

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE INGENIERÍA DE MINAS

ESCUELA PROFESIONAL DE INGENIERÍA DE MINAS

"ANÁLISIS DE ESTABILIDAD DE TALUDES EN EL PORTAL DE INGRESO

Y SALIDA DEL TÚNEL PUMAMAYO Y EN EL ALIVIADERO DE DEMASÍAS

EN LA PRESA PUMAMAYO"

TESIS

PRESENTADA POR:

JUAN GUALBERTO TAYPE UMAYASI

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO DE MINAS

PROMOCIÓN 2011

PUNO – PERÚ

2017

)

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE INGENIERÍA DE MINAS

ESCUELA PROFESIONAL DE INGENIERÍA DE MINAS

TESIS

"ANÁLISIS DE ESTABILIDAD DE TALUDES EN EL PORTAL DE INGRESO Y SALIDA DEL TÚNEL PUMAMAYO Y EN EL ALIVIADERO DE DEMASÍAS EN LA PRESA PUMAMAYO"

PRESENTADA POR:

JUAN GUALBERTO TAYPE UMAYASI

A la Dirección de la Unidad de Investigación de la Facultad de Ingeniería de Minas de la Universidad Nacional del Altiplano como requisito.

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO DE MINAS

FECHA DE SUSTENTACIÓN: 09 DE MAYO DEL 2017

APROBADA POR EL JURADO REVISOR CONFORMADO POR:

PRESIDENTE DEL JURADO	D. JUAN MAYHUARALOMINO
PRIMER MIEMBRO	Dr. ROBERTO CHÁVEZ FLORES
SEGUNDO MIEMBRO	Ing.ESTEBANAQUINO ALANOCA
DIRECTOR	Dr. OSCAR LLANQUE MAQUERA
ASESOR	:

ÁREA: Ingeniería de minas. TEMA: Estabilidad de taludes.

Universidad Nacional del Altiplano

DEDICATORIA

En memoria de mi señor padre Apolinar Taype, quien no dudo en su apoyo continúo en mi formación y doña Benedicta Umayasi, quien me dio y me sigue dando su apoyo incondicional en todo momento.

> A Danny Roció, compañera inseparable de cada jornada, ella representa esfuerzo y motivación en momentos de desaliento y fatiga. A mi hija Alinne Valentina por ser el motor y la razón de mi vida.

Y como olvidar con todo cariño y afecto a mis hermanos Pablo, Stefany, Vicky, Filberto, María y Yesenia quienes me apoyaron en momentos cruciales en la culminación de este objetivo.

AGRADECIMIENTO

- Ante todo mi agradecimiento a Dios, por haberme acompañado y guiado a lo largo de mi carrera, por ser mi fortaleza en los momentos de debilidad y por brindarme una vida llena de aprendizajes, experiencias y sobre todo felicidad.
- Mi agradecimiento a mi alma mater, la Universidad Nacional del Altiplano –
 Puno, por haberme dado la oportunidad para formarme como Ingeniero de Minas.
 A la Facultad de Ingeniería de Minas, a sus autoridades, docente y personal administrativo, quienes pudieron guiarme con éxito en mi formación académica.
- Mi agradecimiento también a los señores Miembros del Jurado, Director y Asesor del presente proyecto de investigación, por sus acertadas observaciones, sugerencias para el desarrollo y la culminación de este proyecto.
- Mi reconocimiento a la Empresa INMICONS Gold Star Rock Drill S.A.C., por su apoyo y disposición para la ejecución del presente trabajo de investigación.
- Por último, a mis compañeros y amigos con quienes compartí grandes momentos de mi vida durante mi permanencia en mí querida universidad.

Gracias a todos.

ÍNDICE GENERAL

Pág.

RESUMEN	12
ABSTRACT	13
INTRODUCCIÓN	14

CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1.	DESCRIPCIÓN DE REALIDAD PROBLEMÁTICA	16
1.2.	FORMULACIÓN DEL PROBLEMA	17
1.3.	OBJETIVOS DE LA INVESTIGACIÓN	18
1.4.	JUSTIFICACIÓN DE LA INVESTIGACIÓN	18
1.5.	LIMITACIONES DEL ESTUDIO	19
1.6.	VIABILIDAD DEL ESTUDIO	19

CAPÍTULO II

MARCO TEÓRICO

2.1.	ANTECEDENTES DE LA INVESTIGACIÓN	21
2.2.	BASES TEÓRICAS	25
2.3.	DEFINICIONES CONCEPTUALES	58
2.4.	HIPÓTESIS	63

CAPÍTULO III

METODOLOGÍA DE LA INVESTIGACIÓN

3.1.	DISEÑO METODOLÓGICO	64
3.2.	POBLACIÓN	64
3.3.	MUESTRA	65
3.4.	OPERACIONALIZACIÓN DE VARIABLES	65
3.5.	TÉCNICAS DE RECOLECCIÓN DE DATOS	67

CAPÍTULO IV

CARACTERIZACIÓN DEL ÁREA DE ESTUDIO

4.1.	GENERALIDADES	69
4.2.	CARACTERIZACIÓN GEOLÓGICA	70
4.3.	CARACTERIZACIÓN GEOMECÁNICA DEL MACIZO ROCOSO	74
4.4.	PROPIEDADES DE LA ROCA INTACTA	76
4.5.	CLASIFICACIÓN GEOMECÁNICA DEL MACIZO ROCOSO	83
4.6.	RESISTENCIA, MÓDULO DE DEFORMACIÓN Y CAPACIDAD ADMISIBLE DEL MACIZO ROCOSO	88

CAPÍTULO V

RESULTADOS Y DISCUSIONES

5.1.	PARÁMETROS DE RESISTENCIA Y PROPIEDADES FÍSICAS DEL MACIZO ROCOSO	93
5.2.	ANÁLISIS DE ESTABILIDAD DE TALUDES	95
5.3.	ESTABILIDAD GLOBAL	108
CONC	CLUSIONES	111
RECOMENDACIONES 1115		
BIBLIOGRAFÍA 117		
ANEXOS		

ÍNDICE DE FIGURAS

Pág.

Figura 2.1.	Clasificación de los métodos de cálculo
Figura 2.2.	Disposición de discontinuidades en el estereograma para un modo de falla planar
Figura 2.3.	Disposición de discontinuidades en el estereograma para un modo de falla por cuña
Figura 2.4.	Disposición de discontinuidades en el estereograma para un modo de falla por vuelco de bloques
Figura 2.5.	Disposición de discontinuidades en el estereograma para un modo de falla circular
Figura 2.6.	Representación de la envolvente de Mohr-Coulomb en el espacio de tensiones normal y tangencial
Figura 2.7.	Representación del criterio de rotura de Hoek & Brown, en el espacio de tensiones normal y tangencial
Figura 2.8.	Guías para la estimación del factor de alteración del criterio de rotura de Hoek & Brown, <i>D</i>
Figura 2.9.	Procedimiento de medición y cálculo del RQD
Figura 2.10.	Tabla grafica de GSI general
Figura 2.11.	Carta para evaluar el índice de resistencia geológica en macizos rocosos estratificados y heterogéneos
Figura 2.12.	Definición ilustrativa de un macizo rocoso (a) y estructura (b) del macizo rocoso
Figura 4.1.	Proyección estereográfica de las discontinuidades
Figura 4.2.	Proyección estereográfica de las discontinuidades
Figura 5.1.	Esquema Simplificado de los Taludes de Corte: Portal de Entrada 96
Figura 5.2.	Esquema Simplificado de los Taludes de Corte: Portal de Salida96
Figura 5.3.	Ejemplo de principales familias en la Estación Geomecánica 07 A 97
Figura 5.4.	Ejemplo del análisis de falla en el Portal de Entrada del túnel (63°) – Talud Frontal (EG-10A)
Figura 5.5.	Ejemplo del análisis de falla en el Aliviadero – Talud izquierdo (63°) (EG-05A)
Figura 5.6.	Análisis de falla planar en el Túnel – Portal de Entrada – Talud Frontal (63°) – en condiciones estáticas
Figura 5.7.	Análisis de falla tipo cuña en el Túnel – Portal de Entrada – Talud derecho en condiciones estáticas (Fam 1 y 2) 105
Figura 5.8.	Análisis de estabilidad global en el Portal de entrada del túnel – Talud frontal en condiciones estáticas

ÍNDICE DE CUADROS

Pág.

Cuadro 2.1.	Lagunas actualmente reguladas
Cuadro 2.2	Clasificación de la calidad del macizo rocoso según el índice RQD 42
Cuadro 2.3	Clasificación RMR. Bieniawsky (1989)
Cuadro 2.4.	Clasificación de Barton de los macizos rocosos. Índice de Calidad Q 48
Cuadro 2.5.	Clasificación de parámetros individuales usados en el Índice de Calidad Tunelera Q
Cuadro 2.6.	Factor de ajuste para las juntas
Cuadro 2.7.	Factor de Ajuste Según el Método de Excavación55
Cuadro 2.8.	Clases de Estabilidad Según el SMR
Cuadro 2.9.	Valores límites del SMR encontrados empíricamente para cada forma de rotura
Cuadro 2.10.	Parámetros de corrección F1, F2, F3 y F4 de la clasificación SMR 57
Cuadro 3.1.	Variables e indicadores
Cuadro 4.1.	Coordenadas de ubicación del proyecto
Cuadro 4.2.	Coordenadas de ubicación del proyecto70
Cuadro 4.3.	Columna lito-estratigráfica área del Proyecto
Cuadro 4.4.	Estaciones geomecánicas
Cuadro 4.6.	Sondeo diamantino ejecutado
Cuadro 4.7.	Estaciones geomecánicas
Cuadro 4.8.	Gravedad específica – Estaciones geomecánicas
Cuadro 4.9.	Gravedad específica – Perforaciones diamantinas
Cuadro 4.10.	Resistencia a compresión simple – Estaciones geomecánicas
Cuadro 4.11.	Resistencia a compresión simple – Perforaciones diamantinas
Cuadro 4.12.	Condiciones de las discontinuidades – Estaciones geomecánicas
Cuadro 4.13.	Orientación de las discontinuidades
Cuadro 4.14.	Valores de RQD – Estaciones geomecánicas
Cuadro 4.15.	Valores de RQD en los sondeos realizados
Cuadro 4.16.	Clasificación geomecánica de Bieniawski (RMR)

Cuadro 4.17.	Valores del Índice de resistencia geológica (GSI)	. 85
Cuadro 4.18.	Valores del sistema de clasificación Q	. 86
Cuadro 4.19.	Índice de Barton (Q)	. 86
Cuadro 4.20.	Resumen de la clasificación geomecánica – Estaciones geotécnicas	. 87
Cuadro 4.21.	Calidad del macizo rocoso según tipo litológico	. 87
Cuadro 4.22.	Propiedades del macizo rocoso	. 88
Cuadro 4.23.	Valores referenciales de m_i	. 88
Cuadro 4.24.	Parámetros del macizo rocoso para la presa de enrocado	. 91
Cuadro 4.25.	Parámetros del macizo rocoso para el túnel de desvío	. 91
Cuadro 5.1.	Parámetros y propiedades del macizo rocoso	. 94
Cuadro 5.2.	Parámetros de resistencia Macizo Rocoso	. 94
Cuadro 5.3.	Parámetros de resistencia en discontinuidades	. 95
Cuadro 5.4.	Portales de Entrada y Salida de Túnel – Análisis Cinemático – Determinación tipo de falla	. 98
Cuadro 5.5.	Aliviadero – Análisis Cinemático – Determinación tipo de falla	. 99
Cuadro 5.6.	Valoración del SMR	101
Cuadro 5.7.	Valor del SMR - Portales de Entrada y Salida de Túnel	101
Cuadro 5.8.	Valor del SMR – Secciones del aliviadero	101
Cuadro 5.9.	Factores de seguridad – Datos para análisis de Falla Planar – Portales de Entrada y Salida de Túnel	103
Cuadro 5.10.	Factores de seguridad – Datos para análisis de Falla Planar – Aliviadero	103
Cuadro 5.11.	Factores de seguridad – Datos para análisis de Falla tipo cuña – Portales de Entrada y Salida de Túnel	106
Cuadro 5.12.	Factores de seguridad – Datos para análisis de Falla tipo cuña – Aliviadero	106
Cuadro 5.13.	Talud de corte – Portales de Entrada y Salida de Túnel	107
Cuadro 5.14.	Talud de corte – Sección del aliviadero	107
Cuadro 5.15.	Factor de Seguridad en Taludes, analizados globalmente – Portales de Entrada y Salida	108
Cuadro 5.16.	Factor de Seguridad en taludes, asumiendo fallamiento secuencial – Portales de Entrada y Salida	109

Universic	lad
Nacional	de
Altiplano	

Cuadro 5.17.	Factores de seguridad – Datos para análisis de Falla Planar – Portales De Entrada y Salida de Túnel
Cuadro 5.18.	Factores de seguridad – Datos para análisis de Falla Planar – Aliviadero
Cuadro 5.19.	Factores de seguridad – Datos para análisis de Falla tipo cuña – Portales de Entrada y Salida de Túnel
Cuadro 5.20.	Factores de seguridad – Datos para análisis de Falla tipo cuña – Aliviadero
Cuadro 5.21.	Sistema de sostenimiento sugerido final 114
Cuadro 5.22.	Talud de corte – Portales de Entrada y Salida de Túnel 115
Cuadro 5.23.	Talud de corte – Sección del aliviadero 115
Cuadro 5.24.	Relación de la altura de banco y cara de banco116

ÍNDICE DE ANEXOS

Pág.

1.	ANEXO A: ANÁLISIS DE DISCONTINUIDADES	120
1.1.	ANEXO A.1: PRINCIPALES FAMILIAS DE DISCONTIUIDADES	120
1.1.1.	Principales familias de discontinuidades	120
1.1.2.	Análisis de tipo de falla en el Túnel Pumamayo	124
1.2.	ANEXO A.2: ANÁLISIS FALLA POR CUÑA	131
1.3.	ANEXO A.3: ANÁLISIS FALLA POR PLANAR	155
1.4.	ANEXO B: ANÁLISIS DE ESTABILIDAD GLOBAL	164
1.5.	ANEXO C: CÁLCULO DEL SMR	176
1.6.	ANEXO D: VALORACIÓN DEL MACIZO ROCOSO – CLASIFICACIÓN GEOMECÁNICA RMR	185
1.7.	ANEXO E: HOJA DE LEVANTAMIENTO GEOMECÁNICO	195
1.8.	ANEXO F: PLANOS	205

RESUMEN

El objetivo principal del proyecto del embalse Pumamayo es el afianzamiento hídrico del río San Gabán, esto es, el incremento del caudal firme o garantizado y, consiguientemente, el incremento de la producción de energía media anual en el desarrollo hidroenergético de la C.H. San Gabán II así como en la futura C.H. San Gabán III.

Para lograr este fin es que se realiza la construcción de una presa de tipo CRFD (Concrete Faced Rockfill Dams) que está compuesta de un enrocado con cara de concreto, con una capacidad de 32 MMC y una altura de 28.7 m en el rio Ajoyajota o Pumamayo; además de un túnel de desvío de 170 m de longitud que permita construir la presa sin riesgo de inundación y también de una obra auxiliar de un canal que servirá de un aliviadero lateral en el estribo derecho de la presa.

Para la construcción del túnel y del aliviadero es que se necesita realizar un análisis adecuado de los taludes naturales presentes en la zona. Se deberán de dar un ángulo adecuado para mantener la estabilidad de los taludes y un reforzamiento adecuado para poder dar la confiabilidad a la construcción.

En el presente trabajo de investigación se realiza un análisis de estabilidad de taludes de roca, mediante la caracterización geomecánica, identificación de los modos de falla y la elección del tipo de sostenimiento más adecuado, tanto en el portal de ingreso y salida del túnel Pumamayo y del aliviadero de demasías de la presa Pumamayo, el modelamiento se realiza en condiciones estáticas y pseudoestática con lo que se logra encontrar un Factor de Seguridad aceptable para la estabilidad de los taludes.

Palabras clave: Taludes, estabilidad de taludes, modos de falla, factor de seguridad, estática, pseudoestática, sostenimiento.

ABSTRACT

The main objective of the pumamayo reservoir project is the water reinforcement of the San Gabán river, that is, the increase of the guaranteed or firm flow and, consequently, the increase of the average annual energy production in the hydroenergetic development of the c.h. san gabán ii as well as in the future C.H. San Gabán III.

In order to achieve this goal, a CRFD (Concrete Faced Rockfill Dams) type dam is constructed, consisting of a concrete face cast with a capacity of 32 MMC and a height of 28.7 m in the Ajoyajota river or Pumamayo; In addition to a tunnel of diversion of 170 m in length that allows to construct the dam without risk of flood and also of an auxiliary work of a channel that will serve as a lateral spillway in the right stirrup of the dam.

For the construction of the tunnel and the spillway, it is necessary to carry out an adequate analysis of the natural slopes present in the area. They must give an adequate angle to maintain the stability of the slopes and a suitable reinforcement to be able to give the reliability to the construction.

In the present work, a stability analysis of rock slopes is performed, through the geomechanical characterization, identification of failure modes and the choice of the most adequate type of support, both in the entry and exit portal of the Pumamayo tunnel and of the Pumamayo dam, the modeling takes place under static and pseudo-static conditions, which makes it possible to find an acceptable safety factor for the stability of the slopes.

Keywords: slopes, slope stability, failure modes, safety factor, static, pseudo-static, support.

INTRODUCCIÓN

El presente trabajo plantea realizar un análisis de la estabilidad de los taludes, que permita obtener un Factor de Seguridad aceptable para la construcción del túnel Pumamayo y del aliviadero de demasías de la presa Pumamayo, mediante el modelamiento con software geomecánico del paquete de Rocscience, con un análisis de la estabilidad por el método de equilibrio límite de los taludes tanto en condiciones estáticas y pseudoestáticas.

En el primer capítulo se establece el planteamiento del problema; ¿Con un adecuado análisis de estabilidad de taludes se podrá lograr un Factor de Seguridad aceptable y así poder elegir los tipos de reforzamiento apropiados en el proyecto de Regulación del Río Pumamayo?, la presente tesis pretende realizar un análisis de estabilidad encontrando los Factores de Seguridad óptimos y así poder contestar de forma satisfactoria a este cuestionamiento, además en este capítulo detallamos los objetivos, la justificación, las limitaciones y la viabilidad del estudio.

En el segundo capítulo se abordan los aspectos teóricos del estudio como el análisis de estabilidad de taludes por la metodología del equilibrio limite, los antecedentes de la aplicación de este método en trabajos similares, definiciones y conceptos sobre los aspectos básicos estabilidad, modos de falla en taludes, características físicas del macizo rocoso, clasificación geomecánica y finalizando este capítulo, las hipótesis que guiaron esta investigación.

En el capítulo tres se muestra la metodología utilizada para alcanzar nuestros objetivos, el diseño metodológico, la población utilizada, las técnicas de recolección de datos y culminando con la operacionalización de las variables.

En el capítulo cuatro se muestra la caracterización del área, el cual comprende aspectos generales de la obra Regulación del Río Pumamayo como; ubicación, accesibilidad,

fisiografía y recursos, geología de la zona, caracterización geomecánica del macizo rocoso y la clasificación geomecánica de la calidad del tipo de terreno presentes en el área de estudio.

Finalizando el trabajo en el capítulo cinco se expone y analiza los resultados obtenidos con la aplicación del método utilizado.

CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. DESCRIPCIÓN DE REALIDAD PROBLEMÁTICA

El proyecto "Regulación del Río Pumamayo, para el afianzamiento hídrico de la Central. Hidroeléctrica San Gabán II", de la Empresa de Generación Eléctrica San Gabán S.A. (la EGESG), tiene como objetivo el afianzamiento hídrico de la C.H. San Gabán II, además de almacenar y regular las aguas del río para la generación de energía con la futura construcción de la C.H. San Gabán III.

Esta obra comprende estructuras como; la Presa Pumamayo, de tipo CFRD (enrocado con losa de concreto sobre su talud aguas arriba), con una altura máxima de 31.5 m y un volumen de 32 MMC; un túnel, que en su fase inicial cumplirá el papel de desviar las aguas del río Pumamayo posibilitando la construcción de la presa, el cual se convertirá posteriormente en túnel de operación para regular el agua a ser descargada al río y finalmente un aliviadero de demasías que se ubicará en la margen derecha de la presa y que terminará en un salto de esquí. Para la construcción del túnel y el aliviadero de demasías se presenta la problemática de inestabilidad en los taludes del macizo rocoso donde se ira a construir estas estructuras. Es por tal razón que el presente estudio tiene la finalidad de realizar un análisis de la estabilidad de los taludes tanto en el portal de entrada y de salida del túnel de derivación del río Pumamayo y en el aliviadero de demasías.

Un conocimiento adecuado del comportamiento de los taludes frente a las posibles roturas que pueda presentar, repercute enormemente en los costes y la seguridad de la obra; por ello, las investigaciones de campo (in situ) y los realizados en el laboratorio, deben ser lo suficientes, como para poder caracterizar en la medida de lo posible las características geomecánicas del terreno, así como los posibles mecanismos de rotura, para que al final se de una recomendación en el sistema de refuerzo que se requiera para lograr la estabilidad en dichos taludes.

1.2. FORMULACIÓN DEL PROBLEMA

1.2.1. Problema general

¿Con un adecuado análisis de estabilidad de taludes se podrá lograr un Factor de Seguridad aceptable y así poder elegir los tipos de reforzamiento apropiados en el proyecto de Regulación del Río Pumamayo?

1.2.2. Problemas específicos

- ¿Cuál será el factor de seguridad aceptable para los taludes en el portal de entrada
 y de salida del Túnel Pumamayo y en el aliviadero de demasías de la Presa
 Pumamayo?

¿Qué tipos de reforzamiento se deberá elegir para mantener la estabilidad en los taludes del portal de entrada y de salida del Túnel Pumamayo y en el aliviadero de demasías de la Presa Pumamayo?

1.3. OBJETIVOS DE LA INVESTIGACIÓN

1.3.1. Objetivo general

Analizar la estabilidad de los taludes y elegir los tipos de reforzamiento apropiados en el proyecto de Regulación del Río Pumamayo.

1.3.2. Objetivos específicos

- Evaluar la estabilidad de los taludes para obtener un Factor de Seguridad aceptables para los taludes del portal de ingreso y salida del túnel Pumamayo y en el aliviadero de demasías de la presa Pumamayo.
- Proponer los tipos de reforzamiento adecuados ante eventuales problemas de inestabilidad en los taludes del portal de ingreso y salida del túnel Pumamayo y en el aliviadero de demasías de la presa Pumamayo.

1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN

La ejecución de este proyecto, que forma parte del afianzamiento hídrico de la central hidroeléctrica de San Gabán II, que permitirá almacenar 32 hm³ de agua, en temporada de lluvia, producto de la regulación del río Pumamayo y la laguna Ajoyajota. El proyecto comprende principalmente de una presa y sus obras conexas de desvío en túnel, toma y descarga y un canal de alivio. La presa es de tipo enrocado, con revestimiento de concreto en talud aguas arriba, y tiene más de 30 m de altura máxima. El túnel de desvío de 192

m de longitud, sin considerar estructuras de ingreso y salida, y que posteriormente operará como descarga de fondo, se desarrolla por la margen izquierda del río.

Es en la etapa de construcción del túnel – portal de ingreso y salida – y del canal de aliviadero que se presentan problemas de inestabilidad en los taludes naturales que se tiene en el terreno, con tal fin se realiza la evaluación de los taludes artificiales que se dará y el tipo de reforzamiento que se implantará para mantener una estabilidad aceptable de los taludes.

1.5. LIMITACIONES DEL ESTUDIO

El estudio tuvo pocas limitaciones como la inaccesibilidad a zonas altas del frente del talud para poder tomar datos de campo debido a la gran altura del talud y el riesgo asociado a la caída de rocas.

1.6. VIABILIDAD DEL ESTUDIO

La importancia del estudio de la estabilidad de taludes en el moderno desarrollo de las actuales infraestructuras tales como, vías de comunicación, canales, caminos o ferrocarriles, así como el impulso de la construcción de presas de tierra ha recibido en todo momento en los últimos años han puesto al diseño y la construcción de taludes en un plano de importancia ingenieril de primer orden. Tanto por el aspecto de inversión como por el de consecuencias derivadas de su falla, los taludes constituyen hoy una de las estructuras ingenieriles que exigen mayor cuidado en la etapa de estudio y construcción de la obra.

En la actualidad se vienen realizando innumerables obras de regulación de cuencas ya sea para obras de agricultura y energía por lo que urge la necesidad de construir obras de ingeniería para el control de las cuencas, debido a estas construcciones es que se hace

necesario entender el comportamiento que tendrán los taludes naturales y finales que se

le darán a las obras para mantener las estructuras seguras y duraderas.

CAPÍTULO II

MARCO TEÓRICO

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

a. Proyecto de Regulación del Río Pumamayo

El potencial hidroenergético de la cuenca del río San Gabán se viene estudiando desde la década del 60, periodo en el cual se han analizado diversos esquemas y tamaños de centrales hidroeléctricas que concebían el aprovechamiento de los recursos hídricos en su condición de escorrentía natural, es decir, sin considerar la necesidad de efectuar obras de regulación.

En los últimos años, con la conformación de los sistemas eléctricos interconectados, se hacen viables y muy atractivas determinadas obras de regulación estacional a fin de incrementar la generación de energía eléctrica en dicha central. En este nuevo escenario, ELECTROPERÚ identificó en 1987 como alternativas de afianzamiento hídrico del río San Gabán los embalses de Macusani y Corani, con los cuales se logra incrementar significativamente el caudal garantizado en el río San Gabán y consecuentemente su potencial hidroenergético.

En 1993, se efectuó el estudio del plan de afianzamiento hídrico del río San Gabán. Como resultado de dicho estudio se estableció que debería implementarse en una primera etapa de afianzamiento el embalse de Macusani con una capacidad de 112 hm³ y un volumen útil anual del orden de 97 hm³, con el cual el caudal medio mensual garantizado, en condiciones naturales de escorrentía de 7.2 m³/s, se lograría incrementar hasta alcanzar el valor de 16.30 m³/s en el punto de captación de la entonces futura central hidroeléctrica San Gabán II.

Posteriormente, durante el periodo de construcción de la C.H. San Gabán II (1996 – 1999), la EGESG emprendió estudios principalmente en la parte alta de la cuenca del río Macusani, a fin de construir obras de represamiento en pequeñas lagunas para regular sus recursos hídricos e incrementar el caudal firme con inversiones poco significativas.

Como resultado de tal iniciativa, en el periodo 1999 – 2000 la EGESG construyó pequeñas obras de regulación en cuatro lagunas de la cuenca alta del río Macusani y una de la del río Corani, conforme se muestra en el Cuadro 2.1.

Cuadro 2.1. Lagunas actualmente reguladas.

LAGUNA	CONDICIÓN	RÍO	SUBCUENCA	CAPACIDAD
Chungara	Existente	Churquinuyo	Macusani	9.76
Parinajota	Existente	Churquinuyo	Macusani	9.41
Chaumicocha	Existente	Tocca	Macusani	3.50
Isococha	Existente	Tocca	Macusani	7.68
Suytucocha	Existente	Trapiche	Corani	5.89
			TOTAL	36.24

Fuente: Elaboración propia.

En el año 2013, se cuenta con un proyecto definitivo de regulación de tres lagunas en la cuenca del río Corani, con una capacidad total de 24.2 hm³, que está en actual construcción. En el año 2002, la EGESG realizó el estudio de prefactibilidad para las obras de Regulación del Río Pumamayo. En este estudio se investigaron el río Pumamayo,

las quebradas Chahuana y Tupuri mediante investigaciones básicas elementales. Luego continuó el estudio de factibilidad y el estudio definitivo.

Características físicas del embalse y de la cuenca

_	Nivel de corona de presa	: 4 578.50 msnm
_	Altura de presa	: 31.50 m
_	Ancho de corona	: 6.00 m
_	Longitud corona presa	: 81.50 m
_	Borde libre	: 2.80 m
_	Área de la cuenca del río Ajoyajota	: 96 km ²
_	Perímetro de cuenca del río Ajoyajota	: 49,7 km
_	Área de embalse (NAMO)	$: 2.55 \text{ km}^2$
_	Perímetro embalse (NAMO)	: 14.90 km
_	Altura del embalse	: 31.30 m
_	Volumen del embalse (NAMO)	: 32.0 hm ³
_	Nivel de corona presa	: 4 578.50 msnm
_	Nivel del NAME	: 4 577.04 msnm
_	Nivel del NAMO	: 4 575.70 msnm
_	Nivel del NAMI	: 4 556.50 msnm
_	Nivel de base del embalse	: 4 547.20 msnm

Universidad Nacional del Altiplano

Altitud media

- b. Cabrera (2005), En su tesis de título *Estudio de estabilidad de taludes del tajo Suro Sur y Suro Norte en la mina La Virgen* presentada en la Facultad de Ingeniería de Minas de la Universidad Nacional del Altiplano en sus conclusiones menciona. Conclusión Nº 02: "La recolección de la información estructural y de las características geotécnicas del macizo rocoso de la zona de estudio, se realizó a través de un mapeo geológico geotécnico sobre la superficie de los cortes efectuados por la explotación actual, seguido de un mapeo estructural mediante el empleo del método de línea de detalle y método de celdas". Conclusión N° 04: "La clasificación del macizo rocoso para cada zona investigada se realizó empleando el índice RQD, sistema RMR (Bieniawski, 1989), índice Q (Barton et, al., 1974) e índice GSI (Marino y Hoek al et. 2000), lo que ha permitido definir diez dominios estructurales".
- c. Rodríguez, Morales, & Paredes (2003). En el trabajo denominado *Evaluación de la estabilidad de taludes en la mina Lourdes* presentado en la Facultad de Ingeniería de Minas de la Universidad Nacional Jorge Basadre Grohmann en sus conclusiones menciona.- Conclusión N° 03: "Se levantó información estructural mediante línea de detalle; determinándose como el sistema de discontinuidades más desfavorable, en la cantera Lourdes, Configurando el riesgo potencial de una inestabilidad por falla de corte plana. El análisis de estabilidad se desarrolló utilizando el método de equilibrio límite".
- d. Rodríguez (2014). En su artículo de título Problemas estructurales y la estabilidad de los macizos rocosos presentados a la revista del Colegio de Ingenieros del Perú
 CD Puno en sus conclusiones menciona.- Conclusión N° 01: "La evaluación de

problemas estructurales en macizos rocosos, mediante proyección estereográfica, es un medio conveniente en la identificación de direcciones dominantes de discontinuidades". Conclusión N° 03: "La representación estereográfica permite verificar las relaciones angulares entre las direcciones dominantes de las discontinuidades y el talud propuesto".

2.2. BASES TEÓRICAS

2.2.1. Consideraciones generales sobre estabilidad de taludes

En la mayor parte de los casos, el estudio de la estabilidad de taludes no puede realizarse a nivel general, sino talud por talud, ya que las inestabilidades suelen ir asociadas a la presencia de discontinuidades concretas con determinadas orientaciones. Cuando el coeficiente de seguridad de un talud bien calculado sea inferior a 1, es probable que se produzca su falla. (Ramirez & Alejano, 2007).

La distinta naturaleza de las rocas que forman los macizos rocosos implica una problemática determinada en su comportamiento ante la estabilidad de taludes. El comportamiento de un macizo rocoso generalmente depende de las características de las discontinuidades (estratificación, diaclasas, fallas, esquistosidad, etc.) que presenta, así como la litología de la matriz rocosa y su historia evolutiva. Ya que generalmente los diferentes modos de falla que se producen en los medios rocosos siguen superficies ya existentes. (Instituto Tecnológico GeoMinero de España, 1987).

2.2.2. Análisis de estabilidad de taludes

Los métodos de análisis de estabilidad se basan en un planteamiento físico-matemático en el que intervienen las fuerzas estabilizadoras y desestabilizadoras que actúan sobre el

talud y que determinan su comportamiento y condiciones de estabilidad se pueden agrupar en:

- Métodos probabilísticos.
- Métodos determinísticos.

Métodos probabilísticos

Consideran la probabilidad de rotura de un talud bajo condiciones determinadas. Es necesario conocer las funciones de distribución de los diferentes valores considerados como variables aleatorias en los análisis (con lo que se supone mayor dificultad por la cantidad de datos necesarios, dadas las incertidumbres sobre las propiedades de los materiales), realizándose a partir de ellas los cálculos del factor de seguridad mediante procesos iterativos.

Se obtienen las funciones de densidad de probabilidad y distribución de probabilidad y distribución de probabilidad del factor de seguridad, y curvas de estabilidad del talud, con el factor de seguridad asociado a una determinada probabilidad de ocurrencia. Gonzales (2002): Ingeniería Geológica, Pearson Education 2002. España). La elección del método de análisis más adecuado en cada caso dependerá de:

- Las características geológicas y geomecánicas de los materiales.
- Los datos disponibles del talud y su entorno.
- Alcance y objetivos del estudio, grado de detalle y resultados que se espera obtener.

Métodos determinísticos

Conocidas o supuestas las condiciones en que se encuentra un talud, estos indican si el talud es o no estable. Consisten en seleccionar los valores adecuados de los parámetros físicos y resistentes que controlan el comportamiento del material para que a partir de ellos y de las leyes de comportamientos adecuados, definir el estado de estabilidad o el factor de seguridad del talud. Los métodos de cálculo para analizar la estabilidad de un talud se pueden clasificar en dos grandes grupos (Ver Fig. 2.1):

- Métodos de cálculo en deformaciones.
- Métodos de equilibrio límite.

a. Métodos de cálculo en deformaciones

Consideran en el cálculo las deformaciones del terreno además de las leyes de la estática. Su aplicación práctica es de gran complejidad y el problema debe estudiarse aplicando el método de los elementos finitos u otros métodos numéricos.

b. Métodos de equilibrio límite

Se basan exclusivamente en las leyes de la estática para determinar el estado de equilibrio de una masa de terreno potencialmente inestable. No tienen en cuenta las deformaciones del terreno. Suponen que la resistencia al corte se moviliza total y simultáneamente a lo largo de la superficie de corte. Se pueden clasificar a su vez en dos grupos:

- Métodos exactos.
- Métodos no exactos.

Métodos exactos

La aplicación de las leyes de la estática proporciona una solución exacta del problema con la única salvedad de las simplificaciones propias de todos los métodos de equilibrio límite (ausencia de deformaciones, factor de seguridad constante en toda la superficie de rotura, etc.). Esto sólo es posible en taludes de geometría sencilla, como por ejemplo la rotura planar y la rotura por cuñas.

Métodos no exactos

En la mayor parte de los casos la geometría de la superficie de rotura no permite obtener una solución exacta del problema mediante la única aplicación de las leyes de la estática. El problema es hiperestático y ha de hacerse alguna simplificación o hipótesis previa que permita su resolución. Se pueden considerar así los métodos que consideran el equilibrio global de la masa deslizante, hoy en desuso, y los métodos de las dovelas o rebanadas, que consideran a la masa deslizante dividida en una serie de fajas verticales.

- Métodos aproximados: no cumplen todas las ecuaciones de la estática. Se pueden citar por ejemplo los métodos de Fellenius, Janbu y Bishop simplificado.
- Métodos precisos o completos: cumplen todas las ecuaciones de la estática. Los más conocidos son los de Morgenstern-Price, Spercer y Bishop riguroso.

Figura 2.1. Clasificación de los métodos de cálculo. Fuente: GEOTECNIA 2000 – Fernando Herrera Rodríguez.

2.2.3. Factor de Seguridad

Se define el factor de seguridad (FS), como el valor que cuantifica la diferencia entre las condiciones reales que presenta el talud, y las condiciones que llevan a su rotura. El factor de seguridad es el coeficiente mínimo de todos los coeficientes de seguridad asociados a todas las superficies de deslizamiento posibles.

$$FS = \frac{\int \tau_R.ds}{\int \tau.ds}$$

Dónde:

- τ_R Es la resistencia al corte máxima que se puede movilizar a lo largo de la superficie potencial de deslizamiento.
- τ Es la resistencia al corte movilizado a lo largo de la superficie potencial de deslizamiento.
- *ds* Es el diferencial de longitud a lo largo de la superficie de deslizamiento.

2.2.4. Mecanismos de rotura

a. Rotura planar

Se entiende por falla plana, o rotura planar, como aquella en el que el deslizamiento se produce a través de una única superficie plana. Siendo la más sencilla de las formas de rotura posibles se produce cuando existe una fracturación dominante en la roca y convenientemente orientada respecto al talud. La representación semiesférica en la red de Schmidt de esta condición se observa en la Fig. 2.2, se prevé el deslizamiento cuando el rumbo de la familia de discontinuidades es similar al del talud y su buzamiento menor que este. (Instituto Tecnológico GeoMinero de España, 1987).

Figura 2.2. Disposición de discontinuidades en el estereograma para un modo de falla planar.

Fuente: Modificado de Hoek y Bray, 1977.

b. Rotura por cuñas

La falla en cuña es un tipo de deslizamiento traslacional que está controlado por dos o más discontinuidades (estratificación, esquistosidad, diaclasa, falla, etc). Este tipo de deslizamientos generalmente se dan en macizos rocosos resistentes, con discontinuidades bien marcadas (Ver Fig. 2.3). Este tipo de fallas es sin duda una de las más comunes en taludes excavados en roca, fácilmente observados en canteras.

Figura 2.3. Disposición de discontinuidades en el estereograma para un modo de falla por cuña.

Fuente: Modificado de Hoek y Bray, 1981.

c. Falla por vuelco

Aparecen principalmente cuando el rumbo del plano de discontinuidad: falla, estratificación, etc., coincide aproximadamente con el del plano del talud y además tiene un fuerte buzamiento hacia el interior del macizo rocoso (Ver Fig. 2.4). Cuando el macizo rocoso presenta un conjunto de paquetes que quedan en voladizo, se produce el vuelco por flexión; además, puede aparecer una familia de discontinuidades conjugada con la principal, produciéndose en este caso un vuelco de bloques o un vuelco de bloques por flexión.

Figura 2.4. Disposición de discontinuidades en el estereograma para un modo de falla por vuelco de bloques.

Fuente: Modificado de Hoek y Bray, 1981.

d. Roturas circulares y curvas

También conocida como deslizamiento o rotura rotacional, es producida por muchos sets de fallas, las cuales tienen distintos rumbos y manteos, y dejan la roca muy fracturada, perdiendo la cohesión. Por la cantidad de fracturas, el macizo rocoso se transforma en una especie de gravilla, la que desliza por la cara del talud (Ver Fig. 2.5). Esta aproximación de rotura se hace cuando no es posible determinar la familia de discontinuidades que controla la inestabilidad (Instituto Tecnológico GeoMinero de España, 1987).

Figura 2.5. Disposición de discontinuidades en el estereograma para un modo de falla circular.

Fuente: Modificado de Hoek y Bray, 1981.

2.2.5. Propiedades físicas y mecánicas de los materiales rocosos

Propiedades físicas de la matriz rocosa

Existen una serie de parámetros que se emplean para la identificación y descripción cuantitativa de las propiedades básicas de las rocas y permiten, así mismo, establecer una primera clasificación con fines geotécnicos. Estas propiedades, denominadas propiedades índices, serán las que determinen en primera instancia, junto con la composición mineralógica, las propiedades y el comportamiento mecánico de la matriz rocosa.

a. Porosidad eficaz

Es la relación entre el volumen de poros interconectados y el volumen de la muestra. Puede obtenerse a través de los pesos secos (W_{seco}) y saturado (W_{sat}) de la muestra:

$$n_e = (W_{sat} - W_{seco}) / (\gamma_w V)$$

En las rocas es frecuente que los poros no estén interconectados, por lo que la porosidad real será mayor que la eficaz. El índice de poros se define como la relación entre el volumen ocupado por huecos (V_v) y el volumen ocupado por las partículas sólidas (V_{sol}) :

$$e = V_v / V_{sol}$$

b. Peso unitario y densidad

El peso unitario de una roca (γ), es definida como la relación entre el peso (W) y el volumen total (V_T) de la muestra:

$$\gamma = W/V_T$$

La densidad de una roca (ρ), es definida como la relación entre la masa (M) y el volumen total (V_T) de la roca:

$$\rho = M/V_T$$

c. Permeabilidad

Es la capacidad de transmitir agua de una roca. La mayoría de las rocas presentan permeabilidades bajas o muy bajas. La filtración y el flujo del agua a través de la matriz rocosa se producen a través de los poros o fisuras, dependiendo la permeabilidad de la interconexión entre ellos y de otros factores como el grado de meteorización, la anisotropía o el estado de esfuerzos a que está sometido el material.

La permeabilidad de una roca se mide por el coeficiente de permeabilidad o de conductividad hidráulica k, que se expresa en m/s, cm/s o m/día:

$$k = K(\gamma_w / \mu)$$

Donde *K* es la permeabilidad intrínseca (dependiente únicamente de las características del medio físico), γ_w es el peso específico del agua y μ es la viscosidad del agua.

d. Resistencia a la compresión simple

Es el máximo esfuerzo que soporta la roca sometida a compresión uniaxial, determinada sobre una probeta cilíndrica sin confinar en laboratorio, viene dada por:

$$\sigma_c = \frac{F_c}{A}$$

Donde:

- F_c Fuerza compresiva aplicada.
- A Área de la sección de la probeta donde se aplica la carga.
- σ_c Resistencia uniaxial de la roca.

2.2.6. Criterios de rotura

Existen dos formas para definir el comportamiento de una roca en rotura: mediante el estado de tensiones o mediante el de deformaciones. Normalmente se utiliza la primera

(González, 2002). De esta forma, se toma como resistencia de la roca la máxima tensión que ésta puede soportar.

a. Criterio de rotura lineal de Mohr-Coulomb

El criterio de rotura de Mohr-Coulomb, introducido por primera vez por Coulomb en el año 1973, inicialmente pensado para el estudio en suelos, es un criterio de rotura lineal.

Generalmente para el caso del criterio de Mohr-Coulomb, se define el criterio de rotura en función de la tensión tangencial y la tensión normal en un plano (Ver Fig. 2.6). En este caso la superficie de fluencia es de la forma $\tau = f(\sigma)$. La expresión matemática de dicha ecuación es:

$$\tau = c + \sigma_n \tan \phi$$

Donde:

- "c" es la cohesión, una constante que representa la tensión cortante que puede ser resistida sin que haya ninguna tensión normal aplicada.
- " ϕ " es el ángulo de fricción.
- " τ " es la tensión tangencial que actúa en el plano de rotura.
- " σ_n " es la tensión normal que actúa en el plano de rotura.

Fuente: Modificada de según Melentijevic, 2005.

b. Criterio de Rotura no Lineal de Hoek & Brown

El criterio de rotura de Hoek & Brown en su versión original fue introducida en el 1980 (Hoek y Brown, 1980a; Hoek y Brown, 1980b) desde entonces su uso se ha generalizado en el ámbito de la mecánica de rocas (Ver Fig. 2.7). El criterio ha sufrido varias modificaciones así como la introducción de nuevos parámetros para definir el estado del material, y nuevas propuestas para obtener la caracterización del macizo, la última en 2002 (Hoek et al., 2002). Se trata de un criterio no lineal, puramente empírico, que permite valorar, de manera sencilla, la rotura de un medio rocoso mediante la introducción de las principales características geológicas y geotécnicas.

Figura 2.7. Representación del criterio de rotura de Hoek & Brown, en el espacio de tensiones normal y tangencial.

Fuente: Software Rocscience – RocData 3.0.

A continuación se explica el criterio de rotura original de Hoek & Brown y su última versión.

$$\sigma'_1 = \sigma'_3 + \sigma_{Ci} \left(m \frac{\sigma'_3}{\sigma_{Ci}} + s \right)^{0.5}$$

Donde:

- σ'_1 y σ'_3 Son las tensiones principales mayor y menor en el momento de rotura.
- σ_{Ci} Es la resistencia a compresión uniaxial del material intacto.
- *m* y *s* Son constantes del material, que dependen de las propiedades de la roca y del grado de fracturación de la roca antes de someterla a las tensiones de rotura.

El parámetro *s* es la medida de disminución de la resistencia a compresión simple de la roca debido a la fracturación. Por su parte, *m* influye en la resistencia al corte del material. Ambos parámetros se pueden obtener a partir de la clasificación geomecánica Rock Mas Rating (RMR), introducida por Bieniawski (1976), y que se expone apropiadamente más adelante. El uso del criterio no solo en macizos rocosos duros, sino también en macizos de rocas débiles, ha supuesto una reformulación del criterio, así como la introducción de nuevos parámetros. En su revisión más moderna, responde a la expresión:

$$\sigma'_1 = \sigma'_3 + \sigma_{Ci} \left(m_b \frac{\sigma'_3}{\sigma_{Ci}} + s \right)^a$$

Donde M_b es un valor reducido de la constante del material M_i y está dado por:

$$m_b = m_i e^{\left(\frac{GSI-100}{28-14D}\right)}$$

Donde GSI (Geological Strength Index) es una clasificación geomecánica (Hoek, 1994; Hoek, Kaiser y Bawden, 1995), s y a son constantes del macizo rocoso dado por las siguientes relaciones:

$$s = e^{\left(\frac{GSI-100}{9-3xD}\right)}$$
$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3} \right)$$

Donde:

D Factor de perturbación (Ver Fig. 2.8).

Apariencia del macizo rocoso	Descripción del macizo rocoso	Valor D sugerido
	Excelente calidad de voladura controlada o excavación con tuneladora, TBM, con resultados de alteración mínima del macizo rocoso confinado circundante al túnel.	D=0
	Excavación mecánica o manual en macizos rocosos de mala calidad (sin voladuras) con una alteración mínima en el macizo circundante. Cuando aparezcan problemas de deformación en el piso durante el	D=0
	avance. la alteración puede ser severa a menos que se coloquen una contrabóveda temporal, tal como se muestra en la figura.	D=0.5 No invert
	Voladura de muy mala calidad en un túnel en roca competente con daños locales severos, extendiéndose 2 o 3m en el macizo rocoso circundante.	D=0.8
	Pequeñas voladuras en taludes de ingeniería civil dan lugar a pequeños daños al macizo rocoso, particularmente si se usan voladuras de contorno como se muestra en el lado izquierdo de la fotografía. Sin embargo la liberación de tensión resulta en alguna alteración.	D=0.7 Good blasting D=1.0 Poor blasting
	Los taludes en las grandes minas a cielo abierto sufren alteraciones significativas debido a las grandes voladuras de producción y también debido a la relajación de tensiones al retirar el estéril de recubrimiento.	D=1.0 Production blasting
	En algunas rocas blandas la excavación puede llevarse a cabo mediante el ripado y empuje con tractores de orugas y el grado de afección a los taludes será menor.	D=0.7 Mechanical excavation

Figura 2.8. Guías para la estimación del factor de alteración del criterio de rotura de Hoek & Brown, *D*.

Fuente: Extraída de Hoek et al., 2002.

c. Criterio de rotura de Barton y Bandis

Para evaluar la estabilidad de los macizos rocosos, cuyo comportamiento es gobernado por sus discontinuidades, se empleó el método del equilibrio límite, utilizando el criterio de rotura de Barton y Bandis. Existen muchos métodos y/o criterios para cuantificar los

parámetros de resistencia corte de las discontinuidades, una de ellas es la relación entre el ángulo de fricción total ($\varphi + i$), la resistencia de la roca y la presión normal Barton (1976) quien definió la siguiente ecuación empírica:

$$\tau = \sigma \tan\left[\phi + JRC \log_{10}\left(\frac{\sigma_j}{\sigma'}\right)\right]$$

Donde:

JRC Coeficiente de rugosidad de la junta.

 σ_i Resistencia a la compresión de la roca en la superficie de la fractura.

 σ' Esfuerzo normal efectivo.

El término $_{JRC \log_{10}(\sigma_j/\sigma')}$ equivale al ángulo i. Cuando se tienen altos niveles de esfuerzos normales, este ángulo tiende a cero. La suma de $\varphi + i$ no debe exceder 70 grados y el rango de σ_j/σ' generalmente, varía entre 3 y 100. La ventaja de utilizar el criterio de Barton es la facilidad para determinar los parámetros que controlan la ecuación. Barton consideró que la resistencia cortante de las discontinuidades es la suma de tres componentes:

- Un componente de fricción básico dado por φ_r .
- Una componente geométrica, controlada por la rugosidad *JRC*.
- Una componente de la falla de las asperitas, controlada por σ_i / σ' .

De un análisis muy simple se puede asumir un valor conservador del ángulo de fricción básico de 30°. Para determinar la cohesión dependerá del relleno de las fracturas considerando los siguientes elementos:

Universidad Nacional del Altiplano

- Mineralogía del material del relleno.
- Gradación y tamaño de las partículas.
- Contenido de agua y permeabilidad.
- Movimientos anteriores.
- Rugosidad de las paredes.
- Ancho.
- Fracturación de las paredes.
- Grado de meteorización.
- Potencial de expansión del relleno.

2.2.7. Clasificación geomecánica del macizo rocoso

Durante las etapas de factibilidad y diseño preliminar de un proyecto, cuando muy poca información detallada sobre la masa rocosa y sus esfuerzos y sobre las características hidrológicas se tiene disponible, el uso de un esquema de clasificación de la masa rocosa puede ser considerablemente beneficioso. En el caso más simple, esto puede involucrar la utilización de un esquema de clasificación como un chequeo para asegurar que toda la información relevante ha sido considerada.

a. Índice de designación de la calidad de la roca Clasificación (RQD)

El índice de Designación de la Calidad de la Roca (Rock Quality Designation Index – RQD) fue desarrollado por Deere et al. (1967), para estimar cuantitativamente la cualidad del macizo rocoso basándose en la recuperación de un testigo. Depende indirectamente del número de fracturas y del grado de alteración del macizo. El testigo deberá tener por

lo menos un tamaño NX (54.7 mm o 2.15 pulgadas de diámetro) y deberá ser perforado con un cilindro de doble tubo de perforación. El procedimiento correcto para medir las longitudes de los testigos y el cálculo del RQD son resumidos en la Fig. 2.9. Los valores de esta clasificación son resumidos en el Cuadro 2.2.

Figura 2.9. Procedimiento de medición y cálculo del RQD.

Fuente: Deere, 1989.

Cuadro 2.2 Clasificación de la calidad del macizo rocoso según el índice RQD.

RQD (%)	CALIDAD
< 25	Muy mala
25 - 50	Mala
50 - 75	Media
75 – 90	Buena
90 - 100	Muy buena

Fuente: Deere, 1989.

b. Clasificación de Bieniawski (RMR)

El sistema de clasificación Rock Mass Rating o sistema RMR fue desarrollado por Z. T Bieniawski (1973) y posteriormente modificado por el mismo autor (1979). Este modelo de clasificación se basa en más de 300 casos reales de túneles, cavernas y cimentaciones. Los valores de esta clasificación son resumidos en el Cuadro 2.3. El valor del RMR describe numéricamente la calidad del macizo rocoso en base a los siguientes parámetros:

- Resistencia de la roca intacta.
- Índice de calidad del macizo rocoso (RQD).
- Espaciamiento de discontinuidades.
- Condiciones de las discontinuidades (juntas).
- Grado de meteorización.
- Presencia de agua.

Cuadro 2.3 Clasificación RMR. Bieniawsky (1989).

A.	A. PARÁMETROS DE CLASIFICACIONES Y SUS VALORACIONES								
	Pará	netro			Escalas de va	lores			_
	Resistencia de la roca	Índice de carga puntual	> 10 MPa	4 – 10 MPa	2 – 4 MPa	1 – 2 MPa	Para est es prefe de comp	e rango rible el e resión u	bajos, nsayo niaxial
1	intacta	Resistencia compresión uniaxial	> 250 MPa	100 – 250 MPa	50 – 100 MPa	25 – 50 MPa	5 – 25 MPa	1 – 5 MPa	< 1 MPa
	Va	loración	15	12	7	4	2	1	0
2	Calidad de tes	tigo de perforación RQD	90% - 100%	75% - 90%	50% - 75%	25% - 50%		< 25%	
Valoración		loración	20	17	13	8		3	
3	Espaciam	lento de juntas	> 2 m 20	0.0 – 2 m	0.2 – 0.6 m	60 – 200 mm	<	5 5	
4 Condición de las discontinuidades		Superficies muy rugosas. No continúas. Cerradas, sin apertura Paredes rocosas sanas	Superficies ligeramente rugosas. Apertura < 1 mm Paredes ligeramente intemperizadas.	Superficies ligeramente rugosas. Apertura < 1 mm Paredes altamente intemperizadas	Espejo de falla o panizo < 5 mm de espesor. Apertura de 1 – 5 mm. Juntas continuas	Panizo suave > 5 mm de espesor o apertura > 5 mm. Juntas continuas		5 mm rtura > ntinuas	
	Va	loración	30	25	20	10		0	
		Flujo por 10 m de longitud de túnel (l/min)	Ninguno	< 10	10 - 25	25 – 125		> 125	
5	Agua subterránea	Presión de agua / σ Principal máximo (σ_w/σ_3)	0	< 0.1	0.1 - 0.2	0.2 - 0.5		> 0.5	
		Condición general	Completamente seco	Ligeramente húmedo	Húmedo	Goteando	F	luyendo	
	Va	loración	15	10	7	4		0	
В.	FACTOR DE	AJUSTE POR ORI	ENTACIÓN DE L	AS DISCONTINU	IDADES. (ver F)				
(Drientación de rui	mbo y buzamiento	Muy favorable	Favorable	Regular	Destavorable	Muy des	12	.e
Valaragianas Valaragianas		0	-2	-3	-10		-12		
	valoraciones	Taludes	0	-2	-25	-50		-60	
C.	CLASES DE	MASA ROCOSA I	DETERMINADAS	POR LAS VALO	RACIONES TOTA	LES			
Va	loración		100 - 81	80-61	60 - 41	40-21		< 20	
Nu	mero de clase		Ι	II	III	IV	V		
De	scripción		Roca muy buena	Roca buena	Roca regular	Roca mala	Roca	ı muy ma	ala
D.	SIGNIFICA	DO DE LAS CLASI	ES DE ROCAS	**			1		
Nu	mero de clase		1	1 año	11 annon a	IV 10 hores	20	V	
Tie	empo en auto sos	tenimiento	span 15 m > 300	span 10 m	span 5 m	span 2.5 m	30 minutos span 1 m		
Án	gulo de fricción	de la masa rocosa	> 45°	35° - 45°	25° - 35°	$15^{\circ} - 25^{\circ}$		< 15°	
Ε.	PAUTAS PA	ARA LA CLASIFIC	ACIÓN DE LAS C	ONDICIONES DE	E LAS DISCONTI	NUIDADES	•		
Lo (pe	ngitud de discont ersistencia)	tinuidades	< 1 m	1 – 3 m	3 – 10 m	10 – 20 m	:	> 20 m	
Va	loración		6	4	2	1		0	
Separación (apertura)			Cerrada	< 0.1 mm	0.1 – 1 mm	1 – 5 mm	>	> 5 mm	
Valoración			6 Muy Bugoso	5 Bugoso	4 Ligeramente	l	Ecm	0 vio do fei	110
Valoración			Muy Kugosa	rugosa 5	Rugosa	1	Espe	0	a
Relleno (panizo)		Ninguno	Relleno duro	Relleno duro	Relleno suave	Rell	eno suav	/e	
Valoración			6	4	2	1		0	
Intemperización			Sana	Ligera	Moderada	Muy intemperizada	Des	compues	ta
Va	loración		6	5	3	1		0	
F.	EFECTO D	EL RUMBO Y BUZ	AMIENTO DE LA	S DISCONTINUI	DADES EN EL TU	ÍNEL			_
	Tracucción - f	Dirección perpendicu	lar al eje del túnel	teo humon-1t-	Dirección paral	ela al eje del túnel	D	ionte 00	209
	Excavación a favo	Dr del buzamiento	Excavacion con	Buzamiento	Dugoriante	Durantiate	Gualou Cualou	iento 0° ijer direc	– 20° :ción
	> 45°	20° – 45°	> 45°	20° – 45°	> 45°	20° - 45°	Cuarqu		- 1011
Ν	Iuy favorable	Favorable	Media	Desfavorable	desfavorable	Media	Des	favorabl	le

Fuente: Bieniawsky (1989).

c. Clasificación Geological Strength Index (GSI)

Con la aparición del criterio de rotura de Hoek&Brown el uso del RMR ya no es adecuado, sobre todo para el caso de rocas débiles, y se introduce de esta forma la clasificación geomecánica GSI (Hoek, 1994; Hoek et al. 1995) El GSI es un sistema para la estimación de las propiedades geomecánicas del macizo rocoso a partir de observaciones geológicas de campo. Las observaciones se basan en la apariencia del macizo a nivel de estructura y a nivel de condición de la superficie (Ver Fig. 2.10 y 2.11). A nivel de estructura se tiene en cuenta el nivel de alteración que sufren las rocas, la unión que existe entre ellas, que viene dada por las formas y aristas que presentan, así como de su cohesión. Para las condiciones de la superficie, se tiene en cuenta si ésta esta alterada, si ha sufrido erosión o qué tipo de textura presenta, y el tipo de recubrimiento existente.

Figura 2.10. Tabla grafica de GSI general.

Fuente: Extraído de Hoek et al., 2002.

INDICE DE RESISTENCIA GEOLOGICA MACIZOS ROCOSOSO ESTRATIFICADOS HETEROGENEOS (Marinos & Hoek (2000)) En base a una descripción de la lidolgia, la estructura del macizo y la condición de las estructuras (especialmente los planos de estratificación), seleccione una zona en la tabla. Ubique en esa zona la posición correpondiente a la condición de las estructuras y estime el valor medio de GSI. NO tra- te de ser demasiado perciso. De hecho, el considerar 33 ≤ GSI ≤ 37 es más realista es upment GSI = 35. Note que esta tabla NO es aplicable a problemas con control estructural. Si hay estruc- turas desfavorablemente orientadas ellas controlarán el comportamiento del macizo roccoso. En a- quellos casos en que la resistencia al corte de las estructuras podria ser afectada por la humedad, deberá consideraras la eventual presencia de agua. Esto puede hacerse "desplazando hacia la de- recha" el rango estimado para GSI para condiciones regular, mala o muy mala de las estructuras. La presión del agua no se considera al evaluar el GSI (análisis en esfuerzos efectivos). COMPOSICION Y ESTRUCTURA DEL MACIZO ROCCOSO	MUY BUENA Muy rugosas, superficies frescas o no Meteorizadas.	BUENA Rugosas, superficies algo meteorizadas.	REGULAR Lisas, superficies moderadamente me- teorizadas y lateradas.	MALA Muy lisas, ocasionalmente pulidas, con pátinas compactas o rellenos con frag- mentos angulosos.	MUY MALA Muy lisas y pulidas o de superficies muy meteorizadas, y con pátinas o rellenos de arcilla blanda.
A. Estratos gruesos de arenisca de mucha blocosidad. El efecto de posibles pátinas pelíti- cas en los planos de estratificación se ve minimizado por el confinamiento del macizo ro- coso, sin embargo, en túneles poco profundos y/o taludes, estos planos de estratificación pueden generar inestabilidades controladas estructuralemente.	70	A			20
B. Arenisca con lentes delgados de limoita. B. Arenisca y limonita, en estratos de similar potencia. C. Arenisca y limonita, en estratos de similar potencia. D. Limolitas o esquistos limosos con estratos de arenisca.	60	В,	с, р,	=	
C, D, E y G: Pueden estar más o menos plegados que lo indicado, pero esto no altera su resistencia. Si presentan deformación tectónica, fallamientos y pérdidas de continuidad, cambie estas categorías a F y H.	50	$\left[\right]$	30	F	10
G. Esquistos limosos o arcillosos no perturba- cos, con o sin intercala- ciones de estratos del- gados de arenisca.	N/A	N/A	g	н	
Indica deformación por tectonismo.					

Figura 2.11. Carta para evaluar el índice de resistencia geológica en macizos rocosos estratificados y heterogéneos.

Fuente: Marinos & Hoek, 2000.

d. Clasificación de Barton et al. (Q)

El sistema Q fue desarrollada por Barton, Lien y Luen en 1974, a partir de la compilación de más de 200 casos históricos de obras de excavaciones subterráneas y considera los índices de designación de la calidad de la roca, RQD (Rock Quality Designation); índice de influencia del número de familias de las discontinuidades, J_n ; índice de influencia de la rugosidad de las paredes de las discontinuidades, J_r ; índice de influencia de la alteración de las paredes de las discontinuidades, J_a ; índice de influencia de la acción del agua subterránea, J_w ; e índice de influencia del estado de tensiones en el macizo en

el contorno de la cavidad, SRF (Stress Reduction Factor) (Ver Cuadro 2.5). El valor del índice Q es estimado por la expresión:

$$Q = \frac{RQD}{J_n} \times \frac{J_r}{J_a} \times \frac{J_w}{SRF}$$

El valor numérico de Q varía de 0,001 a 1000 (Ver Cuadro 2.4). Este índice reúne tres características principales del macizo rocoso, como son: el tamaño de los bloques (RQD/J_n) resistencia al corte entre bloques (J_r/J_a) y acción de la tensión (J_w/SRF) .

Cuadro 2.4. Clasificación de Barton de los macizos rocosos. Índice de Calidad Q.

TIPO DE ROCA	VALOR DE Q
Excepcionalmente mala	0.001 – 0.01
Extremadamente mala	0.01 – 0.1
Muy mala	0.1 – 1
Mala	1-4
Media	4 - 10
Buena	10-40
Muy buena	40 - 100
Extremadamente buena	100 - 400
Excepcionalmente buena	400 - 1000

Fuente: Extraído de Hoek et al., 2002.

Cuadro 2.5. Clasificación de parámetros individuales usados en el Índice de Calidad

Tunelera Q.

	DESCRIPCIÓN	VALOR	NOTAS
1.	DESIGNACIÓN DE LA CALIDAD DE LA ROCA	RQD	
A.	Muy mala	0-25	1. Cuando se reporta o mide un R.O.D
В.	Mala	25-50	≤ 10 (incluyendo 0) se usa un valor
C.	Regular	50-75	nominal de 10 para evaluar Q.
D.	Buena	75-90	2. Intervalos de RQD de 5, es decir
E.	Excelente	90-100	100, 95, 90, etc. son suficientemente precisos.
2.	NÚMERO DE FAMILIA DE JUNTAS	J_n	1
А.	Masivo, con ninguno o pocas juntas	0.5 - 1	
В.	Un sistema de juntas	2	
С.	Un sistema de juntas más juntas aleatorias	3	
D.	Dos sistema de juntas	4	1 Para intersectiones usar $(3.0 \times I)$
E.	Dos sistemas de juntas más juntas aleatorias	6	1. I are intersectiones user (5.6 x \mathbf{J}_n)
F.	Tres sistemas de juntas	9	2. Para portales usar (2.0 x J_n)
G.	Tres sistemas de juntas mas juntas de aleatorias	12	
н.	Cuatro o mas sistemas de juntas, juntas aleatorias,	15	
т	racturamiento severo tipo cubos de azucar, etc.	20	
1.	Rocas trituradas, material terroso.	20	
3.	NUMERO DE RUGOSIDAD DE LAS JUNTAS	J_r	
	 a. Paredes rocosas en contacto b. Paredes rocosas en contacto antes de 10 cm de corte 		
A.	Juntas discontinuas	4	
B.	Rugoso o irregular, ondulado	3	1 Adicionar 1.0 si al aspaciamiento
C.	Liso ondulado	2	medio del sistema de juntas
D.	Espejo de falla, ondulado	1.5	relevantes es mayor que 3 m
E.	Rugoso o irregular planar	1.5	2 I = 0.5 must an used and
F.	Liso planar	1.0	2. $J_r = 0.5$, puede ser usado para
G.	c. Paredes rocosas sin contacto cuando se ha	0.5	juntas con espejos de falla que tienen alineaciones planares, se estipula
ы	<i>producido el corte</i>		que las alineaciones son orientadas
п.	zona conteniendo de inificiales arcinosos, de espesor	1.0	para una resistencia minima.
	suficientemente para prevenir el contacto de las	(nominal)	
т	Zona arangea gravesa o triturada da espasor		
1.	zona arenosa, gravosa o ununada, de espesor	1.0	
	rocosas	(nominal)	
4.	NÚMERO DE ALTERACIÓN DE LAS JUNTAS	${\boldsymbol J}_a$	ϕ_r aproximado
	a. Paredes rocosas en contacto		
А.	Escaso recubrimiento, duro, relleno endurecido e impermeable.	0.75	1. Los valores de ϕ_r , o
В.	Juntas con paredes no alteradas, solo con coloración	1.0	$(25^{\circ} - 35^{\circ})$ ángulo de fricción
G	superficial.	110	residual,
С.	Juntas con paredes ligeramente alteradas, capas de	•	constituyen una
	mineral no blandas, partículas arenosas, roca	2.0	$(25^\circ - 30^\circ)$ guía aproximada a
P	desintegrada libre de arcilla.		las propiedades
D.	Capas de limo o arcillas arenosas, pequenas fracciones	3.0	$(20^{\circ} - 25^{\circ})$ mineralógicas de
F	ue arcina (no biandos).		los productos de
<u>с</u> .	capas de materiales archiosos biandos o de baja fricción as decir coolinita mico. Tembién electric		alteracion si es que
	talco veso grafito etc. v pequeñas cantidadas do	4.0	$(8^\circ - 16^\circ)$ estuvieran
	arcillas turgentes (canas discontinuas $1 - 2$ mm o	4.0	(0 – 10) presentes.
	menos de espesor). $(2apas discontinuas, 1 - 2 min 0)$		
L	menes de espesor,		

	DESCRIPCIÓN	VALOR		NOTAS
4.	NÚMERO DE ALTERACIÓN DE LAS JUNTAS	${oldsymbol{J}}_a$	ϕ_r aproximado	
	b. Paredes rocosas en contacto antes de 10 cm de corte			
F.	Partículas arenosas, libre de arcilla, roca desintegrada, etc.	4.0	(25° – 30°)	
G.	Relleno de mineral de arcilla fuertemente sobreconsolidada, no blando (continuo, < 5 mm de espesor).	6.0	(16° – 24°)	
H.	Relleno de mineral arcilloso de media a baja sobreconsolidación, blando (continuo < 5 mm de espesor).	8.0	(12° – 16°)	
ſ.	Relleno de arcillas turgentes, es decir montmorillonita (continuo, < 5 mm). Los valores de J_a dependen del	<u> </u>	(69 24%)	
	porcentaje del tamaño de las partículas de la arcilla turgente y del acceso al agua c. Paredes rocosas sin contacto cuando se ha	8.0 - 12.0	(0 - 24)	
ζ.	<i>producido el corte.</i> Zonas o bandas de roca desintegrada	6.0		
<i>_</i> .	o triturada y arcillas (Ver G, H e I)	8.0		
Л. Л	para condiciones arcillosas	8.0 - 12.0		
۰.	pequeñas de arcilla, (no blandas).	5.0		
).	Zonas o bandas continuas de arcilla,	10.0 – 13.0		
) .	y R. (Ver G, H e I para condiciones arcillosas)	6.0 - 24.0		
5.	REDUCCIÓN DE AGUA EN LAS JUNTAS	${\pmb J}_w$	Presión aprox. de agua (Kgf/cm ²)	
Α.	Excavaciones secas o flujo pequeño, es decir < 5 lt/min, localmente.	1.0	< 1.0	1. Los factores del C al F son estimados
8.	Flujo o presión media, lavado ocasional del relleno de las juntas.	0.66	1.0 - 2.5	crudos. Él J_w se
2.	Grandes flujos o presión alta en roca competente con juntas sin relleno.	0.5	2.5 - 10.0	instaladas medidas
).	Grandes flujos o altas presiones.	0.33	2.5 - 10.0	2. Los problemas
	Flujo excepcionalmente alto o presiones en la voladura, decayendo con el tiempo.	0.2 – 0.1	>10	especiales causados por la formación de
7.	Flujo excepcionalmente alto o presión continúa sin disminución.	0.1 - 0.05	> 10	hielo no son considerados.
ó.	FACTOR DE REDUCCIÓN DE ESFUERZOS	SRF		
	a. Zonas de debilidad que intersectan la excavación las cuales pueden causar el aflojamiento del macizo rocoso cuando se escava el tínel			
4.	Ocurrencias múltiples de zonas de debilidad			
	conteniendo arcillas o roca químicamente	10.0		
	desintegrada, muy aflojada en los alrededores (a cualquier profundidad)	•		
3.	Zonas simples de debilidad conteniendo arcillas o			
	roca químicamente desintegrada (profundidad de la excavación < 50 m).	5.0		
C.	Zonas simples de debilidad conteniendo arcillas o		1. Reducir es	stos valores de SRF en
	roca químicamente desintegrada (profundidad de la excavación > 50 m).	2.5	25 - 50%	si solo son influenciadas
Э.	Zonas múltiples de corte en roca competente (libre de		por zonas	de corte relevantes, pero
	arcilla), aflojamiento de la roca en los alrededores (a cualquier profundidad).	7.5	no interset	nun in excavacion.
Ξ.	Zonas simples de corte en roca competente (libre de	5.0		
7	Zonas simples de corte en roca competente (libre de	2.5		
~	arcillas), (profundidad de la excavación > 50 m).	2.5		
Ĵ.	Juntas abiertas y sueltas, roca severamente diaclasada o 'cubos de azúcar' (a cualquier profundidad)	5.0		
		VALOD		NOTAG

Repositorio Institucional UNA-PUNO

6.	FACTOR DE REDUCCIÓN D	E ESFUEI	RZOS	SRF		
	b. Roca competente, problemas de esfuerzos en roca				2.	Para campos de esfuerzos
		$\sigma_{_c}/\sigma_{_1}$	$\sigma_{_t}/\sigma_{_1}$			vírgenes fuertemente anisotrópicos (si fueran medidos):
Н.	Esfuerzos bajos, cerca de la superficie	> 200	>13	2.5		cuando $5 \le \sigma_1 / \sigma_3 \le 10$, reducir
J.	Esfuerzos medianos.	200 - 10	13 – 0.66	1.0		$\sigma_c = 8\sigma_c \ y \ \sigma_t = 0.8\sigma_t$. Cuando $\sigma / \sigma > 10$ reducir σ
K.	Esfuerzos altos, estructuras muy rígidas (usualmente favorables para la estabilidad, pueden ser desfavorables para la estabilidad de las paredes).	10-5	0.66– 0.33	0.5 - 2.0		a $0.6\sigma_c$ y σ_t a $0.6\sigma_t$, donde: σ_c = resistencia compressión
L.	Estallidos moderados (roca masiva).	5 - 2.5	0.33 – 0.16	5-10		uniaxial σ_t = resistencia a la
M.	Estallidos severos (roca masiva). c. <i>Roca muy deformable, flui</i>	< 2.5 o plástico	< 0.16 en roca	10 - 20		tracción (carga puntual) $\sigma_{\rm c} \sigma_{\rm c} = {\rm esfuerzos}$
	incompetente bajo la influenc rocosas	ria de altas	presiones			principales
N.	Presiones rocosas moderadas			5 - 10	3	Se disponen de pocos casos
О.	Presiones rocosas severas			10 - 20	5.	registrados donde la profundidad
	d. Rocas expansivas, actividad a dependiente de la presencia d	le expansió e agua	n química			de la corona, debajo de la superficie es menor que el ancho
Ρ.	Presiones rocosas de expansión,	moderadas		5 - 10		(span). Se sugiere para tales casos
R.	Presiones rocosas de expansión,	severas		10 - 20		incrementar <i>SRF</i> de 2.5 a 5.
	NOTAS ADICIONALES SOB Cuando se estime la calidad de la listadas en las tablas:	RE EL US masa rocos	O DE EST sa (<i>Q</i>), se de	AS TABLAS	5 : las sig	guientes pautas en adición a las notas

1. Cuando no se dispongan testigos procedentes de taladros, el *RQD* puede ser estimado a partir del número de juntas por unidad de volumen, al cual se le adiciona el número de juntas por metro para cada familia de juntas. Una simple relación puede ser usada para convertir este número a *RQD* para el caso de macizos rocosos libres de arcilla: $RQD = 115 - 3.3J_v$ (aprox.) donde $J_v =$ número total de juntas por m³ (RQD = 100 para $J_v < 4.5$

- 2. El parámetro J_n que representa el número de familias de juntas, frecuentemente será afectado por la foliación, esquistocidad, estratificación, etc. Si estas "juntas" fueran muy pronunciadas, obviamente deberían ser consideradas como un sistema (set). Sin embargo, si hubieran pocas juntas visibles o solo roturas ocasionales en los testigos debido a estos rasgos, será más apropiado considerar a ellas como "juntas aleatorias" cuando se evalúe el J_n .
- 3. Los parámetros J_r y J_a (que representan la resistencia al corte) deberán ser relevantes para los sistemas de juntas significativamente más débiles o discontinuidades con relleno de arcilla, en determinadas zonas. Sin embargo, si el sistema de juntas con el valor mínimo de (J_r/J_a) esta favorablemente orientado, se puede usar sus mayores valores para evaluar el Q. En efecto, el valor de J_r/J_a debe relacionarse a la superficie donde es más probable que se inicie la falla.
- 4. Cuando un macizo rocoso contiene arcillas, se debe evaluar el SRF apropiado para las cargas de aflojamiento. En tales casos la resistencia de la roca intacta es de poco interés. Sin embargo, cuando el diaclasamiento es mínimo y no hay presencia de arcilla, la resistencia de la roca intacta puede llegar a ser la ligazón más débil, en este caso la estabilidad dependerá de la relación roca-esfuerzo/roca-resistencia. Un campo de esfuerzo fuertemente anisotrópico no favorece la estabilidad como se refirió genéricamente en la nota 2 de esta tabla (Factor de reducción de esfuerzos).
- 5. Las resistencias de la roca intacta σ_c y σ_t , deben ser evaluadas para condiciones saturadas si es que esto es apropiado para el presente o futuro de las condiciones in-situ. Un estimado muy conservador de la resistencia debe ser efectuado para aquellas rocas que se deterioran cuando están expuestas a la humedad o a condiciones saturadas.

Fuente: Barton et. al., 1974.

e. Clasificación SMR para taludes

La clasificación SMR es un método de determinación de los factores de ajuste adecuados para aplicar la clasificación RMR de BIENIAWSKI a los taludes. Tras su publicación en inglés (ROMANA 1985, 1988, 1991, 1995) la clasificación SMR ha despertado cierto interés y el propio BIENIAWSKI (1989) la recomienda en su último libro para su aplicación en taludes.

Las últimas publicaciones "in extenso" corresponden en inglés a un capítulo del compendio "Comprehensive Rock Engineering" editado por HUDSON (Vol. 3. ROMANA 1993) y al reciente Simposio de ICFL de Granada (ROMANA, 1996) y en castellano a los Simposios de Taludes de La Coruña (ROMANA, 1993) y Granada (ROMANA, 1997) publicaciones de las que tomaremos algunos puntos en el desarrollo posterior de esta comunicación.

Cualquier clasificación debe considerar, en primer lugar que la rotura de un talud rocoso puede ocurrir según formas muy diferentes. En la mayoría de los casos la rotura de la masa rocosa está gobernada por las discontinuidades y se produce según superficies formadas por una o varias juntas. El índice SMR para la clasificación de taludes se obtiene del índice RMR básico sumando un "factor de ajuste" (Ver Cuadro 2.6), que es función de la orientación de las juntas (y producto de tres sub factores) y un "factor de excavación" que depende del método utilizado:

$$SMR = RMR + (F1xF2xF3) + F4$$

F1: depende del paralelismo entre el rumbo de las juntas y de la cara del talud.
 Varía entre 1.00 (cuando ambos rumbos son paralelos) y 0.15 (cuando el ángulo entre ambos rumbos es mayor de 30° y la probabilidad de rotura es muy baja).

Estos valores, establecidos empíricamente, se ajustan aproximadamente a la expresión:

$$F1 = (1 - sen(a_i - a_s))^2$$

Siendo a_j y a_s los valores del buzamiento de la junta (a_j) y del talud (a_s) .

F2: depende del buzamiento de la junta en la rotura plana. En cierto sentido es una medida de la probabilidad de la resistencia a esfuerzo cortante de la junta varía entre 1.00 (para juntas con buzamiento superior a 45°) y 0.15 (para juntas con buzamiento inferior a 20°). Fue establecido empíricamente pero puede ajustarse aproximadamente según la relación:

$$F2 = tg^2b_i$$

Donde b_j es el buzamiento de la junta, F2 vale 1.00 para las roturas por vuelco.

F3: refleja la relación entre los buzamientos de la junta y el talud. Se han mantenido los valores propuestos por BIENIAWSKI en 1976 que son siempre negativos.

Para roturas planas *F3* expresa la probabilidad de que las juntas afloren en el talud. Se supone que las condiciones son "normales" cuando el buzamiento medio de la familia de juntas es igual a la del talud, y por lo tanto aflorarán algunas pocas juntas. Cuando el talud buza más que las juntas, casi todas afloran y las condiciones "serán muy desfavorables" lo que supone un valor de *F3* de -60 (para $b_s - b_j > 10^\circ$), o "desfavorables" lo que supone un valor de *F3* de -50 (para $0 < b_s - b_j < 10^\circ$). La diferencia con el valor de *F3* "normal" (que es -25) es muy grande.

Para la rotura por vuelco no se supone que puedan existir condiciones desfavorables, o muy desfavorables, ya que el vuelco rara vez produce roturas bruscas y en muchos casos los taludes con vuelcos de estratos se mantienen. Se ha utilizado la condición de GOODMAN-BRAY (1977) para evaluar la probabilidad de vuelco. Sin embargo se ha observado que muchos vuelcos se producen para valores ligeramente distintos, lo que puede interpretarse como que la resistencia al esfuerzo cortante se reduce unos 5%, sea por el hecho de que en muchos taludes volcados las juntas están meteorizadas, o porque el ángulo de rozamiento experimente una ligera reducción en el caso de roturas rotacionales (GOODMAN, 1976). La citada condición de GOODMAN-BRAY sólo es válida para el caso de fallas con pie (toe) volcador (que son más frecuentes en la práctica), pero no para el caso de pie deslizante donde la superficie basal del macizo roto aflora en el talud con el aspecto de una junta deslizada.

Caso		Muy favorable	Favorable	Normal	Desfavorable	Muy desfavorable
Р	$\left a_{j}-a_{s}\right $	> 30°	30°-20°	20°-10°	10°-5°	< 5°
Т	$ a_{j}-a_{s}-180 $		2 50 50 20	20 10	10 0	
P/T	<i>F</i> 1	0.15	0.40	0.70	0.85	1.00
Р	$\left b_{j} \right $	< 20°	20°-30°	30°-35°	35°-45°	> 45°
	F2	0.15	0.40	0.70	0.85	1.00
Т	F2	1	1	1	1	1
Р	$b_j - b_s$	> 10°	10°-0°	0°	0°-(-10°)	< -10°
Т	$b_j + b_s$	< 110°	110°-120°	> 120°		
P/T	F3	0	-6	-25	-50	-60

Cullui o 2000 i actor de ajaste para las jantas.	Cuadro	2.6.	Factor	de	ajuste	para]	las	juntas.
--	--------	------	--------	----	--------	--------	-----	---------

P Rotura Plana	a_s Dirección de buzamiento del talud	a_j Dirección de buzamiento de las juntas
T Rotura por vuelco	b_{s} Buzamiento del talud	\boldsymbol{b}_j Buzamiento de las juntas
D 1005		

Fuente: Romana, 1985.

*F***4:** es un factor de ajuste que dependerá de la voladura empleada o a emplear para conformar el talud. El factor de ajuste según el método de excavación, *F*4, ha sido establecido empíricamente (Ver Cuadro 2.7).

Los taludes naturales son más estables, a causa de los procesos previos de erosión sufridos por el talud, y de los mecanismos internos de protección que muchos de ellos poseen (vegetación, desecación superficial, drenaje torrencial, etc). F4=+15.

El precorte aumenta la estabilidad de los taludes en media clase F4=+10. Las técnicas de voladura suave (recorte), bien ejecutadas, también aumentan la estabilidad de los taludes, F4=+8. Las voladuras normales aplicadas con métodos razonables no modifican la estabilidad, F4=0. Las volauras defectuosas son muy frecuentes y pueden dañar seriamente a la estabilidad F4=-8.

La excavación mecánica de los taludes por ripado sólo es posible cuando el macizo rocoso está muy fracturado o la roca blanda. Con frecuencia se combina con pre voladuras poco cuidadas. Las caras del talud presentan dificultades de acabado. Por ello el método ni mejora ni empeora la estabilidad F4=0. Los tipos de estabilidad de los taludes según la clasificación de ROMANA se puede apreciar en el Cuadro 2.8.

Cuadro 2.7. Factor de Ajuste Según el Método de Excavación.

Método	Talud natural	Precorte	Voladura suave	Voladura o mecánico	Voladura deficiente	
F4	+15	+10	+8	0	-8	

Fuente: Romana, 1985.

Cuadro 2.8. Clases de Estabilidad Según el SMR.

Clase Nº	V	IV	III	II	Ι
SMR	0-20	21-40	41-60	61-80	81-100
Descripción	Muy mala	Mala	Regular	Buena	Muy buena
Estabilidad	Totalmente inestable	Inestable	Parcialmente estable	Estable	Totalmente estable
Roturas	Grandes roturas por planos continuos o por la masa	Juntas o grandes cuñas	Algunas juntas o muchas cuñas	Algunos bloques	Ninguna
Tratamiento	Reexcavación	Corrección	Sistemático	Ocasional	Ninguno

Fuente: Romana, 1985.

El valor final del índice de clasificación SMR es:

$$SMR = RMR + (F1xF2xF3) + F4$$

La clasificación no tiene instrucciones específicas para las roturas en cuña. El procedimiento a seguir es obtener el índice *SMR* para cada una de las familias de las juntas. Se adoptará para el talud el valor menor del índice *SMR* obtenido para cada familia de juntas. En rocas meteorizadas y en las evolutivas la clasificación debe ser aplicada dos veces: para la situación inicial de roca sana y para la situación futura de roca meteorizada. Los índices obtenidos serán distintos. Según el valor del índice *SMR* se obtienen 5 clases de estabilidad, definidas simplificadamente en el Cuadro 2.9. Los parámetros de correcion a los factores de ajuste se muestran en el Cuadro 2.10.

Cuadro 2.9. Valores límites del SMR encontrados empíricamente para cada forma de

rotura.

Roturas planas				
SMR > 60	Ninguna			
60 > SMR > 40	Importantes			
40 > SMR > 15	Muy grandes			

Roturas en cuña				
SMR > 75	Muy pocas			
75 > SMR > 49	Algunas			
55 > SMR > 40	Muchas			

Roturas completas (tipo suelo)			
SMR > 30	Ninguna		
30 > SMR > 10	Posible		

Roturas por vuelco				
SMR > 65	Ninguna			
65 > SMR > 50	Menores			
40 > SMR > 30	Muy grandes			

Fuente: Modificado de Romana, 1985.

Cuadro 2.10. Parámetros de corrección F	l, F2, 1	F3 y F4 de	e la clasificación	SMR.
---	----------	------------	--------------------	------

	Tipo de	rotura	N fav	Auy orable	Fa	vorable	Normal	Desfavorable	Muy desfavorable
Plana		$ a_j - a_s $							
Vuelco	A	$ a_{j}-a_{s}-180 $	>	→ 30°	30	0° – 20°	20° - 10°	10° – 5°	< 5°
Cuña		$ a_j - a_s $							
	F	1	().15		0.40	0.70	0.85	1.00
	B	$\left {{b_{_j}}} ight $ ó $\left {{b_i}} ight $	<	: 20°	20	0° - 30°	30° - 35°	35° – 45°	> 45°
Plana/cuña		ED	().15		0.40	0.70	0.85	1.00
Vuelco	ielco F Z			1.0					
Plana		$b_j - b_s$							
Cuña	С	$b_i - b_s$	>	> 10°		$0^{\circ} - 0^{\circ}$	0°	0° – (-10°)	< (-10) ⁶
Vuelco		$b_j + b_s$	<	110°	110	0° – 120°	> 120°	-	-
	F	3		0		-6	-25	-50	-60
		,					,		
METODO EXCAVACION			F4		MÉTODO EXCAVACIÓN		F4		
Talud normal			+15		Voladura normal o excavación mecánica			0	
Precorte				+10		Voladura deficiente		-8	
Voladura suav	e			+8					

Fuente: Modificado de Romana, 1985.

2.3. DEFINICIONES CONCEPTUALES

Roca intacta

Se define ROCA como un agregado sólido formado por uno o varios minerales, que se encuentra ocupando grandes extensiones de la corteza terrestre. En nuestra disciplina se habla en muchas ocasiones de ROCA o ROCA INTACTA para referirse a un elemento (trozo, bloque, probeta) de roca que no presenta discontinuidades observables.

En la naturaleza las rocas aparecen muy comúnmente atravesadas por distintos caracteres geológicos estructurales y discontinuidades de origen geológico variable como la estratificación, esquistosidad, pliegues, fallas, y juntas o diaclasas. Al conjunto de estas discontinuidades que atraviesan la roca se le suele denominar ESTRUCTURA del macizo rocoso.

Macizo rocoso

Se define macizo rocoso como la forma en la que se presentan las rocas en el medio natural. Así pues un macizo rocoso estará compuesto por la roca y la estructura, que a su vez contienen planos de estratificación, fallas, juntas, pliegues y otros caracteres estructurales. Los macizos rocosos son por tanto discontinuos y pueden presentar propiedades heterogéneas y/o anisótropas.

Se ilustran las definiciones de estructura y macizo rocoso en la Fig. 2.12. En ella se muestra primero (Fig. 2.12a) una fotografía de un macizo rocoso sobre la que se han marcado las discontinuidades observables in-situ, que se han llevado posteriormente sobre fondo blanco para ilustrar la definición de estructura (Fig. 2.12b). En la realidad, hay que pensar que esta estructura será tridimensional.

Figura 2.12. Definición ilustrativa de un macizo rocoso (a) y estructura (b) del macizo rocoso.

Fuente: Modificado de Romana, 1985.

A partir de la definición de macizo rocoso y de lo que la naturaleza nos muestra, ha de quedar claro desde el principio de este libro que atendiendo a los acrónimos propuestos por Hudson y Harrison (1995), un macizo rocoso es un "DIANE" (acrónimo de Discontinuous, Inhomogeneous, Anysotropic & Non-Elastic que quiere decir discontinuo, heterogéneo, anisótropo e inelástico) y no un "CHILE" (acrónimo de Continuous, Homogeneous, Isotropic & Linear-Elastic que quiere decir continuo, homogéneo, isótropo y linealmente elástico).

Discontinuidad

Es cualquier plano de origen mecánico o sedimentario que independiza o separa los bloques de matriz rocosa en un macizo rocoso. (Gonzales, 2002). Una discontinuidad es una superficie del macizo rocoso que está abierta o puede abrirse fácilmente a causa de tenciones inducidas por la excavación. Las superficies de discontinuidad aparecen durante la formación de la roca (planos de estratificación, laminación, foliación, disyunción, etc.) o posteriormente por causas tectónicas (esquistosidad, pizarrosidad y las

fracturas: fallas y las diaclasas (estas últimas denominadas vulgarmente "juntas". (Jorda, 2013).

Orientación

Es la posición de la discontinuidad en el espacio y comúnmente es descrito por la dirección de buzamiento y el buzamiento de la línea de máxima pendiente en el plano de la discontinuidad. (Instituto Tecnológico GeoMinero de España, 1987).

Meteorización

Denominada también intemperización, está relacionada con la modificación que sufre la superficie de la roca o en sus proximidades, debido a la acción de agentes atmosféricos. El grado de la meteorización dependerá de las condiciones climatológicas, morfológicas y la composición de la masa rocosa. La meteorización se divide en meteorización física, química y biológica. (Sociedad Nacional de Minería Petróleo y Energía, 2004).

Alteración

La alteración de la roca o más propiamente dicha, alteración hidrotermal, se produce por la ascensión de fluidos o gases magmáticos a altas temperaturas a través de fracturas o zonas de falla. Éstos afectan a los rellenos de las zonas de falla y sus cajas, originando reemplazamientos y rellenos, que modifican las condiciones del macizo rocoso en los cuales se emplazan. Algunos tipos de alteración, como la silicificación y en menor grado la calcificación, mejoran las características de la masa rocosa, incluyendo las zonas de falla. Otros, como la propilitización, disminuyen levemente las condiciones debido a la presencia de cloritas en las paredes de las fracturas. La sericitización y la argilitización (aumento de minerales arcillosos) son las alteraciones más desfavorables para los macizos rocosos donde se emplazan. (Sociedad Nacional de Minería Petróleo y Energía, 2004).

Factor de seguridad

El Factor de Seguridad es una medida determinista de la relación entre las fuerzas de resistencia (capacidad) y las fuerzas impulsoras (demanda) del sistema en su entorno considerado. El Factor de Seguridad es el criterio más básico de diseño aceptado en la ingeniería. En geomecánica saltó a la fama a mediados del siglo 20, cuando la ingeniería geotécnica se desarrolló como una disciplina de ingeniería independiente en 1940. (Read & Stacey, 2009).

Suelo

Se define suelo como un material formado por partículas sólidas y poros rellenos de agua o aire, sin cementación o poco cementado, originado por la alteración de las rocas y sobre el que se desarrolla la mayor parte de la actividad humana y biológica. Desde el punto de vista genético los suelos son rocas que se han ido erosionando y alterando; y las rocas son suelos que sometidos a determinados niveles de presión y temperatura y condiciones químicas se han ido litificando mediante diversos tipos de procesos físico-químicos. Existen pues materiales de transición entre las rocas y los suelos y viceversa, denominados "roquisuelos", que se estudian analizan mediante técnicas mixtas propias de la mecánica de ocas y la de suelos.

Taludes en roca

A diferencia de los suelos, la estructura que presenta las rocas es complicada, ya q bajo su apariencia sólida y homogénea se esconden anisotropías originadas por grietas, planos de fractura o estratificación, diaclasas y plegamientos que hacen que su comportamiento mecánico no sea el esperado a primera vista. Los taludes naturales o los excavados en roca están sujetos de forma permanente a procesos de inestabilidad, provocados por la acción de agentes erosivos – el agua en sus diversos estados es el principal – en el caso de los primeros, a los que se une la propia geometría del talud artificial en el segundo caso. Otro factor que también influye en la estabilidad es la sismicidad natural o provocada por las voladuras realizadas para excavar dicho talud.

Estabilidad

El concepto "estabilidad" es indeterminado, pues ningún talud hecho en roca o suelo puede ser garantizado como estable durante su vida útil en un periodo de muchos años, pues condiciones climáticas, hidrológicas, tectónicas así como la actividad del ser humano en las cercanías de la estructura pueden traer cambios que afecten la estabilidad de taludes, ya sea artificiales o naturales. En particular, uno no debería de descuidar la posibilidad de que la roca o el suelo se saturen de agua con el tiempo. En sí, el término "falla de talud" se refiere a cualquier inestabilidad que afecte la operación del hombre en un ambiente geológico natural. (Jumikis 1983).

Mecánica de rocas

Una definición comúnmente aceptada de mecánica de rocas propuesta por el comité americano de esta disciplina en 1974 sería: "Mecánica de rocas es la ciencia teórica y aplicada que estudia el comportamiento de mecánico de las rocas y los macizos rocosos. Sería pues la rama de la ingeniería de minas dedicada al estudio de la respuesta de las rocas y macizos rocosos al campo de fuerzas que actúan en su entorno".

Así definida, esta disciplina es básica para la minería, ya que el hecho de realizar excavaciones modifica los campos de fuerza en el entorno físico de las rocas. Como se podrá ver en el desarrollo de este curso, el estudio de la respuesta de los materiales requiere la aplicación de un buen número de técnicas analíticas desarrolladas específicamente para la materia, y que hoy día forman parte de su cuerpo de doctrina. La mecánica de rocas forma a su vez parte de la geotecnia (fr.) o geomecánica (ing.) que

estudia el comportamiento de todos los materiales de origen geológicos por si solos y en su interacción con estructuras y de la que también forma parte la mecánica de suelos.

2.4. HIPÓTESIS

2.4.1. Hipótesis general

Un adecuado análisis de estabilidad de taludes permitirá establecer un factor de seguridad aceptable y elegir los tipos de reforzamiento adecuados en el proyecto de Regulación del Río Pumamayo.

2.4.2. Hipótesis específicas

- El análisis de estabilidad de taludes permitirá encontrar los factores de seguridad aceptables para los taludes del portal de ingreso y salida del túnel Pumamayo y en el aliviadero de demasías de la presa Pumamayo.
- Con el análisis de estabilidad de taludes se podrá determinar el tipo de reforzamiento necesarios ante eventuales problemas de inestabilidad en los taludes del portal de ingreso y salida del túnel Pumamayo y en el aliviadero de demasías de la presa Pumamayo.

CAPÍTULO III

METODOLOGÍA DE LA INVESTIGACIÓN

3.1. DISEÑO METODOLÓGICO

De acuerdo a la naturaleza del trabajo de investigación, por su nivel y las características de estudio es de tipo descriptivo experimental, en razón a las variables desarrolladas en la investigación. La presente investigación denominada Análisis de estabilidad de taludes en el proyecto de Regulación del Río Pumamayo, detalla el análisis de estabilidad de los siguientes taludes:

- Portal de entrada del Túnel de derivación Río Pumamayo.
- Portal de salida del Túnel de derivación Río Pumamayo.
- Aliviadero de Presa.

3.2. POBLACIÓN

El Proyecto de Regulación del Río Pumamayo está ubicado en el río Ajoyajota o Pumamayo, afluente por la izquierda del río Macusani, tributario del río San Gabán.

Políticamente el área de emplazamiento de las obras de regulación pertenece al distrito de Macusani, provincia de Carabaya y del departamento de Puno.

3.3. MUESTRA

El presente estudio, detalla en análisis de estabilidad de taludes en:

- Portal de entrada y salida del túnel de derivación del río Pumamayo.
- Aliviadero de demasías de la presa Pumamayo.

3.4. OPERACIONALIZACIÓN DE VARIABLES

Cada variable en el análisis de estabilidad será operacionalizadas de acuerdo a su escala de medición (Cuadro 3.1).

3.4.1 Variables independientes

- **a.** Datos estructurales:
- Dirección de buzamiento.
- Buzamiento.
- **b.** Propiedades físicas del macizo rocoso:
- Peso específico.
- Cohesión.
- Angulo de fricción.
- Resistencia a la compresión uniaxial.
- Permeabilidad.
- c. Caracterización y clasificación geomecánica del macizo rocoso:
- Rock Quality Designation RQD.

- RMR de Bienawski.
- Q de Barton.
- Geological Strength Index (GSI).
- SMR de Romana.

3.4.2 Variables dependientes

Las variables dependientes son los parámetros de diseño de taludes, como son:

- Ángulo final del talud.
- Factor de seguridad.

3.4.3 Operacionalización de variables

La operacionalizacion de variables se muestra en el Cuadro 3.1.

Cuadro 3.1.	Variables e	indicadores.
-------------	-------------	--------------

VARIABLES		INDICADORES	ÍNDICES (Escala de medición)	
Variables	Parámetros de	Factor de seguridad	Número adimensional	
dependientes	diseño de taludes:	Ángulo del talud	Grados (°)	
	Datos	Dirección de buzamiento	Grados (°)	
	estructurales del macizo rocoso.	Buzamiento	Grados (°)	
	Propiedades físicas del macizo rocoso:	Peso específico	g/cm ³	
Variables independientes		Cohesión	MPa	
		Angulo de fricción	Grados (°)	
		Resistencia a la compresión uniaxial	MPa	
		Permeabilidad	m/seg	
	Caracterización y clasificación geomecánica del macizo rocoso:	Rock Quality Designation RQD	Índice RQD	
		RMR de Bienawski	Índice RMR	
		Q de Barton	Índice Q	
		Geological Strength Index (GSI)	Índice GSI	
		SMR de Romana	Índice SMR	
Variables intervinientes		Túnel Pumamayo y aliviadero de demasías de la presa Pumamayo		

Fuente: Elaboración propia.

3.5. TÉCNICAS DE RECOLECCIÓN DE DATOS

Es indispensable determinar las técnicas que se van a aplicar, como el análisis del control operacional, el análisis estadístico y porcentual, la observación y medición; para determinar los resultados del análisis de la estabilidad en los taludes.

3.5.1 Instrumentos de recolección de datos

Los instrumentos que se utilizaron en el presente estudio fueron las investigaciones de campo, ensayos de laboratorio y el modelamiento con software.

a. Investigaciones de campo

Las investigaciones de campo constituyen la parte más esencial de los estudios geológicos, estructurales y geotécnicos necesarios en todo proyecto de estabilidad de taludes. De ellos se obtienen los parámetros y propiedades que definen las condiciones del macizo rocoso. El objetivo de las investigaciones de campo es conocer y cuantificar las condiciones de los materiales con los que se van a trabajar, ya que estos pueden afectar la viabilidad, diseño y construcción de una obra o estructura.

Para el presente estudio se realizaron los siguientes trabajos de campo:

- Mapeo geológico.
- Mapeo estructural.
- Mapeo geotécnico.
- Identificación de los modos de falla estructural en el talud.

b. Ensayos de laboratorio

Se realizaron ensayos que permitieron obtener las propiedades mecánicas de los tipos de macizo rocoso presentes en el talud para la identificación de los modos de falla estructural presentes en los taludes del portal de ingreso y salida del túnel Pumamayo y del aliviadero de demasías de la presa Pumamayo, en tal forma que son lo más representativos de las situaciones reales en el campo.

Los ensayos de laboratorio realizados de cada una de las litologías presentes en el talud son las siguientes:

- Determinación de la densidad.
- Ensayo de compresión uniaxial (UCS).
- Ensayo de carga puntual (PLT).

c. Modelamiento con software

El modelamiento de los datos se realizó con el uso del paquete de Rocscience.

3.6. Técnicas para el procesamiento de la información

Se aplicaron métodos, instrumentos y procedimientos de acuerdo a lo siguiente:

- Revisión de datos obtenidos.
- Elaboración de cuadros estadísticos para el control de la eficiencia.
- Presentación gráfica y modelamiento con software geomecánico.

CAPÍTULO IV

CARACTERIZACIÓN DEL ÁREA DE ESTUDIO

4.1. GENERALIDADES

4.1.1. Ubicación

La cuenca del río Pumamayo pertenece al ámbito del distrito de Macusani, provincia de Carabaya, departamento de Puno y se ubica sobre los 4 600 msnm. El proyecto de regulación del río Pumamayo se ubica a 11 km de la ciudad de Macusani, aproximadamente, en las coordenadas geográficas 14.05° de latitud Sur y 70.33° de longitud Oeste, entre las siguientes coordenadas (Sistema WGS84) (Ver Cuadro 4.1):

Cuadro 4.1. Coordenadas de ubicación del proyecto.

Norte	Este
8 443 800	353 550
8 443 800	353 800
8 444 000	353 550
8 444 000	353 800

Fuente: Elaboración propia.

4.1.2. Accesos

El acceso a la zona del proyecto es por vía terrestre mediante una carretera asfaltada de 253 km de longitud, desde la ciudad de Puno. La ruta del acceso indicado es el siguiente:

Cuadro 4.2. Coordenadas de ubicación del proyecto.

Tramo de carretera	Características de la carretera	Distancia (km)
Puno – Juliaca	Asfaltada – Interoceánica	44
Juliaca – Macusani	Asfaltada – Interoceánica	209
Macusani – Desvío Munay Paqocha	Asfaltada – Interoceánica	4.3
Desvío Munay Paqocha – Ajoyajota	Trocha carrozable	5.9

Fuente: Elaboración propia.

4.2. CARACTERIZACIÓN GEOLÓGICA

4.2.1. Geología regional

a. Geomorfología

El área del estudio se ubica en la cordillera oriental de los Andes de la parte sureste del país. El embalse de Ajoyajota está proyectado en la cuenca inferior del río Pumamayo, donde existe una depresión natural originada por procesos glaciales. La depresión de Ajoyajota es parte de un valle glacial y posiblemente el resto de una antigua laguna. Se trata de una depresión de 3.0 km de largo y 0.8 km de ancho máximo.

El fondo de la depresión es una llanura de suave inclinación, por donde el río discurre formando meandros. En la parte frontal de la depresión se ha labrado un valle encañonado que se inicia en la laguna y termina a 1.5 km aguas abajo. El valle tiene sección transversal en "V", con un fondo que no pasa de 2 m de ancho y flancos que se inclinan con 40°.

Universidad Nacional del Altiplano

b. Litoestratigrafia

Para la identificación de las formaciones geológicas y la asignación de su edad, se ha tomado como base la información del Boletín Nº 79, Serie "A" de la Carta Geológica Nacional, cuadrángulo de Macusani, elaborado por el Instituto de Geología y Minería (INGEMMET), publicado en 1996, con mapa geológico a escala 1:100 000. Regionalmente, las rocas basales que afloran en las zonas de estudio de la presa y embalse Ajoyajota son de origen sedimentario, constituidas por limolitas y areniscas, plegadas y en discordancia entre las formaciones de edad Paleozoica y Mesozoica (Ver Cuadro 4.3).

EDAD			UNIDADES LITOESTRATIGRÁFICAS		
			IDENTIFICACIÓN	SÍMBOLOS	DESCRIPCIÓN
CENOZOICA	Cuaternario	Holoceno	Depósito aluvial	Qh-al	Grava arenosa
			Depósito fluvioglacial	Qh-fg	Grava arenosa con algunos bolones
		Pleistoceno	Depósito glacial	Qpl-mo	Gravas con matriz areno- limosa y bloques aislados, compacta
	Neógeno		Fm. Quenamari Mbo. Yapamayo	Np-ya	Tobas blanca grisáceas de composición riolítica, masiva
	Paleógeno		Fm. Cayconi	PN-ca	Basaltos gris oscuros de textura porfirítica con fenocristales de plagioclasa
MESOZOICA	Cretáceo	Inferior	Fm. Viluyo	Ki-vi	Areniscas cuarzosas y arcósicas estratificadas con limo-arcillitas rojas laminares
			Fm. Huancane	Ki-hu	Areniscas cuarzosas blanquecina, grano medio que yacen en estratos gruesos
PALEOZOICA	Permiano	Inferior	Gpo. Mitu	Ps-mi	Lavas andesíticas porfiríticas y brechas con litoclastos volcánicos de color rojizo
			Gpo. Copacabana	Pi-c	Calizas micríticas gris claras con niveles de dolomitas y calizas nodulares en la base
	Carbonífero	Inferior	Gpo. Ambo	Ci-a	Areniscas cuarzosas blanquecinas a gris oscuras intercaladas con limolita, limo- arcillitas negras carbonosas y violáceas
	Siluriano – Devoniano		Fm. Ananea	SD-a	Pizarras y filitas gris oscuras foliadas y venillas de cuarzo

Fuente: INGEMMET.

4.2.2. Geología en zonas de obras proyectadas

a. Morfología

La morfología en la zona del embalse está constituida por pendientes suaves y superficies onduladas que contrastan con otros sectores agrestes de alta montaña. El área del embalse está limitada mayormente por depósitos glaciales (morrenas), fluvioglaciales, aluviales y bofedales, con afloramientos aislados de areniscas Huancané y tobas riolíticas de la formación Quenamari. El río Laccamayo forma un valle encañonado donde se emplazará la presa proyectada Pumamayo. Esta unidad corresponde a la garganta topográfica, tallada paralela a horizontes meteorizados, foliados y erosionables de limolitas, limolitas carbonosas y limolitas lutáceas del Grupo Ambo.

b. Litoestratigrafía

Litológicamente las rocas representativas están conformada por limolitas, limolitas carbonosas, limoarcillitas (limolitas lutáceas), areniscas y zonas de transición entre las limolitas y areniscas pertenecientes al Grupo Ambo (Ci-a1, a3). Sobreyacen en discordancia al Grupo Ambo, areniscas blanquecinas de la formación Huancané (Ki-hu). En la secuencia estratigráfica que se presenta a lo largo del valle encañonado del río Laccamayo, en los registros de las perforaciones diamantinas realizadas por el Consultor, se encontraron sectores con algunas limolitas que presentan poca a moderada silicificación, las fracturas presentan oxidaciones de fierro y porcentajes variables de diseminación de sulfuros metálicos.

Los depósitos cuaternarios reconocidos están constituidos por:

Acumulaciones morrénicas (Q-gl) ubicadas en ambos flancos del área de embalse,
 separando como un tabique natural a las lagunas Ajoyajota y Parinajota. Su
TESIS UNA - PUNO

litología consiste de suelos areno limosos ligeramente arcillosos, con inclusiones de gravas, cantos, bolos y bloques, de tonalidades marrón claras a gris claras. Presentan buena consistencia, son densos, poco permeables a impermeables.

- Los depósitos fluvio-glaciares (Q-fgl), corresponde a las terrazas ubicadas en la parte noreste del embalse. Su litología consiste de bancos de cantos, gravas y arena, muy semejantes a los depósitos de origen aluvial.
- Las acumulaciones lacustrinas (Q-la), se han formado en el fondo del área de embalse de la laguna Ajoyajota y área del eje de presa Pumamayo; están constituidas por arenas limo arcillosas con materia vegetal descompuesta formando zonas pantanosas, que se han caracterizado como acumulaciones de bofedales (Q-bo). Cerca del eje de presa se han delimitado acumulaciones lagunares cubiertas por depósitos coluviales (Q-co-la).
- Depósitos fluviales (Q-fl) localizados en el cauce del río Laccamayo está conformado por limitado material fluvial. En la cola del embalse, denominada Zona de Encuentro, en el cauce del río, se encuentran acumulaciones de gravas y cantos con relleno arenoso y limo arenoso, cuyo espesor se infiere en más de 5 m.

c. Geología estructural

En ambos estribos del eje de presa Pumamayo se ha obtenido los elementos de orientación de los planos de estratificación y de fracturamientos. La información obtenida ha sido procesada mediante el Software Dips versión 5.1 Rocscience (Ver Fig. 4.1), M.S. Diederichs & E. Hoek, University of Toronto, el cual permite identificar las familias de discontinuidades presentes en el afloramiento de roca.

La zona involucrada con la estructura de la presa Pumamayo no presenta condiciones geológicas y morfológicas que demuestren que la secuencia estratigráfica del grupo Ambo y depósitos cuaternarios, se encuentren afectados por una falla cuaternaria activa. El cauce actual del valle encañonado del Laccamayo ha profundizado su lecho siguiendo el rumbo de horizontes erosionables de limoarcillitas y limolitas carbonosas.

PROYECTO REGULACIÓN DE	L RÍO	PUMAMAY Orientación (O le familias		
Fam 3		principales			
Fam 4	ID	Dip / Direction	Estructura geológica		
W- + Fam 1 -E	1	35 / 278	Estratificación		
tand	2	80 / 041	Junta		
	3	71 / 181	Junta		
	4	57 / 119	Junta		

Figura 4.1. Proyección estereográfica de las discontinuidades. Fuente: Elaboración propia.

4.3. CARACTERIZACIÓN GEOMECÁNICA DEL MACIZO ROCOSO

Para evaluar las características y el comportamiento mecánico del macizo rocoso se han realizado diez (10) estaciones geomecánicas (Ver Cuadro 4.4) adicionales a las investigaciones realizadas en el Estudio Geotécnico. Asimismo se ejecutaron diez (10) perforaciones diamantinas (Ver Cuadro 4.5), distribuidas de manera adecuada, para la zona de cimentación de la presa y para el túnel de derivación propuesto. Las unidades litológicas caracterizadas para la ubicación de la presa y túnel de desvío, han sido definidas por la evaluación geológica, siendo las siguientes: limolita, limolita carbonosa, limolita lutácea y arenisca cuarzosa.

Estación	Litalogía	Coordenadas		Ducturdidad	Muestra	Observasiones
geomecánica	Litologia	Norte	Este	Profundidad	/ensayo	Observaciones
EG-1A	Limolita carbonosa	8 443 907.178	353 666.250	Superficial	M-1/CP- PF	
EG-2A	Limolita carbonosa	8 443 928.977	353 665.037	Superficial	M-1/CP- PF	
EG-3A	Limolita carbonosa	8 443 964.009	353 673.790	S/M		Similar a la M-1 de la EG-2A
EG-4A	Limolita	8 443 910.337	353 675.792	Superficial	M-1/CP- PF	
EG-5A	Limolita carbonosa	8 443 912.769	353 659.613	Superficial	M-1/CP- PF	
EG-6A	Limolita carbonosa	8 443 881.421	353 642.716	S/M		Similar a la M-1 de la EG-5A
EG-7A	Limolita	8 443 816.681	353 688.758	S/M		Similar a la M-1 de la EG-4A
EG-8A	Limolita	8 443 952.784	353 694.122	Superficial	M-1/CP- PF	
EG-9A	Arenisca cuarzosa	8 443 979.306	353 749.006	S/M		
EG-10A	Limolita	8 444 048.616	353 658.201	S/M		Similar a la M-1 de la EG-4A

Cuadro 4.4. Estaciones geomecánicas.

Fuente: Estudio de Factibilidad – SVS Ingenieros S.A.C.

Sondeo	Ubicación	Coord	enadas	Piezómetro	Prof.
		Norte	Este		perforada
PP – 1	Estribo izq.	8 443 907.94	353 719.15	52.50	52.50
PP – 2	Cauce	8 443 911.15	353 670.13	N.A	57.80
PP – 2'	Ladera der.	8 443 911.65	353 644.21	17.50	50.00
PP – 3	Estribo der.	8 443 914.65	353 613.38	28.50	45.25
PP – 4	Cauce	8 443 953.32	353 667.80	N.A	54.25
PP - 5	Ladera der.	8 443 932.47	353 637.14	N.A	50.30
PP - 6	Cauce	8 443 881.40	353 661.61	N.A	50.00
PT – 1	Estribo izq.	8 444 057.58	353 661.03	N.A	15.20
PT – 2	Estribo izq.	8 443 993.66	353 694.96	N.A	35.20
PT – 3	Estribo izq.	8 443 870.42	353 714.15	N.A	45.20

Cuadro 4.5. Perforaciones diamantinas

Fuente: Estudio de Factibilidad – SVS Ingenieros S.A.C.

Como recopilación de información, se considera las siguientes investigaciones geotécnicas para la interpretación del modelo geomecánico (Ver los Cuadros 4.6 y 4.7):

Sondeo	Coordenadas		Cotas	Profundidad	Inclinación	Dirección
	Norte	Este	(msnm)	(m)		
SD-1	8 443	353 728.236	4 574.770	20.00	60°	S 80° E
SD-2	8 443	353 700.933	4 558.500	15.00	60°	S 80° E
SD-3	8 443	353 677.417	4 542.500	35.00	90°	Vertical
SD-4	8 443	353 618.897	4 575.795	80.00	45°	S 80° E

Fuente: Estudio de Factibilidad – SVS Ingenieros S.A.C.

Cuadro 4.7. Estaciones geomecánicas.

Estación geomecánica	Litología	Coordenadas		
		Norte	Este	
EG-01	Limolita	8 444 057.584	353 661.031	
EG-02	Limolita	8 444 077.407	353 661.665	
EG-03	Limolita carbonosa	8 444 020.251	353 637.160	
EG-04	Limolita	8 444 042.942	353 652.498	
EG-05	Limolita carbonosa	8 443 939.207	353 649.113	
EG-06	Limolita carbonosa	8 443 850.901	353 649.514	
EG-07	Limolita	8 443 821.092	353 682.472	
EG-08	Limolita	8 443 774.825	353 687.105	
EG-09	Limolita carbonosa	8 443 898.993	353 661.430	

Fuente: Informe Geotécnico - CESEL S.A.

4.4. PROPIEDADES DE LA ROCA INTACTA

a. Gravedad específica

Para determinar la gravedad específica de la roca intacta, se realizaron cinco (5) ensayos en las muestras de estaciones geomecánicas (Ver Cuadro 4.8) y diez (10) ensayos en muestras de perforaciones (Ver Cuadro 4.9), debido a que se cuenta con información de estudios anteriores.

Estación	Litología	Gravedad	Absorción	Densidad
geomecánica		específica	(%)	(kg/cm ³)
EG-1A	Limolita carbonosa	2.35	3.10	2.34
EG-2A	Limolita carbonosa	2.38	3.05	2.37
EG-4A	Limolita	2.41	2.83	2.40
EG-5A	Limolita carbonosa	2.28	5.02	2.26
EG-8A	Limolita	2.33	3.56	2.32

Cuadro 4.8. Gravedad específica – Estaciones geomecánicas.

Fuente: Informe Geotécnico - CESEL S.A.

Sondeo	Litología	Muestra	Profundidad (m)	Gravedad específica	Absorción (%)	Densidad (kg/cm ³)
PP-1	Limolita	M-1	28.40 - 29.40	2.49	3.33	2.48
DD 7	Limolita Areniscosa	M-2	23.05 - 23.40 29.40 - 29.80	2.52	2.37	2.51
11-2	Limolita	M-3	9.70 - 10.70	2.57	0.41	2.56
IP1-1	Arenisca	M-4	13.00 - 14.20	2.43	2.44	2.42
PT-2	Arenisca Limosa	M-5	$13.50 - 13.70 \\ 25.70 - 26.40$	2.54	0.61	2.53
PT-1	Limolita	M-6	4.60 - 4.85 9.50 - 10.20	2.59	1.55	2.58
PT-3	Limolita	M-7	31.00 - 32.40 42.25 - 42.40	2.52	2.73	2.51
	Arenisca	M-8	28.95 - 29.95	2.50	1.25	2.49
rr-4	Limolita	M-9	49.70 - 50.85	2.66	0.55	2.65
PT-3	Limolita	M-10	31.30 - 32.30	2.34	4.73	2.32
PP-5	Limolita Carbonosa	M-11	31.50 - 32.60	2.59	1.89	2.58
PP-6	Limolita Bandeada	M-12	38.90 - 39.90	2.65	0.99	2.65

Cuadro Nº4.9. C	Gravedad específ	ica – Perforacione	s diamantinas.
-----------------	-------------------------	--------------------	----------------

Fuente: Informe Geotécnico – CESEL S.A.

Los valores asumidos por el estudio de factibilidad con relación a la gravedad específica son los siguientes:

TESIS UNA - PUNO

_	Limolita	0.025 MN/m ³
_	Arenisca y limolita	0.025 MN/m ³
_	Arenisca limosa	0.024 MN/m ³
_	Arenisca cuarzosa	0.026 MN/m ³

Los valores asumidos para la determinación de los parámetros del macizo son los siguientes:

_	Limolita	0.0240 MN/m ³
_	Limolita carbonosa	0.0235 MN/m ³
_	Limolita lutacea	0.0228 MN/m ³
_	Arenisca cuarzosa	0.255 MN/m ³

a. Resistencia a compresión simple

Para determinar la resistencia a compresión simple de la roca intacta se ejecutaron quince (15) ensayos de carga puntual. Para estimar la resistencia a compresión simple a partir del índice de carga puntual (I_{S50}), se utilizaron los factores de correlación, los cuales se muestran en los ensayos realizados.

Solo se ejecutaron 5 ensayos para las muestras extraídas de las estaciones geomecánicas (Ver Cuadro 4.10) y 10 para las muestras de perforaciones (Ver Cuadro 4.11), debido a que se cuenta con información en estudios anteriores.

Estación	Litología	Resistencia a	a la Compresión S	Simple (MPa)
geomecánica		Máximo	Mínimo	Promedio
EG-1A	Limolita carbonosa	94	29	69
EG-2A	Limolita carbonosa	43	16	28
EG-4A	Limolita	43	22	37
EG-5A	Limolita carbonosa	34	15	27
EG-8A	Limolita	30	9	18

Cuadro 4.10. Resistencia a compresión simple – Estaciones geomecánicas.

Fuente: Informe Geotécnico - CESEL S.A.

Cuadro 4.11.	Resistencia a	compresión	simple –	Perforacione	es diamantinas.
--------------	---------------	------------	----------	--------------	-----------------

Condoo	Litalacía	Maratus	Profundidad	Resistencia a	la compresión	simple (MPa)
Sonueo	Litologia	Muestra	(m)	Máximo	Mínimo	Promedio
PP-1	Limolita	M-1	28.40 - 29.40	95	37	68
DD 7	Limolita Areniscosa	M-2	23.05 - 23.40 29.40 - 29.80	88	21	61
F F -2	Limolita	M-3	9.70 - 10.70	411	64	237
IP1-1	Arenisca	M-4	13.00 - 14.20	80	27	55
PT-2	Arenisca Limosa	M-5	13.50 - 13.70 25.70 - 26.40	271	127	218
PT-1	Limolita	M-6	4.60 - 4.85 9.50 - 10.20	95	27	57
PT-3	Limolita	M-7	31.00 - 32.40 42.25 - 42.40	80	36	57
	Arenisca	M-8	28.95 - 29.95	93	28	60
PP-4	Limolita	M-9	49.70 - 50.85	320	70	184
PT-3	Limolita	M-10	31.30 - 32.30	66	29	46
PP-5	Limolita Carbonosa	M-11	31.50 - 32.60	120	44	77
PP-6	Limolita Bandeada	M-12	38.90 - 39.90	114	63	90

Fuente: Informe Geotécnico - CESEL S.A.

Los valores asumidos por el estudio de factibilidad en relación a la resistencia a compresión simple de la roca intacta es la siguiente:

TESIS UNA - PUNO

- Limolita	12.14 MPa
- Arenisca y Limolita	18.00 MPa
- Arenisca Limosa	25.12 MPa
- Arenisca Cuarzosa	136.24 MPa

Los valores asumidos para la clasificación geomecánica y determinación de parámetros son los siguientes:

- Limolita	37 MPa
- Limolita Carbonosa	28 MPa
- Limolita Lutacea	25 MPa
- Arenisca Cuarzosa	115 MPa

b. Condiciones de las discontinuidades

Las condiciones de las juntas (discontinuidades) son registradas y medidas en el levantamiento geomecánico y registros de perforación. Para el caso del levantamiento de estaciones geomecánicas, las discontinuidades tienen similares características, presentando superficies ligeramente rugosas a planas, con espaciamiento de las juntas de 0.05 a 0.5 m, persistencias entre 1.0 a 3.0 m, con aberturas que varían de 0.2 a 5.0 cm y rellenos blandos de limos, arcillas, óxidos, fragmentos de roca y materia orgánica de espesores menores a 1.0 cm. Los registros de las perforaciones muestran discontinuidades rugosas a lisas, cerradas a semiabiertas con rellenos de limos, óxidos, fragmentos de roca y sulfuros metálicos.

El Cuadro 4.12 muestra las condiciones de discontinuidades de acuerdo a las

investigaciones realizadas.

Cuadro 4.12. Condiciones de las discontinuidades – Estaciones geomecánicas.

Estaciones geomecánicas	Litología	Condiciones de las superficies de las discontinuidades
EG-1A	Limolita carbonosa	Superficies planas, ligeramente rugosa, espaciadas de 0.1 a 0.3 m, persistentes > 3 m, aberturas de 3 a 5 cm, con rellenos de limos y materia orgánica
EG-2A	Limolita carbonosa	Superficies planas, ligeramente rugosa, espaciados de 0.1 a 0.2 m, persistentes > 3 m, aberturas de 1 a 2 cm, con rellenos de limos y pequeños fragmentos de roca
EG-3A	Limolita carbonosa	Superficies ligeramente rugosas, espaciadas de 0.1 a 0.3 m, persistentes > 3 m, aberturas de 2 a 4 cm, con rellenos de limos, arcilla y fragmentos de roca
EG-4A	Limolita	Superficies rugosas, espaciadas de 0.1 a 0.3 m, persistentes > 3 m, aberturas de 1 a 3 cm, con rellenos de limos y materia orgánica
EG-5A	Limolita lutacea	Superficies foliadas, ligeramente rugosas, espaciadas de 0.2 a 0.3 m, persistentes > 3 m, aberturas cerradas a 1 mm, con rellenos de limos y óxidos blandos menores a < 1 mm
EG-6A	Limolita lutacea	Superficies foliadas, ligeramente rugosas, espaciadas de 0.1 a 0.5 m, persistentes de 1 a 3 m, aberturas cerradas a 2 mm, con rellenos de limos arcillosos y óxidos blando menores a < 2 mm
EG-7A	Limolita	Superficies planas, ligeramente rugosas, espaciadas de 0.05 a 0.3 m, persistentes 2 a 3 m, aberturas de 0.5 a 1 cm, con rellenos de limos y óxidos < 5 mm
EG-8A	Limolita	Superficies planas, ligeramente rugosas, espaciadas de 0.05 a 0.3 m, persistentes de 2 a 3 m, aberturas de 2 a 5 mm, con rellenos de arena limosa y óxidos < 5 mm
EG-9A	Arenisca cuarzosa	Superficies rugosas, espaciadas de 0.3 a 0.5 m, persistentes > 3 m, aberturas de 0.5 a 1 cm, con rellenos de limos y materia orgánica blanda < 1 cm
EG-10A	Limolita	Superficies planas, ligeramente rugosas, espaciadas de 0.1 a 0.3 m, persistentes de 2 a 3 m, aberturas de 1 a 2 cm, con rellenos de limos y arena blanda < 1 cm

Según el cuadro se resume las condiciones de discontinuidades de la siguiente manera; superficies de sus paredes predominantemente irregulares rugosas a onduladas rugosas, de espaciamiento menor a 20 cm, persistentes con longitudes mayor a 3.0 m, con relleno de óxidos y limos, sus aberturas varían de 1.0 a 5.0 mm y están ligera a moderadamente meteorizadas.

c. Orientación de las discontinuidades

La información tomada en cuando a la dirección de buzamiento y ángulo de buzamiento, fue analizada mediante el programa Dips, para determinar la orientación predomínate de las fracturas e interpretar la dirección de los esfuerzos.

La Fig. 4.2, presenta el modelo de planos principales (familias) donde se observa la formación de 4 familias principales, correspondientes a las estructuras geológicas del área de estudio.

Figura 4.2. Proyección estereográfica de las discontinuidades.

Fuente: Elaboración propia.

En el Cuadro 4.13 se muestran las principales familias determinadas en datos de dirección y ángulo de buzamiento.

Cuadro 4.13. Orientación de las discontinuidades.

Familias	1	2	3	4
Dip / Direction	35 / 278	80 / 041	71 / 181	57 / 119
Rumbo / buzamiento	N 8°E / 35° NO	N 131°E / 80°NE	N 91°E / 71°NE	N 29°E / 57°NE

Fuente: Elaboración propia.

4.5. CLASIFICACIÓN GEOMECÁNICA DEL MACIZO ROCOSO

4.5.1. Clasificación de Deere et. al (RQD)

Para las investigaciones superficiales, el grado de fracturamiento del macizo rocoso fue estimado mediante el *RQD* (Rock Quality Designation) y J_{ν} (Volumetric Joint Count). Los valores del índice RQD del macizo rocoso indican que se encuentra intensamente fracturado a moderadamente fracturado (Ver Cuadro 4.14), lo que califica a la roca como mala y muy mala, siendo en algunos sectores de calidad media o regular.

Cuadro 4.14.	Valores de RQD	- Estaciones	geomecánicas.
--------------	----------------	--------------	---------------

Litología	Estación geomecánica	RQD	Grado de fracturamiento	Calidad de la roca
Limolita carbonosa	EG-1A	49	Intensamente fracturada	Mala
Limolita carbonosa	EG-2A	46	Intensamente fracturada	Mala
Limolita carbonosa	EG-3A	49	Intensamente fracturada	Mala
Limolita	EG-4A	52	Moderadamente fracturada	Media
Limolita lutacea	EG-5A	32	Muy Intensamente fracturada, foliada	Muy mala
Limolita lutacea	EG-6A	27	Muy Intensamente fracturada, Mu foliada	
Limolita	EG-7A	46	Moderadamente fracturada	Media
Limolita	EG-8A	56	Moderadamente fracturada	Media
Arenisca cuarzosa	EG-9A	74	Moderadamente fracturada	Media
Limolita	EG-10A	56	Moderadamente fracturada	Media

Los valores de RQD calculados en el estudio de factibilidad se encuentran entre 27 a 68% (Ver Cuadro 4.15), los mismos que califican al macizo rocoso como intensamente fracturado, de mala calidad.

Cuadro 4.15. Valores de RQD en los sondeos realizados.

Tipo litológico	Sondeos	Prof. (m)	RQD	Jv	Estructura del macizo rocoso y fracturamiento
Limolita	SD-4	0.00 - 53.80	27	33.2	Muy intensamente fracturada y foliada
	SD-1	1.83 - 3.73 14.35 - 20.00	32	31.2	Intensamente fracturada
Arenisca	SD-2	0.00 - 4.40	10	40.0	Muy intensamente fracturada
	SD-3	0.00 - 13.90	48	24.8	Intensamente fracturada
	SD-4	61.00 - 73.40	50	24.0	Intensamente fracturada y foliada
	SD-1	3.73 - 14.35	38	28.8	Intensamente fracturada
Arenisca cuarzosa	SD-2	4.40 - 15.00	22	35.2	Muy intensamente fracturada
	SD-3	13.90 - 33.35	34	30.4	Intensamente fracturada
	SD-4	73.40 - 80.00	40	28.0	Intensamente fracturada
Arenisca con limolita	SD-4	53.80 - 61.00	68	16.8	Intensamente fracturada

Fuente: Estudio de Factibilidad – SVS Ingenieros S.A.

4.5.2. Clasificación de Bieniawski (RMR)

El resultado de la clasificación geomecánica de Bieniawski (RMR) para las investigaciones realizadas se detalla en el Cuadro 4.16:

Estación geomecánica	Litología	RMR básico	RMR ajustado	RMR condiciones secas	Clase del macizo	Calidad del macizo
EG-1A	Limolita carbonosa	34	19	39	Tipo V	Muy mala
EG-2A	Limolita carbonosa	35	20	40	Tipo V	Muy mala
EG-3A	Limolita carbonosa	33	0	41	Tipo V	Muy mala
EG-4A	Limolita	38	23	43	Tipo IV	Mala
EG-5A	Limolita carbonosa	37	22	42	Tipo IV	Mala
EG-6A	Limolita carbonosa	29	14	37	Tipo V	Muy mala
EG-7A	Limolita	38	28	43	Tipo IV	Mala
EG-8A	Limolita	40	30	45	Tipo IV	Mala
EG-9A	Arenisca cuarzosa	55	50	60	Tipo III	Regular
EG-10A	Limolita	33	23	41	Tipo IV	Mala

Cuadro 4.16. Clasificación geomecánica de Bieniawski (RMR).

Fuente: Elaboración propia.

4.5.3. Clasificación de Hoek & Brown (GSI Modificado)

El Cuadro 4.17 muestra los resultados obtenidos, según la clasificación por el índice GSI Modificado:

Estación geomecánica	Litología	GSI	Valor (GSI)	Calidad del macizo rocoso
EG-1 ^a	Limolita carbonosa	MF/M	34	Muy fracturado / Mala
EG-2 ^a	Limolita carbonosa	MF/M	35	Muy fracturado / Mala
EG-3 ^a	Limolita carbonosa	MF/M	36	Muy fracturado / Mala
EG-4A	Limolita	F/R	38	Fracturado / Regular
EG-5A	Limolita carbonosa	MF/M	37	Muy fracturado / Mala
EG-6A	Limolita carbonosa	IF/M	32	Intensamente fracturado / Mala
EG-7A	Limolita	F/M	38	Fracturado / Mala
EG-8A	Limolita	F/R	40	Fracturado / Regular
EG-9A	Arenisca cuarzosa	F/B	55	Fracturado / Buena
EG-10A	Limolita	MF/M	36	Muy Fracturado / Mala

Cuadro 4.17. Valores del Índice de resistencia geológica (GSI).

4.5.4. Clasificación de Barton et al (Q)

Los resultados de la clasificación geomecánica se muestra en el Cuadro 4.18.

Estación	Valor	Valor	Valor	Valor	Valor	Valor	Q
geomecánica	%	Jn	Jr	Ja	Jw	SRF	Barton
EG-1A	49	9.0	1.5	2.0	0.50	2.5	0.82
EG-2A	46	12.0	1.5	3.0	0.33	2.5	0.25
EG-3A	49	9.0	3.0	3.0	0.33	5.0	0.36
EG-4A	52	9.0	3.0	2.0	0.33	1.0	2.86
EG-5A	32	12.0	1.5	3.0	0.33	2.5	0.18
EG-6A	27	15.0	1.5	3.0	0.33	2.5	0.12
EG-7A	46	9.0	1.5	2.0	0.50	1.0	1.92
EG-8A	56	9.0	1.5	2.0	0.50	1.0	2.33
EG-9A	74	9.0	3.0	1.0	0.66	2.0	8.14
EG-10A	56	12.0	1.5	2.0	0.50	1.0	1.75

Cuadro 4.18. Valores del sistema de clasificación Q.

Fuente: Informe Geotécnico – CESEL S.A.

La calidad del macizo rocoso en cuanto al índice Q, se presenta en el Cuadro 4.19:

Estación geomecánica	Litología	Índice Q	Calidad del macizo
EG-1A	Limolita carbonosa	0.82	Muy mala
EG-2A	Limolita carbonosa	0.25	Muy mala
EG-3A	Limolita carbonosa	0.36	Muy mala
EG-4A	Limolita	2.86	Mala
EG-5A	Limolita carbonosa	0.18	Muy mala
EG-6A	Limolita carbonosa	0.12	Muy mala
EG-7A	Limolita	1.92	Mala
EG-8A	Limolita	2.33	Mala
EG-9A	Arenisca cuarzosa	8.14	Media
EG-10A	Limolita	1.75	Mala

4.5.5. Resumen de la clasificación geomecánica

El Cuadro 4.20 muestra el resumen de las clasificaciones del macizo rocoso realizadas para cada zona de investigación.

Estación			RMR	Calidad	,	Calidad
geomecánica	GSI	Calidad del macizo	ajustado	del	Indice Q	del
				macizo		macizo
EG-1A	MF/M	Muy Fracturado / Mala	19	Muy Mala	0.82	Muy mala
EG-2A	MF/M	Muy Fracturado / Mala	20	Muy Mala	0.25	Muy mala
EG-3A	MF/M	Muy Fracturado / Mala	0	Muy Mala	0.36	Muy mala
EG-4A	F/R	Fracturado / Regular	23	Mala	2.86	Mala
EG-5A	MF/M	Muy Fracturado / Mala	22	Mala	0.18	Muy mala
EG-6A	IF/M	Intensamente Fracturado /	14	Muy Mala	0.12	Muy mala
EG-7A	F/M	Fracturado / Mala	28	Mala	1.92	Mala
EG-8A	F/R	Fracturado / Regular	30	Mala	2.33	Mala
EG-9A	F/B	Fracturado / Buena	50	Regular	8.14	Media
EG-10A	MF/M	Muy Fracturado / Mala	23	Mala	1.75	Mala

Cuadro 4.20. Resumen de la	a clasificación	geomecánica -	Estaciones	geotécnicas.
----------------------------	-----------------	---------------	------------	--------------

Fuente: Informe Geotécnico – CESEL S.A.

Con las consideraciones de la caracterización y los métodos de clasificación del macizo rocoso, se ha determinado la calidad del macizo por tipo de litología; los datos encontrados se presentan en el Cuadro 4.21:

Cuadro 4.21. Candad del macizo rocoso segun upo niologico	Cuadro 4.21.	Calidad	del macizo	rocoso según	tipo litológ	gico.
--	--------------	---------	------------	--------------	--------------	-------

Litología	Clase del Macizo	Calidad del	Fuente
		Macizo	
Limolita	Tipo III	Media o regular	Perforaciones diamantinas
	Tipo IV	Mala	Estaciones geomecánicas
Limolita carbonosa	Tipo IV	Mala	Perforaciones diamantinas
	Tipo V	Muy mala	Estaciones geomecánicas
Limolita lutacea	Tipo IV	Mala	Estaciones geomecánicas
	Tipo V	Muy mala	Estaciones geomecánicas
Areniscas cuarzosas	Tipo II	Buena	Perforaciones diamantinas
	Tipo III	Media o regular	Estaciones geomecánicas

4.6. RESISTENCIA, MÓDULO DE DEFORMACIÓN Y CAPACIDAD ADMISIBLE DEL MACIZO ROCOSO

El cuadro siguiente muestra las propiedades y datos estimados para la determinación de los parámetros de resistencia, deformación y capacidad admisible de la roca (Ver Cuadro 4.22).

Tipo litológico	Calidad del macizo rocoso	Valor RMR ₈₉	GSI	σ _{ci} (MPa)	γ (MN/m ³)	Espaciamiento (m)
Limolita	Tipo III	50	45	37	0.0240	0.20
Limonta	Tipo IV	41	36	37	0.0240	0.10
Limolita	Tipo IV	45	40	28	0.0235	0.10
carbonosa	Tipo V	39	34	28	0.0235	0.05
Limolita	Tipo IV	42	37	25	0.0228	0.10
lutacea	Tipo V	37	32	25	0.0228	0.05
Areniscas	Tipo II	55	50	115	0.0255	0.50
cuarzosas	Tipo III	43	38	115	0.0255	0.30

Cuadro 4.22. Propiedades del macizo rocoso.

Fuente: Informe Geotécnico – CESEL S.A.

La constante m_i se ha determinado a través de ensayos de compresión triaxial (Ver Cuadro N° 4.23). En esta oportunidad se considera los valores referenciales del tipo de litología que fueron publicados en la literatura [Hoek y Brown (1997); Hoek, Marinos y Benissi (1998) y Hoek y Marinos (2000)].

Cuadro 4.23.	Valores	referenciales	de	m_i .
--------------	---------	---------------	----	---------

Litología	Constante m _i Hoek (1998)				
Limolita	9				
Arenisca	19				

Para la determinación de los parámetros de la roca se ha considerado el valor de la constante $m_i = 9$, para la roca limolita, limolita carbonosa y limolita lutacea y $m_i = 19$ para las areniscas cuarzosas.

Los parámetros de resistencia se han obtenido mediante las metodologías descritas en la mecánica de rocas siguiendo los criterios de rotura de Mohr-Coulomb y Hoek-Brown.

4.6.1. Criterio de deformación del macizo rocoso

Basándose en la clasificación geomecánica, varios autores han propuesto criterios empíricos para estimar el módulo de deformación del macizo rocoso, tales como, Bieniawski (1978), Serafim y Pereira (1983), Kulhawy y Goodman (1980), Hoek (1995), Grimstad y Barton (1993), Gokceoglu et al. (2003), etc. Recientemente, en base a una revisión de varios criterios, resultados de ensayos *in situ* en China y Taiwán, Hoek y Diederichs (2006) han propuesto una relación para determinar el módulo de deformación del macizo rocoso (E_m) en función del *GSI*, módulo de elasticidad de la roca intacta (E_i) y el grado de perturbación del macizo (D) por causa de la detonación de las voladuras y alivio de tensiones. La relación se expresa de la siguiente manera:

$$E_m = E_i \left(0.02 + \frac{1 - D/2}{1 + e^{((60 + 15D - GSI)/11)}} \right)$$

4.6.2. Capacidad admisible en rocas

Para determinar la capacidad portante admisible de la cimentación sobre el macizo rocoso se ha tomado en cuenta los parámetros de la roca intacta y del macizo rocoso descrito en el acápite anterior. Con estos valores y usando las siguientes metodologías se estimó el valor de la capacidad de soporte del macizo rocoso, para la ubicación de la presa y Túnel proyectado.

a. Criterio de Hoek et al. (2002)

Según Hoek *et al.* (2002), el inicio de la rotura en el contorno de la excavación se produce cuando los esfuerzos inducidos por la excavación sobrepasan la resistencia del macizo. Esta resistencia es dada por la siguiente expresión:

$$\sigma_{cm}' = \sigma_{ci}.s^{a}$$

No en tanto, cuando es necesario evaluar la rotura global del macizo rocoso, antes que el inicio de la ruptura del mismo, como es el caso de los pilares, entonces la resistencia está dada por:

$$\sigma_{cm}' = \sigma_{ci} \cdot \frac{[m_b + 4s - a(m_b - 8s)](m_b/4 + s)^{a-1}}{2(1+a)(2+a)}$$

Donde: σ_{cm} Resistencia a la compresión del macizo rocoso.

b. Criterio de AASHTO (1996)

La carga admisible del macizo rocoso es estimada en función a la resistencia a la compresión simple de la roca intacta. Para estimar la carga admisible del macizo rocoso se ha empleado el criterio de Hoek et al. (2002). El Cuadro 4.24 resume los parámetros de resistencia, deformación y capacidad admisible del macizo rocoso para la cimentación de la Presa de enrocado tipo CFRD y el Cuadro 4.25 resume los datos en el túnel de desvio.

Cuadro 4.24. Parámetros del macizo rocoso para la presa de enrocado.

	Clase de E_m		Pa Hoe	Parámetros Hoek & Brown		Resistencia Cortante		q _{adm}	τ
Litología	Roca	(MPa)	m _b	S	а	C_m (kg/cm ²)	ϕ_m (°)	(kg/cm ²)	(kg/cm ²)
Limolita	Tipo III	2 753	1.262	0.002	0.508	1.9	64.5	9.0	12.3
Linonta	Tipo IV	1 528	0.915	0.001	0.515	1.0	63.6	4.6	12.3
Limolita	Tipo IV	1 565	1.056	0.001	0.511	1.0	63.1	4.7	9.3
carbonosa	Tipo V	1 039	0.852	0.001	0.517	0.7	61.2	3.0	9.3
Limolita	Tipo IV	1 137	0.949	0.001	0.514	0.8	62.7	3.3	8.3
lutacea	Tipo V	811	0.793	0.001	0.520	0.6	60.5	2.3	8.3
Areniscas	Tipo II	3 818	3.186	0.004	0.506	5.7	72.0	23.1	38.3
cuarzosas	Tipo III	1 742	2.075	0.001	0.513	2.5	73.2	19.7	38.3

Fuente: Informe Geotécnico – CESEL S.A.

Cuadro 4.25. Parámetros del macizo r	rocoso para el túnel de desvío.
--------------------------------------	---------------------------------

	Clase de	P Ho	arámetro ek & Bro	os own	Resistencia Cortante		
Litología	Roca	(MPa)	m _b	S	а	С _т (kg/cm ²)	φ _m (°)
Limolita	Tipo III	1 013	0.438	0.000	0.508	1.6	45.3
Linionta	Tipo IV	543	0.199	0.000	0.515	1.0	38.5
Limolita	Tipo IV	500	0.253	0.000	0.511	1.0	38.8
carbonosa	Tipo V	311	0.081	0.000	0.517	0.6	28.8
Limolita	Tipo IV	384	0.212	0.000	0.514	0.8	36.5
lutacea	Tipo V	261	0.070	0.000	0.520	0.5	26.8
Areniscas	Tipo II	2 467	1.757	0.001	0.506	4.7	62.3
cuarzosas	Tipo III	1 200	0.630	0.000	0.513	2.4	55.8

Dónde: E_m , módulo de elasticidad del macizo rocoso; m_b , s y a, constantes del macizo rocoso; c_m , cohesión del macizo rocoso; ϕ_m , **á**ngulo de fricción del macizo rocoso; q_{adm}

, capacidad admisible del macizo rocoso; τ , adherencia con el concreto.

CAPÍTULO V

RESULTADOS Y DISCUSIONES

El presente trabajo de investigación, detalla el análisis de estabilidad de taludes para:

- Portal de entrada Túnel de derivación Río Pumamayo.
- Portal de salida Túnel de derivación Río Pumamayo
- Aliviadero de Presa Pumamayo.

5.1. PARÁMETROS DE RESISTENCIA Y PROPIEDADES FÍSICAS DEL MACIZO ROCOSO

Se ha determinado los parámetros del macizo rocoso para la zona de estudio, considerando la clasificación geomecánica del macizo (RMR), propiedades físicas de la roca intacta (σ_{ci} , γ), condición de las juntas (espaciamiento) y tipo de estructura (talud), el Cuadro 5.1 muestra los datos propuestos para la zona.

	37.1	E

Cuadro 5.1. Parámetros y propiedades del macizo rocoso.

Ubicación	Clase de	Calidad de	Valor	$\sigma_{_{ci}}$	Espaciamiento
	Macizo	Macizo	RMR89		(m)
Portal de Entrada	Tipo IV	Mala	21	37	0.1
Portal de Salida	Tipo IV	Mala	21	37	0.1

Fuente: Elaboración propia.

Los parámetros de resistencia para evaluar la estabilidad de los taludes son obtenidos mediante las metodologías descritas en mecánica de rocas siguiendo los criterios de rotura de Mohr-Coulomb, Hoek – Brown y Barton – Bandis. El análisis de estabilidad es evaluado con la condición más crítica considerando para todos los casos una roca tipo IV.

Como en el caso de estudio se presenta fallas de tipo cuña, se empleó el programa de cómputo Swedge, y dado que este programa considera sólo el criterio de Mohr-Coulomb, fue necesario determinar, mediante retroanálisis, la cohesión de las discontinuidades con la premisa del conocimiento del ángulo de fricción interno básico igual a 33° (valor conservador, tomado de los valores recomendados para rocas ígneas, publicados por el Instituto Geológico Minero de España, 1990).

El Cuadro 5.2 muestra el resumen de los resultados obtenidos, para el tipo de roca presente y el Cuadro 5.3 presenta los parámetros de resistencia en las discontinuidades.

Cuadro 5.2. Parámetros de	resistencia N	Macizo Rocoso.
---------------------------	---------------	----------------

Clase de	E_m	P	arámetro Hoek & Brown	os	Morh - Coulomb		$q_{\scriptscriptstyle adm}$	τ
Macizo	(MPa)	<i>m</i> _b	S	а	\mathcal{C}_{m} (kPa) ϕ_{m} (°)		(kg/cm ²)	(Kg/cm²)
Tipo IV	261	0.070	0.000	0.520	0.5	26.8	2.3	8.2

Fuente: Elaboración propia.

Sector	en la discontinuidad c (TM/m ²)					
	· (1101/111)					
Túnel	0.6	22				
Pumamayo	0.0	55				

Cuadro 5.3. Parámetros de resistencia en discontinuidades.

Fuente: Elaboración propia.

5.2. ANÁLISIS DE ESTABILIDAD DE TALUDES

El análisis de estabilidad se ha realizado para las siguientes zonas (Ver Fig. 5.1 y 5.2):

a.	Taludes de corte en el portal de entrada:	c.	Taludes de corte en Aliviadero:
	– Talud frontal.		– Sección 2-2 Talud derecho.
	– Talud lateral derecho.		– Sección 2-2 Talud izquierdo.
	 Talud lateral izquierdo. 		 Sección 3-3 Talud derecho.
b.	Taludes de corte en el portal de Salida:		– Sección 3-3 Talud izquierdo.
	– Talud frontal.		– Sección 4-4 Talud derecho.
	– Talud lateral derecho.		– Sección 4-4 Talud izquierdo.
	 Talud lateral izquierdo. 		– Sección 6-6 Talud derecho.
			– Sección 6-6 Talud izquierdo.

TESIS UNA - PUNO

Figura 5.1. Esquema Simplificado de los Taludes de Corte: Portal de Entrada.

Figura 5.2. Esquema Simplificado de los Taludes de Corte: Portal de Salida. Fuente: Informe Geotécnico – CESEL S.A.

Universidad Nacional del Altiplano

5.2.1. Análisis de discontinuidades

Este análisis se realizará evaluando el sistema de discontinuidades donde se determina en primer lugar las familias principales del área donde se harán los cortes, tomando datos de dirección y buzamientos de las discontinuidades mediante la metodología de Línea de Detalle, en esta zona se ha evaluado mediante 10 estaciones geomecánicas, con el apoyo del programa Dips del grupo Rocscience, se obtuvieron en primer lugar las familias principales tal como se muestra en la Fig. 5.3.

Figura 5.3. Ejemplo de principales familias en la Estación Geomecánica 07 A. Fuente: Elaboración propia.

Nótese en la figura anterior mostrada que se tiene la formación de 5 familias principales correspondiente a estructuras geológicas, como son, fracturas y estratos de la roca sedimentaria presente en la zona.

5.2.2. Análisis de fallas

De todos los análisis cinemáticos efectuados, se determina las probables fallas en forma planar, cuña y volteo, mediante el análisis de fallas, para ello se hace uso de las familias

principales ya determinadas, parámetros de resistencia de la discontinuidad y buzamiento del talud de corte a analizar, de la misma manera se ha hecho uso del programa Dips v5.0 y los Cuadros 5.4 y 5.5 muestran los resultados obtenidos:

Cuadro 5.4. Portales de Entrada y Salida de Túnel – Análisis Cinemático – Determinación tipo de falla.

	Estación		Buzamiento/	Familias	Familias	que produ	cen fallas
Estructura	Geomecánica	Sector	Dirección	principales	Falla	Falla por	Falla por
			del Talud	FF	Planar	Cuña	Volteo
		Corte	63° / 286°		Fam 1	Ninguna	Ninguna
Portal de		Frontal	00 / 200	Fam 1: 45° / 286°		Tungana	1 (IIIguila
Entrada a	$EC 10^{a}$	Corte	620 / 0160	Fam 2: 63° / 029°	Ningung	Eam 1 v 2	Ningung
Túnel	EG-10	Lateral	05 / 010	Fam 3: 70° / 090°	minguna	Fall I y 2	minguna
		Corte	63° / 196°	Fam 4 : 79° / 216°	Ninguna	Ninguna	Ninguna
		Lateral	05 / 190		Tinguna	Tungunu	Tingunu
		Corte	76° / 228°	Fam 1: 39° /268°	Fam 1	Fam 1 y 4	Fam 2
Portal de		Frontal		Fam 2: 64° / 043°		Fam 1 y 5	
Salida de	EG-07A	Corte	76° / 138°	Fam 3: 76° / 091°	Fam 5	Fam 2 y 5	Ninguna
Túnel		Lateral		Fam 4: 74° / 195°		Fam 3 y 5	<u>o</u> r a
		Corte	76° / 318°	$E_{0} = 5 \cdot 64^{\circ} / 161^{\circ}$	Fam 1	Fam 1 y 4	Ninguna
		Lateral		1°am 3. 04 / 101			0

Fuente: Elaboración propia.

					Familias	s que produc	en fallas
Estructura	Estación Geomecanica	Sector	Buzamiento/Dirección del Talud	Familias principales	Falla Planar	Falla por Cuña	Falla por Volteo
Aliviadero Sección	EG-05ª	Talud Derecho	63° / 092°	Fam 1: 85° / 047° Fam 2: 64° / 272°	Ninguna	Ninguna	Ninguna
2-2		Talud Izquierdo	63° / 272°	Fam 3: 38° / 276°	Fam 3	Fam 1 y 3	Ninguna
Aliviadero		Talud Derecho	63° / 092°	Fam 1: 34° /276°	Ninguna	Ninguna	Ninguna
Sección 3-3	Sección EG-06 ^a Talud 3-3 G3° / 272°	63° / 272°	Fam 2: 84° / 005° Fam 3: 85° / 046° Fam 4: 79° / 180°	Fam 1	Fam 1 y 2 Fam 1 y 4	Ninguna	
Aliviadero Sección	EG-06	Talud Derecho	63° / 025°	Fam 1: 44° /081° Fam 2: 57° / 053°	Fam 1 Fam 2	Fam 3 y 4	Ninguna
4-4	20.00	Talud Izquierdo	63° / 205°	Fam 3: 82° / 170° Fam 4: 65° / 160°	Ninguna	Ninguna	Ninguna
Aliviadero		Talud Derecho	63° / 025°	Fam 1: 39° /268° Fam 2: 64° / 043°	Ninguna	Ninguna	Fam 4
Sección 6-6	EG-07A	Talud Izquierdo	63° / 205°	Fam 3: 76° / 091° Fam 4: 74° / 195° Fam 5: 64° / 161°	Fam 1	Fam 1 y 5	Ninguna

Cuadro 5.5. Aliviadero – Análisis Cinemático – Determinación tipo de falla.

Fuente: Elaboración propia.

Se concluye del análisis de fallas locales, la formación de 2 tipos de fallas en los diferentes cortes del portal de entrada del túnel (63°), teniendo una falla de tipo planar y una falla por cuña; en los taludes de corte del portal de salida se observan la formación de los 3 tipos de fallas, presentándose principalmente fallas de tipo cuñas, esto es debido al buzamiento del talud de corte propuesto (76°) (Ver Fig. 5.4).

TESIS UNA - PUNO

Figura 5.4. Ejemplo del análisis de falla en el Portal de Entrada del túnel (63°) – Talud Frontal (EG-10A).

Fuente: Elaboración propia.

En el segundo caso para el aliviadero, con el ángulo de buzamiento propuesto (63°) se observan la formación de algunas fallas de tipo planar, cuña y volteo. Así mismo, en el Anexo A, se presenta el resumen de los análisis de fallas, para los diferentes tipos de taludes. Para determinar las condiciones de estabilidad de las fallas obtenidas se ha realizado un análisis de equilibrio limite, haciendo uso de la valoración de SMR (Slope Mass Rating) y los programas de cómputo RocPlane v2.0 y Swedge v4.0 (Ver Fig. 5.5).

Figura 5.5. Ejemplo del análisis de falla en el Aliviadero – Talud izquierdo (63°) (EG-05A).

Fuente: Elaboración propia.

5.2.3. Valoración SMR para fallas planares y de volteo

Para los taludes en roca se tiene los rangos para la valoración SMR, los cuales se presentan en el Cuadro 5.6:

Cuadro 5.6. Valoración del SMR.

Valoración SMR	0 - 20	21 - 40	41 - 60	61 - 80	81 - 100
Descripción SMR	Muy Mala	Mala	Regular	Buena	Muy Buena
Descripción del grado de estabilidad	Critico	Inestable	Normalme	nte Estable	Totalmente Estable

Fuente: Elaboración propia.

Los valores de estabilidad según el valor de SMR, para las fallas planares y de volteo resumen en el Cuadro 5.7 y 5.8:

Cuadro 5.7. Valor del SMR - Portales de Entrada y Salida de Túnel.

Estructura	Sector	Falla	SMR	Descripción	Estabilidad	Tratamiento
Portal de	Corte Frontal	Planar	-10	Muy mala	Muy inestable	Re-excavación
Entrada a Túnel	Corte Lateral	Planar	37	Mala	Inestable	Sostenimiento
	Corte Lateral	Planar	33	Mala	Inestable	Sostenimiento
Portal de Salida	Corte Frontal	Planar	33	Mala	Inestable	Sostenimiento
de Túnel	Corte Lateral	Planar	33	Mala	Inestable	Sostenimiento
	Corte Lateral	Planar	33	Mala	Inestable	Sostenimiento

Fuente: Elaboración propia.

Cuadro 5.8. Valor del SMR – Secciones del aliviadero.

Estructura	Sector	Falla	SMR	Descripción	Estabilidad	Tratamiento
		prodominanto				
Aliviadero	Sección 2-2	Planar	33	Mala	Inestable	Sostenimiento
7 HIVIAGEIO	Sección 3-3	Planar	33	Mala	Inestable	Sostenimiento
	Sección 6-6	Planar	33	Mala	Inestable	Sostenimiento

Fuente: Elaboración propia.

Se concluye que las condiciones de estabilidad para la falla planar presenta un valor de SMR entre -10 a 33, es decir de mala a muy mala, con formación de bloques grandes y cuñas. En el Anexo C se muestra las hojas de cálculo del índice SMR (Slope Mass Rating).

5.2.4. Análisis de falla tipo planar

Esta evaluación se ha realizado teniendo en consideración un talud de 10 m y una banqueta de 2 m. las condiciones usadas en el análisis fueron las más desfavorables. La falla tipo planar es la más frecuente que se presenta en un talud, y se produce cuando existe una fractura dominante en la roca convenientemente orientada respecto al talud. La estabilidad de los taludes para las fallas planares determinadas, se realiza mediante el programa RocPlane v2.0 (Ver Fig. 5.6), este software evalúa la estabilidad de la falla en el talud de roca, mediante dos métodos; Determinístico (referido al Factor de Seguridad) y/o Probabilístico (referido a la Probabilidad de Falla). En nuestro caso se determina la estabilidad del talud temporal, por el método determinístico ya que se cuenta con los datos de las juntas. (Ver Cuadro 5.9 y 5.10).

Los análisis se realizaron considerando cortes de talud de 1:4 (H: V) y 1:2 (H: V), los cuadros siguientes muestra el resumen de los resultados obtenidos, en cuanto al FS según los datos suministrados. Para los cortes en los portales de entrada y salida se ha utilizado un coeficiente de aceleración sísmica 0.24 recomendado en el estudio de peligro sísmico y en los cortes del aliviadero se usó un coeficiente de aceleración sísmica 0.16.

Cuadro 5.9. Factores de seguridad - Datos para análisis de Falla Planar - Portales de

Estructura	Sector	Angulo de	Familias que producen	Ba	Barton-Band		rton-Bandis		Peso Unitario	Geometría del talud	Coef. aceler.	F.S. Pseudo	F.S. Pseudo-
		Talud	falla Planar	JRC			(TM/m3)	Altura (m)	sísmica (g)	- estático	estático con sostenimiento		
Portal de Entrada a Túnel	Corte Frontal	63° / 286°	45° / 286°	3	815.77	30	2.40	10	0.24	0.47	4.57		
	Corte Frontal	76° / 228°	39° / 268°	3	815.77	30	2.40	10	0.24	0.57	1.37		
Portal de Salida de Túnel	Corte Lateral Derecho	76° / 138°	64° / 161°	3	815.77	30	2.40	10	0.24	0.18	1.16		
	Corte Lateral Izquierdo	76° / 228°	39° / 268°	3	815.77	30	2.40	10	0.24	0.57	1.29		

Entrada y Salida de Túnel.

Fuente: Elaboración propia.

		Angulo de	Familias que	Ba	rton-Ban	dis	Peso	Geometría del talud	Coef.	F.S.	F.S.
Estructura	Sector	Talud	producen falla Planar	JRC	JCS (TM/m²)	Φ(°)	(TM/m ³)	Altura (m)	aceler. sísmica (g)	- estático	estático con sostenimiento
Aliviadero Sección 2-2	Talud Izquierdo	63° / 272°	38° / 276°	3	815.77	30	2.26	10	0.16	0.70	1.26
Aliviadero Sección 3-3	Talud Izquierdo	63° / 272°	34° / 276°	3	815.77	30	2.26	10	0.16	0.80	1.28
Aliviadero Sección	Talud	63° / 025°	44° / 081°	3	815.77	30	2.26	10	0.16	0.58	1.39
4-4	derectio	63° / 025°	57° / 053°	3	815.77	30	2.26	10	0.16	0.37	20.80
Aliviadero Sección 6-6	Talud Izquierdo	63° / 205°	39° / 268°	3	815.77	30	2.40	10	0.16	0.68	1.21

Fuente: Elaboración propia.

TESIS UNA - PUNO

Figura 5.6. Análisis de falla planar en el Túnel – Portal de Entrada – Talud Frontal (63°) – en condiciones estáticas.

Fuente: Elaboración propia.

5.2.5. Análisis de fallas por cuña

Esta evaluación se ha realizado teniendo en consideración un talud de 10 m y una banqueta de 2 m, las condiciones usadas en el análisis fueron las más desfavorables. Este tipo de falla se produce a través de dos discontinuidades dispuestas oblicuamente a la superficie del talud con la línea de intersección de ambas, aflorando en la superficie del mismo además del buzamiento desfavorable.

La obtención del Factor de Seguridad es más compleja que en el caso de rotura planar debido a que el cálculo debe hacerse en tres dimensiones, entrando en la caracterización geométrica del problema, lo cual conlleva un número mucho mayor de variables angulares.

Para el caso se ha determinado los factores de seguridad de los taludes de corte, para las fallas por cuña, mediante el software Swegde v4.0 (Ver Fig. 5.7), considerando los datos más críticos de interpretación, tales como; cohesión del material, ángulo de fricción, peso específico y la altura del talud de corte. Similar a la evaluación por falla planar, para los

cortes en los portales de entrada y salida del túnel, se ha utilizado un coeficiente de aceleración sísmica 0.24 recomendado en el estudio de peligro sísmico y en los cortes del aliviadero se usó un coeficiente de aceleración sísmica 0.16. El Cuadro 5.11 y 5.12 muestran los resúmenes de la evaluación realizada.

Figura 5.7. Análisis de falla tipo cuña en el Túnel – Portal de Entrada – Talud derecho en condiciones estáticas (Fam 1 y 2).

Fuente: Elaboración propia.

Cuadro 5.11. Factores de seguridad – Datos para análisis de Falla tipo cuña – Portales de Entrada y Salida de Túnel.

Sector Sector		Angulo de	Familias que producen	Parámetros de resistencia		Peso	Geometría del talud	Coef. aceler.	Factor de Seguridad	Factor de Seguridad
		Talud	fallas por Cuña	c (TM/m²)	<i>ф</i> (°)	(TM/m ³)	Altura (m)	sísmica (g)	Pseudo - estático	estático con sostenimiento
Portal de Entrada a Túnel	Corte Lateral Derecho	63°/016°	Cuña entre: 45° / 286° y 63° / 029°	0	30	2.40	10	0.24	0.66	1.63
Corte Frontal		Cuña entre: 39° / 268° y 74° / 195°	0	30	2.40	10	0.24	0.52	1.56	
	Frontal	1	Cuña entre: 39° / 268° y 64° / 161°	0	30	2.40	10	0.24	0.76	1.53
		e al 76° / 138° no	Cuña entre: 64° / 043° y 64° / 161°	0	30	2.40	10	0.24	0.65	1.07
Salida de Túnel	Corte Lateral Derecho		Cuña entre: 76° / 091° y 64° / 161°	0	30	2.40	10	0.24	0.25	1.65
			Cuña entre: 74° / 195° y 64° / 161°	0	30	2.40	10	0.24	0.51	1.56
	Corte Lateral Izquierdo	76° / 318°	Cuña entre: 39° / 268° y 74° / 195°	0	30	2.40	10	0.24	0.55	2.08

Fuente: Elaboración propia.

Cuadro 5.12. Factores de seguridad – Dato	s para análisis de Falla tipo cuña – Aliviadero.
---	--

G. d.	S. A.	Angulo de	Familias que ngulo de producen		Parámetros de resistencia		Geometría del talud	Coef. aceler.	Factor de Seguridad	Factor de Seguridad
Sector	Sector Talud fallas po Cuña		fallas por Cuña	c (TM/m²)	ø (°)	(TM/m ³)	Altura (m)	Sísmica (g)	Pseudo – estático	estático con sostenimiento
Aliviadero Sección 2-2	Talud Izquierdo	63° / 272°	Cuña entre: 85° / 047° y 38° / 276°	0	30	2.26	10	0.16	0.61	7.30
Aliviadero Sección	Talud	lud 63° / 272°	Cuña entre: 34° / 276° y 84° / 005°	0	30	2.26	10	0.16	0.67	10.27
3-3	3-3 Izquierdo		Cuña entre: 34° / 276° y 79° / 180°	0	30	2.26	10	0.16	0.76	5.60
Aliviadero Sección 4-4	Talud Derecho	63° / 025°	Cuña entre: 82° / 170° y 65° / 160°	0	30	2.26	10	0.16	4.55	-
Aliviadero Sección 6-6	Talud Izquierdo	63° / 205°	Cuña entre: 39° / 268° y 64° / 161°	0	30	2.40	10	0.16	0.84	9.32

Fuente: Elaboración propia.

5.2.6. Interpretación de resultados

De los análisis realizados se recomienda los siguientes taludes de corte como se muestran en los Cuadros 5.13 y 5.14:

Cuadro 5.13. Talud de corte – Portales de Entrada y Salida de Túnel.

Estructura	Sector	Talud cara de	Ángulo	Observaciones		
		Banco				
	Corte Frontal	1H:2V		Desquinche de bloques sueltos y		
Portal de Entrada a				sostenimiento con shotcrete y pernos		
i ortar de Entrada a	Corte Lateral	1H:2V	63°	sostemmento con shoterete y perios		
Túnel	Derecho			según recomendación de la evaluación		
	Corte Lateral	1H:2V		geomécanica.		
	Izquierdo					
	Corte Frontal	1H:4V		Desquinche de bloques sueltos.		
Portal de Salida de				Evaluación de requerimiento de		
	Corte Lateral	1H:4V	76°	-		
Túnel	Derecho			sostenimiento luego del corte.		
	Corte Lateral	1H:4V		Uso de voladura controlada		
	Izquierdo			eso de volución controlada.		

Fuente: Elaboración propia.

Cuadro 5.14. Talud de corte – Sección del aliviadero.

Sector Talud cara		Ángulo	Observaciones
	de Banco		
Corte Lateral	1H:2V		Desquinche de bloques sueltos y
Corte Lateral Izquierdo	1H:2V	63°	sostenimiento con shotcrete y pernos según recomendación de la evaluación geomécanica.
	Sector Corte Lateral Corte Lateral Izquierdo	SectorTalud carade BancoCorte LateralCorte LateralIzquierdo	SectorTalud caraÁngulode Bancode BancoCorte Lateral1H:2VCorte Lateral1H:2VIzquierdo1H:2V

Fuente: Elaboración propia.

Para ambos casos se debe evaluar luego del corte la necesidad de considerar sostenimiento

5.3. ESTABILIDAD GLOBAL

Se ha realizado el análisis de estabilidad global para los taludes de corte permanente para los taludes de los portales de entrada y salida, que quedarán expuestos para la excavación del túnel proyectado. Se determinó el Factor de Seguridad a partir del uso del programa Slide v5.0 para el análisis (Ver Cuadro 5.15), considerando las propiedades del macizo rocoso en el corte para la roca tipo IV del análisis realizado.

Cuadro 5.15. Factor de Seguridad en Taludes, analizados globalmente – Portales de Entrada y Salida.

		Factor	de Seguridad			
Estructura	Sector	Análisis	Análisis	Sistema de sostenimiento		
		Estático	Pseudoestático			
	Talud Frontal	1.750	1.330	Analizado globalmente. Es estable.		
Portal de Entrada a Túnel	Talud Lateral Derecho	2.200	1.836	Analizado globalmente. Es estable.		
	Talud Lateral Izquierdo	0.258	0.202	Inestable, talud de 6.5m altura. Se considera local.		
	Talud Frontal	1.373	1.084	Analizado globalmente. Es estable.		
Portal de Salida de Túnel	Talud Lateral Derecho	1.106	0.911	Inestable, talud de 13 m altura. Se considera local.		
	Talud Lateral Izquierdo	1.381	1.139	Analizado globalmente. Es estable.		

Fuente: Elaboración propia.

Se observa en los taludes de analizados, que los factores de seguridad son estables en la mayoría de los casos, pero se está asumiendo fallas secuenciales, que darán origen a la inestabilidad en el talud, estas fallas serán generadas por grietas de tensión o familias de discontinuidades. Con el mismo programa Slide v5.0 (Ver Fig. 5.8) se realizó una simulación de la posible falla inicial que generará el fallamiento secuencial, los resultados se muestran en el Cuadro 5.16.

Cuadro 5.16. Factor de Seguridad en taludes, asumiendo fallamiento secuencial -

Portales de Entrada y Salida.

		Facto	r de Seguridad		
Estructura	Sector	Análisis Estático con Perno	Análisis Pseudoestático con Perno	Sistema de sostenimiento	
	Talud Frontal	1.281	1.060	Shotcrete de 3" de espesor y malla, con pernos de anclaje pasivos de 6 m de longitud, espaciados 2 m a lo largo de la sección de corte con un ángulo de 20° con respecto a la Hz.	
Portal de Entrada a Túnel	Talud Lateral Derecho	1.223	1.082	Shotcrete de 3" de espesor con pernos de anclaje pasivos de 6m de longitud, espaciados 2 m a lo largo de la sección de corte, con un ángulo de 15° con respecto a la Hz.	
	Talud Lateral Izquierdo	1.491	1.403	Shotcrete de 3" de espesor con pernos de anclaje pasivos de 4 m de longitud, espaciados 2.5 m a lo largo de la sección de corte, con un ángulo de 15° con respecto a la Hz.	
	Talud Frontal	1.205	1.021	Shotcrete de 3½" de espesor y malla, con pernos de anclaje pasivos de 7.5 m de longitud, espaciados 2 m a lo largo de la sección de corte, con un ángulo de 25° con respecto a la Hz.	
Portal de Salida de Túnel	Talud Lateral Derecho	1.186	1.032	Shotcrete de 3" de espesor con pernos de anclaje pasivos de 5 m de longitud, espaciados 3 m a lo largo de la sección de corte, con un ángulo de 15° con respecto a la Hz.	
	Talud Lateral Izquierdo	1.255	1.056	Shotcrete de 3" de espesor con pernos de anclaje pasivos de 4 m de longitud, espaciados 3 m a lo largo de la sección de corte, con un ángulo de 15° con respecto a la Hz.	

Fuente: Elaboración propia.

En los taludes frontales, tanto en los portales de entrada y salida se recomienda shotcrete con malla, debido que los planos de estratificación presentes en las rocas sedimentarias, se encuentran desfavorables al talud, formando fallas planares. La ubicación y espaciado de los pernos serán afinados en campo, los cuales serán designados por los especialistas en obra.

Figura 5.8. Análisis de estabilidad global en el Portal de entrada del túnel – Talud frontal en condiciones estáticas.

Fuente: Elaboración propia.

CONCLUSIONES

PRIMERA: Los parámetros de resistencia de los materiales, que conforman los taludes, se han determinado en función de los ensayos de campo, resultados de laboratorio y experiencia de proyectos similares. Tanto en el portal de entrada y salida del túnel Pumamayo son de Tipo IV, de una mala calidad del macizo rocoso.

SEGUNDA: En el análisis de fallas locales; se propone un ángulo (63°) en los cortes del portal de entrada del túnel, se tienen la formación de 2 tipos de cuñas (falla planar y cuña); en los taludes de corte del portal de salida se propone un ángulo de talud de 76° y se tienen la formación de 3 tipos de falla (falla planar, cuña y volteo) y para el caso del aliviadero se propone un ángulo de talud de 63°, con la formación de los tres tipos de fallas (falla planar, cuña y volteo).

TERCERA: En el análisis de falla planar la evaluación se realizó considerando un talud de 10 m y una banqueta de 2 m, los análisis se realizaron considerando cortes de talud de 1:4 (H: V) y 1:2 (H: V). En este análisis para los cortes en los portales de entrada y salida se ha utilizado un coeficiente de aceleración sísmica 0.24 recomendado en el estudio de peligro sísmico y en los cortes del aliviadero se usó un coeficiente de aceleración sísmica 0.16.

CUARTA: Los factores de seguridad para el análisis de falla planar (análisis pseudo - estático) en los portales de entrada y salida del túnel y en el aliviadero de demasías, se presentan en el Cuadro 5.17 y 5.18:

Cuadro 5.17. Factores de seguridad – Datos para análisis de Falla Planar – Portales De

Entrada y Salida de Túnel.

Estructura	Sector	Coeficiente	F.S.	F.S.
Portal de	Corte Frontal	0.24	0.47	4.57
Portal de Salida	Corte Frontal	0.24	0.57	1.37
de Túnel	Corte Lateral	0.24	0.18	1.16
	Corte Lateral	0.24	0.57	1.29

Fuente: Elaboración propia.

Cuadro 5.18. Factores de seguridad – Datos para análisis de Falla Planar – Aliviadero.

Estructura	Sector	Coeficiente	F.S.	F.S.
Aliviadero	Talud Izquierdo	0.16	0.70	1.26
Aliviadero	Talud Izquierdo	0.16	0.80	1.28
Aliviadero	Talud derecho	0.16	0.58	1.39
~		0.16	0.37	20.80
Aliviadero	Talud Izquierdo	0.16	0.68	1.21

Fuente: Elaboración propia.

QUINTA: En el análisis de falla cuña la evaluación se realizó considerando un talud de 10 m y una banqueta de 2 m, en este análisis para los cortes en los portales de entrada y salida del túnel, se ha utilizado un coeficiente de aceleración sísmica 0.24 recomendado en el estudio de peligro sísmico y en los cortes del aliviadero se usó un coeficiente de aceleración sísmica 0.16.

SEXTA: Los factores de seguridad para el análisis de falla cuña (análisis pseudo - estático) en el aliviadero de demasías, se presentan en los Cuadros 5.19 y 5.20:

Cuadro 5.19. Factores de seguridad – Datos para análisis de Falla tipo cuña – Portales

Sector	Sector	Coeficiente	F.S.	F.S.
Portal de Entrada	Corte Lateral	0.24	0.66	1.63
	Corte Frontal	0.24	0.52	1.56
Portal de Salida		0.24	0.76	1.53
	Corte Lateral	0.24	0.65	1.07
de Túnel	Derecho	0.24	0.25	1.65
		0.24	0.51	1.56
	Corte Lateral	0.24	0.55	2.08

de Entrada y Salida de Túnel.

Fuente: Elaboración propia.

Cuadro 5.20. Factores de seguridad – Datos para análisis de Falla tipo cuña – Aliviadero.

		Coeficiente	F.S.	F.S.
Sector	Sector	Aceleración sísmica (g)	Pseudo – estático	Pseudo – estático con sostenimiento
Aliviadero	Talud Izquierdo	0.16	0.61	7.30
Aliviadero	Talud Izquierdo	0.16	0.67	10.27
Sección 3-3		0.16	0.76	5.60
Aliviadero	Talud Derecho	0.16	4.55	_
Aliviadero	Talud Izquierdo	0.16	0.84	9.32

Fuente: Elaboración propia.

SÉPTIMA: El sistema de sostenimiento sugerido final se presenta en el Cuadro 5.21:

Cuadro 5.21	Sistema	de s	sostenimiento	sugerido	final.
-------------	---------	------	---------------	----------	--------

		Factor de Seguridad			
Estructura	Sector	Análisis Estático	Análisis Pseudoestático	Sistema de sostenimiento	
	Talud Frontal	1.281	1.060	Shotcrete de 3" de espesor y malla, con pernos de anclaje pasivos de 6m de longitud, espaciados 2 m a lo largo de la sección de corte con un ángulo de 20° con respecto a la Hz.	
Portal de Entrada a Túnel	Talud Lateral Derecho	1.223	1.082	Shotcrete de 3" de espesor con pernos de anclaje pasivos de 6m de longitud, espaciados 2 m a lo largo de la sección de corte, con un ángulo de 15° con respecto a la Hz.	
	Talud Lateral Izquierdo	1.491	1.403	Shotcrete de 3" de espesor con pernos de anclaje pasivos de 4 m de longitud, espaciados 2.5 m a lo largo de la sección de corte, con un ángulo de 15° con respecto a la Hz.	
	Talud Frontal	1.205	1.021	Shotcrete de 3½" de espesor y malla, con pernos de anclaje pasivos de 7.5 m de longitud, espaciados 2 m a lo largo de la sección de corte, con un ángulo de 25° con respecto a la Hz.	
Portal de Salida de Túnel	Talud Lateral Derecho	1.186	1.032	Shotcrete de 3" de espesor con pernos de anclaje pasivos de 5 m de longitud, espaciados 3 m a lo largo de la sección de corte, con un ángulo de 15° con respecto a la Hz.	
	Talud Lateral Izquierdo	1.255	1.056	Shotcrete de 3" de espesor con pernos de anclaje pasivos de 4 m de longitud, espaciados 3 m a lo largo de la sección de corte, con un ángulo de 15° con respecto a la Hz.	

Fuente: Elaboración propia.

RECOMENDACIONES

PRIMERA: De los análisis realizados se recomienda los siguientes taludes de corte, os cuales se muestran en los Cuadros 5.22 y 5.23:

Cuadro 5.22. Talud de corte – Portales de Entrada y Salida de Túnel.

Estructura	Sector	Talud cara de	Ángulo	Observaciones
		Banco		
Portal de	Corte Frontal	1H:2V		Desquinche de bloques sueltos
Entrada a	Corte Lateral	1H:2V	63°	y sostenimiento con shotcrete y
Túnel	Corte Lateral	1H:2V		pernos según recomendación
	Izquierdo			de la evaluación geomécanica.
Portal de	Corte Frontal	1H:4V		Desquinche de bloques sueltos.
Salida de	Corte Lateral	1H:4V	76°	Evaluación de requerimiento de
Túnel	Corte Lateral	1H:4V		sostenimiento luego del corte.
	Izquierdo			Uso de voladura controlada.

Fuente: Elaboración propia.

Cuadro 5.23. Talud de corte – Sección del aliviadero.

Estructura	Sector	Talud cara	Ángulo	Observaciones
	Corte Lateral	1H:2V		Desquinche de bloques sueltos
Aliviadero	Corte Lateral		63°	y sostenimiento con shotcrete y
		1H:2V		normas sagún racomandación da
	Izquierdo			pernos segun recomendación de
				la evaluación geomécanica
				la evaluación geomecanica.

Fuente: Elaboración propia.

SEGUNDA: Para ambos casos se debe evaluar luego del corte la necesidad de considerar

sostenimiento.

TERCERA: De acuerdo a los análisis de discontinuidades, estabilidad local y global, se ha determinado un ángulo inter rampa y el ángulo de la cara de banco como se muestra en el Cuadro 5.24:

Cuadro 5.24. Relación de la altura de banco y cara de banco.

Corte	Altura	Talud cara	Observación
		de Banco	
Portal de	De hasta 7 m de		Desquinche de bloques sueltos y
Entrada	altura con Banqueta	1H:2V	sostenimiento con pernos según evaluación
	de 2 m		de la supervisión.
Portal de	Bancos de 6 m de		Desquinche de bloques sueltos, evaluación
Salida	altura con Banqueta	1H:4V	de requerimiento de sostenimiento luego del
	de 2 m		corte. Uso de voladura controlada.

Fuente: Elaboración propia.

CUARTA: Se recomienda el desquinche de los bloques sueltos luego de culminado el proceso de corte.

QUINTA: Para el aliviadero se recomienda realizar la limpieza después del corte, es decir, desquinche de bloques sueltos.

SEXTA: Se recomienda realizar una evaluación global post-corte.

BIBLIOGRAFÍA

- Barton, N., Lien, R. & Lunde J. (1974). Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mechanics 6.
- Bieniawski, Z.T. (1989). Engineering Rock Mass Classifications. John Wiley & Sons, New York.
- Boletín y cuadrángulo geológico de la Hoja de Macusani (29-v). (2010), *publicado por el Instituto Geológico, Minero y Metalúrgico* (INGEMMET).
- CESEL S.A. (2013). Estudio de Aprovechamiento desde la Pre-factibilidad a Definitivo, para Central Hidroeléctrica San Gabán II.
- Golder Asoc. Itasca Piteau (2000). "Cuajone Pit Slope Design Recommendations. Vol.*I*." Informe técnico remitido a SPCC.
- Gonzales, L. (2004). *Ingeniería Geológica*. Editorial PEARSON Prentice Hall, Madrid España.
- Itasca S.A. (2008). *Evaluación de la Estabilidad de la Pared Este Tajo Cuajone*. Informe Final preparado para SPCC.
- Flores, J. (2010). http://www.academia.edu/8605294/ CAPITULO_VIII_8. CLASIFICACIONES_GEOMECANICAS.
- Read. J., & Stacey, P. (2009): "Guidelines for open Pit Slope Design". CRC Press; 1st Ed. USA.
- Rocscience (2006): **DIPS v.5.0.** *Graphical and Statistical Analysis of Orientation Data*. Canada.

Rocscience (2005): **SLIDE v 5.0**. *Limit Equilibrium Slope Stability for Soil and Rock Slopes Canada.*

Rocscience (2005): SWEGDE v. 5.0. 3D Surface Wedge Analysis for Slopes. Canada.

Rocscience (2006): **ROCPLANE v.2.0.** *Planar Sliding Stability Analysis for Rock Slopes.* Canada.

Rocscience (2006): ROCDATA v. 4.0. Analysis of Rock and Soil Strength Data. Canada.

- Terzaghi K, y Peck R.B. (1967). "Soil Mechanics in Engineering Practice", John Wiley, New York.
- Wyllie Duncan and Mah Christopher (2005). "Rock Slope engineering civil and mining" 4th Edition, USA and Canada.

ANEXOS

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

1. ANEXO A: ANÁLISIS DE DISCONTINUIDADES

1.1. ANEXO A.1: PRINCIPALES FAMILIAS DE DISCONTIUIDADES

1.1.1. Principales familias de discontinuidades

No olvide citar esta tesis

Universidad Nacional del Altiplano

s

Universidad Nacional del Altiplano

s

No olvide citar esta tesis

No olvide citar esta tesis

1.1.2. Análisis de tipo de falla en el Túnel Pumamayo

a. Túnel – Portal de Entrada (63°) – EG-10A

Falla Tipo Planar	Falla Tipo Cuña	Falla Tipo Vuelco
Fam 1	Ninguna	Ninguna

Figura 1. Portal de Entrada – Talud Frontal.

Falla Tipo Planar	Falla Tipo Cuña	Falla Tipo Vuelco
Ninguna	Fam 1 y 2	Ninguna

Figura 2. Portal de Entrada – Talud Derecho.

Figura 3. Portal de Entrada – Talud Izquierdo.

b. Túnel – Portal de Salida (76°) – EG-07A

Figura 4. Portal de Salida – Talud Frontal.

Figura 5. Portal de Salida – Talud Derecho.

No olvide citar esta tesis

Falla Tipo Planar	Falla Tipo Cuña	Falla Tipo Vuelco
Fam 1	Fam 1 y 4	Ninguna

Figura 6. Portal de Salida – Talud Izquierdo.

1.1.3. Análisis de tipo de falla en el aliviadero

a. Aliviadero – Sección 2-2 (EG-05A)

Falla Tipo Planar	Falla Tipo Cuña	Falla Tipo Vuelco
Ninguna	Ninguna	Ninguna

Figura 7. Aliviadero – Talud derecho (63°).

Falla Tipo Planar	Falla Tipo Cuña	Falla Tipo Vuelco
Fam 3	Fam 1 y 3	Ninguna

Figura 8. Aliviadero – Talud izquierdo (63°).

b. Aliviadero – Sección 3-3 (EG-06A)

Falla Tipo Planar	Falla Tipo Cuña	Falla Tipo Vuelco
Ninguna	Ninguna	Ninguna

Figura 9. Aliviadero – Talud derecho (63°).

Falla Tipo Planar	Falla Tipo Cuña	Falla Tipo Vuelco
Fam 1	Fam 1 y 2 / Fam 1 y 4	Ninguna

Figura 10. Aliviadero – Talud Izquierdo (63°).

c. Aliviadero – Sección 4-4 (EG-06)

Falla Tipo Planar	Falla Tipo Cuña	Falla Tipo Vuelco
Fam 1 / Fam 2	Fam 3 y 4	Ninguna

Figura 11. Aliviadero – Talud derecho (63°).

Falla Tipo Planar	Falla Tipo Cuña	Falla Tipo Vuelco
Ninguna	Ninguna	Ninguna

Figura 12. Aliviadero – Talud izquierdo (63°).

d. Aliviadero – Sección 6-6 (EG-07A)

Falla Tipo Planar	Falla Tipo Cuña	Falla Tipo Vuelco
Ninguna	Ninguna	Fam 4

Figura 13. Aliviadero – Talud derecho (63°).

Falla Tipo Planar	Falla Tipo Cuña	Falla Tipo Vuelco
Fam 1	Fam 1 y 5	Ninguna

Figura 14. Aliviadero – Talud izquierdo (63°).

1.2. ANEXO A.2: ANÁLISIS FALLA POR CUÑA

a. Túnel – Portal de entrada – Talud derecho (63°) – Fam 1y2

Figura 1. Análisis de falla por cuña condiciones estáticas (Fam 1 y 2).

Figura 2. Análisis de falla por cuña condiciones pseudoestáticas.

Figura 3. Análisis de falla por cuña condiciones pseudoestáticas con pernos de anclaje.

b. Túnel - Portal de salida– Talud frontal (76°) – Fam 1y4

Figura 4. Análisis de falla por cuña condiciones estáticas (Fam 1 y 4).

Figura 5. Análisis de falla por cuña condiciones pseudoestáticas.

c. Túnel - Portal de salida– Talud frontal (76°) – Fam 1 y 5

Figura 7. Análisis de falla por cuña condiciones estáticas (Fam 1 y 5).

Figura 8. Análisis de falla por cuña condiciones pseudoestáticas.

d. Túnel – Portal de salida – Talud derecho (76°) – Fam 2 y 5

Figura 10. Análisis de falla por cuña condiciones estáticas (Fam 2 y 5).

Figura 11. Análisis de falla por cuña condiciones pseudoestáticas.

e. Túnel – Portal de salida – Talud derecho (76°) – Fam 3 y 5

Figura 13. Análisis de falla por cuña condiciones estáticas (Fam 3 y 5).

Figura 14. Análisis de falla por cuña condiciones pseudoestáticas.

Figura 15. Análisis de falla por cuña condiciones pseudoestáticas aplicando pernos.

f. Túnel - Portal de salida– Talud derecho (76°) – Fam 4 y 5

Figura 16. Análisis de falla por cuña condiciones estáticas (Fam 4 y 5).

Figura 17. Análisis de falla por cuña condiciones pseudoestáticas.

g. Túnel - Portal de salida– Talud izquierdo (76°) – Fam 1 y 4

Figura 19. Análisis de falla por cuña condiciones estáticas (Fam 1 y 4).

Figura 20. Análisis de falla por cuña condiciones pseudoestáticas.

Figura 21. Análisis de falla por cuña condiciones pseudoestáticas aplicando pernos y Shotcrete de 3 pulg.

h. Aliviadero (Sección 2-2) – Talud izquierdo (63°) – Fam 1 y 3

Figura 22. Análisis de falla por cuña condiciones estáticas (Fam 1 y 3).

Figura 23. Análisis de falla por cuña condiciones pseudoestáticas.

de 3 pulg.

i. Aliviadero (Sección 3-3) – Talud izquierdo (76°) – Fam 1 y 2

Figura 25. Análisis de falla por cuña condiciones estáticas (Fam 1 y 2).

Figura 26. Análisis de falla por cuña condiciones pseudoestáticas.

Figura 27. Análisis de falla por cuña condiciones pseudoestáticas aplicando Shotcrete de

3 pulg.

j. Aliviadero (Sección 3-3) – Talud izquierdo (76°) – Fam 1 y 4

Figura 28. Análisis de falla por cuña condiciones estáticas (Fam 1 y 4).

Figura 29. Análisis de falla por cuña condiciones pseudoestáticas.

Figura 30. Análisis de falla por cuña condiciones pseudoestáticas y Shotcrete de 3 pulg.

k. Aliviadero (Sección 4-4) – Talud derecho (76°) – Fam 3y4

Figura 31. Análisis de falla por cuña condiciones estáticas (Fam 3 y 4).

Figura 32. Análisis de falla por cuña condiciones pseudoestáticas.

l. Aliviadero (Sección 6-6) – Talud izquierdo (63°) – Fam 1 y 5

Figura 33. Análisis de falla por cuña condiciones estáticas (Fam 1 y 5).

Figura 34. Análisis de falla por cuña condiciones pseudoestáticas.

Figura 35. Análisis de falla por cuña condiciones pseudoestáticas y aplicando Shotcrete

de 3 pulg.

1.3. ANEXO A.3: ANÁLISIS FALLA POR PLANAR

a. Túnel – Portal de Entrada – Talud Frontal (63°) – Fam 1

Figura 1. Análisis de falla planar en condiciones estáticas.

Figura 2. Análisis de falla planar en condiciones pseudoestáticas.

Figura 3. Análisis de falla planar en condiciones pseudoestáticas con perno.

#	Angle	Capacity	Length	AnchLengt h
1	12.0°	25.00t/m	6.000 m	1.894 m
2	12.0°	25.00t/m	6.000 m	4.439 m

b. Túnel – Portal de Salida – Talud Frontal (79°) – Fam 1

Figura 4. Análisis de falla planar en condiciones estáticas.

Figura 5. Análisis de falla planar en condiciones pseudoestáticas.

Figura 6. Análisis de falla planar en condiciones pseudoestáticas con pernos.

BOI	t Propertie.	S		
#	Angle	Capacity	Length	AnchLength
1	10.0°	25.00t/m	12.000 m	5.971 m
2	10.0°	25.00t/m	6.000 m	3.326 m

Universidad Nacional del Altiplano

c. Túnel – Portal de Salida – Talud Derecho (79°) – Fam 5

Figura 7. Análisis de falla planar en condiciones estáticas.

Figura 8. Análisis de falla planar en condiciones pseudoestáticas.

Figura 9. Análisis de falla planar en condiciones pseudoestáticas con pernos.

#	Angle	Capacity	Length	AnchLength
1	28.0°	25.00t/m	6.000 m	4.757 m

d. Túnel – Portal de Salida – Talud Izquierdo (79°) – Fam 1

Figura 10. Análisis de falla planar en condicionesestáticas.

Figura 11. Análisis de falla planar en condiciones pseudoestáticas.

condiciones pseudoestáticascon pernos.

#	Angle	Capacity	Length	AnchLength
1	9.0°	25.00t/m	6.000 m	2.297 m
2	9.09	25.00t/m	12.000	4.086 m
2	2.0	25.000/III	m	4.000 III

e. Aliviadero – Sección 2-2 – Talud Izquierdo (63°) – Fam 3

Figura 13. Análisis de falla planar en condiciones estáticas.

Figura 14. Análisis de falla planar en condiciones pseudoestáticas.

condiciones pseudoestáticas con pernos.

#	Angle	Capacity	Length	AnchLength
1	8.0°	25.00t/m	12.000 m	8.196 m

f. Aliviadero – Sección 3-3 – Talud Izquierdo (63°) – Fam 1

Figura 16. Análisis de falla planar en condiciones estáticas.

Figura 17. Análisis de falla planar en condiciones pseudoestáticas.

Figura 18. Análisis de falla planar en

condiciones pseudoestáticas con pernos.

#	Angle	Capacity	Length	AnchLength
1	5.0°	25.00t/m	12.000 m	7.768 m

g. Aliviadero – Sección 4-4 – Talud Derecho (63°) – Fam 1

Figura 19. Análisis de falla planar en condiciones estáticas.

Figura 20. Análisis de falla planar en condiciones pseudoestáticas.

Figura Nº 21. Análisis de falla planar en condiciones pseudoestáticas con pernos.

#	Angle	Capacity	Length	AnchLength
1	15.0°	25.00t/m	6.000 m	3.440 m

h. Aliviadero – Sección 4-4 – Talud Derecho (63°) – Fam 2

Figura 22. Análisis de falla planar en condiciones estáticas.

Figura 23. Análisis de falla planar en condiciones pseudoestáticas.

Figura 24. Análisis de falla planar en condiciones pseudoestáticas con pernos.

#	Angle	Capacity	Length	AnchLength
1	0.0°	25.00t/m	6.000 m	5.514 m

i. Aliviadero – Sección 6-6 – Talud Izquierdo (63°) – Fam 1

Figura 25. Análisis de falla planar en condiciones estáticas.

Figura 26. Análisis de falla planar en condiciones pseudoestáticas.

Figura 27. Análisis de falla planar en condiciones pseudoestáticas con perno.

#	Angle	Capacity	Length	AnchLength
1	8.0°	25.00t/m	6.000 m	2.153 m

1.4. ANEXO B: ANÁLISIS DE ESTABILIDAD GLOBAL

a. Túnel – Portal de entrada – Talud frontal

Figura 1. Análisis de estabilidad global en condiciones estáticas.

b. Túnel – Portal de entrada – Talud lateral derecho

Figura 5. Análisis de estabilidad global en condiciones estáticas.

Figura 6. Análisis de estabilidad global en condiciones pseudoestáticas.

Figura 7. Análisis de estabilidad global considerando falla sistemática, en condiciones estáticas, con pernos de anclaje de 6 m espaciados a 2 m.

Figura 8. Análisis de estabilidad global considerando falla sistemática, en condiciones pseudoestáticas, con pernos de anclaje de 6 m espaciados a 2 m.

Figura 9. Análisis de estabilidad global en condiciones estáticas.

Figura 10. Análisis de estabilidad global en condiciones pseudoestáticas.

b. Túnel – Portal de Entrada – Talud Lateral Izquierdo

Figura 11. Análisis de estabilidad global en condiciones estáticas, con pernos de anclaje de 4 m espaciado a 2.5 m.

Figura 12. Análisis de estabilidad global en condiciones pseudoestáticas, con pernos de anclaje de 4 m espaciado a 2.5 m.

c. Túnel – Portal de Salida– Talud Frontal

Figura 13. Análisis de estabilidad global en condiciones estáticas.

Figura 14. Análisis de estabilidad global en condiciones pseudoestáticas.

Figura 15. Análisis de estabilidad global considerando falla sistemática, en condiciones estáticas, con pernos de anclaje de 7.5 m espaciados a 2 m.

Figura 16. Análisis de estabilidad global considerando falla sistemática, en condiciones pseudoestáticas, con pernos de anclaje de 7.5 m espaciados a 2 m.

Figura 17. Análisis de estabilidad global en condiciones estáticas.

Figura 18. Análisis de estabilidad global en condiciones pseudoestáticas.

Figura 19. Análisis de estabilidad global considerando falla sistemática, en condiciones estáticas, con pernos de anclaje de 4 m espaciados a 3 m.

Figura 20. Análisis de estabilidad global considerando falla sistemática, en condiciones pseudoestáticas, con pernos de anclaje de 4 m espaciados a 3 m.

e. Túnel – Portal de Salida – Talud Lateral Derecho

Figura 21. Análisis de estabilidad global en condiciones estáticas.

Figura 22. Análisis de estabilidad global en condiciones pseudoestáticas.

No olvide citar esta tesis

Figura 23. Análisis de estabilidad global en condiciones estáticas, con pernos de anclaje de 5 m espaciado a 3 m.

Figura 24. Análisis de estabilidad global en condiciones pseudoestáticas, con pernos de anclaje de 4 m espaciado a 2.5 m.

		ESTABILII MET	OAD DE T. ODOLOG	ALUDES RO ÍA DEL SM	DCO IR	SOS		
PROYECTO:		PROYECTO R	EGULACI	ÓN DEL RIO)		FECHA:	15-11-2013
		Ρυμαμαγο				R	EALIZA	
							DO:	J. Taype
UBICACIÓN:		Aliviadero – Se	cción 2-2 –	Corte lateral	dere	cho R	EVISAD O:	W. Suaña
	<u>DETERN</u>	<u>MINACIÓN DEL</u> SMR =	VALOR I RMR ₂₀ -	$\frac{\text{DE SMR (SL)}}{F_1 \cdot F_2 \cdot F_2 \cdot F_2}$	$\frac{OPE}{F_A}$	MASS RATI	<u>NG)</u>	
1. DATOS I	DE LA DISC	ONTINUIDAD	89	1 2 3	4			
Dirección	del buzamier	to (a_j):	276	Buzamiento	(b_j)	:		3
2. DATOS I	DEL TALUD	1						
Dirección	del buzamier	to (a_s) :	92	0				6
		5						
3. TIPO DE	FALLA PR	EDOMINANTE:	- Planar (P) - Volteo	(V)			
4. FACTOR	ES POR AJ	USTE DE JUNTA	S					
Determinación	del factor de	ajuste F_1						
Cas	0	Muy favorable	Favorab	le Regul	ar	Desfavorabl	e Muy d	lesfavorable
Planar	$a_s - a_j$	> 30	30 - 20	20	10	10 – 5		< 5
Volteo a_s	Volteo $a_s - a_j - 180$							
Valores de F_1	calores de F_1 0.15		0.40	0.70)	0.85		1.00
						-		1.00
						1	Valor de F_1	0.15
Determinación	del factor de	ajuste F ₂					Valor de F_1	0.15
Determinación Cas	del factor de	ajuste F ₂ Muy favorable	Favorab	le Regul	ar	Desfavorabl	Valor de _{F1}	0.15
Determinación Cas Planar	o del factor de p b _j	ajuste F_2 Muy favorable < 20	Favorab 20 – 30	le Regul 30 – s	ar 35	Desfavorabl 35 – 45	e Muy d	0.15 0.15 esfavorable > 45
Determinación Cas Planar Valores de F ₂	$\frac{del factor del}{b_j}$	<i>ajuste</i> F ₂ <i>Muy favorable</i> < 20 0.15	Favorab 20 – 30 0.40	le Regul 30-3 0.70	ar 35)	Desfavorabl 35 – 45 0.85	e Muy d	0.15 0.15 esfavorable > 45 1.00
Determinación Cas Planar Valores de F ₂ Nota: Para el c	o b _j del factor de b	<i>ajuste</i> F_2 <i>Muy favorable</i> < 20 0.15 por volteo consider	$Favorable 20 - 30 0.40 ar F_2 = 1$	le Regul 30-1 0.70	ar 35)	Desfavorabl 35 – 45 0.85	e Muy d	0.15 0.15 lesfavorable > 45 1.00 0.85
Determinación Cas Planar Valores de F ₂ Nota: Para el c Determinación	del factor de o b _j paso de falla p del factor de	ajuste F_2 Muy favorable< 20	$Favorable 20 - 30 0.40 ar F_2 = 1$	le Regul 30 - 3 0.70	ar 35)	Desfavorabl 35 – 45 0.85	e Muy d	0.15 0.15 1.00 0.85
Determinación Cas Planar Valores de F ₂ Nota: Para el c Determinación Cas	a del factor de b b paso de falla p del factor de o	ajuste F_2 Muy favorable< 20	Favorabi20 - 300.40ar F2 = 1Favorabi	le Regul 30 – 3 0.70 le Regul	ar 35) ar	Desfavorabl 35 – 45 0.85 Desfavorabl	$Valor de F_1$ e $Muy d$ $Valor de F_2$ e $Muy d$	0.15 $esfavorable$ > 45 1.00 0.85 $esfavorable$
Determinación Cas Planar Valores de F ₂ Nota: Para el o Determinación Cas Planar	$\frac{del factor de}{b_j}$ $\frac{b_j}{del factor de}$ $\frac{del factor de}{b_j}$	ajuste F_2 Muy favorable< 20	$Favorable 20 - 30$ 0.40 $ar F_2 = 1$ $Favorable 10 - 0$	le Regul 30-3 0.70 le Regul 0	ar 35) ar	Desfavorabl 35 – 45 0.85 Desfavorabl 0 – (–10)	Valor de F ₁ e Muy d Valor de F ₂ e Muy d 	0.15 0.15 $esfavorable$ > 45 1.00 0.85 $esfavorable$ $< (-10)$
Determinación Cas Planar Valores de F ₂ Nota: Para el d Determinación Cas Planar Volteo	$\frac{del factor de}{b_j}$ $\frac{b_j}{b_j}$ $\frac{del factor de}{b_j - b_s}$ $\frac{b_j + b_s}{b_j + b_s}$	ajuste F_2 Muy favorable< 20	Favorable $20 - 30$ 0.40 $ar F_2 = 1$ Favorable $10 - 0$ $110 - 12$	le Regul 30 - 3 0.70 le Regul 0 0 > 12	ar 35) ar 0	Desfavorabl 35 - 45 0.85 Desfavorabl 0 - (-10) 	e Muy d Valor de F ₁	0.15 0.15 0.15 0.15 0.5 0.5 0.85 0.85 0.85 0.85 0.85 0.15 0.
Determinación Cas Planar Valores de F ₂ Nota: Para el c Determinación Cas Planar Volteo Valores de F ₃	$del factor del b_j b_j caso de falla p del factor del b_j - b_s b_j + b_s$	ajuste F_2 Muy favorable< 20	Favorable 20 - 30 0.40 $ar F_2 = 1$ Favorable 10 - 0 110 - 12 -6	le Regul 0 30-3 0.70 le Regul 0 0 0 -25	ar 35) ar 0	Desfavorabl 35 - 45 0.85 Desfavorabl 0 - (-10) -50	e Muy d Valor de F ₁ Valor de F ₂ e Muy d	0.15 esfavorable > 45 1.00 esfavorable c (-10) -60
Determinación Cas Planar Valores de F ₂ Nota: Para el c Determinación Cas Planar Volteo Valores de F ₃	$\frac{del factor de}{b_j}$ $\frac{b_j}{b_j}$ $\frac{del factor de}{b_j - b_s}$ $\frac{b_j + b_s}{b_j + b_s}$	ajuste F_2 Muy favorable< 20	Favorable 20 - 30 0.40 $ar F_2 = 1$ Favorable 10 - 0 110 - 12 -6	le Regul 30-3 0.70 le Regul 0 0 > 12 -25	ar 35) 0	Desfavorabl 35 - 45 0.85 Desfavorabl 0 - (-10) -50	Valor de F ₁ e Muy d Valor de F ₂ e Muy d	$ \begin{array}{r} 1.00 \\ 0.15 \\ \hline esfavorable \\ > 45 \\ 1.00 \\ 0.85 \\ \hline esfavorable \\ < (-10) \\ \\ -60 \\ \hline -60 \\ -60 \\ \hline \hline -60 \\ -60 \\ \hline \end{array} $
Determinación Cas Planar Valores de F_2 Nota: Para el co Determinación Cas Planar Volteo Valores de F_3	$\frac{del factor de}{b_j}$ $\frac{b_j}{aso de falla p}$ $\frac{del factor de}{b_j - b_s}$ $\frac{b_j + b_s}{b_j + b_s}$	ajuste F_2 Muy favorable< 20	Favorable $20 - 30$ 0.40 $ar F_2 = 1$ Favorable $10 - 0$ $110 - 12$ -6	le Regul 30 - 3 0.70 le Regul 0 0 > 12 -25	ar 35) ar 0	Desfavorabl 35 - 45 0.85 Desfavorabl 0 - (-10) -50	$Valor de F_1$ e $Muy d$ $Valor de F_2$ e $Muy d$ e $Muy d$ e $Muy d$ $Valor de F_3$ $Valor de F_3$	$ \begin{array}{r} 1.00 \\ 0.15 \\ esfavorable \\ > 45 \\ 1.00 \\ 0.85 \\ esfavorable \\ < (-10) \\ \\ -60 \\ \hline -60 \\ \hline -60 \\ \end{array} $
Determinación Cas Planar Valores de F ₂ Nota: Para el o Determinación Cas Planar Volteo Valores de F ₃ 5. FACTOR	$\frac{del factor de}{b_j}$ $\frac{b_j}{b_j}$ $\frac{del factor de}{b_j - b_s}$ $\frac{b_j + b_s}{b_j + b_s}$	ajuste F_2 Muy favorable< 20	Favorable $20 - 30$ 0.40 $ar F_2 = 1$ Favorable $10 - 0$ $110 - 12$ -6	le Regul 30 - 3 0.70 le Regul 0 0 > 12 -25 E EXCAVA	ar 35) ar 0 CIÓN	Desfavorabl 35 – 45 0.85 Desfavorabl 0 – (–10) – – – – 50	Valor de F ₁ e Muy d Valor de F ₂ e Muy d c c Valor de F ₃	$ \begin{array}{r} 1.00 \\ 0.15 \\ \hline esfavorable \\ > 45 \\ 1.00 \\ 0.85 \\ \hline esfavorable \\ < (-10) \\ \\ -60 \\ \hline -60 \\ \hline \hline \hline -60 \\ \hline \hline \hline \hline content of the set $
Determinación Cas Planar Valores de F ₂ Nota: Para el c Determinación Cas Planar Volteo Valores de F ₃ 5. FACTOR Determinación	$del factor de$ b_{j} b_{j} $del factor de$ $b_{j} - b_{s}$ $b_{j} + b_{s}$ $DE AJUST$ $del factor de$	ajuste F_2 Muy favorable< 20	Favorable $20 - 30$ 0.40 $ar F_2 = 1$ Favorable $10 - 0$ $110 - 12$ -6	le Regul 30 - 3 0.70 le Regul 0 0 > 12 -25 E EXCAVA	ar 35) ar 0 <u>CIÓN</u>	Desfavorabl 35 – 45 0.85 Desfavorabl 0 – (–10) – – – – 50	Valor de F ₁ e Muy d Valor de F ₂ e Muy d e Muy d Valor de F ₃	0.15 0.15 lesfavorable > 45 1.00 0.85 lesfavorable < (-10)
Determinación Cas Planar Valores de F ₂ Nota: Para el o Determinación Cas Planar Volteo Valores de F ₃ 5. FACTOR Determinación	$\frac{del factor de}{b_j}$ $\frac{b_j}{b_j}$ $\frac{del factor de}{b_j - b_s}$ $\frac{b_j - b_s}{b_j + b_s}$ $\frac{del factor de}{del factor de}$ $\frac{del factor de}{del factor de}$	ajuste F_2 Muy favorable< 20	$Favorability \\ 20 - 30 \\ 0.40 \\ ar F_2 = 1 \\ Favorability \\ 10 - 0 \\ 110 - 12 \\ -6 \\ \hline TODO DI \\ Volution \\ Con \\ \hline Volution \\ $	le Regul 30 - 3 0.70 le Regul 0 0 > 12 -25 E EXCAVA ladura trolada SB	ar 35) ar 0 CIÓN R	Desfavorabl 35 – 45 0.85 Desfavorabl 0 – (–10) – – – – 50 Voladura egular RB	e Muy d Valor de F ₁ Valor de F ₂ e Muy d e Muy d Valor de F ₃	0.15 esfavorable > 45 1.00 esfavorable c (-10) -60 -60 RB Deficiente DB
Determinación Cas Planar Valores de F2 Nota: Para el c Determinación Cas Planar Volteo Valores de F3 5. FACTOR Determinación Método	$\frac{del factor de}{b_j}$ $\frac{b_j}{b_j}$ $\frac{del factor de}{b_j - b_s}$ $\frac{b_j + b_s}{b_j + b_s}$ $\frac{del factor de}{b_j}$	ajuste F_2 Muy favorable< 20	Favorable $20 - 30$ 0.40 $ar F_2 = 1$ Favorable $10 - 0$ $110 - 12$ -6 ZTODO DI Vo. Con	le Regul 30 – 3 0.70 le Regul 0 0 > 12 –25 E EXCAVA ladura trolada SB 8	ar 35) ar 0 <u>CIÓN</u> R	Desfavorabl 35 – 45 0.85 Desfavorabl 0 – (–10) – – – – 50 Voladura egular RB 0	Valor de F ₁ e Muy d Valor de F ₂ e Muy d	0.15 esfavorable > 45 1.00 0.85 esfavorable < (-10)

VALOR DE SMR					
SMR	:	33			
Descripción	:	Mala			
Estabilidad	:	Inestable			
Roturas	:	Junas grandes o cuñas			
Tratamiento	:	Corrección			

Г

		ESTABILIDA MET(AD DE T. ODOLOG	ALUDES RO FÍA DEL SM)COS R	OS			
PROYECTO	I I I	PROYECTO REC PUMAMAYO	GULACIĆ	ON DEL RIO		-	FECHA:	15-	11-2016
UBICACIÓN	:	Aliviadero – Sección 3-3 – Corte lateral derecho REALIZA					LIZADO: VISADO:	J. T W.	laype Suaña
	DETERMI	NACIÓN DEL '	VALOR I	DE SMR (SL	OPE	MASS RATI	ING)		
		SMR = 1	<i>RMR</i> ₈₉ -	$+F_1.F_2.F_3$	$+F_4$				
1. DATOS	DE LA DISCON	NTINUIDAD							
Direcció	n del buzamiento	$(a_{j}):$	276	Buzamiento	(b _j):				34
2. DATOS	DEL TALUD								
Dirección	n del buzamiento	(<i>a_s</i>):	92	Buzamiento	$(b_{s}):$				63
3. TIPO DI	E FALLA PREI	DOMINANTE:	- Planar ((P) - Volteo	(V)				Р
4. FACTO	RES POR AIUS	TE DE JUNTA	S						
Determinació	n del factor de aj	iuste F.	0						
Ca	so i	Muy favorable	Favorab	le Regul	ar	Desfavorabl	le Muy	desfa	vorable
Planar	$a_s - a_j$	20	20.00		10	10 5			_
Volteo a_s	$-a_{j}-180$	> 30	30 - 20	0 20-1	10	10-5		< 3	1
Valores de F_1		0.15	0.40	0.70)	0.85		1.00	2
							Valor de _F	7 ₁	0.15
Determinació	n del factor de aj	iuste F_2							
Ca	so i	Muy favorable	Favorab	le Regul	ar	Desfavorabl	le Muy	desfa	vorable
Planar	<i>b</i> _j	< 20	20 - 30	30-3	35	35 - 45		> 4:	5
Valores de F_2		0.15	0.40	0.70)	0.85		1.00)
Nota: Para el	caso de falla por	· volteo considera	$rF_{2} = 1$				Valor de 1	7 ₂	0.70
Determinació	n del factor de aj	iuste F_3							
Ca	so 1	Muy favorable	Favorab	le Regul	ar	Desfavorabl	le Muy	desfa	vorable
Planar	$b_j - b_s$	> 10	10-0	0	0	0 - (-10)		< (-1	0)
Volteo	$D_j + D_s$	< 110	110-12	20 > 12	0				
Valores de F_3		0	-6	-25		-50		-60)
							valor de F	3	-60
5 ΕλΟΤΟ	DE ATIETE	SECTIN EL MÉ'		FFYCAVA	CIÓN				
J. FACIO	n del factor de a	iuste F.	10000	E EACA VA				RR	
Método	Talud Natural NS	Pre-Corte PS	Vo Cor	ladura utrolada	V. Rej	oladura gular RB	Voladur	a Def DB	ficiente
Valores de F_4	15	10		<u>8</u>		0		-8	

 $\begin{array}{c|c} & -8 \\ \hline \textbf{Valor de}_{F_4} & \textbf{0} \\ \end{array}$

VALOR DE SMR					
SMR	:	35			
Descripción	:	Mala			
Estabilidad	:	Inestable			
Roturas	:	Junas grandes o cuñas			
Tratamiento	:	Corrección			

ESTABILIDAD DE TALUDES ROCOSOS METODOLOGÍA DEL SMR								
PROYECTO):	PROYECTO REC	GULACIÓN	I DEL	RIO PUMAM	AYO F	ECHA:	15-11-2013
UBICACIÓ	N:	Aliviadero – Secci	ión 6-6 – Co	orte la	teral derecho	REALI REVI	ZADO: ISADO:	J. Taype W. Suaña
	DETER	MINACIÓN DEL	VALOR	DE S	SMR (SLOPE	MASS RATIN	<u>G)</u>	
		SMR =	RMR_{89}	$+F_{1}$	$F_1 \cdot F_2 \cdot F_3 + F_2$	1		
1. DATC	1. DATOS DE LA DISCONTINUIDAD							
Dirección del buzamiento (a_j):			268	Buz	camiento (b_{j})):		39
2. DATC	OS DEL TALUI)						
Direcc	rión del buzamier	nto (a_s):	25	Buz	zamiento (b_s).	:		63
2 TIDO			D1	(D)	V 1, (V)			D
3. 11PO	DE FALLA PK	EDOMINANTE:	- Planar	(P)	- Volteo (V)			P
4. FACT	ORES POR AJ	USTE DE JUNTA	S					
Determinad	ción del factor de	e ajuste F ₁						
(Caso	Muy favorable	Favoral	ble	Regular	Desfavorable	Muy des	sfavorable
Planar	$a_s - a_j$	> 30	30 – 2	0	20 - 10	10 – 5		< 5
Volteo Valores de	$\frac{u_s - u_j - 100}{E}$	0.15	0.40		0.70	0.85	1	00
, anores de	F ₁	0.15	0.40		0.70	0.85	lor de E	0.15
Determinad	ción del factor d	e aiuste F					Γ_1	0.15
(Caso	Muy favorable	Favoral	ble	Regular	Desfavorable	Muy des	sfavorable
Planar	b_{i}	< 20	20 - 3	0	30 - 35	35 - 45	>	45
Valores de	$\overline{F_2}$	0.15	0.40		0.70	0.85	1	.00
Nota: Para	el caso de falla	por volteo consider	$ar F_2 = 1$			Va	lor de F_2	0.85
Determinad	ción del factor de	e ajuste F ₃						
(Caso	Muy favorable	Favoral	ble	Regular	Desfavorable	Muy des	sfavorable
Planar	$b_j - b_s$	> 10	10-0)	0	0 - (-10)	< ((-10)
Volteo	$b_j + b_s$	< 110	110 – 1	20	> 120			
Valores de	F_3	0	-6		-25	-50	=	-60
						Val	lor de F_3	-60

5. FACTOR	5. FACTOR DE AJUSTE SEGÚN EL MÉTODO DE EXCAVACIÓN							
Determinación d	Determinación del factor de ajuste F_4							
Método	Talud Natural NS	Pre-Corte PS	Voladura Controlada SB	Voladura Regular RB	Voladura Deficiente DB			
Valores de F_4	15	10	8	0	-8			
				1	Valor de _{F4} 0			

	VALOR DE SM	(R
SMR	:	33
Descripción	:	Mala
Estabilidad	:	Inestable
Roturas	:	Junas grandes o cuñas
Tratamiento	:	Corrección

			ESTABILII MET	OAD DE ' ODOLO	TALU GÍA	UDES ROO DEL SMR	COSOS			
PROYE	сто:		PROYECTO R	EGULAC	IÓN	DEL RIO		F	ECHA:	15-11-2013
			Ρυμαμάγο					RE	ALIZA	J. Taype.
UBICAC	CIÓN:		Portal de entrad	a – Corte	fronta	al		RE	VISAD O:	W. Suaña
		DETERN	MINACIÓN DEL	VALOR	DES	SMR (SLO	PE MAS	S RATIN	<u>G)</u>	
			SMR =	RMR ₈₉	$+F_1$	$F_1.F_2.F_3 +$	F_4			
1. DA'	TOS DE	LA DISCO	ONTINUIDAD			1				
Dire	Dirección del buzamiento (a_j): 286 Buzamiento (b_j): 4						45			
2. DA'	TOS DEI	L TALUD								
Dire	ección del	buzamien	to (a_s) :	286	Buz	zamiento (<i>l</i>	b,):			63
			3				3			
3. TIP	PO DE FA	LLA PRI	EDOMINANTE:	- Planar	r (P)	- Volteo (V	')			Р
4		DOD 4 H		~						
4. FA	<u>CTORES</u> nación de	POR AJU	USTE DE JUNTA	15						
Determi	Caso	i jucioi ue	Muv favorable	Favora	hle	Regular	Dest	favorable	Muv de	esfavorable
Planar		$-a_{i}$	inuy juvorable	1 0/0/0	.010	neguiti	Desj	uroruore	intuy ut	sjavorabie
Volteo	$a_s - a_s$	$\frac{1}{j}$ -180	> 30	30-2	20	20 – 10	i	10-5		< 5
Valores a	de F_1		0.15	0.40)	0.70		0.85	1.00	
								Va	the lor de F_1	1.00
Determi	nación de	l factor de	ajuste F_2							
	Caso		Muy favorable	Favora	ble	Regular	Desj	favorable	Muy de	esfavorable
Planar	l l	\mathcal{P}_{j}	< 20	20 - 3	30	30 - 35	3	5 – 45		> 45
Valores a	de F_2		0.15	0.40)	0.70		0.85		1.00
Nota: Pa	ıra el caso	o de falla p	or volteo consider	$ar F_2 = 1$				Va	lor de F_2	0.85
Determin	nación de	l factor de	ajuste F_3							
	Caso		Muy favorable	Favora	ble	Regular	Desj	favorable	Muy de	esfavorable
Planar	b_j	$-b_s$	> 10	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	0	0	0 -	- (-10)	<	(-10)
Volteo	b_j	$+b_s$	< 110	< 110 110 - 120 > 120						
Valores a	Valores de F_3 0 -6 -25 -50 -60									
								Va	lor de F_3	-60
5. FA	CTOR D	E AJUSTI	<u>E SEGÚN EL MÉ</u>	TODO I	DE E	XCAVACI	ÓN			
Determi	nación de	l factor de	ajuste F_4							RB
Método		Talud Natural	Pre-Corte	(Vola Contre	dura olada	Vola	ıdura lar RB	Voladur	a Deficiente DB

	0	- 4			nı
Método	Talud Natural NS	Pre-Corte PS	Voladura Controlada SB	Voladura Regular RB	Voladura Deficier DB
Valores de F_4	15	10	8	0	-8
					Valor de F_4 0

VALOR DE SMR					
SMR	:	-10			
Descripción	:	Muy mala			
Estabilidad	:	Muy inestable			
Roturas	:	Grandes roturas por planes continuos			
Tratamiento	:	Re–excavación			

		ESTABILII MET	OAD DE T ODOLO	T <mark>ALUDES R</mark> GÍA <mark>DEL S</mark> N	OCO /IR	SOS			
PROYE	СТО:	PROYECTO R	EGULAC	IÓN DEL RI	0		FECHA:	15-11-201	3
		PUMAMATO				R	EALIZA DO:	J. Taype	
UBICAC	CIÓN:	Portal de entrad	a – Corte	lateral derech	ю	R	EVISAD O:	W. Suaña	
	DETER	<u>minación del</u> SMR =	VALOR RMR ₂₀	$\frac{\text{DE SMR (S)}}{+F_1.F_2.F_2}$	$\frac{LOPE}{+F}$	MASS RAT	[<u>NG)</u>		
1. DA	TOS DE LA DISC	ONTINUIDAD	89	1 2 3	4	•			
Dire	ección del buzamier	nto (a_j):	286	Buzamiento	(b_j)):		(63
2. DA	TOS DEL TALUD)							
Dire	ección del buzamier	nto (a_s):	16	Buzamiento	$b(b_s)$):		(63
3. TIP	PO DE FALLA PR	EDOMINANTE:	- Planar	(P) - Volted	• (V)				Р
4 FA	CTORES POR AI	LISTE DE HINTA	S						
Determi	nación del factor de	e ajuste F.							
	Caso	Muy favorable	Favoral	ble Regu	lar	Desfavorabl	le Muy a	lesfavorable	е
Planar Volteo	$\begin{array}{c} a_s - a_j \\ a_s - a_j - 180 \end{array}$	> 30	30-2	0 20-	10	10 – 5		< 5	
Valores	$\frac{3}{F_1}$	0.15	0.40	0.7	0	0.85		1.00	
	1					•	Valor de F	0.15	
Determi	nación del factor de	e ajuste F ₂							
	Caso	Muy favorable	Favoral	ble Regu	lar	Desfavorabi	le Muy a	lesfavorable	е
Planar	b_{j}	< 20	20 - 3	0 30-	35	35 - 45		> 45	
Valores a	de F ₂	0.15	0.40	0.7	0	0.85		1.00	
Nota: Pa	ıra el caso de falla j	por volteo consider	$ar F_2 = 1$				Valor de F	2 1.00	
Determi	nación del factor de	e ajuste F ₃							
	Caso	Muy favorable	Favoral	ble Regu	lar	Desfavorabl	le Muy a	lesfavorable	е
Planar	$b_j - b_s$	> 10	10 - 0 0 $0 - (-10)$ $< (-10)$				< (-10)		
Volteo	$b_j + b_s$	< 110	110 – 1	20 > 12	20				
Valores	Valores de F3 0 -6 -25 -50 -60						-60		
			-	•			Valor de F	-25	
5. FA	CTOR DE AJUST	E SEGÚN EL MÉ	CTODO D	E EXCAVA	CIÓN	1			_
Determi	nación del factor de	e ajuste F_4					i	RB	
	<i>(</i> 1) 1		Ve	oladura				D (1 .	

Método	Talud Natural NS	Pre-Corte PS	Voladura Controlada SB	Voladura Regular RB	Voladura Deficiente DB
Valores de F_4	15	10	8	0	-8
					Valor de F. 0

VALOR DE SMR					
SMR	:	37			
Descripción	:	Muy mala			
Estabilidad	:	Inestable			
Roturas	:	Junas grandes o cuñas			
Tratamiento	:	Corrección			

		ESTABILII MET	DAD DE T ODOLO	TALI GÍA	UDES ROCO DEL SMR	SOS		
PROYE	СТО:	PROYECTO R	EGULAC	IÓN	DEL RIO	F	ECHA:	
		TOWAWATO				RE	ALIZA	J. Tavpe
UBICA	CIÓN:	Portal de entrad	a – Corte	latera	al izquierdo	RE	DO: XVISAD O:	W. Suaña
	DETER	<u>minación del</u> SMR =	VALOR RMR ₈₉	$\frac{\text{DE S}}{F}$	$\frac{\text{SMR (SLOPE}}{F_1 \cdot F_2 \cdot F_3 + F_4}$	MASS RATIN	<u>G)</u>	
1. DA	TOS DE LA DISC	ONTINUIDAD						
Dir	ección del buzamier	nto (a_j):	286	Buz	zamiento ($m{b}_j$)):		45
2. DA	TOS DEL TALUE)						
Dir	ección del buzamier	nto (a_s):	196	Bu	zamiento (b_s).	·		63
								_
3. TIF	PO DE FALLA PR	EDOMINANTE:	- Planar	(P)	- Volteo (V)			Р
4. FA	CTORES POR AJ	USTE DE JUNTA	S					
Determi	nación del factor de	e ajuste F ₁						
	Caso	Muy favorable	Favoral	ble	Regular	Desfavorable	Muy des	sfavorable
Planar Volteo	$a_s - a_j$	> 30	30-2	0	20 - 10	10 – 5		< 5
Volleo	$\frac{u_s - u_j - 100}{de_F}$	0.15	0.40		0 70	0.85	1	00
	*1	0.110	0110		0170	Va	lor de _{F1}	0.15
Determi	nación del factor de	e ajuste F ₂					1	
	Caso	Muy favorable	Favoral	ble	Regular	Desfavorable	Muy des	sfavorable
Planar	b_{j}	< 20	20 - 3	0	30 - 35	35 - 45	>	45
Valores	de F_2	0.15	0.40		0.70	0.85	1	.00
Nota: Pa	ıra el caso de falla j	por volteo consider	$\operatorname{rar} F_2 = 1$			Va	<i>lor de</i> F_2	0.85
Determi	nación del factor de	e ajuste F_3						
	Caso	Muy favorable	Favoral	ble	Regular	Desfavorable	Muy des	sfavorable
Planar	$b_j - b_s$	> 10	10-0)	0	0 - (-10)	< ((-10)
Volteo	$b_j + b_s$	< 110	110 – 1	20	> 120			
Valores	de F_3	0	-6		-25	-50	-	-60
						Va	lor de F_3	-60
		_ ~_ ~_ ~				_		
5. FA	CTOR DE AJUST	E SEGUN EL MÉ	ETODO D	E E	XCAVACIÓN	1		
Determi	nacion ael jactor de	e ajuste F_4					RI	8

5. FACTOR DE AJUSTE SECON EL METODO DE EACAVACIÓN												
Determinación d	RB											
Método	Talud Natural NS	Pre-Corte PS	Voladura Controlada SB	Voladura Regular RB	Voladura Deficiente DB							
Valores de F_4	15	10	8	8 0								
					Valor de _{F4} 0							

	VALOR DE SME	2
SMR	:	33
Descripción	:	Muy mala
Estabilidad	:	Inestable
Roturas	:	Junas grandes o cuñas
Tratamiento	:	Corrección

		ESTABILI ME	DAD DE TA TODOLOGÍ	LUDES ROCOS A DEL SMR	OS		
PROYEC	CTO:	PROYECTO REC	GULACIÓN I	DEL RIO PUMAN	IAYO I	FECHA:	15-11-2013
UBICAC	IÓN:	Portal de salida –	Corte frontal		REAL REV	IZADO: ISADO:	J. Taype. W. Suaña
	DETER	MINACIÓN DEL	VALOR D	E SMR (SLOP	E MASS RATIN	<u>G)</u>	
		SMR =	<i>RMR</i> ₈₉ +	$F_1.F_2.F_3 + I$	74		
1. DA'	TOS DE LA DISC	ONTINUIDAD					
Dire	ección del buzamier	nto (a_j):	268	Buzamiento (b_j):		39
				-			
2. DA'	TOS DEL TALUD						
ROTECTO: RECIPCION DELENOTON MARKO RELIZADO: J. Taype. REALIZADO: J. Taype. UBICACIÓN: DORTADIA CIÓN RELIZADO: UN Suaña DETERMINACIÓN DEL VALOR DE SMR (SLOPE MASS RATING) SMR = RMR ₈₉ + F ₁ .F ₂ .F ₃ + F ₄ I. DATOS DE LA DISCONTINUIDAD Dirección del buzamiento (a_j): 268 Buzamiento (b_j): : 2. DATOS DEL TALUD Dirección del buzamiento (a_s): 228 Buzamiento (b_s): : : 3. TIPO DE FALLA PREDOMINANTE: - Planar (P) - Volteo (V) 4. FACTORES POR AJUSTE DE JUNTAS Determinación del factor de ajuste F_1 Caso Muy favorable Favorable Regular Desfavorable Muy desfavorable Planar $a_s - a_j$ > 30 30 - 20 20 - 10 10 - 5 < 5 Valore de F_1 0.15 0.40 0.70 0.85 1.00 Valore de F_1 0.15 0.40 0.70 0.85 1.00 Valore de F_2 0.15 0.40 0.70 0.85 1.00 Valore de		76					
3. TIP	O DE FALLA PR	EDOMINANTE:	- Planar (1	P) - Volteo (V)			Р
4 FA(CTORES POR A I	USTE DE HINTA	s				
Determir	nación del factor de	e ajuste F.	10				
	Caso	Muy favorable	Desfavorable	Muy de	sfavorable		
Planar	$a_s - a_j$	> 30	30 - 20	20 - 10	10-5		< 5
Volteo	$a_s - a_j - 180$						
valores a	de F_1	0.15	0.40	0.70	0.85) I.00	
Determi	nación del factor de	painste F			v a	tor at F_1	0.15
Determen	Caso	Muv favorable	Favorable	e Regular	Desfavorable	Muv de	sfavorable
Planar	b _i	< 20	20-30	30-35	35 - 45	>	> 45
Valores a	$\frac{1}{1}$	0.15	0.40	0.70	0.85		.00
Nota: Pa	ura el caso de falla p	por volteo consider	$ar F_2 = 1$		Val	lor de F_{γ}	0.85
Determin	nación del factor de	e ajuste F_3	2		- I	2	
	Caso	Muy favorable	Favorable	e Regular	Desfavorable	Muy de	sfavorable
Planar	$b_j - b_s$	> 10	10-0	0	0 - (-10)	<	(-10)
Volteo	$b_j + b_s$	< 110	110 - 120) > 120		-	
Valores a	de F_3	0	-6	-25	-50	-	-60
					Va	lor de F_3	-60
5. FA	CTOR DE AJUST	E SEGÚN EL MÍ	ETODO DE	EXCAVACIÓ	N		

5. FACTORI	DE AJUSTE SE	EGUN EL METO	JDO DE EXCAVACI	ON	
Determinación d	el factor de aju	ste F_4			RB
Método	Talud Natural NS	Pre-Corte PS	Voladura Controlada SB	Voladura Regular RB	Voladura Deficiente DB
Valores de F_4	15	10	8	0	-8
					Valor de F ₄ 0

	VALOR DE SMF	R
SMR	:	33
Descripción	:	Muy mala
Estabilidad	:	Inestable
Roturas	:	Junas grandes o cuñas
Tratamiento	:	Corrección

			ESTABILID MET	AD DE T ODOLO	FALI GÍA	UDES ROC DEL SMR	COSOS				
PROYE	сто:		PROYECTO RE PUMAMAYO	GULACI	IÓN I	DEL RIO	FE	CHA:	15-	11-2013	
UBICAC	CIÓN:		Portal de salida -	- Corte la	teral	derecho	RE RE	EALIZA EVISAD	.DO: J. T)O: W.	l'aype. Suaña	
		DETERM	NACIÓN DEL	VALOR	DES	SMR (SLO	PE MASS	RATIN	<u>G)</u>		
			SMR =	RMR_{89}	+F	$F_1 \cdot F_2 \cdot F_3 +$	F_4				
1. DA	TOS DE	LA DISCO	NTINUIDAD						-		
Dirección del buzamiento (a_j): 268 Buzamiento (b_j):										39	
2. DA	TOS DEI	L TALUD		-							
Dire	ección del	buzamiento	$(a_{s}):$	138	Bu	zamiento (ł	P _s):			76	
3. TIP	PO DE FA	LLA PREI	DOMINANTE:	- Planar	·(P)	- Volteo (V	<i>(</i>)			Р	
4. FA	CTORES	POR AJUS	STE DE JUNTA	.S							
Determi	nación de	l factor de a	juste F_1			1					
	Caso		Muy favorable	Favora	ble	Regular	Desfav	orable	Muy de.	sfavorable	
Planar Volteo	$a_s - a_s - a_s$	$-a_j$	> 30	30 – 2	20	20 – 10	10	- 5		< 5	
Valores	de F)	0.15	0.40	0.40 0.70			85		1.00	
	I ₁		0.12	0.10		0.70	0.0	Va	lor de E	0.15	
Determi	nación de	l factor de a	juste F.						<u> </u>	0.10	
	Caso		Muv favorable	Favora	ble	Regular	Desfav	orable	Muy de	sfavorable	
Planar	k	9 _j	< 20	20 – 3	80	30 - 35	35 -	- 45	>	» 45	
Valores a	de F_2		0.15	0.40		0.70	0.0	85	1	1.00	
Nota: Pa	ara el caso	o de falla poi	r volteo consider	$ar F_2 = 1$				Va	<i>lor de</i> F_2	0.85	
Determi	nación de	l factor de a	juste F ₃								
	Caso		Muy favorable	Favora	ble	Regular	Desfav	orable	Muy de.	sfavorable	
Planar	b_j ·	$-b_s$	> 10	10-0	0	0	0 - (-10)	< ((–10)	
Volteo	b_j -	$+b_s$	< 110	110 – 1	20	> 120				·	
Valores a	de F_3		0	-6		-25	-5	50	-60		
								Va	lor de F_3	-60	
5 EA			SECTIN EL MÉ) F F	VCANACT	ÓN				
5. FA	CIOR DI nación de	L AJUSIL 1 factor de a	SEGUN EL ME iusta E		JE E.	ACAVACI	UN		-	חח	
Método		Talud Natural	Pre-Corte	Voladura Controlada			Voladi	ıra . PR	Voladura	1 Deficiente	
Valores	de _F	NS 15	10		<u>S</u>	8 8	п п п п п п п п п п п п п п п п п п п	ΛD		8	

 Valor de F4
 0

	VALOR DE SN	MR
SMR	:	33
Descripción	:	Mala
Estabilidad	:	Inestable
Roturas	:	Junas grandes o cuñas
Tratamiento	:	Corrección

			ESTABILID MET	AD DE 1 ODOLO	f alu GÍA 1	UDES ROC DEL SMR	OSOS						
PROYE	сто:	F F	PROYECTO RE PUMAMAYO	GULACI	ÓN I	DEL RIO	FECHA		15-11-2013				
UBICAC	CIÓN:	I	ortal de salida –	- Corte lat	teral i	izquierdo	REALIZ REVISA	REALIZADO: J. Taype REVISADO: W. Suaî					
DETERMINACIÓN DEL VALOR DE SMR (SLOPE MASS RATING)													
			SMR =	RMR_{89}	+F	$F_1.F_2.F_3 +$	F_4						
1. DA'	TOS DE	LA DISCON	TINUIDAD										
Dirección del buzamiento (a_j): 268 Buzamiento (b_j):													
2. DA	TOS DE	L TALUD											
Dire	ección de	l buzamiento	$(a_{s}):$	318	Buz	zamiento (b	<i>s</i> ,):		76				
3. TIP	PO DE FA	ALLA PRED	OMINANTE:	- Planar	(P)	- Volteo (V)		Р				
						1	/						
4. FA	CTORES	5 POR AJUS	TE DE JUNTA	S									
Determin	nación de	el factor de aj	uste F_1				1						
	Caso	Λ	Iuy favorable	Favoral	ble	Regular	Desfavorable	e Muy	desfavorable				
Planar Volteo	$\begin{array}{c c} Planar & a_s - a_j \\ \hline Volteo & a_s - a_j - 180 \end{array} > .$		> 30	30 - 20		20 – 10	10 – 5		< 5				
Valores a	de F_1	,	0.15	0.40		0.70	0.85	_	1.00				
	Valor de F, 0.15												
Determin	nación de	el factor de aj	uste F_2										
	Caso	Λ	Iuy favorable	Favoral	ble	Regular	Desfavorabl	e Muy	desfavorable				
Planar		b_j	< 20	20 - 3	0	30 - 35	35 - 45		> 45				
Valores a	de F_2		0.15	0.40		0.70	0.85		1.00				
Nota: Pa	ara el cas	o de falla por	volteo consider	$ar F_2 = 1$			V	'alor de ₋ 1	F ₂ 0.85				
Determi	nación de	el factor de aj	uste F_3										
	Caso	Λ	Iuy favorable	Favoral	ble	Regular	Desfavorable	? Muy	desfavorable				
Planar	b_j	$-b_s$	> 10	10-0)	0	0 - (-10)		< (-10)				
Volteo	b_j	$+b_s$	< 110	110 - 1	20	> 120							
Valores a	de F_3		0	-6		-25	-50		-60				
							V	'alor de]	⁷ ₃ –60				
			<i>, , , , , , , , , , , , , , , , , , , </i>				,						
5. FA	CTOR D	E AJUSTE S	EGÚN EL MÉ	TODO D)E EX	XCAVACI	ÓN						
Determin	nación de	el factor de aj	uste F_4		<u></u>	,			RB				
Método		Talud Natural NS	Pre-Corte PS	Voladura Controlada SB			Voladura Regular RB	Volad	udura Deficiente DB				
Valores a	de F_4	15	10		8	8	0		-8				

•		Valor de F
	VALOR DE SMR	
	:	33
	:	Mala Inestable

Junas grandes o cuñas

Corrección

:

:

SMR Descripción Estabilidad

Roturas

Tratamiento

0

1.6. ANEXO D: VALORACIÓN DEL MACIZO ROCOSO – CLASIFICACIÓN GEOMECÁNICA RMR

уесто:	"RF	CLASII EGULAC	TICACI LIÓN DE	Ó <mark>n geo</mark> i El río pi	MECÁNICA JMAMAYO	DE – EG	BIENIAWS	SKI – RMR	1	FECHA: 15-1	
112010.	EM	PRESA	DE GEN	ERACIÓ	N ELÉCTRI	CA S.	AN GABÁÌ	NS.A.	REAL	IZADO: J. T.	
1011;	EO	- IA (Lj		iesa – Est	noo Deleciid	"			KL V	ISADO. W.S	
1. RESISTENC	CIA DE L	A ROCA	A INTA	CTA (Ens	avo de Carg	a Pun	ıtual)			28.0 MPa	
Rango de valores	(MPa)	> 25	> 250 100		50 - 100)	25 - 50	5-25	1-	5 < 1	
Puntaje	(1.12 11)	15		12	7		4	2	1	0	
								Valoración:		2	
2. VALOR DE	RQD (Ro	ock Quali	ity Index	;)						49 %	
Rango de valores	: (%)	90	- 100	7	'5 – 90	50 - 75		25 –	50	< 25	
Puntaje			20		17		13	8		3	
								Valoración:		8	
3. ESPACIADO	O DE LAS	S DISCC	ONTINU	IDADES						0.10 m	
Rango de valores	: (m)	:	> 2	(0.6 - 2		0.2 - 0.6	0.06 -	0.2	< 0.06	
Puntaje			20		15		10	Valoración.		5	
			NUTTAT							U	
4. CONDICIO	N DE LA	s Disce	DNTINU	IDADES					_		
Persistencia de la	<u>is discont</u>	inuidade	s < 1		1 _ 3		3 - 10	10	20	3 m	
Puntaje	(<i>m</i>)		6		$\frac{1-5}{4}$		$\frac{3-10}{2}$	10-	20	0	
, in the second s								Valoración:		2	
Separación (aper	rtura)	37.			0.1		011		5	<u>30 mm</u>	
Rango de valores	(<i>mm</i>)	Nu	nguno 6		< 0.1		0.1 - 1	1-5		> 5	
1 unitaje		1	0		5		Valoración:		0		
Rugosidad		1								SR	
Condición		Muy	Muy rugosa (VR)		Rugosa (R)		geramente	Lis	a	Superficie	
Puntaje		((VR) 6		(R) 5	ru	igosa (SK)	(L))	$\frac{punaa(SK)}{0}$	
1 unuaje			0		5		5	Valoración:		3	
Relleno					Duno 15				_	10 mm	
Rango de valores	(<i>mm</i>)	Nu	nguno	D	$\frac{1}{\sqrt{2}}$		$\frac{Duro > 5}{2}$	Blando < 5		Blando > 5	
Tipo de relleno:		Blan	do:	X I	Duro:		Z			0	
Meteorización										MW	
			No	Lig	Ligeramente		deradament	Altam	ente	Completamen	
Condición		intem	perizada	inter	intemperizada		emperizada	perizada intemper		intemperizad	
		()	UW)		(SW)		(MW)	(HV)	V)	(CW)	
Puntaje			6		5		3	1		0	
_					,			Valoracion:		3	
5. CONDICIO	NES GEN	NERALE	S DEL .	AGUA SU	JBTERRAN	EA				DM	
Condición		Compl	letament	e H	lúmeda (DM)		Mojada	Got	20 2)	Flujo	
Puntaje		seca	15		10		7	4	/	0	
<u> </u>		·						Valoración:		10	
6. AJUSTE PO	R ORIEN	NTACIÓ	N DE D	ISCONT	INUIDADE	S				UF	
Orientaciones del rumbo y buzamiento			N Favo	luy prable VF)	Favorable (FV)		Regula (FR)	r Desfa (ivorable UF)	Muy desfavorabl	
Puntaje según	Túneles minas (1	у Г)	0		-2		-5		-10	-12	
el	Cimenta (E)	ciones		0	-2		-7		-15	-25	
tipo de trabajo (F)		(6)		0	5	-/		-13		60	
	Taludes	(S)		-3			-2.5			-00	

VALOR DE RMR (ROCK MASS RATING)RMR Básico:34RMR Ajustado:19RMR_{89} (condiciones secas y muy favorables):39Cohesión (c):170 KPaAngulo de fricción interna (°):22°

		CLASIF	VAL FICACI	ORACIÓ ÓN GEOI	N DEL MA MECÁNICA	CIZ A DE	O ROCOSO BIENIAWS	KI – RMR				
YECTO:	"R	EGULA	CIÓN D	EL RÍO P	UMAMAYO) – E	GESG"		FF	ECHA:	15-1	
ión:	EN EC	APRESA G – 2A (E	DE GEl lje de la	NERACIÓ Presa – Es	ON ELÉCTR stribo Derech	ICA 10)	SAN GABÁN	NS.A.	REALIZ REVIS	ZADO: SADO:	J. T W. 1	
		. Dogu								-	100	
I. RESISTENC	CIA DE L	A ROCA	A INTAG	CTA (Ens	ayo de Carg	a Pu	ntual)		2	8.0	MPa	
Rango de valores	(MPa)	> 25	0 1	100 - 250	50-100)	25-50 $5-25$		1 - 3	5	< 1	
Puntaje		15		12	7		4	2 Valoración	Ι	2	0	
2. VALOR DE	RQD (Ro	ck Quali	ty Index	;)				uror ucronn.		46	%	
Rango de valores	: (%)	90	- 100	7	75 – 90		50 - 75	25 -	50		< 25	
Puntaje			20		17		13	8			3	
							T	Valoración:		7		
3. ESPACIADO) DE LAS	S DISCO	NTINU	IDADES						0.20	m	
Rango de valores	: (m))	> 2	(0.6 – 2		0.2 – 0.6	0.06 -	0.2		< 0.06	
Puntaje			20		15		10	8			5	
							1	Valoración:		8		
4. CONDICIÓ	N DE LA	S DISCO	ONTINU	IDADES								
Persistencia de la	as discont	inuidades	5							3	m	
Rango de valores	(<i>m</i>)		< 1		1 – 3		3 – 10	10-	20		> 20	
Puntaje			6		4		2	1			0	
							V	Valoración:		2		
Separación (aper	rtura)					1	01 1	-		5	mm	
Rango de valores	(<i>mm</i>)	Nin	iguno		< 0.1		0.1 - 1	1-	5		> 5	
Puntaje			6		5		4	1		0		
Rugosidad							,	aloracion:		SE	,	
Kugosiuuu		Mux	Muy rugosa		Rugosa		igaramanta	Lie	a	SI	narfici	
Condición		Muy	VR)	, n	(R)		ugosa (SR)	(I)	Lisa (L)		pulida (SK	
Duntaio		(6		5	,	3	(L)	1		0	
1 иније			0		5			I Valoración	loración:		0	
Relleno							•	uioracion.		5	mm	
Rango de valores	(mm)	Nir	iguno	D	uro < 5		Duro > 5	Blando	< 5	Bla	indo >	
Puntaje			6		4		2	2			0	
Tipo de relleno:		Blan	ando: X		Duro:		V	Valoración:		2		
Meteorización					<u>_</u>					HV	V	
			No	Lig	Ligeramente		oderadament	Altam	ente	Com	oletame	
Condición		intem	perizada	inter	nperizada	÷	e town ovizada	intemper	rizada	inter	nperiza	
		(1	UW)		(SW)	in	(MW)	(HW)	7)		(CW)	
Puntaie			6		5		3	1	1		0	
1 unuje			0		5			/aloración·		1	0	
								aioración.			-	
5. CONDICIO	NES GEN	ERALE	S DEL	AGUA SU	JBTERRAN	EA				DN	4	
Condición		Compl	etament	e H	lúmeda		Mojada	Gote	20		Flujo	
D . 1		secc	1 (CD)		(DM)		(WT)	(DF	7		(W)	
Puntaje			15		10		7	4			U	
								valoración:		10	,	
6. AJUSTE PO	RORIEN	NTACIÓ	N DE D	ISCONT	INUIDADE	s				UI	7	
Orientaciones de buzamiento	l rumbo y	_	Fave Tave	luy prable VF)	Favorabi (FV)	le	Regular (FR)	Desfa ()	vorable UF)	de	Muy sfavoral (VII)	
	Túneles	<i>y</i>	,	0	-2		-5		-10		-12	
r uniaje segun el	Cimente	(iones					+			+		
tipo de trabaio	(F)	ciones		0	-2		-7		-15		-25	
	Taludes	<i>(S)</i>) 0		-5		-25		-50		-60	
Indique el tipo d trabajo:	le	F	1		-		١	Valoración:	loración:		5	
		VALOR DE RMR (ROCK MASS RATING)										
	DIAD 7	0.4 mi			m (noch	171/1		25				
	RMR	iustado					:	33 20	ļ			
	RMR	КМК Ajustado : 20 RMR⊕ (condiciones secas y muy favorables) · 40										
	Cohesi	ón (c)		,, j			:	175 KPa	1			
	Cohesión (c) : 175 KPa Angulo de fricción interna (°) : 23°											

		CLASII	VALO FICACIÓ	ORACIÓI ON GEON	N DEL MA IECÁNICA	ACIZO A DE B	ROCOSO IENIAWS	KI – RMR		
УЕСТО:	"R	EGULA	CIÓN DE	EL RÍO PU	JMAMAY	O – EGI	ESG"	-	FI	ECHA: 15-11
• /	EN	APRESA	DE GEN	ERACIÓ	N ELÉCTR	RICA SA	AN GABÁN	NS.A.	REALIZ	ZADO: J. Tay
210 n :	EC	j – 3A (E	estribo Izc	juierdo – A	Aguas Arrit	ba)			REVIS	SADO: W. Si
1. RESISTENC	JA DE L	A ROCA	A INTAC	TA (Ensa	ivo de Carg	za Punti	ual)		2	28.0 MPa
Rango de valores	(MPa)	> 25	0 1	$\frac{1}{10-250}$	50 - 100	0 2	$\frac{1}{25-50}$	5 - 25	1 - 1	5 < 1
Puntaie	(mru)	15	10 10	$\frac{50-250}{12}$	7	5 2	$\frac{3-30}{4}$	$\frac{3-23}{2}$	1	
	I						Ī	Valoración:	-	2
2. VALOR DE	RQD (Ro	ck Quali	ity Index)							49 %
Rango de valores	(%)	90	- 100	75	5 – 90	5	0 – 75	25 – 3	50	< 25
Puntaje			20		17		13	8		3
							V	/aloración:	-	8
3. ESPACIADO) DE LAS	S DISCO	ONTINUI	DADES						0.20 m
Rango de valores	(<i>m</i>)		> 2	0.	6-2	0.	2 - 0.6	0.06 -	0.2	< 0.06
Puntaje	()		20		15		10	8		5
5							I	Valoración:		8
4. CONDICIÓN	N DE LAS	S DISCO	ONTINUI	DADES			·			
Persistencia de la	is disconti	inuidade	s							3 m
Rango de valores	(m)		< 1	1	! – 3		3 - 10	10-2	20	> 20
Puntaje			6		4		2	1		0
a ••• •							V	/aloración:		2
Separación (aper	tura)	۸7:	00000	1	< 0.1) 1 1	1	5	20 mm
Rango ae valores	(mm)	INU	nguno 6	<	5		$\frac{1.1-1}{4}$	1	,	> 3
1 илиде		1	0		5	1		aloración:		0
Rugosidad										R
Condición		Muy	rugosa	Rı	ugosa	Lige	eramente	Lisc	ı	Superficie
Condicion		(VR)		(R)	rug	osa (SR)	(L)		pulida (SK)
Puntaje			6		5		3	1		0
D //							V	aloración:		5
Relleno Rango de valores	(11111)	Mi	201020	Du	ro < 5	D	uro > 5	Plando	< 5	10 mm
Puntaie	(mm)	110	6	Du	4		2	2	< 5	0
Tipo de relleno:		Blan	do: X	L	, Duro:		V	z Zaloración:		0
Meteorización										HW
			No	Lige	ramente	Mode	eradament	Altame	ente	Completament
Condición		intem	perizada	intem	perizada		е.,	intemper	izada	intemperizada
		()	UW)	(SW)	inter	nperizada (MW)	(HW	2	(<i>CW</i>)
Puntaie		+	6	-	5	(3	1		0
		<u>.</u>	-	1	-	4	<u> </u>	aloración ·		1
5. CONDICIO	NES GEN	JERALE	S DEL A	GUA SU	BTERRÁN	NEA				WT
	.25 021				~ • • • • • • • • • • • • • • • • • • •		A . i . J	<u> </u>		E1 :
Condición		Compl	etamente a (CD)	Hi	imeaa DM)	N.	10jaaa (WT)	Gote	0	r lujo
Puntaie		sect	15	(.	10	+	7	4	/	0
······ <i>y</i> -		<u>.</u>	-	1	-		Ī	aloración:		7
6. AJUSTE PO	RORIEN	VTACIÓ	N DE DI	SCONTI	NUIDADE	ES	,			UF
			M	uv	_	_				Muv
Orientaciones del	l rumbo y		Favor	rable	Favorab	le	Regular	Desfa	vorable	desfavorable
buzamiento			(V.	F)	(FV)		(FR)	(1	JF)	(VU)
	Túneles	у	0)	-2		- 5	_	10	-12
Puntaje según	minas (T	<u>[]</u>		,	-2		-5		10	-12
el tipo de trabaic	Cimenta (F)	ciones	0)	-2		-7	-	15	-25
про ае тавајо	(F) Taludes	(S)	0)	- 5		-25	-	50	-60
Indique el tino d	P	(3)			-5		-23			-00
trabajo:	~	F					V	aloración:		-50
J										
J			WALC	DDED		. MAGO	DATRIC		1	

RMR Básico	:	33
RMR Ajustado	:	0
<i>RMR</i> ₈₉ (condiciones secas y muy favorables)	:	41
Cohesión (c)	:	165 KPa
Angulo de fricción interna (°)	:	22°

		CLASII	VAI FICAC	LORA IÓN G	CIÓN GEOM	N DEL MA IECÁNICA	CIZ A DE	O ROCOSO BIENIAWS) SKI – RMF	l		
УЕСТО:	"R	EGULA	CIÓN I	DEL R	ÍO PL	JMAMAY) – E	GESG"		F	ECHA	: 15-11
ián.	EN	MPRESA	DE GE	ENERA Proce	ACIO	N ELÉCTR	ICA	SAN GABÀ	N S.A.	REALI	ZADO): J. Ta
	L	1) AF - C	Sje de la	i i icsa	I – LSI	1100 Izquie	u0)			KL VI	SADC	·. ••.5
1. RESISTEN	CIA DE L	A ROCA	A INTA	СТА	(Ensa	yo de Carg	a Pu	ntual)			37.0	MPa
Rango de valores	s (MPa)	> 25	50	100 -	250	50 - 100)	25 - 50	5 – 25	1 -	5	< 1
Puntaje		15		12	2	7		4	2	1		0
									Valoración	:		3
2. VALOR DE	RQD (Ra	ock Qual	ity Inde	ex)							52	%
Rango de valores	s (%)	90	- 100		75	5 – 90		50 – 75	25 -	- 50		< 25
Puntaje			20			17		13		8		3
									Valoración	:		<u> </u>
3. ESPACIAD	O DE LA	S DISCO	ONTIN	UIDAI	DES						0.30	m
Rango de valores	s (m)		> 2		0.	6-2		0.2 - 0.6	0.06	- 0.2		< 0.06
Puntaje			20			15		10	ć	3		5
									Valoración	:	9)
4. CONDICIÓ	N DE LA	S DISCO	ONTIN	UIDAI	DES							
Persistencia de l	as discont	inuidade	\$				T				3	m
Rango de valores	s (m)		< 1		1	-3		$\frac{3-10}{2}$	10 -	- 20		> 20
Puntaje			0			4		2	Valoración	•	ļ.,	, 0
Separación (ape	rtura)								vaioracion		30	mm
Rango de valores	5 (mm)	Nii	nguno		<	: 0.1		0.1 – 1	1 -	- 5		> 5
Puntaje			6			5		4		1		0
Rugosidad									Valoración	:	() R
<i>C I</i> : : /		Muy	rugosa	1	Rı	igosa	L	igeramente	Li	sa	S	uperficie
Condicion		(VR)			(R)	r	ugosa (SR)	(1	L)	рı	ılida (SK)
Puntaje			6			5		3		1		0
D //									Valoración	:	10	5
Rango de valores	(mm)	Nii	nguno		Du	ro < 5	1	Duro > 5	Rland	lo < 5	10 R	mm
Puntaie	(11111)	110	6		Du	4		2	Diana	2		0
Tipo de relleno:		Blan	do:	X	D	uro:			Valoración	:	()
Meteorización		1									Н	W
			No		Lige	ramente	Me	oderadament	Altar	nente	Con	ıpletamen
Condición		intem	perizad	a	intem	perizada	in	e temperizada	intemp	erizada	inte	emperizad
		()	UW)		()	SW)		(MW)	(H	W)		(CW)
Puntaje			6			5		3		!		0
									Valoración	:	1	1
5. CONDICIO	NES GEN	NERALE	ES DEL	AGU	A SU	BTERRÁN	NEA				D	М
Condinión		Comp	letamen	te	Hú	ímeda		Mojada	Go	teo		Flujo
Condición		seco	a (CD)		(1	DM)		(WT)	(L	P)		(W)
Puntaje			15			10		7		4		0
									valoración	:	1	U
6. AJUSTE PO	OR ORIE!	NTACIÓ	N DE I	DISCO	ONTI	NUIDADE	S				U	F
Orientaciones de	l rumbo y		Fa	Muy vorahla	p	Favorab	le	Regular	r Des	favorable	d	Muy esfavorab
buzamiento			((VF)	~	(FV)		(FR)		(UF)		(VU)
	Túneles	у		<u> </u>		2		5		-10		_12
Puntaje según	minas (1	T)		U		-2		-5		-10	_	-12
el tino do trabai	Cimenta (E)	iciones		0		-2		-7		-15		-25
upo ae trabajo	(r) Taludes	(S)		0		- 5		-25		-50	_	-60
Indique el tipo d	le			0		-5		-43		50		-
trabajo:		F							Valoración	:	-1	15
	—		****	05.5				00 D				
			VAL	OR D	E RM	IR (ROCK	MA	SS RATING	i)			
	RMR I	Básico						:	38			

		CLASI	VA FICAC	LORA IÓN (ACIÓN FEOM	N DEL MA IECÁNIC	ACIZO A DE	O ROCOSO BIENIAWS	KI – RMR			
УЕСТО:	"R	REGULA	CIÓN I	DEL R	LÍO PL	JMAMAY	О – Е	GESG"		F	ECHA	: 15-11
ión.	EN	MPRESA	DE GI	ENER.	ACIOI	N ELÉCTE	RICA	SAN GABÀI	NS.A.	REALI	ZADO	: J. Tay
		J – JA (I	Je de la	a i iese	i – LSu	1100 Delee	10)			KL VI.	JADO	
1. RESISTEN	CIA DE L	A ROCA	A INTA	АСТА	(Ensa	vo de Carg	a Pu	ntual)		-	25.0	MPa
Rango de valores	(MPa)	> 2.5	50	100 -	- 2.50	50 - 10)	25 - 50	5 - 25	1-	5	< 1
Puntaje	(1)11 (1)	15		12	2	7	-	4	2	1		0
									Valoración	:	2	2
2. VALOR DE	RQD (Ra	ock Qual	ity Inde	ex)							32	%
Rango de valores	5 (%)	90	- 100		75	- 90		50 - 75	25 -	- 50		< 25
Puntaje			20			17		13	8	8		3
									Valoración	:	4	<u> </u>
3. ESPACIAD	O DE LA	S DISCO	ONTIN	UIDA	DES						0.20	m
Rango de valores	s (m)		> 2		0.	$\frac{6-2}{15}$		0.2 - 0.6	0.06	- 0.2		< 0.06
Puntaje		20			15		10	Valoración	<u>.</u>		5	
			NUTIN		DEC				vaioracion	•	c	,
4. CONDICIO		S DISCO	JNTIN	UIDA	DES					_	2	
Persistencia de la Rango de valores	as discont	inuidade	s < 1		1	- 3		3 - 10	10-	- 20	3	$\frac{\mathbf{m}}{20}$
Puntaje	(111)		6		1	4		2	10	20		0
<i>a i i i</i>									Valoración.		2	}
Separación (aper Rango de valores	rtura)	Ni	nguno		<	01		01-1	1-	- 5	1	<u>mm</u>
Puntaje	(1111)	110	6		,	5		4	1			0
Rugosidad								I.	Valoración.	•	1 Sl	R
Condición		Muy	rugosa	ı	Ru	igosa	L	igeramente	Li	sa	Si	uperficie
D		(VR)			(R)	r	ugosa (SR)	(1	L)	ри	lida (SK)
Puntaje			6			5		3	l Valoración		1	0
Relleno									alor actor.		0	mm
Rango de valores	s (mm)	Ni	nguno		Du	ro < 5		$\frac{Duro > 5}{2}$	Bland	<i>o</i> < 5	Bl	ando > 5
Puntaje Tipo de relleno:		Blan	0 do	x	D	4 wro:		2	2 Valoración		6	0
Meteorización					5						H	W
			No		Liger	ramente	Ma	oderadament	Altan	nente	Com	pletamen
Condición		intem	perizad	la	intem	perizada	in	e temperizada	intempe	erizada	inte	mperizad
		(UW)		(,	SW)		(<i>MW</i>)	(H	w)		(CW)
Puntaje			6			5		3	1		1	0
									aloracion.	-	1	
5. CONDICIO	NES GEF	NERALE	LS DEL	AGU	A SU	BTERRAI	NEA				DI	M
Condición		Comp	letamen a (CD)	ıte	Hú	imeda DM)		Mojada (WT)	Go.	teo P)		Flujo (W)
Puntaje		500	15		(1	10		7	4	1		0
									Valoración		1	0
6. AJUSTE PO	R ORIE	NTACIĆ	N DE	DISCO	ONTI	NUIDADE	S				U	F
Orientaciones de buzamiento	l rumbo y		Fa	Muy vorabl (VF)	le	Favorab (FV)	le	Regular (FR)	Desj	favorable (UF)	de	Muy sfavorab (VU)
Puntaje según	Túneles minas (1	y T)		0		-2		-5		-10		-12
el	Cimento (E)	iciones		0		-2	-	-7		-15		-25
μ no de trabajo	(Г)	(S)		0		5		-2.5		-50		-60
npo de mabajo	Taludes	107		-		5					_	
Indique el tipo d trabajo:	Taludes le	F						1	Valoración	:	-1	5
Indique el tipo d trabajo:	<i>Taludes</i> le	F							Valoración		-1	5
Indique el tipo d trabajo:	<i>Taludes</i> le	F	VAI	.OR D	DE RM	IR (ROCK	MA	SS RATING	Valoración)	:	-1	5

3

		CLASIF	VALO VALO	RACIĆ N GEO	ÓN DEL MA MECÁNICA	CIZ DE	O ROCOSC BIENIAW) SKI – RMR			
YECTO: ión:	"R EN EC	EGULA MPRESA G – 6A (E	CIÓN DE DE GEN Estribo Der	L RÍO P ERACIO recho – .	PUMAMAYO ÓN ELÉCTR Aguas Abajo) – E ICA)	GESG" SAN GABÁ	N S.A.	F REALI REVI	ECHA: ZADO: SADO:	15-11-2 J. Taype W. Suar
1 DESISTEN	CIA DE I	A POCA	INTAC	FA (End	avo de Cara	a Du	ntual			25.0	MDo
Rango de valore	(MP_a)			A (Ens)	50 - 100		25 <u>-</u> 50	5 - 25	1_	5	
Puntaje	5 (m u)	15	0 10	12	7		4	2	1	5	0
								Valoración:		2	
2. VALOR DE	RQD (Ro	ock Quali	ty Index)							27	%
Rango de valores	s (%)	90	- 100	7	75 – 90		50 – 75	25 –	50		< 25
Puntaje			20		17		13	8			3
3. ESPACIAD	O DE LAS	S DISCO	NTINUI	DADES				valoracion:		0.10	m
Rango de valore	(m)		> 2		0.6 - 2		02 - 06	0.06 -	.0.2		< 0.06
Puntaje	5 (111)		20		15		10	8	0.2		5
U		•						Valoración:		6	
4. CONDICIÓ	N DE LA	S DISCO	ONTINUI	DADES							
Persistencia de l	as discont	inuidade:	5							1	m
Rango de valores	s (m)		< 1		1-3		3 – 10	10 -	20		> 20
Puntaje			6		4		2	1 Valoración		4	0
Separación (ape	rtura)							valoracion:		2	mm
Rango de valores	s (mm)	Nir	1guno		< 0.1		0.1 – 1	1 -	5		> 5
Puntaje			6		5	4 Valoración				1	0
Rugosidad								valoracion:		SI	ł
Condición		Muy (rugosa VR)	Ι	Rugosa (R)	L r	igeramente ugosa (SR)	Lis (L	a)	Sı pu	vperficie lida (SK)
Puntaje			6		5		3	1			0
Dallano								Valoración:		3	
Rango de valores	s (mm)	Nir	iguno	D	uro < 5		Duro > 5	Blando	o < 5	Bla	ando > 5
Puntaje			6		4		2	2			0
Tipo de relleno: Meteorización		Blan	do: X		Duro:			Valoración:		2 HV	N
			No	Lig	eramente	Ma	oderadament	Altam	ente	Com	pletamente
Condición		intem	perizada	inter	mperizada	in	e temperizada	intempe	rizada	inte	mperizada
		(1	UW)		(SW)	in	(MW)	(HV)	V)		(<i>CW</i>)
Puntaje			6		5		3	1			0
								Valoración:		1	
5. CONDICIO	NES GEN	VERALE	S DEL A	GUA SI	UBTERRÁN	EA				W	Г
Condición		Compl	etamente	H	lúmeda		Mojada	Gote	20		Flujo
Puntaie		secc	$\frac{i(CD)}{15}$	+	(DM) 10		(WI) 7	(DF)		$\frac{(W)}{0}$
		1	-	1				Valoración:		7	-
6. AJUSTE PO	OR ORIEN	NTACIÓ	N DE DIS	SCONT	INUIDADE	s				U	F
Orientaciones de	el rumbo v		Mu	У	Favorahl	le	Regula	r Desfe	worable		Миу
buzamiento			Favor	able 7)	(FV)		(FR)	(UF)	de.	sfavorable (VII)
	Túneles	у		/	2		-		10		12
Puntaje según	minas (1	T)	0		-2		-3		-10		-12
el tipo de trabaio	Cimenta (F)	iciones	0		-2		-7		-15		-25
po ac mabajo	Taludes	(S)	0		-5		-25		-50		-60
Indique el tipo o trabajo:	le	F						Valoración:		-1	5
			VALO	R DE R	MR (ROCK	MA	SS RATING	,)			
	RMR E	Básico			,		:	29			
	RMR A	Justado					:	14			
	RMR_{89}	(condici	ones secas	s y muy j	favorables)		:	37			

Cohesión (c)

Angulo de fricción interna (°)

145 KPa 20°

		CLASIF	VALO ICACIÓ	RACIÓN N GEOM	N DEL MA IECÁNICA	CIZO ROCOS DE BIENIAW	O /SKI – RMR		
есто:	"R	EGULA	CIÓN DEI	L RÍO PU	MAMAYO	- EGESG"	í N.G. A	FE	CHA: 15-11
ión:	EN EC	APRESA F – 7A (S	DE GENI alida de tí	ERACIOI inel)	N ELECTRI	CA SAN GAB	AN S.A.	REALIZ REVIS	ADO: J. Tay ADO: W. Si
		, (S						TLL + 15	
1. RESISTENC	CIA DE L	A ROCA	INTACI	ΓA (Ensa	vo de Carga	Puntual)		3	7.0 MPa
Rango de valores	(MPa)	> 25	0 10	0 - 250	50 - 100	25 - 50	5 - 25	1 - 5	< 1
Puntaje	(111 4)	15	0 10	12	7	4	2	1	0
							Valoración:		3
2. VALOR DE	ROD (Ro	ck Ouali	ty Index)						46 %
Rango de valores	(%)	~ 90 -	- 100	75	- 90	50 - 75	25-4	50	< 25
Puntaje	(, .)		20		17	13	8	-	3
							Valoración:		7
3. ESPACIADO) DE LAS	5 DISCO	NTINUI	DADES				().30 m
Rango de valores	(<i>m</i>)		> 2	0.0	6 – 2	0.2 - 0.6	0.06 -	0.2	< 0.06
Puntaje	()		20		15	10	8		5
-							Valoración:		9
4. CONDICIÓ	N DE LAS	S DISCO	NTINUI	DADES					
Persistencia de la	is discont	inuidades	7						2 m
Rango de valores	(<i>m</i>)	<	< 1	1	- 3	3 – 10	10-2	20	> 20
Puntaje			6		4	2	1		0
6	(Valoración:		3
Separación (aper	(mm)	Nin	auno		01	01-1	1 _ 4		10 mm
Puntaje	(min)	1111	6		5	4	1		0
				1			Valoración:		0
Rugosidad									SR
Condición		Muy	rugosa	Ru	igosa	Ligeramente	Lisa		Superficie
Puntaja		()	6 (K)	(<i>K)</i>	rugosa (SK)	(L)		
1 unuje			0		5	5	Valoración:		3
Relleno									5 mm
Rango de valores	(<i>mm</i>)	Nin	guno	Dui	ro < 5	Duro > 5	Blando	< 5	Blando > 5
Tino de relleno:		Bland	o do: X	D	4 uro:	2	∠ Valoración		2
Meteorización		Dian		D			, aloracion.		HW
		1	No	Liger	ramente	Moderadamen	t Altame	nte	Completamen
Condición		intem	perizada	intem	perizada	e intermorizade	intemper	izada	intemperizad
		(U	JW)	6	SW)	(MW)	(HW)	(<i>CW</i>)
Puntaje			6		5	3	1		0
							Valoración:		1
5. CONDICIO	NES GEN	ERALE	S DEL A	GUA SUI	BTERRÁN	EA			DM
Carrelia; i		Comple	etamente	Hú	meda	Mojada	Gote	0	Flujo
Condicion		seca	(CD)	(1	DM)	(WT)	(DP))	(Ŵ)
Puntaje			15	<u> </u>	10	7	4		0
							valoración:		10
6. AJUSTE PO	RORIEN	TACIÓ	N DE DIS	SCONTII	NUIDADES	<u> </u>			UF
Orientaciones de	l rumbo v		Mu	у	Favorable	e Regula	ar Desfa	vorable	Миу
buzamiento			Favor	able	(FV)	(FR)	(U	VF)	desfavorabl
	Túneles	v	(// /	/	-	_		10	(10)
	minas (1	Č)	0		-2	-5		10	-12
Puntaje según	Cimentaciones				-2	-7	-	15	-25
Puntaje según el	Cimenta			1	-				
Puntaje según el tipo de trabajo	Cimenta (F) Taludes	(S)	0		- 5	_25		50	-60
Puntaje según el tipo de trabajo	Cimenta (F) Taludes	(S)	0		-5	-25		50	-60
Puntaje según el tipo de trabajo Indique el tipo d trabajo:	Cimenta (F) Taludes le	(S) F	0		-5	-25	 Valoración:	50	-60 -10

VALOR DE RMR (ROCK MASS RATING)										
RMR Básico	:	38								
RMR Ajustado	:	28								
RMR ₈₉ (condiciones secas y muy favorables)	:	43								
Cohesión (c)	:	190 KPa								
Angulo de fricción interna (°)	:	24°								

		CLASIF	VALO ICACIÓN	RACIÓ N GEO	ÓN DEL MA MECÁNICA	CIZ DE	O ROCOSO BIENIAWS	KI – RMR			
YECTO: ión:	"R EN EC	EGULA IPRESA G – 8A (E	CIÓN DEI DE GENE stribo Izqu	L RÍO F ERACIO	PUMAMAY(ÓN ELÉCTR - Eje del Tún) – E ICA el)	GESG" SAN GABÁI	N S.A.	F REALIZ REVI	ECHA: ZADO: SADO:	15-1 J. Ta W. S
			1		<u>j</u>						
1. RESISTEN	CIA DE L	A ROCA	INTACI	TA (Ens	sayo de Carg	a Pu	ntual)		3	37.0	MPa
Rango de valores	s (MPa)	> 25	0 100	0 – 250	50 - 100)	25 - 50	5 - 25	1 -	5	< 1
Puntaje		15		12	7		4	2	1		0
	202 (2							valoracion:		3	
2. VALOR DE	RQD (Ro	ck Quali	ty Index)						- 0	56	%
Rango de valore:	s (%)	90	- 100 20	7	$\frac{75-90}{17}$		$\frac{50-75}{13}$	25 -	50		< 25
1 unuge			20		17		15	Valoración:		9	5
3. ESPACIAD	O DE LAS	S DISCO	NTINUIL	DADES						0.30	m
Rango de valore	s (m)		> 2		0.6 – 2		0.2 - 0.6	0.06 -	0.2		< 0.06
Puntaje	()		20		15		10	8			5
								Valoración:		9	
4. CONDICIÓ	N DE LAS	S DISCO	NTINUII	DADES	1						
Persistencia de l	as disconti	inuidade	5							2	m
Rango de valores	s (m)		< 1		1-3		3 - 10	10-	20		> 20
Puntaje			0		4		2	I Valoración:		3	0
Separación (ape	rtura)							aloración.		5	mm
Rango de valores	s (mm)	Nin	iguno		< 0.1		0.1 – 1	1-	5		> 5
Puntaje			6		5		4	l Valoración		0	0
Rugosidad								aioracion.		SI	ł
- Condición		Миу	rugosa	1	Rugosa	L	igeramente	Lis	a	Sı	perficie
Condición		(VR)		(R)	r	ugosa (SR)	(L))	ри	lida (SK
Puntaje			6		5		3	l Valoración:		3	0
Relleno								atoración.		2	mm
Rango de valores	s (mm)	Nin	iguno	D	ouro < 5		Duro > 5	Blando	o < 5	Bla	ndo > 3
Puntaje Tipo de relleno:		Blan	0 do: X		4 Duro:		2	2 Valoración		2	0
Meteorización		Dian			Duro.			aloración.		H	N
			No	Lig	eramente	Ma	oderadament	Altam	ente	Com	pletame
Condición		intem	perizada	inte	mperizada	in	e temperizada	intempe	rizada	inter	nperiza
		(1	JW)		(SW)		(MW)	(HV	V)		(<i>CW</i>)
Puntaje			6		5		3	1			0
					,			Valoración:		1	
5. CONDICIO	NES GEN	ERALE	S DEL AG	GUA SU	UBTERRAN	EA				DN	Л
Condición		Compl	etamente	Ŀ	Iúmeda (DM)		Mojada (WT)	Gote	20 2)		Flujo
Puntaje		secc	15		<u>(DM)</u> 10		7	4)		$\frac{(w)}{0}$
5							1	Valoración:		1()
6. AJUSTE PO	OR ORIEN	TACIÓ	N DE DIS	CONT	INUIDADE	s				U	F
Orientaciones de	el rumbo y		Muy Favora	y able	Favorab (FV)	le	Regular (FR)	Desfa	ivorable UF)	de	Muy sfavoral
- agamento	Túralas	v	(VF)	(1)		(11)				(VU)
Puntaje según	minas (T	y [)	0		-2		-5		-10		-12
el	Cimenta	ciones	0		-2	-	-7		-15		-25
tipo de trabajo	(F) Taludes	(S)	0		-5		-25		-50		-60
Indique el tipo o trabajo:	le	F					1	Valoración:		-1	0
			VALOR	DEP	MR (ROCK	MA	SS RATING)	[
	DMD D	lásias	TLUE	N DE K		14174		40			
	RMR B	asico justado					:	40 30			
	RMR ₈₉	(condici	ones secas	y muy j	favorables)			45			
	Cohesi	ón (c) de fries	ón inter-	(0)			:	200 KPa			
	Angulo	, ue fricci	on interna	()				23			

No olvide citar esta tesis

		CLASII	VALO FICACIÓ	ON GEOI	MECÁNICA	A DE B	IENIAW	, SKI – RMR			
YECTO:	"R	REGULA	CIÓN DI	EL RÍO P	UMAMAY(D - EGI	ESG" an gará	NSA	F	ECHA:	15-1 L To
ión:	E	G - 9A (I	Eje del Tú	nel)	JN ELEC IN	ICA SI	AN OADA	IN 5.A.	REVI	SADO:	W. S
			5	,							
1. RESISTEN	CIA DE L	A ROCA	A INTAC	TA (Ens	ayo de Carg	a Punt	ual)		1	15.0	MPa
Rango de valores	s (MPa)	> 25	50 1	00 - 250	50 - 100) 2	25 - 50	5 - 25	1 –	5	< 1
Puntaje		15		12	7		4	2	1		0
								Valoración:		8	
2. VALOR DE	RQD (Ra	ock Qual	ity Index))						74	%
Rango de valores	s (%)	90	- 100	100 75 - 90 50 - 75					50		< 25
Puntaje			20		17		13	8			3
								Valoración:		13	
3. ESPACIAD	O DE LA	S DISCO	ONTINU	DADES						0.50	m
Rango de valores	s (m)	-	> 2	($\frac{0.6-2}{15}$	0.	$\frac{2-0.6}{10}$	0.06 -	0.2	<	. 0.06
Puntaje	20				15		10	Valoración:		10	3
	NDELA							valoracion.		10	
4. CONDICIO	N DE LA	S DISCO	JNTINU	IDADES					_		
Persistencia de la	as discont	inuidade	2S		1 3		3 10	10	20	3	m
Puntaie	s (<i>m</i>)		6		$\frac{1-3}{4}$		$\frac{3-10}{2}$	10-1	20		> 20 0
								Valoración:	_	2	
Separación (aper	rtura)	A7.		-	.01		0 1 1	1		5	mm
Puntaie	s(mm)	111	nguno 6		< 0.1 5	L	$\frac{1.1-1}{4}$	1)		<u>> 5</u> 0
1 unuaje			0		5			Valoración:		0	0
Rugosidad		1				1				R	
Condición		Muy	rugosa WP	K	Rugosa	Lig	eramente	Lisc	ı	Sup	perficie da (SK)
Puntaie		(6 6		5	Tug	3	(L)		pui	$\frac{uu(SK)}{0}$
		1	-		-			Valoración:		5	-
Relleno		37.			. 5	D			. 5	3	mm
Rango ae valores Puntaie	s(mm)	INT	nguno 6		$\frac{uro < 5}{4}$		$\frac{uro > 5}{2}$	Blando 2	< 3	Bla	nao > 5 0
Tipo de relleno:		Blan	do: X		Duro:			Valoración:		2	-
Meteorización		1								SW	7
			No	Lig	eramente	Mode	eradament e	Altame	ente	Comp	letamen
Condición		intem	perizada 11W)	inter	nperizada (SW)	inter	nperizada	intemper	izada V	inten	iperizad CW)
Duntaio		(6		5		(MW)	111	,	(0
1 ипије			U		J	I	3	I Valoración		5	U
5 CONDICIO	NESCEN	TEDATE	S DEL	GIN ST	BTERDÁN	JE A				DM	r
5. CONDICIO	TTES GET			JUA SU	J J I EKKA ľ	ILA.	1 J	<i>C</i> :		DM	-
Condición		sec	a (CD)		(DM)	N	(WT)	(DP)		(W)
Puntaje			15		10		7	4			0
								Valoración:		10	
6. AJUSTE PC	R ORIE	NTACIÓ	N DE DI	SCONT	INUIDADE	S				FR	
Orientaciones de	l rumbo v		М	иу	Equarab	10	Regula	r Desfa	vorabla		Миу
buzamiento	. runioo y		Favo	rable	(FV)	n	(FR)	(l	UF)	des	favorabl
	Túneles	v	(V	<i>r)</i>	-				10		(VU)
Puntaje según	minas (1	Ť)	()	-2		-5	-	10		-12
el	Cimento	iciones	()	-2		-7	-	15		-25
про de trabajo	(F) Taludes	(S)	1)	-5		-25	-	50		-60
		·~/	1		2		20				
Indique el tipo d	le	F						Valancest		-	

VALOR DE RMR (ROCK MASS RATING)										
RMR Básico	:	55								
RMR Ajustado	:	50								
RMR ₈₉ (condiciones secas y muy favorables)	:	60								
Cohesión (c)	:	275 KPa								
Angulo de fricción interna (°)	:	33°								

		CLASI	VAL FICACIO	ÓN GEO	DN DEL MA MECÁNICA	A DE 1	D ROCOSO BIENIAWS	SKI – RMR		<u> </u>	
YECTO:	"R	EGULA	CIÓN DI	EL RÍO P	UMAMAY(D - EC	GESG" Sangará	NSA	F	ECHA: 15-	
ión:	EC	G - 10A	(Ingreso a	al Túnel)	JN ELEC IK	ICA 5	DAIN UADA	IN 5.A.	REVIS	SADO: W.	
1. RESISTENC	CIA DE L	A ROC	A INTAC	CTA (Ens	sayo de Carg	a Pun	tual)		3	37.0 MPa	
Rango de valores	(MPa)	> 25	50 1	00 - 250	50 - 100)	25 - 50	5 - 25	1	5 < 1	
Puntaje		15		12	7		4	2	1	0	
								Valoración:		3	
2. VALOR DE	RQD (Ro	ock Qual	ity Index)						56 %	
Rango de valores	(%)	90	- 100	7	75 – 90		50 - 75	25 – 3	50	< 25	
Puntaje			20		17		13	8 Valoración		3	
								valoracion:		9	
3. ESPACIADO) DE LA	S DISCO	DNTINU	IDADES						0.20 m	
Rango de valores	(m)		$\frac{>2}{20}$	(0.6 - 2	($\frac{0.2 - 0.6}{10}$	0.06 -	0.2	< 0.06	
Puntaje			20		15		10	0 Valoración		8	
		SDISCO	NTINU	IDADES				, and actor.		v	
Paraistanti I				IDADES	1					2	
Rango de valores	is discont (m)	inuidade	es < 1		1-3		3 - 10	10-2	20	<u> </u>	
Puntaje	(111)		6		4		2	1	20	0	
								Valoración:		2	
Separación (aper	tura)	Ni	пашпо		< 0.1		01-1	1_1	5	20 mm	
Puntaje	(1111)	146	6		5		$\frac{0.1-1}{4}$	1	,	0	
U U				1		1		Valoración:		0	
Rugosidad										SR	
Condición		Muy	vrugosa VR)	I	Rugosa (R)	Lig	geramente	Lisa (L)	ı	Superfici pulida (SI	
Puntaie		(6		5	14	3	1		0	
								Valoración:		3	
Relleno	(11111)	λ/;				T)	Plan do	< 5	10 mm	
Puntaie	(mm)	111	6		$\frac{4}{4}$	L	2	2	< 5	<u> Билио ></u> 0	
Tipo de relleno:		Blan	do: 🚺	C	Duro:			Valoración:		0	
Meteorización		1				M-	J J 4			HW	
a 11.14			No	Lig	eramente	MOC	иетааатеті е	Altame	ente	Completam	
Condición		intem	perizada IIW)	inter	mperizada (SW)	inte	emperizada	intemper (HW	izada ')	intemperiza (CW)	
Duntaio			,		5		(MW)	1	'	0	
1 ипије			U		5	l	J	I Valoración•		1	
5 CONDICION	NES CEN	JERALL	S DEL	ACHA SI	IBTERRÁN	JEA				WT	
	TEO GEN	C····	lotan	- T	Limed-		Moiad-	Cit		EL.:	
Condición		sec	a (CD)		(DM)	'	(WT)	(DP)	(W)	
Puntaje			15		10		7	4		0	
								Valoración:		7	
6. AJUSTE PO	R ORIEN	NTACIĆ	ON DE D	ISCONT	INUIDADE	S				UF	
Orientaciones de	l rumbo v		М	luy	Favorab	le	Regula	r Dosfa	vorable	Миу	
S i chuaciones ae	unibo y		Favo	orable	(FV)	n	(FR)	(U	UF)	desfavora	
buzamiento	<i>T</i> (1	v	()	r)					10	(VU)	
buzamiento	Tuneles	$\begin{pmatrix} y \\ T \end{pmatrix} = 0$		0	-2		-5	-	10	-12	
buzamiento Puntaje según	Tuneles minas (1	Г)	(1) taciones		0 -2			-15			
buzamiento Puntaje según el	Tuneles minas (1 Cimenta	T) iciones		0	-2		-7	-	15	-25	
buzamiento Puntaje según el tipo de trabajo	Tuneles minas (1 Cimenta (F) Taludes	$\frac{T}{C}$		0	-2		-7	-	15 50	-25	
buzamiento Puntaje según el tipo de trabajo Indique el tipo d	Tuneles minas (T Cimenta (F) Taludes	T) aciones (S)		0	-2 -5		-7 -25		15 50	-25	

VALOR DE RMR (ROCK MASS RATING)										
RMR Básico	:	33								
RMR Ajustado	:	23								
RMR ₈₉ (condiciones secas y muy favorables)	:	41								
Cohesión (c)	:	165 KPa								
Angulo de fricción interna (°)	:	22°								

1.7.

HOJA DE LEVANTAMIENTO GEOMECÁNICO

Universidad Nacional del Altiplano Facultad de Ingeniería de Minas

Puno - 20 13

Universidad Nacional del Altiplano

Universidad Nacional del Altiplano

Universidad Nacional del Altiplano

(())	J. TAYPE 05-11-2017 1/3			VALORACIÓN	1 4	2 8	3 8	48 0	4C 5	4D 0	4E 1	5 7	11a5)= 35			N	~																				
	OR: HA: DIA:				(0	(3)	(5)	× (0)	(0	X (0)	(0)		Valoració				4						1	A STATE	4		戸上		1× 1×	S			10/2 A	- ANO		14	and the second se
	REALIZADO F FEC HC				25 (2);<5 (1);<1 (25	0.06 m	5 mm	spejo de falla (uave > 5 mm	lescompuesta (Fluyendo (0)	(Suma de			20-02	V MUY MAL						の一般の				でしたこと		L BATE	三人大ない		and the second			A NOT	State of the second sec	
					×	×	× /	` ^		s	*					╞								金に						K. N	1	-	STATE OF				No. of Concession, Name
		COSO (R.M.R.)			25-50 (4)	25 - 50 (8)	0.06 m - 0.2 m (8)	1-5mm (1)	Lisa (1)	Suave < 5 mm (1)	Muy Meteor. (1)	Goteando (4)				10.21	IV MALA				- 03 A						and the second second							The second			
		IZO RO	VALOPES	LIMADO	0			•			-	x (/			ico)		AR				- 5EG		Contraction of the				日本の		-	の一の日本			201				
		CION DEL MAC	DANGO DE	VALOR FS	50-100 (7	50-75 (13	0.2 m - 0.6 m (10	0.1-1.0 mm (/	K Lig. Rugosa (3	Duro > 5 mm (2	Mod. Meteor. (3	Mojado ()			SO (Según RMR Bás	60-41	III REGU					J	And the second				「「おちとうんち」	いたろう		Contraction of the local distance of the loc	T. A.	0.64		ない	ANA PL	a state of the sta	
		VALORA			0-250 (12)	(11) 06-1	6 m – 2.0 m (15)	0.1 mm (5)	gosa (5) x	rro < 5 mm (4)	; Meteor. (5)	imedo (10)	RMR (Básico)		DE MACIZO ROCO	8061	II BUENA						「「「「「」」		A State of the											Ster State	
<u>8</u>	<u>NNNO</u>				10	75	ö,	*	Ru	Ď	Li	Ή	DR TOTAL		CLASE								AL.	-		a ba	No. All	10	X	Đ	X		9	No.	5	412	
ECÁN	<u>kío PUM/</u> BAYA – P				(15)	(20)	(20)	(9)	osa (6)	(9)	(9)	(15)	VALO			100 - 81	AUY BUENA																				
EOM	ÓN DEL F I – CARA				> 250	90 - 100	>2 m	Cerrada	Muy rug	Limpia	Sana	Seco					-											_	_				_				
AMIENTO G	<u>REGULACI MACUSAN</u>			METROS	1P. UNIAX. (Mpa)	QD (%)	MIENTO (m)	APERTURA	RUGOSIDAD	RELLENO	METEORIZACIÓN	UBTERRÁNEA				BMB	CRIPCIÓN				Esquisto	Arenisca	Biolita	Andesita		Limos	Brecha	Sílice		Venilla	Junta Estrato	Fisura					
DE LEVANT	PROYECTO: UBICACIÓN:			PARÁ	RESIST. COM	R	ESPACIA		CONDICIÓN DE			AGUA SL					DESC			IPO DE ROCA	Esq	Arc	lgn	And	O DE RELLENO	n	Bx	si	DE ESTRUCTURAS	Nn	- u	Fs	DACIANIENTO	>2 m	0.6 m - 2 m	0.06 m - 0.2 m	< 0.06 m
HOJA D		RQD	80	96	94	91	88	5	77	74	70	99	63	59	52	40	46	43	41		Caliza	Granito	Adamelita	Limolita	TIP	Óxido	Arena	Arcilla	TIPOI	Diaclasa	Falla Contacto	Veta	20	2			
		JUNTAS	(III) r	v 6	4	2	9 1		6	10	11	12	13	15	16	17	18	19	20		Clz	ß	Adm	Lim	5	v	Ar	Arc		٥	<u>س</u> ئ	>		Clz	Gr	Cua	Lin
		П	T	T	T	Γ	8	T	Γ		 	_			T	T	Π			[_		T	_		Γ			Г				T	_			
		TRAMO	DE HASTA	FREC. FRACTURA	DISC./ml.	10 a 15	OBSERVACION	1					- 112							OR DE RESISTENCI	MPRESIÓN (MPa)	1.5 - 5.0		5.0 - 25	25 – 50	50 - 100	100 - 250	> 250			coloración sobre	de discontinuidades.		grado a un suelo. La núcleo rocoso.	do en suelo. La roca	o. La estructura origin	
			DESC				LENO	> 5 mm	2 mm	2 mm	2 mm	2 mm	3 mm	3 mm	2 mm	mm C	2 mm			VALC	CO						_	_	ACION		iizás ligera de	y superficie	ne lia anh lin	inuo o como i	/o desintegra	grado en suelo	
Altiplano Minas		TALUD	DIRECCION	¢	%		REL	Li Ox	Li, Ox	Li, Ox	Li, Ox	Li, Ox	ŋ	1	Li, OX	11 Ov	Li, Ox			Z ROCOSA		artillo de	- Indiana	Incenta	El espécimen lo.	artillo.	rar la muestra.	rtillo	E METEORIZ/	SCRIPCIÓN	erial rocoso. Qu	material rocos		un marco cont	escompuesto y	to y/o desinteg	
d Nacional del A I Ingeniería de I. 13		ENADAS	ESTE 353 67A	E RDCA	~ C		ESPACIAMIENTO -	4	ŝ	4	e	3	4	e v	4		4			ENCIA DE LA MATRIZ	ICACÓN DE CAMPO	mes con la punta del mi	con una navaja.	urtao con una navaja. se junta del martillo.	pelado con una navaja. E n golpe firme del martilk	más de un golpe del má	es de picota para fractui	de la muestra con el mai	ÍNDICE DE	DE	neteorización en el mate ontinuidades principale:	dica meteorización del r		a del macizo rocoso esta srada se presenta como	el macizo rocoso está de se presenta como núcle	ocoso está descompuest	aún se conserva intacta
niversida cultad de no – 20 1		COORD	NORTE	TIPO D	8		BUZ.	30	82	74	84	85	80	6/	86	80	76			E DE RESISTI	IDENTIF	con golpes fi	uede rasgarse	arse con arric nente con la p	ser rasgado o acturar con ui	se rompe con	a muchos golp	npe esquirlas			gún signo de n srficies de disc	ecoloración in		nos de la mita 1 sana o decola	i de la mitad d	o el material r	a masa rocosa
E E C			NO	U X	*	100	DIR BUZ.	276	95	87	205	201	23	20	280	210	35			ÍNDICE		Deleznable	geologo. P	superficials	No puede : se puede fr	La muestra	Se requier	Solo se ror.			Nin	D Lad		ADA Ne.	Más	Tod	lel.
		ōN	ESTACIC EG = 3/	- C - D	A	Lim	TIPO	F	٦	ſ	٢	ſ	D	0		-	, 「				GKADO	R1		R2	R3	R4	R5	R6		GRADU	I SANA	II LIGERC		III MODER	IV MUY	V DESCOM	V VESUCIE

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

Universidad Nacional del Altiplano

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

199

Universidad Nacional del Altiplano

R

Universidad Nacional del Altiplano

40

Universidad Nacional del Altiplano

REALIZADO POR: FECHA: HOJA:

0	
¥	
Å	
B	
Σ	
B	
9	
Р	
EN	
Σ	
A	
Z	
Ž	
ш	
Ш	
A	
0	
Т	

MAYO

PROYECTO:	REGULACIÓN DEL RÍO PUMA
UBICACIÓN:	MACUSANI – CARABAYA – PI

UNTAS

HASTA

DIRECCIÓN TALUD

ESTE 353 749

NORTE 443

N^g ESTACIÓN

TIPO DE ROCA

COORDENADAS

RAMO DESDE FREC. FRACTURA

DISC./ml.

đ						2	acin	000	N DEL MAN	1021	2000	a wanta osc				
%						>	ALOR		IN DEL IVIAL		5	1-11-11-11-11-11-11-11-11-11-11-11-11-1	_			
98		A METHOR							RANGO DE	VALOF	SES					
96	LAL	MAINIE I KUS							VALOR ES	TIMAD	0					
94	RESIST. CO	OMP. UNIAX. (MPa)	> 250	(15)	-	100-250	(12)	×	50-100 ((-	25-50 (4)		<25 (2);<5 (1);<1 (0)	1);<1 (0)
91		RQD (%)	90 - 100	(20)		75 - 90	(17)		50-75 (1	3)	-	25 - 50 (8)		< 25	(3)	(3)
88	ESPAC	CIAMIENTO (m)	> 2 m	(20)		0.6 m - 2.0 m	(15)		0.2 m - 0.6 m (1	(0	*	0.06 m - 0.2 m (8)		< 0.06 m	(5)	(5)
84		PERSISTENCIA	< 1 m long.	(9)		1-3 m	(4)		3-10m (;	2)	*	10 - 20 m (1)		> 20	(0)	(0)
81		APERTURA	Cerrada	(9)		< 0.1 mm	(2)		0.1 - 1.0 mm (4)		1 – 5 mm (1)	×	> 5 mm	(0)	(0)
77	CONDICION DE	RUGOSIDAD	Muy rugos	a (6)	-	Rugosa	(5)	×	Lig. Rugosa (3)	-	Lisa (1)		Espejo de falla	(0)	(0)
74		RELLENO	Limpia	(9)		Duro < 5 mm	(4)		Duro > 5 mm (;	2)		Suave < 5 mm (1)	×	Suave > 5 mm	(0)	(0)
70		METEORIZACIÓN	Sana	(9)		Lig. Meteor.	(2)	-	Mod. Meteor. (3)	-	Muy Meteor. (1)		Descompuesta	(0)	(0)
99	AGUA	SUBTERRÁNEA	Seco	(15)		Húmedo	(10)	×	Mojado (;	(-	Goteando (4)		Fluyendo (0)		
63				CIVI	TOT O		1						_	le		the state of the s
59				VALU	IN IN	HL KINIK (Dd.	SILOJ						_	unc	a de v	a de valoraci
56																
52					CLA	SE DE MACI.	ZO ROC	OSO (Según RMR Bá	sico)						
49		RMR	100	- 81		- 08	61	-	60 - 41			40 - 21		20-0		
												Contraction of the second second	ĺ			

12

< 1 mn

25

30

OBSERVACIONES

ESPESOR

TIPO

ESPACIAMIENTO

BUZ. (DIP)

DIR BUZ. (DIP DIR)

TIPO STRUC

RELLENO

5 19

VALOR DE RESISTENCIA COMPRESIÓN (MPa)

ÍNDICE DE RESISTENCIA DE LA MATRIZ ROCOSA

GRADO

IDENTIFICACÓN DE CAMPO

Deleznable con golpes firmes con la punta del martillo de geólogo. Puede rasgarse con una navaja. Puede rasgarse con dificultad con una navaja. Se indenta superficialmente con la punta del martillo.

R2 R1

1.5 - 5.0 5.0-25 25 - 50

+	—															
	20 - 0	V MUY MALA					A STATE OF			And the second second			「「「「「「「」」」	With the state of the state	のたいになってい	「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」」」」
	40 - 21	IV MALA		- 00 A]			And the first state	A State of the state of the state		日本の			and the second s		A REAL PROPERTY AND A REAL
(Según RMR Básico)	60 - 41	III REGULAR		EG					A NUMBER OF A	and the second second			a della a	A REAL PROPERTY OF		A DESCRIPTION OF THE PARTY OF T
ASE DE MACIZO ROCOSO	80 - 61	II BUENA								No Scal Bar	The second s	South The and	The way			A DESCRIPTION OF A DESC
J	100 - 81	I MUY BUENA												8.0		
	RMR	RIPCIÓN		Esquisto	Arenisca	Ignimbrita	Riolita	Andesita			Limos	Brecha	Silice			
		DESC													RAS	ſ

57 10

Ξ

13 13 VALORACIÓN

CIA		TIP	O DE ROCA	
(e	Clz	Caliza	Esq	Esquisto
	Ģ	Granito	Arc	Arenisca
	Adm	Adamelita	lgn	Ignimbrit
	Cua	Cuarcita	Rio	Riolita
	Lim	Limolita	And	Andesita
		TIPO	DE RELLENO	
	×o	Óxido		Limos
	Ar	Arena	Bx	Brecha
	Arc	Arcilla	Si	Sílice
		N COLF		
	4	Contraction of the section of the se		Manthe
	2	Didcidsd		Venilla
		1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2		

Ar	Arena	Bx	Brecha
Arc	Arcilla	Si	Sílice
	TIPO DE	ESTRUCTURAS	
٥	Diaclasa	۲	Venilla
ш	Falla	ſ	Junta
IJ	Contacto	ш	Estrato
>	Veta	Fs	Fisura
	ESPA	CIAMIENTO	
Clz		> 2 m	
'n		0.6 m – 2 m	
Adm		0.2 m – 0.6 m	
Cita		0.06 m - 0.7 m	

< 0.06 m

Lim

25 – 50	50 - 100	100 – 250	> 250	N		ligera decoloración sobre	uperficie de discontinuidades. El ue en su condición sana.	desintegrado a un suelo. La o como núcleo rocoso.	ssintegrado en suelo. La roca	o en suelo. La estructura original
puede ser rasgado o pelado con una navaja. El espécimen puede fracturar con un golpe firme del martillo.	muestra se rompe con más de un golpe del martillo.	requiere muchos golpes de picota para fracturar la muestra.	o se rompe esquirlas de la muestra con el martillo	INDICE DE METEORIZACIO	DESCRIPCIÓN	Ningún signo de meteorización en el material rocoso. Quizás superficies de discontinuidades principales.	La decoloración indica meteorización del material rocoso y su material rocoso descolorido extremadamente es más débil q	Menos de la mitad del macizo rocoso está descompuesto y/o roca sana o decolorada se presenta como un marco continuo	Más de la mitad del macizo rocoso está descompuesto y/o de sana o decolorada se presenta como núcleo rocoso.	Todo el material rocoso está descompuesto y/o desintegrado de la masa rocosa aún se conserva intacta.
R3 No	R4 Lar	R5 Sei	R6 Sol	0440	GRADU	I SANA	II LIGERO	III MODERADA	IV MUY ALTERD.	V DESCOMPU.

Universidad Nacional del Altiplano

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

1.8 ANEXO F: PLANOS

- MAPA DE UBICACIÓN CON LA IMAGEN SATELITAL.
- PRESA PUMAMAYO TÚNEL DE DESVIO Y OPERACIÓN PLANTA Y PERFIL LONGITUDINAL.
- PRESA PUMAMAYO TÚNEL DE DESVIO Y OPERACIÓN PORTAL DE ENTRADA – PLANTA Y SECCIONES.
- PRESA PUMAMAYO TÚNEL DE DESVIO Y OPERACIÓN PORTAL DE SALIDA PLANTA Y SECCIÓN.
- PLANO DE INVESTIGACIONES GEOTÉCNICAS PARA INTERPRETACIÓN ZONA PRESA – TÉNEL – ALIVIADERO.

Universidad Nacional del Altiplano

Planos

04_CSL-107700-CT-01 05_CSL-107700-HD-201 06_CSL-107700-HD-203 07_CSL-107700-HD-204 08_CSL-107700-GT-001