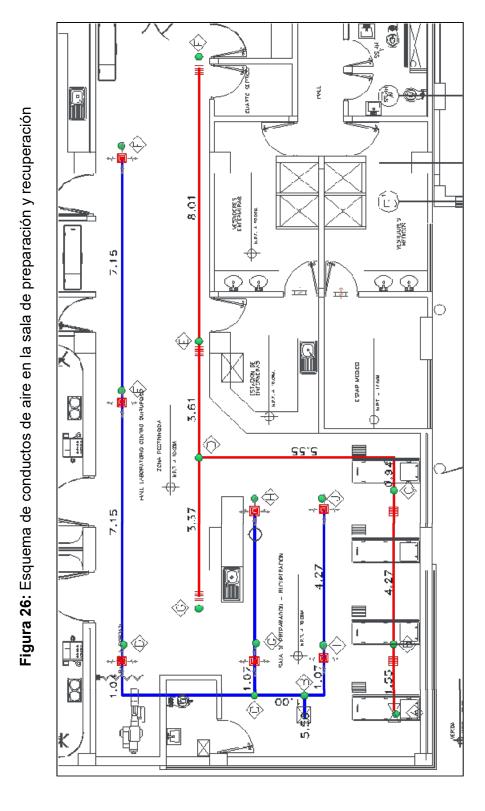
Tramo	Q (m3/h)	L (m)	A (mm)	B (mm)	<i>D_{eq}</i> (mm)	Ar (m2)	V (m/s)
AB	1924.9	10.68	400	300	377.7	0.11204	4.46
	Nº Codos	L_{eq} (m)	h_{rej}	$oldsymbol{h_{fil}}$	L_t (m)	h/m	h(mmca)
AB	6.5	4.4	2.1	0	39.3	0.07	4.69

Elaboración: propia.

Tabla 31: Dimensionamiento rejilla de inyección y extracción quirófanos 1 y 2

Rejilla	Q (m3/h)	V _{max} (m/s)	Nº Rej	Q/NºRej	A (mm2)	D (mm)	A (mm)	B (mm)	A_n (mm2)
inyección	1924	3.0	1	1924.9	178229	476.4	700.0	450.0	220500
extracción	1924	3.0	1	1924.9	178231	476.3	550.0	500.0	192500

Elaboración: Propia.


Tabla 32: Dimensionamiento conducto de extracción para quirófano 2

Tramo	Q (m3/h)	L (m)	A (mm)	B (mm)	<i>D_{eq}</i> (mm)	Ar (m2)	V (m/s)
AB	1924.9	11.68	400	300	377.7	0.11	4.46
	Nº Codos	L_{eq} (m)	h_{rej}	h_{fil}	L_t (m)	h/m	h(mmca)
AB	6.5	4.4	2.1	0	30.3	0.07	4.14

Elaboración: Propia.

4.9.2.DISEÑO DE CONDUCTOS SALA DE PREPARACIÓN Y RECUPERACIÓN

En la figura se muestra el esquema del recorrido de los conductos de inyección y extracción de aire, y en el cuadro se tiene los resultados del dimensionamiento de los conductos.

Elaboración: Propia.

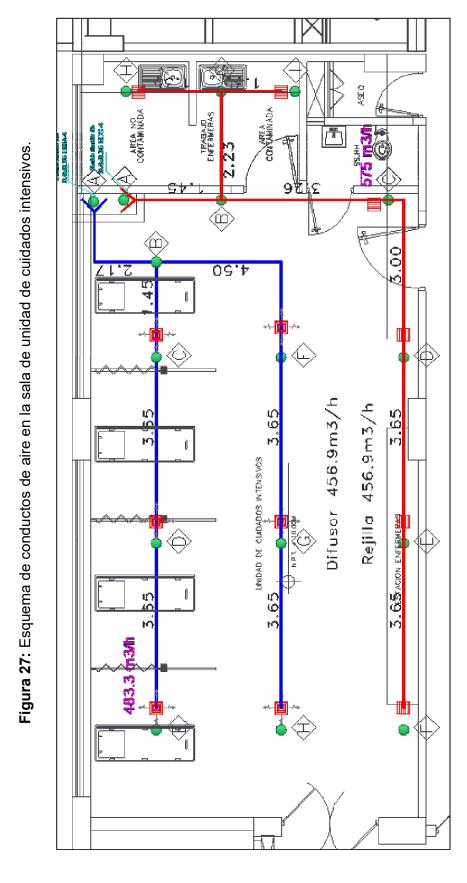
Tabla 33: Dimensionamiento conducto de inyección de la sala de preparación y recuperación

Tramo	Q (m3/h)	L (m)	A (mm)	B (mm)	<i>D_{eq}</i> (mm)	Ar (m2)	V (m/s)
AB	1916.18	5.50	400	300	377.71	0.11	4.44
BC	1368.70	1.00	300	300	327.95	0.08	4.22
CD	821.22	5.20	300	200	266.41	0.06	3.80
DE	547.48	7.15	250	200	244.06	0.05	3.04
EF	273.74	7.15	200	150	188.85	0.03	2.53
CG	547.48	1.07	250	200	244.06	0.05	3.04
GH	273.70	4.27	200	150	188.85	0.03	2.53
BI	547.48	2.62	250	200	244.06	0.05	3.04
IJ	273.70	4.27	200	150	188.85	0.03	2.53
	Nº Codos	$L_{eq} \ (extsf{m})$	h_{rej}	h_{fil}	L_t (m)	h/m	h (mmca)
AB	3.00	4.40		15.00	18.70	0.07	16.22
BC	1.50	3.30			5.95	0.07	16.65
CD	2.25	3.30	1.20		12.63	0.07	18.79
DE	1.50	2.75	1.20		11.28	0.05	20.60
EF	1.50	2.20	1.20		10.45	0.05	22.35
CG	1.50	2.75	1.20		5.20	0.05	23.84
GH	2.50	2.20	1.20		9.77	0.05	25.55
BI	3.50	2.75	1.20		12.25	0.05	18.09
IJ	4.50	2.20	1.20		14.17	0.05	20.04

Tabla 34: Dimensionamiento conductos de extracción de la sala de preparación y recuperación

			,				
Tramo	Q (m3/h)	L (m)	A (mm)	B (mm)	<i>D_{eq}</i> (mm)	Ar (m2)	V (m/s)
AB	1916.18	6.1	400	300	377.71	0.11	4.44
BC	1532.94	4.27	350	300	353.96	0.10	4.06
CD	1149.71	6.49	300	300	327.95	0.08	3.55
DE	766.47	3.61	250	250	273.29	0.06	3.41
EF	383.24	8.01	200	200	218.63	0.04	2.66
DG	383.2	3.37	200	200	218.63	0.04	2.66
	Nº Codos	L_{eq} (m)	h_{rej}	h_{fil}	L_t (m)	h/m	h (mmca)
AB	6.50	4.40	1.20		34.70	0.07	3.47
ВС	0.25	3.85	1.20		5.23	0.06	4.98
CD	3.50	3.30			18.04	0.05	5.90
DE	0.25	2.75	1.20		4.30	0.06	7.35
EF	0.25	2.20	1.20		8.56	0.05	8.97
DG	0.25	0.00	1.20		3.37	0.05	10.33

Tabla 35: Dimensionamiento difusor y rejilla en sala de prepparación y recuperación


Rejilla	Q (m3/h)	V _{max} (m/s)	Nº Rej	Q/NºRej	A (mm2)	D (mm)	A (mm)	B (mm)	A_n (mm2)
inyección	1916.2	3.0	7.0	273.7	25346.3	179.6	250.0	250.0	43750.0
extracción	1916.2	3.0	5.0	383.2	35484.8	212.6	250.0	250.0	43750.0

4.9.3.DISEÑO DE CONDUCTOS SALA DE UNIDAD DE CUIDADOS INTENSIVOS

Para la sala de cuidados intensivos, se muestra el esquema de la figura, en el cual se distribuye los conductos de inyección y extracción con las longitudes de los ductos; teniendo este esquema y los datos de flujos se procede con el dimensionamiento de los conductos los cuales se muestran en las siguientes tablas.

Tabla 36: Dimensionamiento conductos de inyección de la unidad de cuidados intensivos

			IIILE	HSIVOS			
Tramo	Q (m3/h)	L (m)	A (mm)	B (mm)	<i>D_{eq}</i> (mm)	Ar (m2)	V (m/s)
AB	2741.11	5.47	400	350	408.80	0.13	5.44
ВС	1370.56	1.45	350	250	322.23	0.08	4.35
CD	913.70	3.65	300	200	266.41	0.06	4.23
DE	456.85	3.65	250	150	209.99	0.03	3.38
BF	1370.56	4.50	350	250	322.23	0.08	4.35
FG	913.70	3.65	300	200	266.41	0.06	4.23
GH	456.85	3.65	250	150	209.99	0.03	3.38
	Nº Codos	$L_{eq} \ (extsf{m})$	h_{rej}	h_{fil}	L_t (m)	h/m	h (mmca)
AB	4.25	4.40		15.00	24.17	0.09	17.12
ВС	1.50	3.85	1.20		7.23	0.08	18.87
CD	2.25	3.30	1.20		11.08	0.09	21.08
DE	1.50	2.75	1.20		7.78	0.08	22.91
BF	1.50	3.85	1.20		10.28	0.08	19.10
FG	1.50	3.30	1.20		8.60	0.09	21.09
GH	2.50	2.75	1.20		10.53	0.08	23.13

Elaboración: Propia.

Tabla 37: Dimensionamiento conductos de extracción de la unidad de cuidados intensivos.

Tramo	Q (m3/h)	L (m)	A (mm)	B (mm)	<i>D_{eq}</i> (mm)	Ar (m2)	V (m/s)
AB	2741.11	4.25	400	350	408.80	0.13	5.44
BC	1827.41	3.26	400	300	377.71	0.11	4.23
CD	1370.56	3.00	350	300	353.96	0.10	3.63
DE	913.70	3.65	300	250	299.07	0.07	3.38
EF	456.85	3.65	300	150	228.51	0.04	2.82
BG	913.70	2.23	350	200	286.44	0.06	3.63
GH	456.85	1.35	300	150	228.51	0.04	2.82
GI	GI 456.85		300	150	228.51	0.04	2.82
	Nº Codos	L _{eq}	$\mathbf{h}_{\mathrm{rej}}$	$\mathbf{h_{fil}}$	L _t (m)	h/m	h (mmaa)
A D		(m)	-	45.00	45.05	0.00	(mmca)
AB	2.50	4.40		15.00	15.25	0.09	16.33
BC	0.25	4.40	1.20		4.36	0.06	17.80
CD	1.25	3.85	1.20		7.81	0.05	19.37
DE	0.25	3.30	1.20		4.48	0.05	20.81
EF	0.25	3.30	1.20		4.48	0.05	22.23
BG	0.25	3.85			3.19	0.06	16.53
GH	0.25	0.00	1.20		1.35	0.05	17.80
GI	0.25	3.30	1.20		2.18	0.05	19.11

Tabla 38: Dimensionamiento difusor y rejilla de inyección y extracción.

Rejilla	Q (m3/h)	V _{max} (m/s)	Nº Rej	Q/NºRej	A (mm2)	D (mm)	A (mm)	B (mm)	A _n (mm2)
inyección	2741.1	3.0	6.0	456.9	42301.1	232.1	250.0	250.0	43750
extracción	2741.1	3.0	6.0	456.9	42301.1	232.1	250.0	250.0	43750

Elaboración: Propia.

4.9.4.DISEÑO DE CONDUCTOS AISLADO MEDICINA Y CIRUGÍA GENERAL

Para los ambientes destinados para aislado medicina general y cirugía general, se tiene el esquema mostrado en la figura, como se puede observar, los ambientes son similares y el esquema de distribución de los conductos es simétrico, por lo cual el cálculo solo será de uno de ellos. Los resultados de las dimensiones se muestran en las siguientes tablas.

AREA DE SS.HH. C. AREA DE ASLAMIENTO DE C.C. ASLAMI

Figura 28: Esquema de conductos de aire en aislados medicina y cirugía general

Tabla 39: Dimensionamiento conductos de inyección aislado medicina y cirugía general

Tramo	Q (m3/h)	L (m)	A (mm)	B (mm)	D _{eq} (mm)	Ar (m2)	V (m/s)
AB	590.40	3.59	250	200	244.06	0.05	3.28
BC	295.20	2.22	200	150	188.85	0.03	2.73
	Nº Codos	L _{eq} (m)	$\mathbf{h}_{\mathrm{rej}}$	h_{il}	L _t (m)	h/m	h (mmca)
AB	3.25	2.75	1.2	15	12.53	0.06	16.99
BC	1.50	2.20	1.2		5.52	0.06	18.52

Tabla 40: Dimensionamiento conductos de extracción aislado medicina y cirugía general

Tramo	Q (m3/h)	L (m)	A (mm)	B (mm)	D _{eq} (mm)	Ar (m2)	V (m/s)
AB	590.40	5.90	250	200	244.06	0.05	3.28
BC	393.60	1.10	200	200	218.63	0.04	2.73
CD	196.80	2.20	200	150	188.85	0.03	1.82
BE	196.80	0.97	200	150	188.85	0.03	1.82
	Nº Codos	L _{eq} (m)	$\mathbf{h}_{\mathrm{rej}}$	$\mathbf{h_{fil}}$	L _t (m)	h/m	h (mmca)
AB	3.25	2.75		15	14.84	0.06	15.93
ВС	0.25	2.20	1.2		1.65	0.05	17.22
CD	0.25	2.20	1.2		2.75	0.03	18.49
BE	0.25	2.20	1.2		1.52	0.03	17.18

Tabla 41: Dimensionamiento difusor y rejilla de inyección y extracción

Rejilla	Q (m3/h)	V _{max} (m/s)	Nº Rej	Q/NºRej	A (mm2)	D (mm)	A (mm)	B (mm)	A _n (mm2)
Inyección	590.4	3.0	2.0	295.2	27333.3	186.6	200.0	200.0	28000
extracción	590.4	3.0	3.0	196.8	18222.2	152.3	200.0	200.0	28000

Elaboración: Propia.

4.10.CALCULO DE PÉRDIDAS DE CALOR EN LOS CONDUCTOS DE VENTILACIÓN

La transferencia de calor a lo largo del circuito de conductos, suponen una variación de la temperatura del aire interior, y estas pueden ser importantes según el valor de U, caudal de aire, la geometría del conducto y las diferencias iniciales de temperatura interior y ambiente.

Para el cálculo de las pérdidas de calor en los conductos de inyección aire se realizará de acuerdo la Norma 90A de ANSI/ASHRAE/IES, el cual se calcula con la siguiente expresión:

$$Q_{duc} = \frac{U \times P \times L}{1000} \Big(\frac{T_e + T_i}{2} - T_a \Big) \qquad ... (\text{Ec-44}) \label{eq:Qduc}$$

$$T_{e} = \frac{T_{i}(y+1) - 2T_{a}}{y-1} \qquad ... \text{(Ec-45)}$$

$$T_i = \frac{T_e(y-1) + 2T_a}{y+1}$$
 ...(Ec-46)

Donde:

- $y = \frac{2AV\rho}{IIPL}$: Para conductos rectangulares.
- $y = \frac{0.5 \text{DV} \rho}{\text{III.}}$: Para conductos redondos.
- A_t: Area de la sección transversal del conducto, mm².
- V: Velocidad media, m/s.
- D: Diámetro del conducto, mm.
- L: Longitud del conducto, m.
- $\bullet \quad Q_{duc}$: Pérdida/ganancia de calor a través de las paredes del conducto, W.
- U: Coeficiente de transferencia de calor total de la pared del conducto, W/m^2C.
- P: Perímetro del conducto, mm.
- ρ : Densidad del aire, Kg/m³.
- T_e: Temperatura del aire de entrada del conducto, °C.
- T_i: Temperatura del aire de salida del conducto, °C.
- T_a: Temperatura del aire que rodea el conducto, °C.

Con los siguientes datos se evalúa las ecuaciones Ec-44, Ec-45 y Ec-46, los resultados se muestran en la tabla 42.

- U_{chap} = 5.2Wm²°C: coeficiente global de transferencia de calor de la chapa galvanizada.
- $U_{lv} = 0.4 \text{m}^2\text{C}$: coeficiente global de transferencia de calor lana de vidrio e=50mm.
- $\rho = 1.164 \text{ Kg/m}^3$: Densidad del aire, a 30 °C.
- T_e=30 : Temperatura del aire de entrada del conducto, °C.

• $T_a = 12$: Temperatura del aire que rodea el conducto, °C.

Tabla 42: Pérdidas de calor en conductos de ventilación.

Tramo	L	Α	В	V	У	Te	Ti	Q _{duc}	Q _{duc}
	(m)	(mm)	(mm)	(m/s)		(°C)	(°C)	(W)	(kcal/h)
					RÓFANO				
AB	6.6	400	300	4.46	24.1	30	28.56	894.22	769.03
					RÓFANO				
AB	6.6	400	300	4.46	24.1	30	28.56	894.22	769.03
			LA DE P						
AB	5.50	400	300	4.44	28.7	30.0	28.79	750.06	645.05
BC	1.00	300	300	4.22	131.7	28.8	28.54	116.04	99.80
CD	5.20	300	200	3.80	18.2	28.5	26.82	477.82	410.92
DE	7.15	250	200	3.04	9.8	26.8	24.08	541.97	466.10
EF	7.15	200	150	2.53	6.3	24.1	20.78	375.25	322.72
CG	1.07	250	200	3.04	65.6	28.5	28.04	91.79	78.94
GH	4.27	200	150	2.53	10.6	28.0	25.27	261.69	225.05
BI	2.62	250	200	3.04	26.8	25.3	24.31	200.15	172.13
IJ	4.27	200	150	2.53	10.6	24.3	22.19	235.90	202.87
			UNIDA	D DE CU	IDADO I	NTENSI	vos		
AB	5.47	400	350	5.44	38.6	30.0	29.09	806.17	693.30
BC	1.45	350	250	4.35	91.0	29.1	28.72	169.15	145.47
CD	3.65	300	200	4.23	28.9	28.7	27.60	343.40	295.32
DE	3.65	250	150	3.38	18.1	27.6	25.96	261.34	224.75
BF	4.50	350	250	4.35	29.3	29.1	27.96	513.52	441.62
FG	3.65	300	200	4.23	28.9	28.0	26.90	336.19	289.12
GH	3.65	250	150	3.38	18.1	26.9	25.33	256.18	220.31
			AISL	ADO ME	DICINA	GENER	AL		
AB	3.59	250	200	3.28	21.1	30.0	28.37	310.95	267.42
BC	2.22	200	150	2.73	21.9	28.4	26.94	143.34	123.28
					RUGIA G				
AB	3.59	250	200	3.28	21.1	30.0	28.37	310.95	267.42
BC	2.22	200	150	2.73	21.9	28.4	26.94	143.34	123.28
Total				<u> </u>	-: / D-			8433.62	7252.92

Elaboración: Propia.

La pérdida de calor en los conductos de ventilación es de 8433.62 W equivalente a 7252.92 Kcal/h.

Teniendo en cuenta los cálculos realizados, de carga térmica de calefacción y de aire acondicionado, los cuales indican que la mayor cantidad de energía necesaria para climatizar el ambiente, son los ocasionados por las pérdidas de calor en el mes de julio (carga térmica de calefacción).

La temperatura máxima promedio es en el mes de noviembre es 17.9°C, el cual no supera la temperatura requerida por los ambientes, a pesar de esto se realizó los cálculos de carga térmica de refrigeración, debido a que no se tenía claro las ganancias de calor por radiación y diferencia equivalente de temperatura para la ubicación del presente estudio. Obteniendo un resultado negativo -16536.9 Kcal/h, esto da a entender que en el mes de noviembre se requiere calefacción mas no aire acondicionado.

Por otra parte, se tomó en cuenta que las salas de operaciones (quirófanos) deberá tener un riguroso tratamiento en cuanto a la climatización, por lo cual se proyectara dos bombas de calor de alta eficiencia que tengan la capacidad de generar frio y calor, se adopta esta determinación por seguridad.

Para las premisas anteriores se proyectará un calentador de agua, que pueda suministrar la carga térmica de calefacción más las pérdidas de calor en tuberías de agua y pérdidas de calor en ductos de ventilación, y así proyectar un sistema agua-aire:

- Carga térmica de ventilación 36954.63 Kcal/h
- Carga térmica por transferencia 15914.48 Kcal/h
- Pérdidas de calor en conductos de ventilación 5552.85 Kcal/h
- Pérdidas de calor en tuberías de agua 4005.68 Kcal/h
- Pérdidas de en el calentador 15%: 9364.15 Kcal/h

Sumando todos estos valores, la potencia mínima requerida es de 71791.79Kcal/h equivalente a 284798.04 Btu/h, se agregara un factor de seguridad del 25%, con lo cual tendremos una potencia mínima para la selección del calentador de 355997.55 Btu/h.

La eficiencia del sistema agua-aire será calculada por la siguiente expresión

$$\eta = \frac{P}{P + Q_{\text{tub}} + Q_{\text{cond}} + P_{c}} \times 100 \qquad ...(\text{Ec-47})$$

Donde:

- η: Eficiencia del sistema (%).
- P_c : perdidas en el calentador 15%, tomando en cuenta que la eficiencia esta entre 0.8-0.95.
- P: Carga térmica de calefacción del ambiente.
- Q_{tub}: Pérdidas de calor en tuberías de agua caliente.
- Q_{cond}: Pérdidas de calor en conductos de aire.

$$\eta = \frac{52869.12}{52869.12 + 4005.68 + 5552.85 + 9364.15} \times 100 = 73.64\%$$

En la figura 29 se muestra las pérdidas de calor representadas en porcentaje, respecto al total de la carga térmica necesaria.

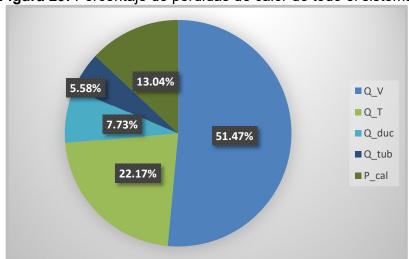


Figura 29: Porcentaje de pérdidas de calor de todo el sistema

Elaboracion: Propia.

Q_V: pérdidas de calor por ventilación; Q_T: Pérdidas de calor por transferencias; Q_duc: Pérdidas de calor en conductos de ventilación; Q_tub: pérdidas de calor en tuberías de agua caliente; P_cal, perdidas en el calentador de agua.

En el cuadro siguiente se muestra los datos técnicos mínimos que deben tener los equipos a seleccionar, como son: Q_{aire} Caudal de aire en m3/h; Q_T : Carga térmica total de calefacción, P_{th} : Potencia total de humidificación, M: flujo de masa de vapor del humidificador, P_i, P_e : Potencia minima del inyector y extractor respectivamente.

Tabla 43: Capacidad de diseño mínimo para la selección de los equipos de aire acondicionado y calefacción

		,				
AMBIENTE	Q_{aire} (m3/h)	Q _T (Btu/h)	P _{th} (KW)	M Kg/h	INY (HP)	EXTR (HP)
Quirófano 1	1925	55512.77	12.42	17.38	0.65	0.08
Quirófano 2	1925	51879.60	12.42	17.38	0.61	0.07
Prepar. y recupe.	2299	92824.84	10.98	15.37	0.46	0.19
UCI	2741	88537.19	13.08	18.32	0.59	0.19
Aisl. med. General	590	19273.24	2.82	3.94	0.10	0.02
Aisl. ciru. General	590	19583.11	2.82	3.94	0.10	0.02

Elaboración: Propia.

Para poder tener en cuenta el consumo eléctrico de todo el sistema se elabora el siguiente cuadro de cargas con dos alternativas, uno con todos los equipos netamente de consumo eléctrico y otro con el sistema agua aire, el cual tiene como fuente de energía el GLP

Tabla 44: cuadro de cargas, por ambientes climatizados.

AMBIENTES	EQUIPOS	PI (KW) Equipos	Demanda térmica (KW)	PI (KW) alternativa eléctrica	PI (KW) sistema agua-aire
Quirófano 1	UMA-1	1.2	16.27	30.27	21.56
	Hum-1	12.42			
	EC-1	0.38			
	UC-1	6.07			
	UE-1	1.49			
Quirófano 2	UMA-2	1.2	15.21	29.20	21.56
	Hum-2	12.42			
	EC-2	0.38			
	UC-2	6.07			
	UE-2	1.49			
Sala de preparación y recuperación.	UMA-3	0.75	27.21	39.50	12.30
	EC-3	0.57			
	Hum-3	10.98			
Unidad de cuidados intensivos	UMA-4	1.1	25.95	40.89	14.94
	EC-4	0.76			
	Hum-4	13.08			
Aislado medicina general.	UMA-5	0.55	5.65	9.25	3.60
	EC-5	0.23			
	Hum-5	2.82			
Aislado cirugía general	UMA-6	0.55	5.74	9.34	3.60
	EC-6	0.23			
	Hum-6	2.82			
Total			96.02	158.45	77.55

De acuerdo a las tablas anteriores se seleccionan los equipos de calefacción, que están especificados en la tabla siguiente, así como también los equipos de aire acondicionado.

Tabla 45: Equipos de calefacción recomendados

	i abia to		Jaiorado	ion recomen	Tados
Cod	Descripción	Modelo recomend.	Pot.	Alimentaci ón eléctrica	Otras e.
UMA-03	Unidad manejadora de Aire		1.10 KW	220VAC 60Hz, 3F 2.55Amp	Caudal: 2382 m3/h RPM: 2996 Cap.: 100,000 Btu/h
EC-03	Extractor Centrífugo	SA 10/6	0.75 HP	220VAC 60Hz, 1F 2.6Amp	Caudal: 2381 m3/h RPM: 1317
H-3.0	Humidificado r de vapor	UE008XK0 01	6.0KW	230VAC 60Hz, 3F 15.1Amp	Cap.: 8.0Kg/h
H-3.1	Humidificado r de vapor	UE008XK0 01	6.0KW	230VAC 60Hz, 3F 15.1Amp	Cap.: 8.0Kg/h
FILB-03	Filtro de bolsa	VARICEL VXL			Filter Class: F7 TO EN779 592X592X290 MM
FSIN-03	Filtro de fibra sintética	HH60130			24"X24"X3/4"
PREF- 03	Pre-filtro de aluminio	K514-004			592X592X46MM
UMA-06	Unidad manejadora de aire		0.75 KW	220VAC 60Hz, 3F 1.6Amp	Caudal: 4144 m3/h RPM: 2518 Cap: 95,000 Btu/h
EC-06	Extractor centrífugo	SA 15/8	1 HP	220VAC 60Hz, 1F 3.4Amp	Caudal: 4143 M3/H RPM: 834
HUM- 6.0	Humidificado r de vapor	UE025XK0 01	18.75K W	220VAC 60Hz, 3F 47.1Amp	Cap. : 25.0Kg/h
FILB-6.0	Filtro de bolsa	VARICEL VXL			Filter Class: F7 TO EN779 490X592X292 MM
FILB-6.1	Filtro de bolsa	455990 - 222			Filter Class: F7 TO EN779 287X592X292 MM
FSIN-06	Filtro de fibra sintetica	HH60130			24"X24"X3/4"
PREF- 06	Pre-filtro de aluminio	K514-004			592X592X46MM
UMA-07	Unidad manejadora de aire	SIZE: ADS01HG W1	0.55KW	220VAC 60Hz, 3F 2.4Amp	Caudal: 750 m3/h RPM: 2897 Cap: 22,000 Btu/h
EC-07	Extractor centrifugo	TD - 1300/250	230 W	220VAC 60Hz, 1F 1.62Amp	Caudal: 416 m3/h RPM: 3200
HUM- 7.0	Humidificado r de vapor	HUMISTEA M X PLUS UE005XK0 01	3.55KW	230VAC, 60Hz, 3F, 9.4Amp	Capacidad: 5.0KG/H
FILB-07	Filtro de bolsa	VARICEL VXL			Filter class: F7 TO EN779 490X592X292 mm
FSIN-07	Filtro de fibra sintética	HH60130			24"X24"X3/4"

PREF- 07	Pre-filtro de aluminio	K514-004			592X592X46mm
UMA-08	Unidad manejadora de aire	SIZE: ADS01HG W1	0.55KW	220VAC 60Hz, 3F 2.4Amp	Caudal: 750 M3/H RPM: 2897 CAPACIDAD: 22,000 Btu/h
EC-08	Extractor centrífugo	TD - 1300/250	230 W	220VAC 60Hz, 1F 1.62Amp	Caudal: 416 m3/h RPM: 3200
HUM- 8.0	Humidificado r de vapor	HUMISTEA M X PLUS UE005XK0 01	3.55KW	230VAC, 60Hz, 3F, 9.4Amp	Cap.: 5.0Kg/h
FILB-08	Filtro de bolsa	VARICEL VXL			filter class: F7 TO EN779 490X592X292 mm
FSIN-08	Filtro de fibra sintética	HH60130			24"X24"X3/4"
PREF- 08	Pre-filtro de aluminio	K514-004			592X592X46mm

Elaboración: Propia

Tabla 46: Equipos de aire acondicionado recomendados para quirófanos.

Descripción	Modelo recomed.	potencia	alimentación eléctrica	otras especificaciones
Inyector centrífugo	DAB 9/9	1.5 HP	220VAC, 60Hz, 3F, 4.4Amp	Caudal: 2319 m3/h RPM: 2017
Extractor centrifugo	SA 10/6	0.5 HP	220VAC, 60Hz, 1F, 2.9Amp	Caudal: 2087 m3/h RPM: 1230
Unidad condensadora	DZ13SA0601KA		220VAC, 60Hz, 1F, 34.5Amp	Frio: 56,500 Btu/h Calor: 57,000 Btu/h
Unidad evaporadora	ARUF60D14AC		220VAC, 60Hz, 1F, 4.6Amp	60,000 Btu/h
Humidificador de vapor	UE008XK001	6.0KW	230VAC 60Hz, 3F 15.1Amp	Cap: 8.0Kg/h
Humidificador de vapor	UE008XK001	6.0KW	230VAC 60Hz, 3F 15.1Amp	Cap: 8.0Kg/h
Pre-filtro de aluminio	K514-004			592X592X46mm
Filtro de fibra sintética	HH60130			24"X24"X3/4"
Filtro de bolsa	PAP695S4422			Ef.: 90 - 95 % 24"X24"X26"
Filtro hepa	ASTROCEL AAF557-205- 305			Ef.: 99.99% 24"X24"X11 1/2"
Inyector centrifugo	DAB 9/9	1.5 HP	220VAC, 60Hz, 3F, 4.4Amp	Caudal: 2319 m3/h RPM: 2017
Extractor centrifugo	SA 10/6	0.5 HP	220VAC, 60Hz, 1F, 2.9Amp	Caudal: 2087 m3/h RPM: 1230

Elaboración: Propia

CONCLUSIONES

PRIMERO: El diseño del sistema de climatización agua-aire para sector quirúrgico del Mega laboratorio clínico universitario de la UNA Puno, asegurara las condiciones de confort con un rendimiento energético de 73.64%, brindando los parámetros adecuados de temperatura, humedad relativa, ventilación y tratamiento de aire.

SEGUNDO: La carga térmica de aire acondicionado es -16536 Kcal/h esto indica que no tiene influencia en la climatización, al contrario se requiere calefacción; la carga térmica de calefacción influye en un 100% en la climatización del sector quirúrgico con una carga térmica total de 82548.00Kcal/h.

TERCERO: Las pérdidas de calor en las tuberías de agua caliente, influyen en un 5.58% en el rendimiento total del sistema agua-aire, cuantificando esta energía es 4005.68Kcal/h.

CUARTO: Las pérdidas de calor se en los conductos de aire influyen en un 7.73% en el rendimiento total del sistema agua-aire, cuantificando esta energía es 5552.85Kcal/h

RECOMENDACIONES

PRIMERO: Se debe fomentar el uso de materiales aislantes en los en el proceso constructivo de los cerramientos de los ambientes en estudio, debiendo considerarse algún aditamento o material capaz de mejorar el aislamiento térmico del ambiente, en consecuencia disminuir las pérdidas de calor y así tener un menor consumo de energía.

SEGUNDO: Para futuros estudios sobre el cálculo de carga térmica, para climatización se recomienda utilizar métodos de cálculos computarizados, y contrastar con los resultados obtenidos en el presente estudio.

TERCERO: Para futuras investigaciones se recomienda realizar un estudio completo de la zona, establecer zonas climáticas y tablas con coeficientes que ayuden a mejorar y agilizar los cálculos de carga térmica en la región altiplánica.

CUARTO: Plantear un sistema de suministro de energía renovable solar, eólica o geotérmica.

BIBLIOGRAFÍA

ASHRAE. (1999). ASHRAE HandBookCD (Vol. A7). Applications: health care facilities.

Beltran Castañon, N. J., & Illacutipa Mamani, J. R. (2000). Diseño, selección, montaje e instalación de laboratorio de refrigeración y aire acondicionado para la C.P.I.M.E. Puno.

Carrier Air, C. C. (1980). Manual de aire acondicionado (Handbook of air conditioning system design). MARCOMBO S.A. de Boixareu editores.

DL2G Consultoría de Formación S.L. (2013). Cursos eficiencia energetica. Obtenido de http://campusenergia.com/blog/item/442-la-necesidad-deventilaci%C3%B3n-de-los-locales

Dorregaray Portilla, G. (2008). Diseño del sistema de aire acondicionado de una Oficina zonal publica en Pucallpa. Tesis pregrado, Pontificia Universidad Catolica Del Perú, Lima.

Garcia Almiñana, D. (2007). Instalaciones de refrigeración y aire acondicionado. Editorial UOC.

Gonzales, C. (2013). Diseño y calculo de instalaciones de climatizacion. España: Cano Pina-SL.

Miranda, A. L. (2007). Tecnicas de Climatizacion. Barcelona: Editorial Marcombo.

Morales Quispe, W. (2011). Capacitacion a nivel nacional refrigeracion y aire acondicionado. RETER E.I.R.L.

Pastor, M. (2007). Memoria Tecnica del Sistema de Climatizacion y Ventilacion del Hospital del IESS de Riobamba. IEESS de Riobamba.

TESIS UNA - PUNO

Pita, E. (2004). Acondicionamiento de Aire - Principios y Sistemas. Mexico: Compaia Editorial Continental.

Quadri, N. (2001). Sistemas de Aire Acondicionado. Buenos Aires: ALSINA.

Renedo, C. (2009). Aire Acondicionado.

Rodriguez Calva, E. P., & Solis Cordova, F. D. (2012). Diseño, Construcción e Instalación De Un Sistema De Calefacción Con Energía Solar. Tesis, Escuela Superior Politécnica De Chimborazo, Chimborazo.

ANEXOS

Anexo A: Tabla de resistencia térmica R de materiales de construcción y de aislamiento (°C m^2h/ kcal).

	A CONTRACTOR OF THE PROPERTY O		2000		
		* 0 15 g 1		RESIS	TENCIA R
MATERIAL	DESCRIPCIÓN	Espesor (mm)	Peso específico (kg/m³)	Por m de espèsor	Por el espesor considerad - × 10 ⁻³
	MATERIAL DE CONSTRUCCIÓN				
PANELES O PLACAS	Fibrocemento Yeso o cemento Contraplacado Madera Fibra de madera. Homogénea o en chapas		1920 800 544 416 496	2,0 7,3 10,2 19,2 16,1	
	Fibra de madera comprimida Madera. Pino o abeto		1040 512	5,8 10,0	
PAPEL DE CONSTRUCCIÓN	Fieltro permeable Fieltro impermeable Enlucido plástico	a a a	:		12 24 Despreciat
MADERA	Arce, encina o especies duras Pino, arce o especies blandas		720 512	7,3 10,1	
ELEMENTOS DE ALBAÑILERIA	Ladrillo ordinario Ladrillo de paramento Ladrillo hueco: 1 alvéolo 1 alvéolo 2 alvéolos 2 alvéolos 2 alvéolos 3 alvéolos	75 100 150 200 250 300	1920 2080 960 768 800 720 672 640	16,4 9,0	164 228 312 379 455 520
	Aglomerados huecos. 3 Alvéolos ovales. Arena y grava.	75 100 150 200 300	1216 1104 1024 1024 1008		82 143 186 227 262
	Hormigón de escorias	75 .100 150 200 300	1008 960 864 896 848		176 227 308 353 383
	Hormigón ligero (Puzolana, ponce, etc.)	75 100 200 300	960 832 768 688		260 308 410 415
	Baldosas de yeso Macizas 4 alvéolos 3 alvéolos	. 75 . 75 . 100	720 560 608	:	259 277 334
	Piedra calcárea o silícea		2400	0,64	

Fuente: (Carrier Air, 1980).

				RESIST	ENCIA R
MATERIAL	DESCRIPCIÓN	Espesor (mm)	Peso especifico (kg/m³)	Por m de espesor	Por el espesor considerado - × 10 ⁻³
	MATERIAL DE CONSTRUCCIÓN				
HORMIGÓN	Mortero de cemento Tarugos de madera 12,5 % aglomerados con yeso, 87,5 %		1856 816	1,6 4,8	
	Hormigones ligeros Ponce, puzolana Celulares Vermiculita, perlita		1900 1600 1280 960 640 480 320	1,5 2,2 3,2 4,7 6,8 8,9 11,5	ŧi.
	Hormigón de arena y grava o piedra (secado al horno) Hormigón de arena y grava o piedra (no secado) Escayola		2240 2240 1856	0,90 0,65 1,6	
ENLUCIDOS	Cemento		1856	, 1,6	
	Yeso: ligero ligero sobre entramado metálico perlita arena arena sobre entramado metálico arena sobre entramado metálico arena sobre entramado de madera vermiculita		720 720 720 720 1680 1680 1680 720	5,2 5,2 5,4 1,4 1,4	82
MATERIALES PARA TECHUMBRES	Placas de fibrocemento Asfalto Baldosas de asfalto Revestimiento de terraza o azotea Tejas planas Metal en chapa Madera en planchas		1920 1120 1120 1120 1120 3216	7,2 Despreciable	43 30 90 10
MATERIALES DE REVESTIMIENTO (superficies planas)	Madera espesor sencillo Madera espesor doble Madera sobre panel aislante 10 mm				178 244 287
	Fibrocemento 6 mm, con recubrimiento Enlucido de asfalto Baldosa de asfalto 12 mm				43 30 298
	Planchas 25 × 200 Planchas biseladas, con recubrimiento 13 × 200 Planchas biseladas, con recubrimiento 20 × 250 Contraplacado con recubrimiento 10 mm				112 166 215 121
	Vidrio de catedral	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			20
REVESTIMIENTO DEL SUELO	Losas de asfalto Alfombra y almoḥadillado de caucho Baldosas cerámicas Baldosas de corcho Fieltro Adobes Linóleo Soporte de contraplacado Baldosas de caucho o plástico Terrazolita Soporte de madera		1920 400 1280 544 1760 2240 512 720	2,6 0,65 17,9 3,2 5,2 10,7 1,3 0,65 10,3 7,4	426 252 12,3

		Espesor	Peso	RESIS	TENCIA R
MATERIAL	DESCRIPCIÓN	(mm)	especifico (kg/m³)	Por m de espesor	Por el espesor considerado – × 10 ⁻³
	MATERIALES AISLANTES				
COLCHÓN O	Fibra de algodón	5.80 5	13 - 32	31,0	
ALMOHADILLADO	Lana mineral fibrosa (de roca, escorias o vidrio)		24 - 64	29,8	
	Fibra de madera Fibra de madera con varias capas unidas con grapas y expandidas	7	53 - 58 24 - 32	32,2 29,8	
PANELES Y LOSAS	Fibra de vidrio	80 4	152	32,2	
	Fibra de madera o de caña Losas acústicas Revestimiento interior (Iosas, entramado, pavimento)		358 240	19,5 23,0	
	Subtejado Impregnado o enlucido		320	21,2	
	Espuma de vidrio Panel de corcho (sin aglomerante) Sedas de cerdo (aglutinante de asfalto) Espuma de plástico Virutas de madera (en paneles prefabricados)		144 104 • 128 136 26 352	20,1 29,8 24,2 27,8 14,7	
MATERIALES DE RELLENO	Papel macerado o pulpa Fibra de madera (secuoia o pino) Lana mineral (roca, escorias o vidrio) Serrin o virutas de madera Vermiculita expandida		40 - 56 32 - 56 32 - 80 128 - 240 112	28,8 26,8 26,8 17,9 16,8	
AISLAMIENTO PARA TECHUMBRES	Todos los tipos Prefabricado para utilización en subtejado	¥ .	250	22,8	
<u> </u>	AIRE				
'LÂMINA DE AIRE	Posición Flujo de calor ascendente (invierno) (verano) (verano) descendente (invierno) (verano) (veran	20 - 100 20 - 100 20 40 100 200			174 160 209 236 252 256
	lnclinación de 45° ascendente (invierno) vertical horizontal (invierno) y (verano)	20 40 100 20 - 100 20 - 100 20 - 100 20 - 100			174 191 203 185 183 199
CONVECCIÓN Aire quieto	Posición Flujo de calor horizontal ascendente inclinación 45° y vertical horizontal inclinación 45° descendente horizontal	ŽΞ			125 127 140 158 190
Viento de 29 km/h	Todas las posiciones (invierno) Todas las direcciones				35
Viento de 12 km/	Todas las posiciones (verano) Todas las direcciones				52

^{*} Incluidas las capas eventuales de papel sobre una o dos caras. Si el aislamiento delimita una lámina de aire véase tabla 31,

Anexo B: Conductividad térmica de materiales utilizados en cerramientos

	Densidad		Conductivida	d térmica)
Material	aparente (kg/m	3)	Kcal/h m °€	(W/m °C)
ROCAS NATURALES				
Rocas y terrenos			3,00	(3,50)
Rocas compactas	2.500-3	000.8	2,00	(2,33)
Rocas porosas			1,20	(1,40)
Arena con humedad natural		1 700	1,80	(2.10)
- Suelo coherente, humedad nat	ıral 1	800	0,80	(0,93)
		SAME SERVICE.	0,00	(0,,0)
- Arcila Materiales		2,100		
- Arena		1.500	0,50	(0,58)
- Grava		1.700	0,70	(0,81)
- Escoria de carbón		1.200	0,16	(0,19)
PASTAS, MORTEROS Y HORMIGO	NES	40	a7938c53	
Revestimientos continuos - Morteros de cal y bastardos		1.600	0.75	(0,87)
- Mortero de cemento		2.000	1,20	(1,40)
- Enlucido de veso		800	0,26	(0,30)
- Enlucido de yeso con perlita		570	0,16	(0,18)
Hormigones normales y ligeros		2000		100000000000000000000000000000000000000
· Hormigón armado (normal)		2.400	1,40	(1,63)
 Hormigón con áridos ligeros 			0,15	(0,17)
- Hormigón con áridos ligeros		1.000	0,28	(0,33)
- Hormigón con áridos ligeros		1.400	0,47	(0,55)
- Hormigón celular con áridos sili		600	0,29	(0,34)
- Hormigón celular con áridos sili		1000	0,58	(0,67)
 Hormigón celular con áridos sili 		1400	0,94	(1,09)
- Hormigón celular sin áridos - Hormigón en masa con grava n		305	80,0	(0,09)
con aridos ligeros		1.600	0,63	(0,73)
 con áridos ordinarios, sin vibr 		2.000	1,00	(1.16)
con áridos ordinarios, vibrado		2.400	1,40	(1,63)
- Horm, en masa con arcilla expa		500	0,10	(0,12)
- Horm, en masa con arcilla expa		1.500	0,47	(0,55)
Fábrica de bloques de hormigón	con juntas			
- con ladrillos silicocalcarios mac		1.600	0,68	(0,79)
 con ladrillos silicocalcarios perfe 		2.500	0,48	(0,56)
- con bloques agujereados de ho		1.000	0,38	(0,44)
con bloques agujereados de ho		1.200	0,42	(0,49)
- con bloques aguj ereados de ho	rmigón	1.400	0,48	(0,56)
- con bloques de hormigón celul:		600	0,30	(0,35)
- con bloques de hormigón celula		800	0,35	(0,41)
 con bloques de hormigón celula 		1.000	0,40	(0,47)
- con bloques de hormigón celula		800	0,38	(0,44)
- con bloques de hormigón celul:		1.000	0,48	(0,56)
- con bloques de hormigón celula	ar curado aire	1.200	0,60	(0,70)
Placas - Cartón - yeso		900	0,16	(0,18)
- Hormigón con fibra de madera.		450	0,07	(80.0)
- Placas de escayola		800	0,26	(0,30)
LADRILLOS Y PLAQUETAS				
- Fábrica de ladrillo macizo		1.800	0,75	(0,87)
- Fábrica de ladrillo perforado		1.600	0,65	(0,76)
- Fábrica de ladrillo hueco		1.200	0,42	(0,49)
- Plaquetas		2.000	0.90	(1,05)
CRISTAL Y METALES				
- Cristal plano para acristalar		2.500	0,82	(0,95)
- Fundición y acero		7.850	50	(58)
- Cobre		8.900	330	(384)
- Bronce		8.500	55	(64)
- Aluminio		2.700	175	(204)
MADERA				
- Maderas frondosas		800	0,18	(0,21)
- Maderas de coniferas		600	0,12	(0,14)
 Contrachapado	***************************************	600	0,12	(0,14)
- Tablón conglomerado de partícu		650	0,07	(80,0)

Fuente: (Garcia Almiñana, 2007)

PLÁSTICOS Y REVESTIMIENTOS DE SUELOS			(0.40)
- Linóleo	1.200	0,16	(0,19)
- Moquetas, alfombras	1.000	0,04	(0,05)
MATERIALES BITUMINOSOS			
- Asfalto	2.100	0,60	(070)
- Betún	1.050	0,15	(0,17)
- Lámin as bituminos as	1.100	0,16	(0,19)
MATERIALES AISLANTES TÉRMICOS			200001110000000000000000000000000000000
- Arcilla expandida	300	0,073	(0,085)
- Arcilla expandida	450	0,098	(0,114)
- Conglomerado de corcho UNE 5690	110	0,034	(0,039)
- E spuma elastomérica	60	0.029	(0,034)
- Lana de vidrio:	157670		, , , , , ,
• Tipo I	10-18	0,038	(0,044)
• Tipo II	19-30	0,032	(0,037)
• Tipo III	31-45	0,029	(0,034)
• Tipo IV	46-65	0,028	(0,033)
• Tipo V	66-90	0,028	(0,033)
• Tipo VI	75 FEBRUARY 1	7 0,031	(0,036)
- Lana mineral:	21	0,031	(0,000)
Tipo I	30-50	0.036	(0,042)
		The state of the s	
• Tipo II	51-70	0,034	(0,040)
• Tipo III	71-90	0,033	(0,038)
	91-120	0,033	(0,038)
• Tipo V		0,033	(0,038)
- Perlita expandida	130	0,040	(0,047)
- Poliestireno expandido UNE 53310:			4
• Tipo I	10	0,049	(0,057)
• Tipo II	12	0,038	(0,044)
• Tipo III	15	0,032	(0,037)
• Tipo IV	20	0,029	(0,034)
• Tipo V	25	0,028	(0,033)
- Poliestireno extrusionado	33	0,028	(0,033)
- Poliestireno reticulado	30	0,033	(0,038)
- Polisocianurado, espuma de	35	0,022	(0,026)
- Poliuretano conformado, espuma de:			900-100-100
• Tipo I	32	0,020	(0,023)
• Tipo II	35	0,020	(0,023)
• Tipo III	40	0,020	(0,023)
• Tipo IV	80	0,034	(0,040)
- Poliuretano aplicado <i>in situ</i> , espuma de:	0.652-0.65		
• Tipo I	35	0,020	(0,023)
• Tipo II	40	0,020	(0,023)
- Urea formol, espuma de	10-22	0,029	(0,034)
		0,030	(0,035)
· Urea formol, espuma de	12-14		
- Urea formol, espuma de - Vermiculita expandida	12-14	0.030	(0.035)

Anexo C: Tabla de aportaciones solares a través de vidrio sencillo.

10°	10°
0º LATITUD NORTE	HORA SOLAR
Época Orientación	6 7 8 9 10 11 12 13 14 15 16 17 18 Orientación

Época	Orientación	6	7.	8	9	10	1 周1	12	133	14	77 19 19	C-8 8	27.99	9.30	0%	। जा के के क्यांका है। के हा <i>र</i> ज
A CHARLET	F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 7	N. N.	2.0	231	10	3 No. 12	120	3433	14	15	10.5	17 %	18	李 李 和 多 名 . 元 和 .	Época
1 6 4 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	NE	51	119	135	122	119	116	111	116	119	122	135	119	5	S. SF	· 新新用户公司 4 本在 题 不明显的下述书
一种 化粉 并 可分	1. 4. 4. 5 P. 5 4. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	149	355 363	414	379 377	287	176	75 38	38	38	35	29	21	5	SE SE	· 好在台里有例如
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LE DE CONTSENSE OF PERSONS	48	132	149	116	67	38	38	38	-38	35	29	21	5	I WE NE WAS	4 6 8 6 1 A 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
21 Junio	1 0 0 1 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0	5	21	29 21	35	38	38	38	38	38	35	29	21	5	1 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 Diciemi
於 知知 大如子·	0	5	21	21	35	38	38	38	111	265	116 377	149	132. 363	146	NU S b. 6	War & had war at a
10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A STREET WOOD IN A STREET	5	21	21	35	38	48	75	176	287	379	414	355	149	* 4 * 0 * 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
4 5 7 20 70 11 11 1	Horizontal	10	119	290	450	556	631	659	631	556	450	290	119	10	· Horizontal >	不太各种強力等的
次年を開からる 京内 東部市中	在在此外中NET Y Y R K	113	344	105	360	89 295	84 151	81 59	84 38	89	94 35	105	92	13	\$ **.	4. 74.54 7.71
東京安衛引着京	E a a mark	135	366	428	385	265	1 16	38	38	38	35	29	19	2	SE E	· 医多种皮肤的 1000 (1000)
22 Julio V	1 1 1 5 5 E 2 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	70	154	179	151	86	38	38	38	38	35	29	19	2	FAT NERSON	21 Energ
21 Mayo	so so	2	19	29	35 35	38	38	38	38	38 86	151	29 179	19	70	NO **	Sec. 2 . 2 3 6 5 5 5
前以中国发生	O NO	2	19	29	35	38	38	38	116	265	385	428	364	135		21 Noviem
· 电电子 电电子	NO Horizontal	. 8	113	29 290	35	38	38	59	151	295	360	401	344	113	PARAMON NEWS	の場合を必要を対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののを対する。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。ののをがある。<li< td=""></li<>
2004	334 4 6 N 3 3 5 5	2	40	43	450	569 40	640 38	38	640 38	569	450	290	113	8	A Horizontal	教明者其此为如此
A 方 名 等 等 握 的	· 体证证 NEE 经经济。	46	306	352	301	217	92	38	38	38	35	29	19	2		
20 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	59594E ***	67	374	442	404	282	124	38	38	38	35	29	19	. 2	A N N E SA	that all the contract the said
24 Agosto	SÉ S	48	214	254	23 0 35	162 38	73	38 38	38 38	38	35 35	29 29	19	2 2	A NE	20 Febre
20 Abril	6 3 5 5 5 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2	19	29	35	38	38	38	73	162	230	254	214	48	1 * NO * *	23 Octub
3 4 4 3 7 5 7	**** NO****	2 2	19	29	35	38	38	38	124	282	404	442	374	67	0 50	23 Octub
1 . 6 4 1 4 . 3	Horizontal	5	103	29	35 452	38 577	38 656	38 678	92 656	577	301 452	352 284	306 103	46	\$0 Horizontal	e de de la partición de la par
	FRANK NEW LOW	2	16	29	35	38	38	38	38	38	35	29	16	2	2.9,150,000	1 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
and reference of a new tree of	NE. P	2 2	241 352	279	217 409	122	46	38	38	38	35	29	16	2	不对多 SE液 分海。	(1)、安徽海山一部)
Septiembre	SE SUST	2	263	344	330	287 254	127	38 57	38	38	35	29	16	2	Service Expression	r in Aranda de de de de Campara de de de de de de
y		2	16	35	51	65	73	75	73	65	51	35	16	2	NE NE	* 2 2 Marzo
22 Marzo	SO	2	16	29	35	38	38	57	151	254	330	344	263	2	NO NO	y 22 Septiem
1177436	NO	2 2	16	29 29	35 35	38	38	38 38	127	287 122	409 217	279	352 241	2	0	# \$ \$2. Septicit
n in John to Broke Standard Standard	Horizontal	2	84	263	433	561	637	669	637	561	433	263	84	2	SO Horizontal	* * * * * * * * *
9 9 1 1 9 2 1 A 2 1 A 3 C	NE STATE	0	13 157	179	35 119	38 75	38 38	38	38	38	35	27	13	0	184 165 430	BORSELES.
20 Sept. of 14 S	48 8 7 1 E . \$44.3	0	320	420	393	271	108	38	38	38	35 35	27 27	13	0	a dea Service	10 多的 6.是水熟水 第 8 点点 e 8 字中)
	Service SE	0	279	398	404	333	219	124	48	38	35	27	13	0	NE A	20 Abril
Y 333	S = 50 = 5 = 5	. 0	48 13	108	149 35	176 38	192	198	192 219	176 333	149	108 398	48 279	0	1 1 4 4 N 1 1 1 1 1 1 1 1	3 9 7 4 5 7 6 Y 6
20 Febrero	THE RESERVE OF THE PARTY OF THE	0	13	27	35	38	38	38	108	271	393	420	320	0		24 Agost
	NO Horizontal	0	13	27	35	38	38	38	38	75	119	179	157	0	2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	के के बाद्य के बार्ट एउट एक्ट किया के बार्ट एक
\$ 10 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	59 10	230	377	523 35	38	623 38	596 38	523 35	377	230	10	0	Horizontal S	BON OF STATE OF STATE
1. 3. 3 7. 3. V :	NE.	0	73	100	46	35	38	38	38	35	32	24	10	0	SE V	8 8 44 0 5 4 PM
to a constant of the	1 2 7 1 2 2 E 10 2 1 2 2 1	0	268	387	358	252	105	38	38	35	32	24	10	0	SE Y	e de la compaña
Noviembre y	केल कार्र SEशास कर स जुला इच्छा इ .स.च. स	0	268	414 176	246	396 260	295 282	189 287	84 282	46 260	32 246	24 176	10 94	0	SERNEWAY.	21 Mayo
21 Enero	so so	0	10	24	32	46	84	189	295	396	436	414	298	0	NO	X X
1. 水层等均匀 5 m 现代30 克*	, 0	0	10	24	32	35	38	38	105	252	358	387	268	0	0,	23 Julio
, , , , , , , , , , , , , , , , , , ,	NO Horizontal	0	10	24 168	32 355	35 474	38 547	38 569	38 547	35 474	46 355	100	73	0	and the state of the state of	* Walded of the
4.462	Sire News and a	0	10	24	32	35	38	38	38	35	32	24	10	0	VIG N WAN COURT	**************************************
11. May 12. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	医甲磺基苯甲甲酚 气管气	0	40	75	46	35	38	38	38	35	32	24	10	ō	SE	學·國家公司 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	F # 8 8 10 14 E 5 15 10 10 15 15	0	233	371 417	352 442	404	113 328	214	38 97	35 62	32	24	10	0	· 这一家 我事一年 子。	新 法 如母 有 多 不 多
Diciembre	S	0	135	200	254	295	314	325	314	295	254	200	135	0	1日本下降,如此一	21 junio
Salak C	A STATE OF STREET	0	10	24	32	62	97	214	328	404	442	417	268	0	NO	
44445	O NO	0	10	24	32	35 35	38 38	38	113	246 35	352	371	233	0	24, 10, 0, 10, 10, 10	" The a home & h
. M. J. J. M.	-> Horizontal ->	ő	38	179	325	452	523	547	523	452	325	75 179	38	0		
8	Marco metálico	T	Da	fecto (do		Α	ltitud								
Correcciones	o ningún marco			mpieza		4		por 30	00 m			de roc a 19,5			unto de rocio erior a 19,5º C	Latitud sur Dic. o ener
	× 1/0,85 6 1,17			% má								por 10			14 % por 10° C	+ 7 %

Valores encuadrados-máximos anuales

Fuente: (Carrier Air, 1980)

20°

	TUD NORTE	42. 35. 3	1	L.			13.0	4 SOL	1 30	100		1 2 2	* N. J.	7 8 4	Ge J	TITUD SUR
Época	Orientación	6	17	8	9	10	11	12	13	14	15	16	17	18	Orientación	Época
	N	76	111	90	68	51	46	40	46	51	67	90	111	75	S	
	NE E	219	417	390 434	330 387	225	103	40 38	38	38	38 38	32 32	24	8	SÉ E	
1111	SE .	75	168	198	179	119	57	38	38	38	38	32	24	8	NE	
21 Junio	S SO	8 8	24	32 32	38 38	38 38	38	38	38 57	38 119	38 179	32 198	168	8 75	N	22 Diciembre
free en e	0	8	24	32	38	38	38	38	111	260	387	434	401	220	NO 0	
+ 3 + 1 + 1	NO	8	24	32	38	38	38	40	103	225	330	390	417	220	SÓ	11.9
	Horizontal	30	162 75	328 62	477	585	629 38	678 38	629 38	585	477	328 62	162 75	30 54	Horizontal S	2 1 11 11 11 11 11 11 11
	NE NE	192	358	374	301	198	84	38	38	38	35	32	21	8	SE	
00 1 1	SE SE	203	401	442	393	268	124	38	38	38	35	32	21	8	E	711362
22 Julio	2 S	84	189	230 32	214 35	154 38	78 38	38	38 38	38 38	35 35	32 32	21	8	NE N	21 Enero
21 Mayo	SO	8	21	32	35	38	38	38	78	154	214	230	189	84	NO	21 Noviembr
	0 0	8	21	32 32	35 35	38 38	38 38	38	124 84	268 198	393	374	401 358	203 192	0 \$0	
	Horizontal	8	149	320	474	585	650	680	650	585	474	320	149	8	Horizontal	
1	N ·	16	27	29	35	38	38	38	38	38	35	29	27	16	S :	# 8 m / 10 / 10 F
	NE E	122	301	320 447	241 404	135 287	138	38	38	38 38	35 35	29 29	19	5	SE E	
24 Agosto	SE	78	241	306	292	265	149	54	38	38	35	29	19	5	NE	20 Febrero
У	S SO	5	19	29	38	54	65	70	65	54	38	29	19	5	N	20 Teblero
20 Abril	0	5	19	29	35	38	38	54 38	149	265 287	292 404	306 447	241 385	78 143	NO O	23 Octubre
	NO	5	19	29	35	38	38	38	48	135	241	320	301	122	SO	
<i>i</i>	Horizontal N	13	130	290	452	569	637	669	637	569	452	290	130	13	Horizontal	
	NE .	0	16 225	235	35 160	38 59	38	38	38	38	35 35	29 29	16	0	SE SE	
	E	0	352	442	404	282	122	38	38	38	35	29	16	0	E	
22 Septiembre	SE S	0	268	368 59	379 103	325 141	227 170	111	172	38 141	35 103	29 59	16 21	0	NE N	22 Marzo
22 Marzo	SO.	0	16	29	35	38	40	111	227	325	379	368	268	o	NO	22 Contiamb
ZZ WaiZO	0 10	0	16	29	35	38	38	38	122	282	404	442	352	0	0	22 Septiemb
	Horizontal	0	16 81	29 252	35 414	38 537	610	38 631	38 610	59 537	160 414	235 252	225 81	0	SO Horizontal	
67.	N	0	10	24	32	35	38	-38	38	35	32	24	10	0	5	
4	NE E	0	119	398	78 382	35 271	38 132	38 38	38 38	35 35	32 32	24 24	10	0	SE E	
23 Octubre	SE	0	246	396	433	404	322	200	73	35	32	24	10	0	NE NE	20 Abril
У	5	0	57	135	206	252	287	301	287	252	206	135	57	0	N.	Υ.
20 Febrero	SO 0	0	10	24	32 32	35 35	73 38	200°	322 132	404 271	433 382	396	246 268	0	NO 0	24 Agosto
	NO NO	0	10	24	32	35	38	38	38	35	78	398 141	119	0	so	
tala i _{ste} ky	Horizontal	0	48	184	344	463	531	564	531	463	344	184	48	0	Horizontal	5 M T T E S
	N NE	0	65	21 70	29 38	35 35	35 35	35 35	35 35	35 35	29	21	8	.0	S SE	
	E	0	192	347	344	246	116	35	35	35	29	21	8	0	E	
21 Noviembre	SE S	0	198 75	390 187	271	428 333	366 368	246 382	124 368	43 333	29 271	21 187	8 75	0	NE N	21 Mayo
21 Enero	so	0	8	21	29	43	124	246	366	428	444	390	198	0	NO	23 Julio
ZI Ellelo	0	0	8	21	29	32	35	35	116	246	344	347	192	0	0	
	NO Horizontal	0	13	21 130	29	32	35 466	35 488	35 466	35 396	38 273	70 130	65 13	0	50 Horizontal	
7 4 4 7 4	N	0	5	19	29	32	35	35	35	32	29	19	5	0	S	Propression
	NE	0	38	48	32	32	35	35	35	32	29	19	5	0	SE	
	SE SE	0	151	320	328	230 431	92 363	35 263	35 162	32 54	29	19	5	0	E NE	
22 Diciembre	S	0	67	200	452 301	358	396	404	396	358	301	200	67	0	N N	21 Junio
	so	0	5	19	29	54	162	263	363	431	452	377	160	0	NÔ	
	0 N0	0	5	19 19	29 29	32	35 35	35 35	92 35	230 32	328	320 48	151	0	0 50	
	Horizontal	0	10	97	249	366	436	461	436	366	249	97	10	0	Horizontal	
* 3 . 4 . 10	1 , 1 g - 1 ,	-		 		1								-		7 7 7 7
Correcciones	Marco metálico			fecto				titud	e L			de roc			unto de rocio	Latitud sur
Contactioned	o ningún marco × 1/0,85 ó 1,17			mpiez		+	0,7 %	por 30	00 m			a 19,5			perior a 19,5° C	Dic. o enero
	^ 1/0,00 0 1,17		1 15	% m	ax.	1				_	14 %	por 10) · C	+	14 % por 10° C	+7%

Valores subrayados-máximos mensuales

Valores encuadrados-máximos anuales

. 0º LATE	TUD NORTE	133				10	HORA	SOL	AR	113	100	410		10	0° 4.4	TITUD SUR
Época	Orientación	4.	7	8	. 0	10	-11	12	13	14	15	16	17	10	Orienteción	Época
	н	87	54	32	35	38	36	38	38	78	35	32	54	86	151	
	NE E	320	360 436	303 439	198	257	119	38	38	38	35	32	27	16	SE	11.
	5E	138	238	295	301	268	192	92	28	38	15	32	27	16	NE	45.00
21 Junio	50	16	27	32	51 35	38	119	92	119	94	51	32	27	16	N N	22 Diciembre
	0	16	27	32	35	38	38	38	119	258	385	439	238 426	138	NO .	1 - 1
- 1	NO Horizontal	84	272	363	35	38 569	629	28	38	81	198	303	360	320	50	
37324411	N N	65	38	32	35	38	38	39	38	38	35	363	38	65	Horizontal	
	HE	287 328	344 436	284	179	70	38	38	38	38	35	32	27	13	SE	
22 Julio	SE	146	260	322	390	265	222	113	38	38	35	32	27	13	NE NE	
7	5'	13	27	35 32	70 33	119	170	187	170	119	70	35	27	13	N-	21 Enero
21 Mayo	0	13	27	12	35	36	38	T13	116	265	339	322	260 436	320	NO ,	21 Noviember
1 2 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1	MO	13	27	32	35	38	38	38	38	70	179	284	344	287	50	31 TO 1
	Horizontal	19	198	20	463	350	38	631	38	38	35	241	198	-45	Horizontal	Dear Ga
11,770	HÉ +	184	.276	222	124	42	18	36	38	38	35	29	-21	19	SE	1 - 11 11
	E SE	130	394	437	393	273	122	36	38	36	35	29	21	. 8	THE ENGLISH	314375
24 Agosto		130	284	374 65	138	377 241	290 263	179	263	38 241	35 138	29 65	21 21	8	NE N	20 Febrero
20 Abril	50	8	21	29	35	28	67	179	290	377	396	374	284	130	, NO	23 Octubre
41.20	NO NO	8	21	29	35	38	38	38	122	273	393 124	429 222	398 276	227 184	O SD	
	Horizontal	24	127	271	406	501	555	580	556	501	406	271	127	24	Horizontal	
100-101	N NE	-0	138	157	32 70	35 35	35	36	35	35	32	24	13	0 0	SE	1-10-17
	E	.0	314	414	377	268	122	38	35	35	32	24	ti.	0	. E	** + -
22 Septiembre	SE	0	37	390	219	475 298	369	244 379	111	38	219	119	13	0	NE N	22 Marzer
22 Mereo	50	0	13	24	32	38	111	744	360	425	439	390	257	0	NO	у .
	. 0	0	13	24	32	35	35	38	122	266	377	464	314	0	0	.22 Septiembre
41	Horizontal	0	57	181	32	614	35 477	38 496	25 477	414	336	157	138	0	50 Horizontal	2000
1.5	H	0	.5	16	27	29	32	32	32	29	27	16	5	0	. 5	Taran II
	E	0	230	317	330	29	32 185	32	32	29	27	16	5	0	SE .	100
23 Octubre	SE.	0	219	358	326	442	350	290	170	54	27	16	5	0	HE	20 Abril
W X 17	50	0	57	160	202	371 54	170	290	417 390	371	336	16D 358	219	. 6	H NO	Y
20 Februro	0	0	5	16	27	29	32	32	105	238	310	317	230	0	0	24 Agosto
	Hodzontal .	0	5 21	78	173	29 273	32	349	333	29	173	89 78	94	0	SO Honzontal	11 THE T.
	N	0	0	3	19	24	27	29	27	24	19	8	0	0	Honzonsai	-
1150011	NE .	0	0	32 246	19	24 200	27	29	27	24	19	8	0	0	SE .	
21 Noviembre	se	- 6	D	295	390	423	390	314	189	73	19	8	0	0	NE	21 Mayo
y	\$ \$0	0	0	160	2 02	377	426 189	450 314	426 390	377 423	282 390	160 295	0	0	N.	Y
21 Enero	0 / /	0	0	8	19	74	27	29	89	200	271	246	0	0	0 О	23 Julio
100	Horizontal	0	0	43	116	198	27 749	279	27	198	116	43	0	0	50 Horizontal	
Charact.	N	. 0	0	5	16	24	27	27	27	24	16	3	0	0	e s	
14.1	ALC: NO	0	0	19	233	184	27	27	27 .	24	16	5	0	0	58	2000-200
- P- 1 1 1 1 1 1	SÈ .	0	0	238	363	401	385	311	198	81	16	5	0	0	NE.	H
22 Diciembre	2544 6 400	0	0	138	768 19	363	428	447	426	363	268	138	0	0	W. Harris	21 Junto
10.00	50		0	5	16	24	198	27	385 84	401	233	236 196	0	0	МО ОК	1.00
13.000	NO	0	0	5	16	24	27	27	27	24	16	19	0	0	50	
STATE OF LEEP	Horizontal	a	. 0	21	86	149	206	220	206	149	85	21	e	0	Horizontal	21 11 11 11 11
Correcciones	Marco metálico o ningán marco			efecto impiez		+ 0.7	Altin	ud or 300	_		nto de		c T		o de recio or a 19,6 °C	Latitud sur Dic. o Enero

Fuente: (Carrier Air, 1980)

Anexo D: Tabla de las máximas aportaciones solares a través de cristal sencillo

TABLA 6. MÁXIMAS APORTACIONES SOLARES A TRAVÉS DE CRISTAL SENCILLO* kcal/ (hora) (m²)

LATITUD		y, 54 of 8	The second	ORIE	NTACIÓN	(LATIT	UD NO	RTE)				LATITU
NORTE	MES	Ν	NE	E	SE	S	so	0	МО	Horiz.	MES	SUR
	Junio	160	423	398	113	38	113	398	423	612	Diciembre	
But the second	Julio y Mayo	130	414	412	141	38	141	412	414	631	Nov. y Enero	
ted to see the	Agosto v Abril	67	382	442	214	38	214		382	664	Oct. v Febrero	- 00
00	Sept. y Marzo	27	320	452	320	38	320	452	320	678	Sept. y Marzo	, O'
	Oct. y Febrero	27	214	442	382	92	382	442	214	664	Agosto y Abril	
45 11 11 11 11	Nov. y Enero	27	141	412	414	181	414	412	141	631	Julio y Mayo	
	Diciembre	27	113	398	423	222	423		113	612	Junio	a di
	Junio	108	414	420	149	38	149	420	414	659	Diclembre	
	Julio y Mayo	81	401	428	179	38	179	428	401	669	Nov. y Enero	95.11
1.2.2	Agosto y Abril	35	352	442	254	38	254	442	352	678	Oct. y Febrero	
10°	Sept. y Marzo	27	279	444	344	75	344	444	279	669	Sept. y Marzo	10
	Oct. y Febrero	27	179	420	404	198	404	420	179	623	Agosto y Abril	
ere pro-	Nov. y Enero	24	100	387	436	287	273	387	100	569	Julio y Mayo .	
A 9 4 8	Diciembre	24	75	371	,442	324	442	37-1	75	547	Junio	1
2	Junio	70	417	433	198	38	198	433	417	678	Diciembre	The same of the
20 (0)	Julio y Mayo	51	374.	442	230	38	230	442	374	680	Nov. y Enero	-
000	Agosto y Abril	29	320	447	306	70	306	447	320	669	Oct. y Febrero	
20°	Sept. y Marzo	27	235	442	379	176	379	442	235	631	Sept. y Marzo	20
894	Oct: y Febrero	24	141	398	433	301	433	398	141	564	Agosto y Abril	
8	Nov. y Enero Dictembre	21	70 48	347 328	444 452	382	444	347 328	70 48	488 461	Julio y Mayo Junio	
	Junio	54	377	-	244	57	244	436	-	-		
16 98 55	Julio y Mayo	43	355	436	271	81	271	444	377	678	Diciembre	
	Agosto y Abril	29	292	444	349	170	349	444	355	667	Nov. y Enero	
30°	Sept. v Marzo	24	244	447 428	412	284	412	447	292	637 574	Oct. y Febrero Sept. y Marzo	30
30	Oct. y Febrero	21	105	366	442	393	442	366	105	485	Agosto y Abril	30
	Nov. y Enero	19	43	314	439	431	439	314	43	393	Julio y Mayo	
	Diciembre	16	32	284	439	442	439	284	32	355	Junio	
1.0	Junio	46	360	439	30 1	146	301	439	360	642	Diciembre	1
	Julio y Mayo	40	344	444	339	187	339	444	344	631	Nov. y Enero	200
100.20	Agosto y Abril	29	276	439	395	276	396	439	276	580	Oct. y Febrero	
40°	Sept. y Marzo	24	157	404	439	379	439	404	157	496	Sept. y Marzo	40
18 8	Oct. y Febrero	19	94	330	442	439	442	330	94	349	Agosto y Abril	1
	Nov. y Enero	13	32	271	423	450	423	271	32	279	Julio y Mayo	
3	Diclembre	13	27	233	401	447	401	233	27	230	Junio	
1.0	Junio'	43	341	444	366	252	366	444	341	596	Diciembre	1
11 11	Julio y Mayo	38	317	442	387	287	387	442	317	572	Nov. y Enero	
F00	Agosto y Abril	. 29	254	428	425	374	425	428	254	501	Oct. y Febrero	
50°	Sept. y Marzo	21	157	374	442	428	442	374	157	401	Sept. y Marzo	50
9 1	Oct. y Febrero	13	78	284	425	452	425	284	78	254	Agosto y Abril	
- 4	Nov. y Enero Diciembre	10 8	19	173 127	344 314	414 382	344	173 127	24 19	143	Julio y Mayo Junio	18
	Dictembre		2000		314		314	127	19	108	Julio	
		S	SE	E.	NĒ	N	NO	0	SO	Horiz,	1 T T	
9 (1) (1) (4)		1 .		ORIEN	TACIÓN	(LATITU	JD SU	R)			1	
Coeficient	e de Marco me	tálico	Limp	idez		Altitud		Punto de	rania	Punto	de rocio La	titud Sur
correcci			- 15 %		107		· ·	Control of the Contro		AND THE PERSON NAMED IN		
·			- 10 %	max.	+ 0,7	% por 30	JU M	superior a				c. o Enero
	× 1/0,85 ó	1.17			1			- 5 % pc	r 10 C	1 + 5 %	por 14° C	+ 7 %

^{*} Valores extraídos de la Tabla 15.

Fuente: (Carrier Air, 1980).

^{**} Las aportaciones para los cristales orientados al norte (Latitud Norte) o al sur (Latitud Sur) se constituyen principalmente de radiación difundida, la cual es sensiblemente constante durante todo el día. Los valores indicados son promedios tomados sobre 12 horas (de 6 a 18 horas). Los factores de almacenamiento en las Tablas 7 hasta 11 suponen que las aportaciones solares sobre orientaciones Norte (o Sur) son constantes, y se emplean en consecuencia los mismos factores que para el valor lumínico.

Anexo E: Tabla de correcciones de las diferencia equivalentes de temperatura

Temperatura exterior a las 15 h para el mes considerado menos					١.	VARIA	CIÓN	DE LA	TEMP	ERATU	RA EX	TERIOR	EN 2	4 h				
temperatura interior	5	6	7	- 8	9	-10	11	12	13	14	15	16	17	18	19	20	21	22
- 16 - 12	·21,2	-21,7 -17,7	-22,3 -18,3	-22,8 -18,8	-23,3 -19,3	-23,8 -19,8 -15,8	-24,2 -20,2 -16,2	-24,7 -20,7 -16,7	-25, 1 -21, 1 -17, 1	-25,6 -21,6 -17,6	-26,0 -22,0 -18,0	-26,5 -22,5 -18,5	-27,0 -23,0 -19,0	-27,4 -23,4 -19,4	-27,9 -23,9 -19,9	-28,8 -24,8 -20,8	-29,3 -25,3 -21.3	-29,8 -25,8 -21,8
• 8 • 4	-13,2 - 9,2 - 5,0	- 13,7 - 9,7 - 5,5	-14,3 -10,3 - 6,1	-14,8 -10,8 - 6,6	-15,3 -11,3 - 7,1	-11,8 - 7,6	-12,2 - 8,0	-12,7 - 8,5	- 13, 1 - 8,9	-13,6	-14,0	-14,5 -10,3	-15,0 -10,8	-15,4 -11,2	-15,9 -11,7 - 9,8	-16,8 -12,6 -10,6	-17,3 -13,1	-17,8 -13,6 -11,7
+ 2 + 4 + 6	- 3, 1 - 1, 1 0,8	· 3,6 · 1,6 0,3	· 4,2 · 2,2 · 0,3	- 4,7 - 2,7 - 0,8	- 5,2 - 3,2 - 1,3	- 5,6 - 3,6 - 1,7	- 6, 1 - 4, 1 - 2,2	- 6,6 - 4,6 - 2,7	- 7,0 - 5,0 - 3,1	- 5,5	- 7,9 - 5,9 - 4,0	- 8,4 - 6,4 - 4,5	- 8,9 - 6,9 - 5,0	- 9,3 - 7,3 - 5,4	- 7,8 - 5,9	- 8,6 - 6,7	- 9,1 - 7,2	- 9,7 - 7,8
+ 8 + 10 + 12	2,8 4,7 6,8	2,3 4,2 6,3	1,7 3,6 5,7	1,2 3,1 5,2	0,7 2,6 4,7	0,3 2,2 4,3	1,7 3,8	- 0,7 1,2 3,3	- 1,1 0,8 2,9	- 1,6 0,3 2,4	- 2,0 - 0,1 1,8	- 2,5 - 0,6 1,3	- 3,0 - 1,1 0,8	- 3,4 - 1,5 0,4	3,9 - 2,0 - 0,1	- 4,7 - 2,8 - 0,7	- 5,2 - 3,3 - 1,2	- 5,8 - 3,9 - 1,8
+14 +16 +18	8,8 10,8 12,8	8,3 10,3 12,3	7,7 9,7 11,7	7,2 9,2 11,2	6,7 8,7 10,7	6,3 8,3 10,3	5,8 7,8 9,8	5,3 7,3 9,3	4,9 6,9 8,9	6,4 8,4	3,8 5,8 7,8	3,3 5,3 7,3	2,8 4,8 6,8	2,4 4,4 6,4	1,9 3,9 5,9	1,3 3,3 5,3	0,8 2,8 4,8	0,2 2,2 4,2
+20 +22	14,8 16,9	· 14,3 16,4	13,7 15,8	13, 2 15, 3	12,7 14,8	12,3 14,4	11,8	11,3	10,9 13,0	10,4 12,5	9,8 11,9	9,3 11,4	8,8 10,9	8,4 10,5	7,9 10,0	7,3 9,4	6,8 8,9	8,3

Fuente: (Carrier Air, 1980).

Anexo F: Tabla de correcciones de las condiciones de proyecto en función del mes considerado.

INTERVALO DE VARIACIÓN	TEMPERATURA SECA		OHOIG		4 4 5	MES	2.27		5 1 1 W	19 1
ANUAL DE TEMPERATURA (°C)*	O HUMEDA (°C)	Marzo	" Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre
65	Sĕca Húmeda	-19,0 -11,1	-12,0 - 5,5	- 6,1 - 2,8	· 2,5	0	0	- 4,9 - 2,0	-12,2 - 5,9	-22,0 -13,0
60	Seca Húmeda	-16,5 - 8,3	-11,0 - 5,5	- 6,1 - 2,8	. 2,1 . 1,1	0	0	- 3,6 - 1,7	- 9,3 - 4,4	-16,5 - 8,9
55	Seca Húmeda	-16,0 - 7,8	-10,5 - 5,5	- 6,0 - 2,8	- 1,8 - 1,1	0	0	- 3,6 - 1,7	- 9,0 - 4,4	-15,0 - 7,8
50	Seca Húmeda	-16,0 - 7,8	-10,5 - 5,5	- 5,0 - 2,8	- 1,8 - 1,1	0	0	- 3,6 - 1,7	- 9,0 - 4,4	-14,5 - 7,8
45	Seca Húmeda	-14,0 - 7,3	- 9,2 - 5,1	- 4,5 - 2,8	- 1,8 - 1,1	0	0	- 3,6 - 1,1	- 6,9 - 3,4	-11,5 - 6,4
40	Seca Húmeda	- 7,8 - 3,9	- 5,5 - 2,7	- 2,5 - 2,3	- 0,5 0	0	0	- 2,5 - 0,5	- 4,1 - 2,3	- 8,2 - 3,9
35	12 12 15 15 15 15 15 15 15 15 15 15 15 15 15	- 5,5 - 2,4	- 4,0 - 1,8	- 1,7 - 1,1	- 0,5 0	0	0	- 1,1 - 0,5	- 3,0 - 1,9	- 6,2 - 3,0
	Seca Humeda	- 3,7 - 1,9	- 2,8	- 1,7 - 0,8	• 0,5 0	0	0	- 1,1 - 0,5	- 2,5 - 1,4	- 4,5 - 2,4
25	Seca	- 1,5 - 1,3	- 1,1 - 1,0	- 1,0 - 0,4	• 0,5 0	0	0	- 1,1 - 0,5	- 1,9 - 1,0	- 3,2 - 1,2

[•] La oscilación anual de temperaturas es la diferencia entre temperaturas secas de proyecto normales en invierno y verano (Tabla 1).

Ecuación: Temperatura de ambiente exterior de proyecto = Temperatura del ambiente exterior de la Tabla I + correcciones de la Tabla 3.

Fuente: (Carrier Air, 1980).

Anexo G: Diferencia equivalente de temperatura

	F1 1						14	- 50	1			- "	HORA	SO	LAR -				0 4	- 1	1.20	1 14		12.4	3 1 8	
34.0	4	. 5			MAÑ	ANA	1				11.		67	TA	RDE	7.3		44				MA	NAN	Α	1	
and decorate to		6	7	. 8	9	10	11	12	13.	-14	15	. 16	17	16	19	20	21	22	23	24	1	2	3	4	5	
N en la sombra	100 300 500 700	-1,7 -1,7 0,5 0,5	-1,7 -1,7 0,5 0,5	· 2,2 · 2,2 · 0	- 1,7 - 1,7 0 0	- 1, 1 - 1, 1 0	0,5 -0,5 6	2, 2 0 0 0	4,4 1,7 0,5 0	5,5 3,3 1,1 0	6,7 4,4 1,7 0,5	7,8 5,5 2,2 1,1	7,2 6,1 2,8 1,7	6,7 6,7 2,8 2,2	5,5 6,7 2,8 2,8	4,4 6,7 4,4 3,3	3,3 5,5 3,9 3,9	2,2 4,4 3,3 4,4	1, 1 3, 3 2, 8 3, 9	2,2 2,2 3,3	0 1,1 1,7 2,2	-0,5 0,5 1,7 1,7	-0,5 0 1,1 1,1	-1,1 -0,5 1,1 1,1	-1,1 -1,1 0,5 0,5	5
NO	100 300 500 700	-1,7 -1,1 2,8 4,4	·2,2 ·1,7 2,2 3,9	- 2,2 - 2,2 2,2 3,3	-1,1 -1,7 2,2 3,3	0 - 1, 1 2,2 3,3	1,7 0 2,2 3,3	3,3 1,1 2,2 3,3	5,5 3,3 2,2 3,3	6,7 4,4 2,2 3,3	10,6 5,5 2,8 3,3	13,3 6,7 3,3 3,3	18,3 11,7 5,0 3,9	22,2 16,7 6,7 4,4	20,6 17,2 9,4 5,0	18,9 17,8 11,1 5,5	19,0 11,7 11,7 7,8	3,3 6,7 12,2 10,0	2,2 4,4 7,8 10,6	1,1 3,3 4,4 11,1	0 2,2 3,9 8,9	-0,5 1,7 3,9 7,2	-0,5 0,5 3,3 6,1	-1,1 0 3,3 5,5	-1,1 -0,5 2,8 5,0	5
0	100 300 500 700	-1, 1 1, 1 3, 9 6, 7	-1,7 0,5 3,9 6,1	. 2,2 Q 3,3 5,5	· 1,1 0 3,3 5,0	0 0 3,3 4,4	1,7 1,1 3,3 4,4	3,3 2,2 3,3 4,4	7,8 3,9 3,9 5,0	11,1 5,5 4,4 5,5	17.8 10.6 5.5 5.5	22 ₁ 2 14 ₁ 4 6.7 5.5	25,0 18,9 9,4 6,1	26,7 22,2 11,1 6,7	18,9 22,8 13,9 7,8	12,2 20,0 15,6 8,9	7,8 15,6 15,0 11,7	4,4 8,9 14,4 12,2	2,8 5,5 10,6 12,8	1, 1 3, 3 7, 8 12, 2	0,\$ 2,8 6,7 11,1	0 2,2 5,1 10,0	0 1,7 5,5 8,9	0,5 1,7 5,0 8,3	-0,5 1,1 4,4 7,2	C
so	100 300 500 700	-1, 1 1, 1 3, 9 4, 4	·2,2 0,5 2,8 4,4	· 2,2 ·0 3,3 4,4	-1; 1 0 2,8 4,4	0 0 2,2 4,4	2,2 0,5 2,8 3,9	3,3 1,1 3,3 3,3	10,6 4,4 3,9 3,3	14,4 6,7 4,4 3,3	18,9 13,3 6,7 3,9	22,2 17,8 7,8 4,4	22,8 19,4 10,6 5,0	23,3 20,0 12,2 5.5	16,7 19,4 12,8 8,3	13,3 18,9 13,3 10,0	6,7 11,1 12,8 10,6	3,3 5.5 12,2 11,1	2,2 3,9 8,3 7,2	1, 1 3,3 5,5 4,4	0,5 2,8 5,5 4,4	0,5 2,2 5,0 4,4	2,2 5,0 4,4	-0,5 1,7 4,4 4,4	-0,5 1,7 3,9 4,4	N
s	100 300 500 700	-0, 5 -0, 5 2, 2 3, 9	-1,1 -1,7 2,2 3,3	· 2, 2 · 2, 2 · 1, 1 · 3, 3	0,5 -1,7 1,1 2,8	2,2 - 1,1 1,1 2,2	7.8 3,9 1,7 2,2	12,2 6,7 2,2 2,2	15,0 11,1 4,4 2,2	16,7 13,3 6,7 2,2	15,6 13,9 8,3 3,9	14,4 14,4 8,9 5,5	11, 1 12, 8 10, 0 7, 2	8,9 11,1 10,0 7,8	6,7 8,3 8,3 8,3	5.5 6,7 7.8 8,9	3,9 5,5 6,1 8,9	3,3 4,4 5,5 7,8	1,7 3,3 5,0 6,7	1, 1 2, 2 4, 4 5, 5	0,5 1,1 4,4 5,5	0,5 0,5 3,9 5,0	0 0,5 3,3 5,0	0 3,3 4,4	-0,5 -0,5 2,8 3,9	*
SE	100 300 500 700	5, 5 0, 5 3, 9 5, 0	3,3 0,5 3,9 4,4	7,2 0 3,3 4,4	10,6 7,2 3,3 4,4	14,4 11,1 3,3 4,4	15,0 13,3 6,1 3,9	15,6 15,6 8.9 3,3	14,4 14,4 9,4 6,1	13,3 13,9 10,0 7,8	10,6 11,7 10,6 8,3	8,9 10,0 10,0 8,9	8,3 9,4 10,0	7,8 7,8 7,8 8,9	6,7 7,2 7,2 8,3	5,5 6,7 6,7 7,8	4,4 6,1 6,1 7,2	3.3 5.5 5.5 6.7	2,2 4,4 5,5 6,7	1, 1 3, 3 5, 5 6, 7	0 2,8 5,0 6,1	-0.5 2,2 5,0 6,1	-0,5 1,7 4,4 5,5	-1,1 1,7 -4,4 5,5	-1,1 1,1 3,9 5,0	N
ε	100 300 500 700	0,5 -0,5 2,8 6,1	9,4 -0,5 2,8 5,5	16,7 0 3,3 5.5	18,3 11,7 4,4 5,0	20,0 16.7 7,8 4,4	19,4 17,2 11,1 5,0	17,8 17,2 13,3 5,5	11, 1 10, 6 13, 9 8, 3	6,7 7,8 13,3 10,0	7,2 7,2 11,1 10,6	7,8 6,7 10,0 10,0	7,8 7,2 8,9 9,4	7,8 7,8 7,8 8,9	6,7 7,2 7,8 7,8	5,5 6.7 7,8 6.7	4,4 6,1 7,2 7,2	3,3 5,5 6,7 7,8	2,2 4,4 6,1 7,8	1, 1 2,8 5,5 7,8	0 2,2 5,0 7,2	-0,5 1,7 4,4 7,2	-1,1 0,5 3,9 6,7	-1,7 0,5 3,9 6,7-	-1,7 0 3,3 6,7	E
NE	100 300 560 700	2,8 0,5 2,2 2,8	8,3 -1,1 1,7 2,8	12, 2 - 1, 1 2, 2 3, 3	12,8 2,8 2,2 3,3	13,3 13,3 2,2 3,3	10,6 12,2 5,5 3,3	7,8 11,1 8,9 3,3	7,2 8,3 8,3 5,5	6,7 5,5 7,8 7,8	7,2 6,1 6,7 8,9	7,8 6,7 5,5 7,8	7,8 7,2 6.1 6.7	7,8 7,8 4,7 5,5	6,7 7,2 6,7 5,5	5,5 6,7 6,7 5,5	4,4 6,1 6,1 5,5	3,3 5,5 5,5 5,5	2,2 4,4 5,0 5,5	1, 1 3,3 4,4 5,5	0 2,2 3,9 5,0	-1,1 1,1 3,3 5,0	-1,7 0,5 3,3 4,4	-2,2 0 2,8 3,9	-1, 1 -0, 5 2, 8 3, 9	5
	(kg/m²)	6	7	8	9	10	ii	12	13	14	15	16	17	18	19	20	21,	22	23	24	, i	2	3	-	5	S
RIENTACIÓN	DEL				ANA	NA.	1.	1 2	211	-4		- 4	., .	TAR	DE	P 5	nf	1	4	13	* .	M	ANA	NA"	3 60	

ORIENTACIONE	PESO(*** (kg por m²	10 1 4 K	44	ALK.	41		9 A4	ege de	क का ± • टिंग	800		н	ORA.	JE 9 .	4 4 0	18, 18	7 5 4	wat to	4	A	10 m o	1 12 1 20 1 21 2 21 2	7 87 4 40	\$ £ \$/	1 10 5 11	ORIENTACIÓI
்சு உத்த தேற்று	de superf de suelo)	2 1	6.5	12 stV	IAN/	NA.	10.9	As 15:3	. 38, ×	3 5		22 6	3 %	TAI	RDE	17 18 1 12 19 1	A 8 13	PK. 3	A COL	* 4 3	3.4	MAN	VAN.	4	2	(Latitud Sur)
	Jan 2 11	0.6	. 7	8	9	10	11	12	30, "	14	15	16	17	18	120	20 -	1.55	230	23	24	41%	2	3	4	5	1000000
	750 y más 500 150	0,48	0,00	0,5/	0,40	0,30	0,24	0,20	U, 19	0, 17	0, 16	0,15	0,13	0.11	0.08	0.07	0.06	0.05	0.05	0.04	0,05 0,04 0	0,04 0,03 0	0,04 0,03 0	0,04	0,03 0,02 0	\$E
. E.,	750 y más 500 150	10,40	0,30	0,00	0,00	0,49 0,52 0,64	0,33	0,24	0,22	0,20	10,18	U. 10	10,14	10.12	10.09	10.08	10.07	10.06	10.05	10.05	0,05 0,04 0	0,05 0,04 0	0,05 0,03 0	0,04	0,04	W12 4 2 1 2 3
A Mark of the design	750 y más 500 150					0,64 0,67 0,84															0,07 0,05 0	0,06 0,05	0,06 0,04 0	0,05	0,03	NE
3 at a 2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	750 y más 500 150	0,04	0,04	0,22	0,38	V,52	0,03	0,70	0,71	0,69	0,59	0,45	0,26	0,22	0, 18	0,16	0.13	0.12	0.10	0.09	0.08	0.07	0,08 0,06 0	0,07 0,06 0	0,07 0,05 0	N.
然在"小罐"在食物 原作 1 1 1 1 1 1 1 1 1 1 1 1	160	0,03	0,04	0,06	0,07	0,09	0,23	0,47	0,67	0,81	0,86	0,79	0,60	0,26	0, 17	0, 17	0,13	0,05	0,04	0,10	0,09	0,08	0,07	0,06	0,05	3 10 p. c. 6 14 2
																										* * * * * * * * * * * * * * * * * * *
NO N	750 y más 500 150	0,08 0,07 0,03	0,09 0,08 0,05	0,10 0,09 0,07	0,10 0,09 0,08	0, 10 0, 10 0,09	0, 10 0, 10 0,09	0, 10 0, 10 0, 10	0, 10 0, 10 0, 10	0, 16 0, 16 0, 17	0,33 0,34 0,39	0,49 0,52 0,63	0,61 0,65 0,80	0,60 0,64 0,79	0, 19 0, 23 0, 28	0, 17 0, 18 0, 18	0, 15 0, 15 0, 12	0, 13 0, 12 0,09	0,12 0,11 0,06	0,10 0,09 0,04	0,09 0,08 0,03	0,08 0,07 0,02	0,08 0.06 0,02	0,07 0,06 0,01	0,06 0,05 0	SO.
y sombra	750 y más 500 150	0,08 0,06 0	0,37 0,31 0,25	0,67 0,67 0,74	0,71 0,72 0,83	0,74 0,76 0,88	0,76 0,79 0,91	0,79 0,81 0,94	0,81 0,83 0,96	0,83 0,85 0,96	0,84 0,87 0,98	0,86 0,88 0,98	0,87 0,90 0,99	0,88 0,91 0,99	0,29 0,30 0,26	0,26 0,26 0,17	0,23 0,22 0,12	0,20 0,19 0,08	0, 19 0, 16 0,05	0, 17 0, 15 0,04	0, 15 0, 13 0,03	0, 14 0, 12 0,02	0, 12 0, 10 0,01	0,11 0,09 0,01	0,10 0,08 0,01	S y sombra

Fuente: (Carrier Air, 1980).

Anexo H: Espesor (mm) según la temperatura del fluido, para condiciones estándar

D	Espe	sor (mm) segúi	n temperatura de	l fluido
D. exterior (mm)	$40-65^{\mathrm{o}}\mathrm{C}$	$65-100{}^{\mathrm{o}}\mathrm{C}$	$100-150^{\circ}\mathrm{C}$	150 − 200 °C
$D \leq 35$	20	20	30	40
$35 < D \ \leq 60$	20	30	40	40
$60 < D \ \leq 90$	30	30	40	50
$90 < D \leq 140$	30	40	50	50
140 < D	30	40	50	60

Fuente: RITE 1751

Anexo I: Historial de temperaturas en la ciudad de puno.

SERVICIO NACIONAL DE METEOROLOGIA E HIDROLOGIA DEL PERU

"SENAMHI ORGANO OFICIAL Y RECTOR DEL SISTEMA HIDROMETEOROLOGICO NACIONAL AL SERVICIO DEL DESARROLLO SOCIO ECONOMICO DEL PAIS"

3812

ESTACION:

CP.100110

15*49'34,5" 70°00'43.5"

DEPARTAMENTO PROVINCIA DISTRITO

PUNO PUNO

PARAMETRO: PROMEDIO MENSUAL DE TEMPERATURA MAXIMA EN °C

LATITUD

ALTITUD

LONGITUD

AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUN.	JUL.	AGOT.	SET.	OCT.	NOV. T	DIC.
2011	17.1	15.1	15.0	15.5	15.2	15.2	14.6	16.5	16.2	17.9	18.6	16.4
2012	15.8	14.6	15.0	15.1	15.1	14.9	15.2	15.8	15.8	17.5	17.5	14.9
2013	16.2	15.0	15.9	15.6	15.3	14.1	13.8	14.6	16.8	16.9	17.4	16.0
2014	15.4	15.9	16.3	15.9	16.2	16.6	15.3	15.0	15.0	16.0	17.5	17.4
2015	15.2	15.7	15.3	14.6	15.4	15.8	15.1	15.6	17.0		18.3	17.8

PARAMETRO: PROMEDIO MENSUAL DE TEMPERATURA MINIMA EN °C

AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUN.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2011	6.1	6.3	6.0	4.2	1.5	-0.3	0.0	1.2	2.8	3.4	4.9	5.6
2012	5.5	5.5	5.2	4.9	1.1	-0.1	-0.5	0.0	2.8	5.0	6.1	6.5
2013	5.5	6.8	5.8	3.1	3.0	1.2	0.9	2.4	4.5	5.4	6.4	3.0
2014	6.4	6.2	5.8	5.0	2.2	1.4	0.7	1.9	3.8	5.0	5.5	6.5
2015	5.6	6.4	6.0	5.3	2.7	0.7	0.0	1.2	3.3	4.3	5.9	5.9

PARAMETRO: PROMEDIO MENSUAL DE HUMEDAD RELATIVA EN %

ANOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUN.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2011	69	80	78	69	62	56	56	66	58	54	48	66
2012	70	78	71	70	56	51	50	49	54	55	61	73
2013	79	81	73	60	59	60	56	51	60	74	69	64
2014	71	73	76	70	58	55	53	60	66	64	61	68
2015	78	72	73	78	71	59	60	60	62	66	64	69

PARAMETRO: PROMEDIO MENSUAL DE TERMOMETRO HUMEDO DE LA 13 HORAS EN °C

AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUN.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2011.0	11.0	10.7	10.9	10.3	9.0	8.8	7.8	8.0	8.4	9.3	10.0	9.8
2012.0	9.6	9.5	9.4	9.2	7.7	6.8	6.7	7.0	8.4	9.8	10.6	9.9
2012.0	11.0	10.8	10.9	8.7	7.7	6.7	6.3	7.1	7.9	9.5	9.6	9.2
2014.0	9.6	9.9	10.7	9.7	8.6	8.8	8.5	8.8	9.1	9.1	10.3	10.4
2015.0	9.9	9.6	9.9	9.7	9.8	8.9	8.3	8.9	9.6	10.0		11.3

VALIDO SOLO EN ORIGINAL

INFORMACION PROCESADA PARA: FRAN ROLEXS CRUZ YUCRA

COTIZACION Nº 179 RECIBO DE CAJA Nº 022-433

Puno, 30 de Mayo de 2016

Fuente: SENAMHI-Puno

Coaquira

SENAMHI - PUNO

ASSISTENTE

Anexo J: Planillas de cálculos carga térmica de calefacción y aire acondicionado

				C	ONDICIO	NES DE CA	LEFACCIO	ON				
AMBIENTE	: SALA DI	E QUIROI	FANO 1									
Local:	22.	0 B.S.	15.2	B.H.	55	%H.R.	14.72	GR/KG	T. Amb ca	alefactado.	19	°C
Ext:	0.	2 B.S.	-3.28	B.H.	55	%H.R.	3.39	GR/KG	T. Amb n	o calefacta	12	°C
Dif.:	21.	8 °C				DIFER.	11.33	GR/KG				
	SUPER	FICIE (CI	ERRAMIEN	ТО)		ANCHO (m)	LARGO (m)	AREA (m2)	COEF. TRANSF	Kcal/h POR °C DIF	DIF DE TEMP	Kcal/h
Muro de cal	eza al inter	ior				3.95	5.65	22.32	1.71	38.16	21.8	831.95
Muro doble	de zoga co	n lamina d	le aire (cale	factado)		3.95	11.4	42.33	1.07	45.29	3.0	135.88
Muro doble	de zoga co	n lamina d	le aire (no c	alefactado	o)	3.95	5.65	18.94	1.07	20.27	10.0	202.68
Piso de cono	creto acaba	do en vini	ilico			5.65	5.75	32.49	3.22	104.61	10.0	1046.10
Techo al ext	erior					5.65	5.75	32.49	1.36	44.18	21.8	963.19
Puertas al in	terior con a	ımbiente c	alefactado			1.50	2.25	3.38	2.06	6.95	3.0	20.86
Puertas al in	terior con a	ımbiente n	o calefacta	do		1.20	2.25	2.70	2.06	5.56	10.0	55.62
METODO P	OR RENO	VACION	DEAIRE				Total de pe	erdidas po	r transmic	ion, conv.		3256.28
Vol	128.33	m3	Cv	0.3	Kcal/hn	n2°C	Aire Ext	1924.88	m3/h X	21.8	°C x0.3	10071.00
Ren/h	15	Perd. Re	enov.	10671.56	5		Infil	0	m3/h X	0	°C x0.3	0
		•		•			Subtotal			•		13327.28
							Factor de s	seguridad		5	%	
							PERDIDA	S DE CAI	OR TOTA	AL		13993.64

Elaboración: Propia.

•				CO	ONDICION	NES DE CA	LEFACCIO)N	•			
AMBIENT	E: SALA DE	QUIROFA	NO 2									
Local:	22	B.S.	15.2	B.H.	55	%H.R.	14.72	GR/KG	T. Amb ca	lefactado.	19	°C
Ext:	0.2	B.S.	-3.28	B.H.	55	%H.R.	3.39	GR/KG	T. Amb no	calefacta	14	°C
Dif.:	21.8	3 °C				DIFER.	11.33	GR/KG				
		SUPERFIC	CIE			ANCHO	LARGO	AREA (m2)	COEF. TRANSF	Kcal/h POR °C	DIF DE TEMP	Kcal/h
Muro dobl	e de zoga cor	lamina de a	ire (no c	alefactado	o)	3.95	5.65	22.32	1.07	23.88	8.0	191.04
Muro dobl	e de zoga cor	lamina de a	ire (calet	actado)		3.95	11.3	41.94	1.07	44.87	3.0	134.61
Muro de ca	abeza al interi	or (no calef	actado)			3.95	5.65	18.94	1.48	28.03	8.0	224.28
Piso vinilic	0					5.65	5.65	31.92	3.22	102.79	8.0	822.32
Loza aliger	ada con tarra	jeo al interio	r			5.65	5.65	31.92	1.36	43.41	21.8	946.44
Puertas al i	interior con a	mbiente cale	factado			1.5	2.25	3.38	2.06	6.95	3.0	20.86
Puertas al i	interior con a	mbiente no	calefacta	lo		1.2	2.25	2.70	2.06	5.56	8.0	44.50
меторо	POR RENOV	VACION DI	EAIRE				Total de pe	rdidas po	r transmic	ion, conv.		2384.04
Vol	128.33	m3	Cv	0.3	Kcal/m3	°C	Aire Ext	1924.88	m3/h X	21.8	°C x0.3	10071.00
Ren/h	15	Perd. Rend	v.	10671.6	5		Infil	0	m3/h X	1	°C x0.3	0
							Subtotal					12455.04
							Factor de s	eguridad		5	%	
							PERDIDA	S DE CAI	OR GRAN	TOTAL		13077.79

			C	ONDICION	IES DE CA	LEFACCIO	ON				
AMBIENTE:	SAL	A DE PREAPA	RACION	N Y RECUP	ERACION	YCORRE	DOR RES	TRINGID)		
Local:	20.0 B.S.	12.66	B.H.	50	%H.R.	11.78	GR/KG	T. Amb ca	lefactado.	19	°C
Ext:	0.2 B.S.	-3.28	B.H.	55	%H.R.	3.39	GR/KG	T. Amb no	calefacta	14	°C
Dif.:	19.8 °C				DIFER.	8.39	GR/KG				
	SUP	ERFICIE			ANCHO	LARGO	AREA NETA (m2)	COEF. TRANSF	Kcal/h POR °C DIF	DIF DE TEMP	Kcal/h
Muro doble d	le zoga con lamin	a de aire (cale	factado)		3	12.1	29.55	1.07	31.62	1.0	31.62
Muro de zoga	a con ambiente no	calefactado			3	36.775	92.10	1.92	176.83	6.0	1060.99
Muro doble d	le zoga con lamin	a de aire (al ex	terior)		3	9.23	20.89	1.17	24.44	6.0	146.65
Muro de cabe	eza al exterior				3	7.85	18.45	1.71	31.55	19.8	624.68
Piso de conci	reto acabado en p	orcelanato					132.15	3.30	436.10	6.0	2616.57
Techo al exte	rior con baldosa :	suspendida					132.15	1.06	139.97	19.8	2771.47
Puertas al inte	erior con ambient	e calefactado			3	2.25	6.75	2.06	13.89	1.0	13.89
Puertas al inte	erior con ambient	e no calefacta	lo		8.1	2.25	18.23	2.06	37.49	6.0	224.95
Ventana vidri	io normal de 6mm				0.85	14	11.90	4.82	57.358	19.8	1135.69
METODO PO	OR RENOVACIO	ON DE AIRE				Total de pe	rdidas po	r transmic	ion, conv.		8626.51
Vol	383.24 m3	Cv	0.3	Kcal/m3	°C	Aire Ext	2299.41	m3/h X	19.8	°C x0.3	13658.50
Ren/h	6 Perd.	Renov.	10995.8	3		Infil	0	m3/h X	1	°C x0.3	C
			-			Subtotal					22285.00
						Factor de s	eguridad		5	%	
						PERDIDA	S DE CAI	OR GRAN	TOTAL		23399.25

				C	ONDICION	NES DE CA	LEFACCIO	ON				
AMBIENTE:		UNIDAD D	E CUID.	ADOS IN	TENSIVO	S						
Local:	20.0	B.S.	12.66	B.H.	50	%H.R.	11.78	GR/KG	T. Amb ca	alefactado.	19	°C
Ext:	0.2	B.S.	-3.28	B.H.	55	%H.R.	3.39	GR/KG	T. Amb no	o calefactad	14	°C
Dif.:	19.8	3 °C				DIFER.	8.39	GR/KG				
		SUPERFIC	CIE			ANCHO	LARGO	AREA NETA (m2)	COEF. TRANSF	Kcal/h POR °C DIF	DIF DE TEMP	Kcal/h
Muro de zog	a con ambi	ente no calet	actado			3	18.68	56.04	1.92	107.60	6	645.58
Muro doble	de zoga cor	n lamina de a	ire (al ex	terior)		3	12.25	27.36	1.17	32.01	6	192.05
Piso de conc	reto acabac	lo en porcela	anato			6.43	12.25	78.77	3.22	253.63	6	1521.79
Techo al exte	erior con ba	ldosa suspe	ndida			6.43	12.25	78.77	1.06	83.43	19.8	1651.92
Puertas al int	erior con a	mbiente no c	alefacta	do		5.2	2.25	11.70	2.06	24.07	6	144.42
Ventana vidr	rio normal d	e 6mm				0.85	10.08	8.57	4.82	41.30	19.8	817.70
METODO P	OR RENOV	VACION DE	AIRE				Total de pe	erdidas po	r transmic	ion, conv.		4973.45
Vol	228.43	m3	Cv	0.3	Kcal/m3	8℃	Aire Ext	2741.11	m3/h X	19.8	°C x0.3	16282.19
Ren/h	12	Perd. Reno	v.	13108.0)		Infil	0	m3/h X	1	°C x0.3	(
							Subtotal					21255.64
							Factor de s	seguridad		5	%	
							PERDIDA	S DE CAI	OR GRAN	NTOTAL		22318.42
											(Conti	núa

			CONDICIO	NES DE CA	LEFACCIO	ON				
AMBIENTE:	AISL	ADO MEDICIN	A GENERAL							
Local:	20.0 B.S.	12.66 E	.H. 50	%H.R.	11.78	GR/KG	T. Amb ca	alefactado.	19	°C
Ext:	0.2 B.S.	-3.28 E	.H. 55	5 %H.R.	3.39	GR/KG	T. Amb no	o calefactad	14	°C
Dif.:	19.8 °C			DIFER.	8.39	GR/KG				
	SUPI	ERFICIE		ANCHO	LARGO	AREA NETA (m2)	COEF. TRANSF	Kcal/h POR °C DIF	DIF DE TEMP	Kcal/h
Muro de zoga	a con ambiente no	calefactado		3	4.1	7.58	1.92	14.54	6	87.26
Muro de zoga	a con ambiente ca	lefactado		3	4.37	3.72	1.92	7.14	1	7.14
Muro de cabe	eza al exterior			3	3.1	7.94	1.71	13.58	6	81.46
Muro doble a	mbiente no conle	factado		3	4.93	14.79	1.07	15.83	6	94.95
Piso de concr	eto acabado en v	inilico				16.40	3.22	52.81	6	316.85
Techo al exter	rior con baldosa s	suspendida				16.40	1.06	17.38	19.8	344.20
Puertas al inte	erior con ambient	e no calefactado		2.1	2.25	4.73	2.06	9.73	6	58.40
Ventana vidri	o normal de 6mm			0.85	1.6	1.36	4.82	6.56	19.8	129.79
METODO PO	OR RENOVACIO	N DE AIRE		<u>I</u>	Total de po	erdidas po	r transmic	ion, conv.		1120.06
Vol	49.20 m3	Cv	0.3 Kcal/m.	3℃	Aire Ext	590.40	m3/h X	19.8	°C x0.3	3506.98
Ren/h	12 Perd.	Renov.	2823.3		Infil	0	m3/h X	1	°C x0.3	C
	•	•	•	•	Subtotal					4627.04
					Factor de	seguridad		5	%	
					PERDIDA	S DE CAI	OR GRAN	NTOTAL		4858.39

			CONDICIO	NES DE CA	LEFACCIO	ON				
AMBIENTE:	AISLAD	O CIRUGIA	GENERAL							
Local:	20.0 B.S.	12.66 B.	H. 50	%H.R.	11.78	GR/KG	T. Amb ca	alefactado.	19	°C
Ext:	0.2 B.S.	-3.28 B.	H. 55	5 %H.R.	3.39	GR/KG	T. Amb no	o calefacta	14	°C
Dif.:	19.8 °C			DIFER.	8.39	GR/KG				
	SUPERF	ICIE		ANCHO	LARGO	AREA NETA (m2)	COEF. TRANSF	Kcal/h POR °C DIF	DIF DE TEMP	Kcal/h
Muro de zoga	a con ambiente no ca	lefactado		3	9	22.28	1.92	42.77	6	256.61
Muro de zoga	a con ambiente calefa	ctado		3	4.37	3.72	1.92	7.14	1	7.14
Muro de cab	eza al exterior		3	3.1	7.94	1.71	13.58	6	81.46	
Piso de conc	reto acabado en vinil	ico				16.40	3.22	52.81	6	316.85
Techo al exte	rior con baldosa sus _l	endida				16.40	1.06	17.38	19.8	344.20
Puertas al int	erior con ambiente no	calefactado		2.1	2.25	4.73	2.06	9.73	6	58.40
Ventana vidr	io normal de 6mm			0.85	1.6	1.36	4.82	6.56	19.8	129.79
METODO PO	OR RENOVACION I	DEAIRE		l .	Total de po	erdidas po	r transmic	ion, conv.		1194.46
Vol	49.20 m3	Cv	0.3 Kcal/m	3℃	Aire Ext	590.4	m3/h X	19.8	°C x0.3	3506.98
Ren/h	12 Perd. Rei	iov.	2823.3		Infil	0	m3/h X	1	°C x0.3	0
					Subtotal					4701.43
					Factor de	seguridad		5	%	
					PERDIDA	S DE CAI	OR GRA	N TOTAL		4936.50
									(Conti	กเเล

		<u>c</u>	ARGA DE ENFRIAM	IENTO QUIROF	ANO 1	
CAP REF			REFEREN	ICIA DETABLAS	3	
	CONDICIONES	BS (°C)	BH (°C)	% HR	T.R. (°C)	GR/KG
2	EXTERIOR (OA)	17.9	12.58	60.6	10.18	12.54
2	INTERIOR (RM)	24	17.81	60	15.77	18.24
	DIFERENCIA	-6.1	XXX	XXX	XXX	-5.7
	ПЕМ	AREA C) SUPERFICIE	GAN. SO	LΟΔΤ	FACTOR
		GANANCI	A SOLAR CRISTAL	(Kcal/hr)	•	0.00
	VENTANA	0.00	m2 X	575.73	Х	0.94
& 4	VENTANA	0	m2 X	0	Х	0.94
3 8	VENTANA	0	m2 X	0	Х	0.94
	VENTANA	0	m2 X	0	X	0.94
	CLARABOYA	0	m2 X	0	Х	0.94
	GANAN.	SOLAR Y TR	ANSF. PAREDES Y T	ECHO ext (Kc	al/hr)	-502.69
	PARED EXT	22.32	m2 X	-4.32	Х	1.71
	PARED INT		m2 X		Х	1.92
	PARED		m2 X		Х	0.32
	PARED		m2 X		Х	0.32
2	TECHO-SOL	32.49	m2 X	-7.65	X	1.36
4,	TECHO-SOMBRA		m2 X		Х	0.67
	GAN	VAN. TRANSF	PARED. SUELO INT	ERIOR (Kcal/hr)	-683.89
	VIDRIOS	0	m2 X	-6.1	X	4.82
	PARTICIONES	61.27	m2 X	-6.1	X	1.27
	TECHO		m2 X		X	
	PISO	32.49	m2 X	-2	Х	3.22
9	INFILTRATION		m3/hr X		X	
			OR INTERNO (Kcal/			3672.75
	PERSONAS	7	0.85	PERSONAS	X	73
_	POTENCIAS		0	HP O KW	X	63
8 8	LUCES		1152	WATT X 0.86	X	1.25
	APLICACIONES E)00 0	X	1
	GANANCIAS ADIO				X	0 2486.1 7
	FACTOR DE SEG.	5	TOTAL 1 (Kcal/h	w %		2400.17
	FACTOR DE SEG.	_	JOIDLE DELLOCAL	, ,		2610.48
7	GANAN. DE CAL	+	NSIBLE DEL LOCAL PERDIDA POR	(NCal/III) +	VENTILADOR	2010.40
	CONDUC IMP %	0	* ESCAPE FUG.	2.5	HP. %	2.5
	AIERE EXT.	1924	m3/h X	-6.1	°CX 0.05	2.5 BF X 0.3
∞			E EFECTIVO DEL LO			2564.95
	<u> </u>		OR LATENTE (Kcal/			1421.00
9	INFILTRATION	0	m3/h X	-5.7	GR/KG X 0.68	
	PERSONAS	7	PERSONAS X	53	•	
7	VAPOR	1	KG/hr X 600			
ಳ ೮	APLICACIONES E		_	Gr/Kg X	Х	1
	GANANCIAS ADIO		0	J		
2	VAPOR TRANS.	0	M2x1/100X	-5.7	Gr/Kg X	30
	FACTOR DE SEG.	5	%		<u> </u>	
7		CALOR LA	TENTE DEL LOCAL	(Kcal/hr)		1492.05
	PERDIDA FILTRAC			5	" %	
	AIRE EXTE.	1924	m3 X	-5.7	Gr/Kg X 0.05	BF X 0.72
	CA	LORLATENT	E EFECTIVO DEL LO	OCAL (Kcal/hr)		1171.85
_	C	ALOR TOTAL	EFECTIVO DEL LO	CAL (Kcal/hr)		3736.80
80		CA	LOR AIRE EXTERIO	R		-10846.17
	SENSIBLE:	1924	m3/hr X	-6.1	°CX(1- 0.05	BF X 0.3
	LATENT:	1924	m3/hr X	-5.7	Gr/KgX(1- 0.05	BF X 0.72
		GANANCIA	DE CALOR TOTAL	. (Kcal/hr)		-7109.36
				,,		

			CARGA DE ENFRIAM	IENTO QUIROFA	NO 2	
CAP REF			REFEREN	ICIA DE TABLAS	3	
INLI	CONDICIONES	BS (°C)	BH (°C)	% HR	T.R. (°C)	GR/KG
	EXTERIOR (OA)	17.9	12.58	60.6	10.18	12.54
2	INTERIOR (RM)	24	17.81	60	15.77	18.24
	DIFERENCIA	-6.1	XXX	XXX	XXX	-5.7
	ПЕМ	AREA () SUPERFICIE	GAN. SO	LOΔT	FACTOR
		GANANCI	A SOLAR CRISTAL	(Kcal/hr)		0.00
	VENTANA	0.00	m2 X	575.73	X	0.94
4	VENTANA	0	m2 X	0	X	0.94
<u>ಹ</u>	VENTANA	0	m2 X	0	X	0.94
	VENTANA	0	m2 X	0	X	0.94
	CLARABOYA	0	m2 X	0	X	0.94
	GANAN.	SOLAR Y TR	ANSF. PAREDES Y T	ECHO ext (Kca	al/hr)	-249.44
	PARED EXT	0	m2 X	-15.66	X	1.71
	PARED INT		m2 X		X	1.92
	PARED		m2 X		X	0.32
	PARED		m2 X		X	0.32
	TECHO-SOL	32.49	m2 X	-5.65	Х	1.36
2	TECHO-SOMBRA		m2 X		X	0.67
	GAN	IAN. TRANSF	. PARED. SUELO INT	ERIOR (Kcal/hr)	-853.79
	VIDRIOS	0	m2 X	-6.1	X	4.82
	PARTICIONES	83.2	m2 X	-6.1	X	1.27
	TECHO		m2 X		X	
	PISO	32.49	m2 X	-2	X	3.22
9	INFILTRATION		m3/hr X		X	
		CAL	OR INTERNO (Kcal/	hr)		3672.75
	PERSONAS	7	0.85	PERSONAS	Х	73
7	POTENCIAS		0	HP O KW	Χ	63
∞ಶ	LUCES		1152	WATT X 0.86	Χ	1.25
က	APLICACIONES E	TC	20	000	X	1
	GANANCIAS ADIO	CIONALES		0	X	0
		SUE	B TOTAL 1(Kcal/h	nr)		2569.53
	FACTOR DE SEG.	5		%		
7		CALOR SE	NSIBLE DEL LOCAL	(Kcal/hr)		2698.00
•	GANAN. DE CAL	+	PERDIDA POR	+	VENTILADOR	
	CONDUC IMP %	0	ESCAPE FUG.	2.5	HP. %	2.5
8	AIERE EXT.	1924	m3/h X	-6.1	°CX 0.05	BF X 0.3
	CA		E EFECTIVO DEL LO	. ,		2656.86
9		CAL	OR LATENTE (Kcal/	hr)		1421.00
	INFILTRATION	0	m3/h X	-5.7	GR/KG X 0.68	
	PERSONAS	7	PERSONAS X	53	•	
8 7	VAPOR	1	KG/hr X 600			
e	APLICACIONES E		-	Gr/Kg X	X	1
	GANANCIAS ADIO		0		•	
2	VAPOR TRANS.	0	M2x1/100X	-5.7	Gr/Kg X	30
	FACTOR DE SEG.		%			
7			TENTE DEL LOCAL		304	1492.05
	PERDIDA FILTRAC			5	%	
	AIRE EXTE.	1924	m3 X	-5.7	Gr/Kg X 0.05	BF X 0.72
			E EFECTIVO DEL LO	, ,		1171.85
œ	c		EFECTIVO DEL LO			3828.70
			ALOR AIRE EXTERIO		į J	-10846.17
	SENSIBLE:	1924	m3/hr X	-6.1	°CX(1- 0.05	BF X 0.3
	LATENT:	1924	m3/hr X	-5.7	Gr/KgX(1- 0.05	BF X 0.72
		GANANCIA	DE CALOR TOTAL	. (Kcal/hr)		-7017.46
				-		

	CA	RGA DE ENFF	RIAMIENTO SALA D	E PREPARACIO	N Y RECUPERACION	
CAP REF			REFEREN	ICIA DETABLAS	3	
KEF	CONDICIONES	BS (°C)	BH (°C)	% HR	T.R. (°C)	GR/KG
	EXTERIOR (OA)	17.9	12.58	60.6	10.18	12.54
2	INTERIOR (RM)	22	14.32	50	11.11	13.36
	DIFERENCIA	-4.1	XXX	XXX	XXX	-0.82
	ITEM) SUPERFICIE	GAN. SO		FACTOR
		GANANCI	A SOLAR CRISTAL	(Kcal/hr)		3644.57
	VENTANA	6.24	m2 X	575.73	X	0.94
4	VENTANA	5.66	m2 X	50.29	X	0.94
ಳ ෆ	VENTANA	0	m2 X	0	X	0.94
	VENTANA	0	m2 X	0	X	0.94
	CLARABOYA	0	m2 X	0	Х	0.94
	GANAN.	SOLARYTR	ANSF. PAREDES Y 1	ECHO ext (Kc	al/hr)	-1756.32
	PARED EXT	39.34	m2 X	-3.79	Х	1.71
	PARED INT		m2 X		X	1.92
	PARED		m2 X		Х	0.32
	PARED		m2 X		Х	0.32
16	TECHO-SOL	132.15	m2 X	-10.72	Х	1.06
2	TECHO-SOMBRA		m2 X		Х	0.67
	GAN	NAN. TRANSF	. PARED. SUELO INT	ERIOR (Kcal/hr)	-1612.22
	VIDRIOS	11.9	m2 X	-4.1	Х	4.82
	PARTICIONES	83.2	m2 X	-4.1	X	1.48
	TECHO		m2 X		Х	,
	PISO	132.15	m2 X	-2	Х	3.3
9	INFILTRATION		m3/hr X		X	
		CAL	OR INTERNO (Kcal/	hr)		3038.95
	PERSONAS	15	0.85	PERSONAS	X	73
_	POTENCIAS		0	HP O KW	X	63
∘ŏ	LUCES		1496	WATT X 0.86	X	1.25
3	APLICACIONES E	TC	5	00	X	1
	GANANCIAS ADIO	CIONALES		0	X	0
		SUE	B TOTAL 1 (Kcal/l	rr)		3314.98
	FACTOR DE SEG.	5		%		
7		CALOR SE	NSIBLE DEL LOCAL	(Kcal/hr)		3480.73
•	GANAN. DE CAL	+	PERDIDA POR	+	VENTILADOR	_
	CONDUC IMP %	0	ESCAPE FUG.	2.5	HP. %	2.5
œ	AIERE EXT.	2299	m3/h X	-4.1	°C X 0.05	BF X 0.3
	CA		E EFECTIVO DEL LO	, ,		3513.37
9			OR LATENTE (Kcal/		00//00//00	795.00
	INFILTRATION	0	m3/h X	-0.82	GR/KG X 0.68	
	PERSONAS	15	PERSONAS X	53	•	
8 7	VAPOR	0	KG/hr X 600	- n.c	.,	
က	APLICACIONES E		-	Gr/Kg X	Х	1
	GANANCIAS ADIO		0	0.00	0-14-14	22
2	VAPOR TRANS.	0	M2x1/100X	-0.82	Gr/Kg X	30
	FACTOR DE SEG.		% 			201==
7	DEDDID 4 E TE		TENTE DEL LOCAL	(Kcal/hr)	7 0/	834.75
	PERDIDA FILTRAC		_	5	%	DE V 0.70
	AIRE EXTE.	2299	m3 X	-0.82	Gr/Kg X 0.05	BF X 0.72
			E EFECTIVO DEL LO			808.62
ω	"		. EFECTIVO DEL LO			4321.99
	OF JOID! =		ALOR AIRE EXTERIO		January 2 - 3	-3975.84
	SENSIBLE:	2299	m3/hr X	-4.1	°CX(1- 0.05	BF X 0.3
	LATENT:	2299	m3/hr X	-0.82	Gr/KgX(1- 0.05	BF X 0.72
		GANANCIA	DE CALOR TOTAL	_(Kcal/hr)		346.15

		CARGA DE I	ENFRIAMIENTO UNI	DAD DE CUIDAD	OS INTENSIVOS	
CAP REF			REFEREN	ICIA DE TABLAS		
KEF	CONDICIONES	BS (°C)	BH (°C)	% HR	T.R. (°C)	GR/KG
	EXTERIOR (OA)	17.9	12.58	60.6	10.18	12.54
2	INTERIOR (RM)	22	14.32	50	11.11	13.36
	DIFERENCIA	-4.1	XXX	XXX	XXX	-0.82
	ПЕМ) SUPERFICIE	GAN, SOL		FACTOR
	l l	GANANCI	A SOLAR CRISTAL	(Kcal/hr)	-	4632.2
	VENTANA	8.56	m2 X	575.73	X	0.94
4	VENTANA	0	m2 X	0	X	0.94
ಶ ೮	VENTANA	0	m2 X	0	X	0.94
	VENTANA	0	m2 X	0	X	0.94
	CLARABOYA	0	m2 X	0	Х	0.94
	GANAN.	SOLAR Y TR	ANSF. PAREDES Y 1	TECHO ext (Kca	l/hr)	-1607.8
	PARED EXT	28.19	m2 X	-13.93	X	1.17
	PARED INT		m2 X		Х	1.92
	PARED		m2 X		X	0.32
	PARED		m2 X		X	0.32
2	TECHO-SOL	78.77	m2 X	-10.72	Х	1.36
	TECHO-SOMBRA		m2 X		X	0.67
			PARED. SUELO INT		_	-1130.1
	VIDRIOS	8.56	m2 X	-4.1	X	4.82
	PARTICIONES	56.04	m2 X	-4.1	X	1.92
	TECHO		m2 X		X	
	PISO	78.77	m2 X	-2	X	3.3
9	INFILTRATION		m3/hr X		X	
	DEDOCALA O		OR INTERNO (Kcal/			2039.7
	PERSONAS POTENCIAS	10	0.85	PERSONAS HP O KW	X X	73
۲,	LUCES		576	WATT X 0.86	X	63
ಹ	APLICACIONES E	TC.		00	X	1.25
	GANANCIAS ADIO			0	X	1 0
	GANANCIAS ADIO		BTOTAL 1 (Kcal/l		^	3933.8
	FACTOR DE SEG.	5	TOTAL T (TREATIT	%		0300.0
	TAGEORE SEC.		NSIBLE DEL LOCAL	, •		4130.5
7	GANAN. DE CAL	+	PERDIDA POR	+	VENTILADOR	
	CONDUC IMP %	0	ESCAPE FUG.	2.5	_	% 2.5
	AIERE EXT.	2741	m3/h X	-4.1	°CX 0.05	BF X 0
∞	CA	LOR SENSIBL	E EFECTIVO DEL LO	OCAL (Kcal/hr)		4168.5
<i>~</i>		CAL	OR LATENTE (Kcal	/hr)		530.0
0	INFILTRATION	0	m3/h X	-0.82	GR/KG X 0.68	
	PERSONAS	10	PERSONAS X	53	•	
	VAPOR	0	KG/hr X 600			
× ✓		ГС	0(Gr/Kg X	X	1
3 & 7	APLICACIONES E		0			
∞ಶ	APLICACIONES E GANANCIAS ADIO	CIONALES				30
∞		0	M2x1/100X	-0.82	Gr/Kg X	30
3 8 8	GANANCIAS ADIO			-0.82	Gr/Kg X	
3 8 8	GANANCIAS ADIO VAPOR TRANS. FACTOR DE SEG	0 5 CALOR LA	M2x1/100X % TENTE DEL LOCAL	(Kcal/hr)		
. 3 8	GANANCIAS ADIO VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRA	0 5 CALOR LA CION DUCTO IN	M2x1/100X % TENTE DEL LOCAL IPUL.	(Kcal/hr) 5	™ %	556.5
. 3 8	GANANCIAS ADIO VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRAC AIRE EXTE	0 5 CALOR LA CION DUCTO IN 2741	M2x1/100X % TENTE DEL LOCAL //PUL. m3 X	(Kcal/hr) 5 -0.82		556.5 BF X 0.7
<u>ಹ</u> ೮	GANANCIAS ADIA VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRAC AIRE EXTE. CA	0 5 CALOR LA CION DUCTO IN 2741 LOR LATENT	M2x1/100X % TENTE DEL LOCAL IPUL. m3 X E EFECTIVO DEL LO	(Kcal/hr) 5 -0.82 DCAL (Kcal/hr)	™ %	5 BF X 0.7
3 &	GANANCIAS ADIA VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRAC AIRE EXTE. CA	0 5 CALOR LA CION DUCTO IN 2741 LOR LATENT ALOR TOTAL	M2x1/100X % TENTE DEL LOCAL //PUL. m3 X E EFECTIVO DEL LO. EFECTIVO DEL LO.	(Kcal/hr) 5 -0.82 DCAL (Kcal/hr) CAL (Kcal/hr)	™ %	5 BF X 0.7 503.4 4671.9
7 5 3&	GANANCIAS ADIA VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRAC AIRE EXTE. CA	0 5 CALOR LA CION DUCTO IN 2741 LOR LATENT ALOR TOTAL	M2x1/100X % TENTE DEL LOCAL MPUL. m3 X E EFECTIVO DEL LO EFECTIVO DEL LO LOR AIRE EXTERIO	(Kcal/hr) 5 -0.82 DCAL (Kcal/hr) CAL (Kcal/hr)	% Gr/Kg X 0.0	5 BF X 0.7 503.4 4671.9
7 5 3&	GANANCIAS ADIA VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRAC AIRE EXTE. CA	0 5 CALOR LA CION DUCTO IN 2741 LOR LATENT ALOR TOTAL	M2x1/100X % TENTE DEL LOCAL //PUL. m3 X E EFECTIVO DEL LO. EFECTIVO DEL LO.	(Kcal/hr) 5 -0.82 DCAL (Kcal/hr) CAL (Kcal/hr)	™ %	556.5 BF X 0.7 503.4 4671.9 -4740.2 5 BF X 0

CAP		<u> </u>	E ENFRIAMIENTO A				
REF			REFEREN	CIA DE TABLAS	; 		
	CONDICIONES	BS (°C)	BH (°C)	% HR	T.R. (°C)		GR/KG
2	EXTERIOR (OA)	17.9	12.58	60.6	10.18		12.54
_	INTERIOR (RM)	22	14.32	50	11.11		13.36
	DIFERENCIA	-4.1	XXX	XXX	XXX		-0.82
	ITEM	AREA O	SUPERFICIE	GAN. SO	LΟΔT		FACTOR
		GANANCIA	SOLAR CRISTAL	(Kcal/hr)	•		736
	VENTANA	1.36	m2 X	575.73	X		0.94
& 4	VENTANA	0	m2 X	0.00	Х		0.94
38	VENTANA	0	m2 X	0	Х		0.94
	VENTANA	0	m2 X	0	X		0.94
	CLARABOYA	0	m2 X	0	X		0.94
	GANAN. S	SOLAR Y TRA	ANSF. PAREDES Y T	ECHO ext (Kca	al/hr)		-237
	PARED EXT	7.94	m2 X	-3.79	Х		1.71
	PARED INT		m2 X		X		1.92
	PARED		m2 X		X		0.32
	PARED		m2 X		X		0.32
2	TECHO-SOL	16.4	m2 X	-10.72	Х		1.06
ų)	TECHO-SOMBRA		m2 X		X		0.67
	GANA	AN. TRANSF.	PARED. SUELO INT	ERIOR (Kcal/hr)		-341
	VIDRIOS	1.36	m2 X	-4.1	Х	_	4.82
	PARTICIONES	26.26	m2 X	-4.1	X		1.92
	TECHO		m2 X		Х		
	PISO	16.4	m2 X	-2	Х		3.3
9	INFILTRATION		m3/hr X		Х		
		CAL	OR INTERNO (Kcal/h	ır)			437
	PERSONA S	4	0.85	PERSONAS	X		73
7	POTENCIAS		0	HP O KW	X		63
8	LUCES		176	WATT X 0.86	X		1.25
(,)	APLICACIONES ET	C	()	X		1
	GANANCIAS ADICI	ONALES	()	X		0
		SUB	TOTAL 1 (Kcal/h	•			593
	FACTOR DE SEG.	5	•	%			
7		CALOR SEN	ISIBLE DEL LOCAL	(Kcal/hr)			623
	GANAN. DE CAL	+	PERDIDA POR	+	VENTILADO	R	
	CONDUC IMP %	0	ESCAPE FUG.	2.5	HP.	%	2.5
ω	AIERE EXT.	590.4	m3/h X	-4.1	°CX	0.05	BF X
	CAL		E EFECTIVO DEL LO				618
9		CAL	OR LATENTE (Kcal/	hr)			212
	INFILTRATION	0	m3/h X	-0.82	GR/KG X 0.6	88	
	PERSONAS	4	PERSONAS X	53	•		
8 7	VAPOR	0	KG/hr X 600				
က	APLICACIONES ET		0 0	Gr/Kg X	Х		1
	GANANCIAS ADICI	ONALES	0				
2	VAPOR TRANS.	0	M2x1/100X	-0.82	Gr/Kg X		30
	FACTOR DE SEG.	5	%				
7			TENTE DEL LOCAL	(Kcal/hr)	.		222
	PERDIDA FILTRACI		_	5	%		
	AIRE EXTE.	590.4	m3 X	-0.82	Gr/Kg X	0.05	BF X (
			E EFECTIVO DEL LO				216
ω	CA		EFECTIVO DEL LO				834
			LOR AIRE EXTERIO		*	J	-1021
	SENSIBLE:	590.4	m3/hr X	-4.1	°CX(1-	0.05	BF X
	LATENT:	590.4	m3/hr X	-0.82	Gr/KgX(1-	0.05	BF X (

		CARGA I	DE ENFRIAMIENTO	AISLADO CIRUG	IA GENERAL	
CAP				ICIA DE TABLAS	<u> </u>	
REF			KEFEKEN	ICIA DE TABLAS		
	CONDICIONES	BS (°C)	BH (°C)	% HR	T.R. (°C)	GR/KG
2	EXTERIOR (OA)	17.9	12.58	60.6	10.18	12.54
_	INTERIOR (RM)	22	14.32	50	11.11	13.36
	DIFERENCIA	-4.1	XXX	XXX	XXX	-0.82
	ПЕМ		SUPERFICIE	GAN. SOL	- Ο ΔΤ	FACTOR
		GANANCIA	A SOLAR CRISTAL	· ,		736.01
	VENTANA	1.36	m2 X	575.73	X	0.94
8 4	VENTANA	0	m2 X	0.00	Х	0.94
က	VENTANA	0	m2 X	0	Х	0.94
	VENTANA	0	m2 X	0	X	0.94
	CLARABOYA	0	m2 X	0	X	0.94
			ANSF. PAREDES Y 1	•		-237.75
	PARED EXT	7.94	m2 X	-3.79	X	1.71
	PARED INT		m2 X		X	1.92
	PARED		m2 X		X	0.32
	PARED	40.4	m2 X	10.70	X	0.32
2	TECHO-SOL	16.4	m2 X	-10.72	X	1.06
	TECHO-SOMBRA	IAN TDANCE	PARED. SUELO IN	FEDIOD (Koal/br)	' X	0.67 -341.84
	VIDRIOS	1.36	m2 X	-4.1	X	4.82
	PARTICIONES	26.26	m2 X	-4.1	X	1.92
	TECHO	20.20	m2 X	-4.1	X	1.52
	PISO	16.4	m2 X	-2	X	3.3
9	<u> </u>	10.4	m3/hr X	-2	X	0.0
_	IN ETIVITION	CAL	OR INTERNO (Kcal/	hr)	χ	437.40
	PERSONAS	4	0.85	PERSONAS	X	73
	POTENCIAS		0	HP O KW	X	63
8 7	LUCES		176	WATT X 0.86	X	1.25
က	APLICACIONES E	тс		0	* X	1
	GANANCIAS ADIO	CIONALES		0	x	0
		SUE	TOTAL 1 (Kcal/l	nr)		593.82
	FACTOR DE SEG.	5		%		
		CALOR SEM	SIBLE DEL LOCAL	(Kcal/hr)		623.51
7	GANAN. DE CAL	+	PERDIDA POR	+	VENTILADOR	
	CONDUC IMP %	0	ESCAPE FUG.	2.5	HP. %	2.5
	AIERE EXT.	590.4	m3/h X	-4.1	°CX 0.05	BF X 0.3
	CA		E EFECTIVO DEL L	. ,		618.38
9			OR LATENTE (Kcal			212.00
	INFILTRATION	0	m3/h X	-0.82	GR/KG X 0.68	
	1		1		•	
	PERSONAS	4	PERSONAS X	53	•	
8 7	VAPOR	0	KG/hr X 600		•	
	VAPOR APLICACIONES E	0 TC	KG/hr X 600 0	53 Gr/Kg X	X	1
ಳ ೮	VAPOR APLICACIONES E GANANCIAS ADIO	0 TC CIONALES	KG/hr X 600 0 0	Gr/Kg X		
∞	VAPOR APLICACIONES E GANANCIAS ADIO VAPOR TRANS.	0 TC CIONALES 0	KG/hr X 600 0 0 M2x1/100X		X Gr/Kg X	1 30
5 3 &	VAPOR APLICACIONES E GANANCIAS ADIO	0 TC CIONALES 0 5	M2x1/100X	-0.82		30
ಳ ೮	VAPOR APLICACIONES E GANANCIAS ADI VAPOR TRANS. FACTOR DE SEG	0 TC CIONALES 0 5 CALOR LA	KG/hr X 600 0 0 M2x1/100X %	-0.82 (Kcal/hr)	Gr/Kg X	
5 3 &	VAPOR APLICACIONES E GANANCIAS ADI VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRA	0 TC CIONALES 0 5 CALOR LA CION DUCTO IN	KG/hr X 600 0 0 M2x1/100X % TENTE DEL LOCAL	-0.82 (Kcal/hr) 5	Gr/Kg X	30 222.60
5 3 &	VAPOR APLICACIONES E GANANCIAS ADIO VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRAO AIRE EXTE.	0 TC CIONALES 0 5 CALOR LA CION DUCTO IN 590.4	KG/hr X 600 0 0 M2x1/100X % TENTE DEL LOCAL //PUL.	-0.82 (Kcal/hr) 5 -0.82	Gr/Kg X	30 222.60 BF X 0.72
5 3 &	VAPOR APLICACIONES E GANANCIAS ADIO VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRAO AIRE EXTE. CA	0 TC CIONALES 0 5 CALOR LA CION DUCTO IN 590.4	KG/hr X 600 0 0 M2x1/100X % TENTE DEL LOCAL //PUL. m3 X E EFECTIVO DEL LO	-0.82 (Kcal/hr) 5 -0.82 OCAL (Kcal/hr)	Gr/Kg X	30 222.60 BF X 0.72 216.30
5 3 &	VAPOR APLICACIONES E GANANCIAS ADIO VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRAO AIRE EXTE. CA	0 TC CIONALES 0 5 CALOR LA CION DUCTO IN 590.4 LOR LATENT	KG/hr X 600 0 0 M2x1/100X % TENTE DEL LOCAL //PUL. m3 X E EFECTIVO DEL LO	-0.82 (Kcal/hr) 5 -0.82 OCAL (Kcal/hr) CAL (Kcal/hr)	Gr/Kg X	30 222.60 BF X 0.72 216.30 834.68
7 5 3 8	VAPOR APLICACIONES E GANANCIAS ADIO VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRAO AIRE EXTE. CA	0 TC CIONALES 0 5 CALOR LA CION DUCTO IN 590.4 LOR LATENT ALOR TOTAL	KG/hr X 600 0 0 M2x1/100X % TENTE DEL LOCAL MPUL. m3 X E EFECTIVO DEL LO EFECTIVO DEL LO LOR AIRE EXTERIO	-0.82 (Kcal/hr) 5 -0.82 OCAL (Kcal/hr) CAL (Kcal/hr)	Gr/Kg X % Gr/Kg X 0.05	30 222.60 BF X 0.72 216.30 834.68 -1021.03
7 5 3 8	VAPOR APLICACIONES E GANANCIAS ADI VAPOR TRANS. FACTOR DE SEG. PERDIDA FILTRA AIRE EXTE. CA CSENSIBLE:	0 TC CIONALES 0 5 CALOR LA CION DUCTO IN 590.4 LOR LATENT ALOR TOTAL CA 590.4	KG/hr X 600 0 0 M2x1/100X % TENTE DEL LOCAL //PUL. m3 X E EFECTIVO DEL LO EFECTIVO DEL LO LOR AIRE EXTERIO m3/hr X	-0.82 (Kcal/hr) 5 -0.82 OCAL (Kcal/hr) CAL (Kcal/hr) PR -4.1	Gr/Kg X % Gr/Kg X 0.05	30 222.60 BF X 0.72 216.30 834.68 -1021.03 BF X 0.3
7 5 3 8	VAPOR APLICACIONES E GANANCIAS ADIO VAPOR TRANS. FACTOR DE SEG PERDIDA FILTRAO AIRE EXTE. CA	0 TC CIONALES 0 5 CALOR LA' CION DUCTO IN 590.4 590.4 590.4	KG/hr X 600 0 0 M2x1/100X % TENTE DEL LOCAL MPUL. m3 X E EFECTIVO DEL LO EFECTIVO DEL LO LOR AIRE EXTERIO	-0.82 (Kcal/hr) 5 -0.82 OCAL (Kcal/hr) CAL (Kcal/hr) R -4.1 -0.82	Gr/Kg X % Gr/Kg X 0.05	30 222.60 BF X 0.72 216.30 834.68 -1021.03 BF X 0.3

Anexo K: PRESUPUESTO

TESIS UNA - PUNO

Presupuesto 0102005 SISTEMA DE CLIMATIZACION AGUA-AIRE PARA EL SECTOR QUIROFANO DEL MEGALABORATORIO CLINICO

UNIVERSITARIO DE LA UNA PUNO

Cliente FRANK ROLEXS CRUZ YUCRA Costo al 15/07/2017

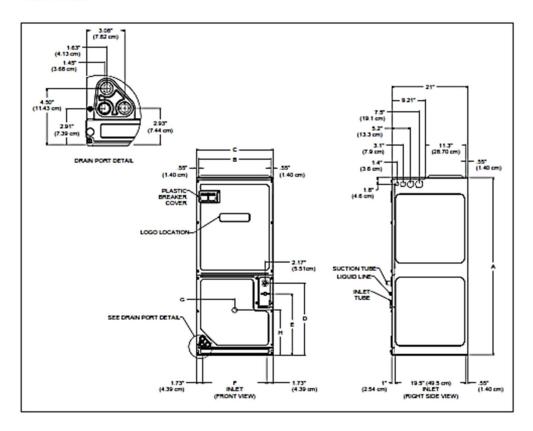
Lugar PUNO - PUNO - PUNO

Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
01	INSTALACIONES DE VENTILACION				97,675.39
01.01	DUCTO DE AIRE				8,976.23
01.01.01	DUCTO DE 200 x 150	m	26.47	38.20	1,011.15
01.01.02	DUCTO DE 200 x 200	m	13.58	40.00	543.20
01.01.03	DUCTO DE 250 x 200	m	37.12	41.95	1,557.18
01.01.04	DUCTO DE 250 x 250	m	3.61	48.85	176.35
01.01.05	DUCTO DE 300 x 150	m	6.35	49.75	315.91
01.01.06	DUCTO DE 300 x 200	m	12.50	50.50	631.25
01.01.07	DUCTO DE 300 x 250	m	3.65	51.25	187.06
01.01.08	DUCTO DE 300 x 300	m	7.79	52.75	410.92
01.01.09	DUCTO DE 350 x 300	m	15.45	53.50	826.58
01.01.10	DUCTO DE 400 x 300	m	50.46	54.70	2,760.16
01.01.11	DUCTO DE 400 x 350	m	9.72	57.25	556.47
01.02	ACCESORIOS				24,537.16
01.02.01	CODO < 300 mm	und	21.00	54.10	1,136.10
01.02.02	CODO > 300 mm	und	35.00	61.60	2,156.00
01.02.03	REDUCCION < 300 mm	und	22.00	31.10	684.20
01.02.04	REDUCCION > 300 mm < 500 mm	und	34.00	41.35	1,405.90
01.02.05	DERIVACION < 300 mm	und	8.00	56.35	450.80
01.02.06	DERIVACION > 300 mm	und	6.00	70.60	423.60
01.02.07	DIFUSOR DE AIRE	und	19.00	125.85	2,391.15
01.02.08	REJILLA DE AIRE	und	19.00	125.85	2,391.15
01.02.09	AISLAMIENTO DE DUCTOS	m	65.50	53.42	3,499.01
01.02.10	INSTALACION Y SOPORTE DE DUCTOS	m	190.00	42.25	8,027.50
01.02.11	UNION FLEXIBLE DE LONA PARA DUTOS	und	15.00	131.45	1,971.75
01.03	FILTROS				14,479.00
01.03.01	FILTRO AL +30%+90%+99.97%	und	2.00	3,562.50	7,125.00
01.03.02	FILTRO AL +30%+90%	und	4.00	1,838.50	7,354.00
01.04	SUMINISTRO E INSTALACION DE EQUIPOS				49,683.00
01.04.01	EXTRACTOR EC 01	und	1.00	3,055.20	3,055.20
01.04.02	EXTRACTOR EC 02	und	1.00	3,058.20	3,058.20
01.04.03	EXTRACTOR EC 03	und	1.00	3,527.20	3,527.20
01.04.04	EXTRACTOR EC 04	und	1.00	1,200.60	1,200.60
01.04.05	EXTRACTOR EC 05	und	1.00	1,200.60	1,200.60
01.04.06	EXTRACTOR EC 06	und	1.00	3,527.20	3,527.20
01.04.07	INYECTOR IC 01	und	1.00	3,527.20	3,527.20
01.04.08	INYECTOR IC 02	und	1.00	3,527.20	3,527.20
01.04.09	INYECTOR IC 03	und	1.00	3,527.20	3,527.20
01.04.10	INYECTOR IC 04	und	1.00	3,527.20	3,527.20
01.04.11	INYECTOR IC 05	und	1.00	2,731.20	2,731.20
01.04.12	INYECTOR IC 06	und	1.00	3,527.20	3,527.20
01.04.13	TABLERO ELECTRICO TIPO 01	und	4.00	3,116.00	12,464.00
01.04.15	PRUEBAS	und	6.00	213.80	1,282.80
02	SISTEMA DE CALEFACION				147,879.82
02.01	INSTALACION DE TUBERIAS				13,089.71
02.01.01	TUBERIA DE POLIPROPILENO DE 1/2" CON AISLAMIENTO TERMICO	m	12.86	25.75	331.15
02.01.02	TUBERIA DE POLIPROPILENO DE 3/4" CON AISLAMIENTO TERMICO	m	5.40	28.82	155.63
02.01.03	TUBERIA DE POLIPROPILENO DE 1 1/4" CON AISLAMIENTO TERMICO	m	45.61	43.46	1,982.21
02.01.04	TUBERIA DE POLIPROPILENO DE 1 1/2" CON AISLAMIENTO TERMICO	m	3.20	45.14	144.45
02.01.05	TUBERIA DE POLIPROPILENO DE 2" CON AISLAMIENTO TERMICO	m	189.00	55.43	10,476.27
02.02	INSTALACION DE ACCESORIOS				994.88
02.02.01	INSTALACION DE ACCESORIOS 2 ENTRADAS DE 2" CON AISLAMIENTO	und	32.00	13.93	445.76
02.02.02	INSTALACION DE ACCESORIOS 2 ENTRADAS DE 1 1/2" CON AISLAMIENTO	und	4.00	10.73	42.92
02.02.03	INSTALACION DE ACCESORIOS 2 ENTRADAS DE 1 1/4" CON AISLAMIENTO	und	14.00	9.57	133.98
02.02.04	INSTALACION DE ACCESORIOS 2 ENTRADAS DE 3/4" CON AISLAMIENTO	und	4.00	28.74	114.96

TESIS UNA - PUNO

Presupuesto 0102005 SISTEMA DE CLIMATIZACION AGUA-AIRE PARA EL SECTOR QUIROFANO DEL MEGALABORATORIO CLINICO

UNIVERSITARIO DE LA UNA PUNO


Cliente FRANK ROLEXS CRUZ YUCRA Costo al 15/07/2017

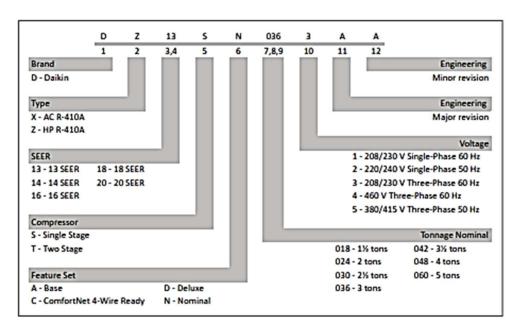
Lugar PUNO - PUNO - PUNO

Item	Descripción	Und.	Metrado	Precio S/.	Parcial S/.
02.02.05	INSTALACION DE ACCESORIOS 2 ENTRADAS DE 1/2" CON AISLAMIENTO	und	12.00	7.76	93.12
02.02.06	INSTALACION DE TEE DE 2" CON AISLAMIENTO	und	8.00	14.43	115.44
02.02.07	INSTALACION DE TEE DE 1 1/2" CON AISLAMIENTO	und	2.00	11.40	22.80
02.02.08	INSTALACION DE TEE DE 3/4" CON AISLAMIENTO	und	2.00	12.95	25.90
02.03	INSTALACION DE EQUIPOS				132,771.23
02.03.01	SUMINISTRO DE UMA	pto	1.00	83,000.00	83,000.00
02.03.02	INSTALACION DE UMA	pto	4.00	2,362.33	9,449.32
02.03.03	SUMINISTRO E INSTALACION DE BOMBA DE RECIRCULACION	und	2.00	1,685.71	3,371.42
02.03.04	SUMINISTRO E INSTALACION DE TANQUE DE EXPANCION DE 25 LTS	glb	1.00	1,180.71	1,180.7
02.03.05	SUMINISTRO E INSTALACION DE CALENTADOR DE AGUA	glb	1.00	29,745.40	29,745.40
02.03.06	SUMINISTRO E INSTALACION DE PURGADOR DE AIRE	glb	1.00	116.61	116.6
02.03.07	INSTALACION DE AGUA FRIA	glb	1.00	1,989.97	1,989.97
02.03.08	DUCTO DE EVACUACION DE GAS DE COMBUSTION	m	10.00	55.75	557.50
02.03.09	INSTALACION DE DUCTODE EVACUACION DE GAS DE COMBUSTION	m	10.00	90.95	909.50
02.03.10	TABLERO ELECTRICO PARA 02 BOMBAS	und	1.00	1,212.80	1,212.80
02.03.11	TABLERO ELECTRICO PARA 01 CALENTADOR	und	1.00	1,238.00	1,238.00
02.04	PRUEBAS DE FUNCIONAMIENTO				1,024.00
02.04.01	PRUEBA HIDROSTATICA	glb	1.00	304.80	304.80
02.04.02	PRUEBA DE FUNCIONAMIENTO	glb	1.00	719.20	719.20
03	INSTALACION DE BOMBAS DE CALOR				46,732.72
03.01	TENDIDO DE TUBERIA CON AISLAMIENTO TERMICO				472.80
03.01.01	TUBERIA DE COBRE DE 1/4" CON AISLAMIENTO TERMICO	m	7.50	23.06	172.95
03.01.02	TUBERIA DE COBRE DE 3/4" CON AISLAMIENTO TERMICO	m	7.50	39.98	299.85
03.02	SUMINISTRO DE E INSTALACION DE ACCESORIOS CON AISLAMIENTO				241.00
03.02.01	SUMINISTRO DE ACCESORIOS DE COBRE	glb	1.00	27.20	27.20
03.02.02	INSTALACION DE ACCESORIOS 2 ENTRADAS DE 3/4" CON AISLAMIENTO	und	4.00	28.74	114.96
03.02.03	INSTALACION DE ACCESORIOS 2 ENTRADAS DE 1/4" CON AISLAMIENTO	und	3.00	14.68	44.04
03.02.04	INSTALACION DE TEE DE COBRE 3/4" CON AISLAMIENTO	und	1.00	34.85	34.85
03.02.05	INSTALACION DE TEE DE COBRE 1/4" CON AISLAMIENTO	und	1.00	19.95	19.95
03.03	SUMINISTRO E INSTALACION DE EQUIPOS				43,970.92
03.03.01	SUMINISTRO DE DE EQUIPOS DE AIRE ACONDICIONAMIENTO	glb	1.00	16,780.00	16,780.00
03.03.02	INSTALACION DE MANEJADORA DE AIRE	und	2.00	5,983.83	11,967.66
03.03.03	INSTALACION DE UNIDAD CONDENSADORA	und	2.00	915.70	1,831.40
03.03.04	TABLERO ELECTRICO PARA EQUIPOS DE AIRE ACONDICIONADO	und	2.00	5,987.93	11,975.86
03.03.05	TUBERIA DE DRENAJE DE CONDENSADORA	glb	1.00	1,416.00	1,416.00
03.04	PRUEBAS DE FUNCIONAMIENTO				2,048.00
03.04.01	PRUEBA HIDROSTATICA	glb	2.00	304.80	609.60
03.04.02	PRUEBA DE FUNCIONAMIENTO	glb	2.00	719.20	1,438.40
	COSTO DIRECTO				292,287.93
	GASTOS GENERALES 2.5%				7,307.20
	UTILIDAD 4 %				11,691.52
	SUBTOTAL				311,286.65
	I.G.V. 18%				56,031.60
	TOTAL			==	367,318.25

Anexo L: Ficha técnica de equipos recomendados aire acondicionado DIMENSIONS

MODEL	A*	B"	C"	D*	E"	F"	e.	н*
ARUF18B14*	45	16%	17%	18	15	14%	8%	12
ARUF24B14*	45	16%	17%	18	15	14%	8%	12
ARUF30B14*	45	16%	17%	18	15	14%	8%	12
ARUF30C14*	49	20	21	20	17	17%	10%	12%
ARUF36C14*	49	20	21	20	17	17%	10%	12%
ARUF42C14*	49	20	21	20	17	17%	10%	12%
ARUF48D14*	58	23%	24%	28%	25%	21%	12%	12%
ARUF60D14*	58	23%	24%	28%	25%	21%	12%	12%

Fuente: Catalogos Daikin.



SPECIFICATIONS

	ARUF 18814*	ARUF 24814*	ARUF 30814*	ARUF 30C14*	ARUF 36C14*	ARUF 42C14*	ARUF 48D14*	ARUF 60D14*
NOMINAL RATINGS								
Cooling (Btu/h)	18,000	24,000	30,000	36,000	36,000	42,000	48,000	60,000
Piston Size	0.049	0.057	0.065	0.071	0.071	0.074	0.078	0.088
BLOWER								
Diameter	9%"	9%"	9%"	10%*	10%*	10%*	10%*	12*
Width	6*	6"	6"	8*	8*	10%*	10%*	10%*
COIL CONNECTIONS								
Liquid	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"	3/8"
Suction	3/4"	3/4"	3/4"	3/4"	3/4"	7/8"	7/8"	7/8"
Coil Drain Connect (FPT)	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"
ELECTRICAL DATA								
Voltage	208/230	208/230	208/230	208/230	208/230	208/230	208/230	208/230
Min Circuit Ampacity	3/3	3/3	3/3	4/4	4/4	4/4	5/5	6/6
Max. Overcurrent Device (Amps)	15/15	15/15	15/15	15/15	15/15	15/15	15/15	15/15
Minimum VAC	197	197	197	197	197	197	197	197
Maximum VAC	253	253	253	253	253	253	253	253
Blower Motor								
Full Load Amps (FLA)	1.9	1.9	1.9	3.0	3.0	3.1	3.5	4.0
Horsepower (HP)	Ж	Ж	Ж	Ж	Ж	Ж	Ж	34
SHIP WEIGHT (LBS.)	96	95	102	116	116	118	147	151

Note: Minimum Circuit Ampacity (MCA) and Maximum Overcurrent Protection (MOP) for blower without supplemental heat installed. Refer to unit nameplate and/or Heat Kit Data for specification with approved accessory heaters installed.

NOMENCLATURE

SPECIFICATIONS

	-					-	-
	DZ13SN 0181A*	DZ13SN 0241A*	DZ13SN 0301A*	DZ13SN 0361A*	DZ13SN 0421A*	DZ13SN 0481A*	DZ13SN 0601A*
NOMINAL CAPACITIES							
Cooling (BTU/h)	18,000	24,000	30,000	36,000	42,000	48,000	60,000
Heating (BTU/h)	18,000	24,000	30,000	36,000	42,000	48,000	60,000
Decibels	71	73	72	74	74	76	75
COMPRESSOR							
RLA	9.0	12.8	14.1	16.7	17.9	19.9	26.4
LRA	48.0	58.3	73.0	79.0	112.0	109.0	134.0
Туре	Scroll						
CONDENSER FAN MOTOR							
Horsepower	y _e	%	y _e	36	36	36	36
FLA	0.70	0.70	1.10	1.50	1.50	1.50	1.50
REFRIGERATION SYSTEM							
Refrigerant Line Size							
Liquid Line Size ("O.D.)	%"	%"	%"	%"	% "	ж"	ж"
Suction Line Size ("O.D.)	% "	%"	ж"	%**	1%*	1%*	1%*
Refrigerant Connection Size							
Liquid Valve Size ("O.D.)	% "	ж"	% "	ж"	ж"	%"	%"
Suction Valve Size ("O.D.)	% "	% "	% "	%"	%**	%**	%**
Valve Connection Type	Sweat						
Refrigerant Charge	121	113	108	100	100	222	240
Shipped with Orifice Size	0.051	0.057	0.065	0.071	0.074	0.078	0.088
ELECTRICAL DATA							
Voltage/Phase (60 Hz)	208-230/1	208-230/1	208-230/1	208-230/1	208-230/1	208-230/1	208-230/1
Minimum Circuit Ampacity 2	12	16.7	18.3	22.4	23.9	20.4	34.5
Max. Overcurrent Protection ^a	20	25	30	35	40	45	60
Min / Max Volts	197 / 253	197 / 253	197/253	197 / 253	197/253	197 / 253	197 / 253
Electrical Conduit Size	%" or %"						
EQUIPMENT WEIGHT (LBS)	145	136	142	156	202	219	268
SHIP WEIGHT (LBS)	162	153	159	174	220	237	290

Fuente: Catálogos Daikin

Anexo M: Ficha técnica unidades manejadoras de aire

Range: D-	ASTRA 6.2.6		
AHU Tec	hnical data sheet		
Date	Offer No.	File reference	Page 2/5
05/04/2016	16.HS200F.F.00318-001/003		

Section n° 1			Length:	2170	[mm]	
			Height:	800	[mm]	
Weight:	236	[kg]	Width:	800	[mm]	

Compone	mponent 1 FILTER		Type: Bag Filter	Slide-Aluminium (Polyseal)		
Quantity	Class	Dimensions	Thickness: 290 mm	Air flow rate: 0.66 m3/s		
	305x610 mm		Filtering media: Glass w	ithout Gasket		
		610x305 mm	Air Velocity: 1.8 m/s			
1	F7 610x610 mm		Pressure drops selection	Pressure drops selection on filter: Dirty		
		610x508 mm	Clean Dp: 53 Pa			
		508x610 mm	Mean Dp.: 127 Pa			
		508x508 mm	Dirty Dp.: 200 Pa			
	Opti	ons Included				
	1 x Door without porthole					

Component 2 HEATING COIL	Fluid: Water Coil
Model: Cu-Al-FeZn P40AC 2R-13T-455A-3.0pa	a 2C 3/4" P40 Calculated in dry condition
Rows: 2	N° Coil: 1
Fin Space: 3.00 mm	Tube diameter: 5/8"
Tube material: Copper	Fin material: Al
Water connections: 3/4"/Screwed/ LH	Total Capacity: 100000.00 BTU/h
Air Side	Fluid Side
Air Flow: 0.66 m3/s Vel: 2.80 m/s	Fluid Flow: 0.62 kg/s
Temp. db On: 6.00 °C	Temp. On: 80.00 °C
Temp, wb On:	Temp. Off: 70.00 °C
Temp. db Off: 37.13 °C	Press, Drop: 23 kPa Max Pd : 50 kPa
Temp. wb Off:	Glycol:
Press. Drop: 58 Pa	Fluid velocity: 1.60 m/s Fluid Volume: 4.00 dm3

Component 3	HUMIDIFIER		
Model: Isothermal Immerse Electrode			
Fluid flow rate: 15.52 Kg/h	Electrical Power: 11.36 KW		
Air Temp. db on: 20.00°C	Air Temp. db off: 20.00°C		
Air Temp. wb on: 9.01°C	Air Temp. wb off: 13.12°C		
Options Included			
1 x Door without porthole			

Fuente: Catalogos Daikin.

Range: D-AHU					2.6
AHU Tech	nical data sheet				
Date	Date Offer No.		File reference	l	Page 2/5
05/04/2016	16.HS200F.F.00318-003/002				Ť

Section n° 1			Length:	2330	[mm]	
			Height:	860	[mm]	
Weight:	295	[kg]	Width:	1060	[mm]	

Compone	nt 1	FILTER	Type: Bag Filter	Slide-Aluminium (Polyseal)		
Quantity	Class	Dimensions	Thickness: 290 mm	Air flow rate: 1.15 m3/s		
1	F7	305x610 mm	305x610 mm Filtering media: Glass without Gasket			
		610x305 mm	Air Velocity: 2.3 m/s			
	610x610 mm Pressure drops selection on filter:		on filter: Dirty			
		610x508 mm	Clean Dp: 70 Pa			
1	F7	508x610 mm	Mean Dp.: 135 Pa			
	508x508 mm		Dirty Dp.: 200 Pa	Dirty Dp.: 200 Pa		
	Options Included					
	1 x Door without porthole					

Component 2 HEATING COIL	Fluid: Water Coil
Model: Cu-Al-FeZn P40AC 1R-15T-715A-3.0p	pa 2C 3/4" P40 Calculated in dry condition
Rows: 1	N° Coil: 1
Fin Space: 3.00 mm	Tube diameter: 5/8"
Tube material: Copper	Fin material: Al
Water connections: 3/4"/Screwed/ LH	Total Capacity: 95000 BTU/h
Air Side	Fluid Side
Air Flow: 1.15 m3/s Vel: 2.68 m/s	Fluid Flow: 0.60 kg/s
Temp. db On: 6.00 °C	Temp. On: 80.00 °C
Temp, wb On:	Temp. Off: 70.00 °C
Temp, db Off: 23.51 °C	Press, Drop; 28 kPa Max Pd : 50 kPa
Temp. wb Off:	Glycol:
Press. Drop: 26 Pa	Fluid velocity: 1.57 m/s Fluid Volume: 3.40 dm3

Component 3	HUMIDIFIER					
Model: Isothermal Immerse Electrode						
Fluid flow rate: 20.04 Kg/h	Electrical Power: 17.75 KW					
Air Temp. db on: 20.00°C	Air Temp. db off: 20.00°C					
Air Temp. wb on: 9.01°C	Air Temp. wb off: 13.12°C					
Options Included						
1 x Door without porthole						
1 x External Drain Standard	1 x External Drain Standard -Galvanised					

Range: D-A	HU	ASTRA 6.2.6		
AHU Tech				
Date	Offer No.	 File reference		Page 2/5
05/04/2016	16.HS200F.F.00318-004/002	T IIO TOTOTOTO		r ago 20

Section n°	1		Length:	2220	[mm]
			Height:	700	[mm]
Weight:	214	[kg]	Width:	790	[mm]

Compone	nt 1	FILTER	Type: Bag Filter	Slide-Aluminium (Polyseal)						
Quantity	Class	Dimensions	Thickness: 290 mm	Air flow rate: 0.21 m3/s						
		305x610 mm	Filtering media: Glass wit	Filtering media: Glass without Gasket						
		610x305 mm	Air Velocity: 0.7 m/s							
		610x610 mm	Pressure drops selection	on filter: Dirty						
1	F7	610x508 mm	Clean Dp: 20 Pa	Clean Dp: 20 Pa						
		508x610 mm	Mean Dp.: 110 Pa	Mean Dp.: 110 Pa						
		508x508 mm	Dirty Dp.: 200 Pa							
	Options Included									
	1 x Door without porthole									

Component 2 HEATING COIL	Fluid: Water Coil
Model: Cu-Al-FeZn P60AC 1R-7T-440A-2.0pa 1C 1/	2" P60 Calculated in dry condition
Rows: 1	N° Coil: 1
Fin Space: 2.00 mm	Tube diameter: 5/8"
Tube material: Copper	Fin material: Al
Water connections: 1/2"/Screwed/ LH	Total Capacity: 22000.00 BTU/h
Air Side	Fluid Side
Air Flow: 0.21 m3/s Vel: 1.13 m/s	Fluid Flow: 0.11 kg/s
Temp. db On: 6.00 °C	Temp. On: 80.00 °C
Temp. wb On:	Temp. Off : 70.00 °C
Temp. db Off: 24.40 °C	Press, Drop: 2 kPa Max Pd : 50 kPa
Temp. wb Off:	Glycol:
Press. Drop: 4 Pa	Fluid velocity: 0.60 m/s Fluid Volume: 1.20 dm3

Component 3	HUMIDIFIER
Model: Isothermal Immerse Electrode	
Fluid flow rate: 3.63 Kg/h	Electrical Power: 3.55 KW
Air Temp. db on: 20.00°C	Air Temp. db off: 20.00°C
Air Temp. wb on: 9.01°C	Air Temp. wb off: 13.12°C
Options Included	
1 x Door without porthole	

Anexo N: Ficha técnica calentador de agua

Modelos para trabajo pesado*

MODELO	CA Volumétrica (I)	PACIDAD Calor (kj/h)			NTINUA DE AGUA o de temperatura 37,7°C=100°F litros/h	TIEMPO DE RECUPERACIÓN con incremento de temp. 25°C (min)	SALIDA de gases (cm)	de agua	Y SALIDA superior (pulg)
D-80-180-CX	303	189,783	180,000	916	607	20	15	38,1	(1 1/2)
D-100-270-C	370	284,674	270,000	1224	811	18	15	38,1	(1 1/2)
D-75-399-CX	315	420,685	399,000	2238	1484	9	20	1	N/A
D-80-512-CX	313	548,000	512,000	3077	2040	6	25	N	l/A

MODELO	de agu front poste infe (mm)	sa fria tal y erior rior	de agua froi y pos supo (mm)	caliente ntal terior	ga	5	XIÓN pa válvu alin (mm)	la de	y es alto	MENSIO pecifica técnica ancho (cm)	ciones s	con empaque	sin empaque (kg)	RECOMENDACIÓN por número de servicios (regaderas)
D-80-180-CX	50,8	2	50,8	2	19,0	3/4	19	3/4	193	67	82	239	208	12
D-100-270-CX	50,8	2	50,8	2	19,0	3/4	25,4	1	190	77	92	316	275	14
D-75-399-CX	50,8	2	50,8	2	25,4	1	25,4	1	193	77	92	356	322	19
D-80-512-CX	50,8	2	50,8	2	25,4	1	25,4	1	188	77	92	356	322	26

Fuente: CaloRex

Anexo O: PLANOS

TESIS UNA - PUNO

LISTA DE PLANOS:

IM-01: PRIMER NIVEL SALA DE OPERACIONES.

IM-02: PRIMER NIVEL UNIDAD DE CUIDADOS INTENSIVOS Y AISLADOS.

IM-03: PLANO DE TECHOS SEGUNDO NIVEL DISPOSICIÓN DE EQUIPOS.

IM-04: PLANO DE DETALLE.

IM-05: DETALLE CUARTO DE CALENTADORES Y TUBERÍAS.