

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERÍA AGRÍCOLA ESCUELA PROFESIONAL DE INGENIERÍA AGRÍCOLA

"ANÁLISIS COMPARATIVO DE LOS INDICES DE CALIDAD DE AGUA DE LOS RIOS LAMPA Y CABANILLAS"

TESIS

PRESENTADA POR:

MARCO ANTONIO MONTEAGUDO QUISPE

PARA OPTAR EL TITULO DE: INGENIERO AGRÍCOLA

Puno- Perú

2015

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERÍA AGRÍCOLA

ESCUELA PROFESIONAL DE INGENIERÍA AGRÍCOLA

"ANÁLISIS COMPARATIVO DE LOS INDICES DE CALIDAD DE AGUA DE LOS RIOS LAMPA Y CABANILLAS"

TESIS PRESENTADA POR:

MARCO ANTONIO MONTEAGUDO QUISPE

PARA OPTAR EL TITULO PROFESIONAL DE: INGENIERO AGRÍCOLA

APROBADO POR EL JURADO REVISOR CONFORMADO POR:

	ana das nair na uatro	Dr. Eduardo Flores Condori
PRIMER JURADO	:	M.Sc. Oscar Raúl Mamani Luque
SEGUNDO JURADO	:	M.Se. Yury Hamilton Huapaya Cruz

M.Sc. Roberto Alfaro Alejo

ÁREA: Ingeniería y Tecnología

DIRECTOR DE TESIS

TEMA: Otros temas relacionados a recursos hídricos

LÍNEA: Recursos Hidricos

PRESIDENTE

DEDICATORIA

Dedico esta Tesis a toda mi familia.

Para mis padres Modesto y Máxima; y mi hermana Amparo, por su comprensión y apoyo en momentos buenos y malos. Me han enseñado a encarar las adversidades sin perder nunca la dignidad ni desfallecer en el intento. Me han dado todo lo que soy como persona, mis valores, mis principios, mi perseverancia y mi empeño, y todo ello con una gran dosis de amor y sin pedir nunca nada a cambio.

Para Elizabeth, a ella especialmente le dedico esta Tesis. Por su paciencia, y comprensión, por su empeño, por su fuerza, por su amor, por ser tal y como es, porque la amo con todo el corazón.

Para mi hija Anahí, Mi pequeña preciosa ella es lo mejor que me ha pasado en la vida, y ha venido a este mundo para darme el último empujón para culminar este trabajo. Es sin duda mi referencia para el presente y para el futuro.

AGRADECIMIENTO

Primero agradecer a Dios por haberme permitido llegar hasta esta etapa de mi vida, sé que siempre estás conmigo; agradecer a la Universidad Nacional del Altiplano y en especial a la Facultad de Ingeniería Agrícola que me dieron la oportunidad de formar parte de están gran familia profesional. A los docentes sus conocimientos, sus orientaciones, su manera de trabajar, su persistencia, su paciencia y su motivación han sido fundamentales para mi formación profesional. Habiendo inculcado en mí un sentido de seriedad, responsabilidad y rigor académico sin los cuales no podría tener una formación completa, cada uno a su manera, ha sido capaz de ganarse mi lealtad y admiración, así como sentirme en deuda con ellos por todo lo recibido durante el periodo de tiempo que ha durado mi formación profesional.

Y por último, pero no menos importante, estaré eternamente agradecido a mis dos compañeros, Daniel y Rudy. Para mí son los mejores compañeros que se pueden tener. El ambiente de trabajo en nuestra formación académica fue simplemente perfecto, su visión, motivación y optimismo me han ayudado en momentos muy críticos, los considero mis mejores amigos y estoy orgulloso que ellos también me consideren a mi digno de poseer su amistad. No todo el mundo puede decir lo mismo de sus compañeros de estudio. Soy un hombre afortunado. Para ellos, muchas gracias por todo.

ÍNDICE GENERAL

	Pag.
DEDICATORIA	ii
AGRADECIMIENTO.	iii
ÍNDICE GENERAL	iv
ÍNDICE DE CUADROS	vii
ÍNDICE DE FIGURAS.	viii
ÍNDICE DE ANEXOS.	ix
LISTA DE ABREVIATURAS.	X
RESUMEN	xi
CAPITULO I	
PLANTEAMIENTO DEL PROBLEMA, ANTECEDENTO OBJETIVOS DE LA INVESTIGACIÓN	
1.1. Introducción	1
1.2. Planteamiento del problema	3
1.3. Antecedentes	4
1.4. Justificación	5
1.5. Objetivos	6
1.5.1. Objetivo general	
CAPITULO II	
MARCO TEORICO	7
2.1. Cuenca hidrográfica	7
2.2. Contaminación del agua.	7
2.3. Calidad de agua	8
2.4. Índice de calidad de agua (ICA)	8
2.4.1. Antecedentes del ICA	
2.4.2. Estructura del cálculo de los ICA	
2.4.3. Parámetros que conforman los ICA	
2 4 5 Clasificación de los ICA	21

2.5. Indice de calidad de agua de la fundación nacional de sanidad (ICA-NSF)	23
2.5.1. Parámetros del ICA-NSF	24
2.5.2. Estimación del ICA-NSF	27
2.6. Estándares de calidad	32
2.6.1. Estándares de calidad ambiental para agua	32
2.6.2. Categorías de los estándares de calidad para agua	
2.6.2.1. Categoría 1: Poblacional y recreacional	
2.6.2.2. Categoría 2: Actividades marino costeras	
2.6.2.3. Categoría 3: Riego de vegetales y animales	
2.6.2.4. Categoría 4: Conservación del ambiente acuático	
2.7. Toma de muestras	
2.8. Diagrama de cajas y alambres	37
2.9. Prueba t-student	38
CAPITULO III	
MATERIALES Y METODOS	41
3.1. Área de estudio	41
3.2. Ubicación geográfica	41
3.3. Materiales y equipos	43
3.3.1. Materiales	43
3.3.2. Equipos	43
3.3.3. Indumentaria de protección	44
3.4. Metodología.	44
3.4.1. Planificación de los trabajos.	44
3.4.2. Definición del ámbito de estudio	45
3.4.3. Desplazamiento hacia el ámbito de estudio	
3.4.4. Obtención de información de campo	
3.4.5. Procesamiento de la información.	
3.4.6. Interpretación de resultados	31
CAPITULO IV	
RESULTADOS Y DISCUSION	52
4.1. Río Lampa.	52
4.1.1. Determinación de parámetros	52
4.1.2. Evaluación de parámetros.	52
4.1.3. Índice de calidad de agua.	58

4.1.4. Prueba de hipótesis	59
4.2. Río Cabanillas.	.59
4.2.1. Determinación de parámetros.	59
4.2.2. Evaluación de parámetros	60
4.2.3. Índice de calidad de agua	. 65
4.2.4. Prueba de hipótesis	66
4.3. Comparación de los índices de calidad de los ríos Lampa y Cabanillas	66
4.3.1. Clasificación del índice de calidad de agua y la autoridad nacional del agua.	67
4.3.2. Análisis estadístico	68
CAPITULO V	
CONCLUSIONES	.70
CAPITULO VI	
RECOMENDACIONES	.71
BIBLIOGRAFIA	.72
ANEXOS	78

ÍNDICE DE CUADROS

	Pag.
Cuadro 1. Ventajas y limitaciones del ICA	9
Cuadro 2. Ecuaciones de cálculo empleadas para la determinación de ICA	14
Cuadro 3. Parámetros fisicoquímicos y microbiológicos empleados por diferentes ICA	16
Cuadro 4. Pesos relativos asignados a los parámetros que conforman los ICA	20
Cuadro 5. Clasificación de los ICA	21
Cuadro 6. Pesos relativos para cada parámetro ICA-NSF	29
Cuadro 7. Clasificación Del ICA-NSF Brown.	31
Cuadro 8. Usos del agua según su ICA	32
Cuadro 9. Clasificación de los cuerpos de agua superficiales: Ríos, lagos y	36
lagunas	
Cuadro 10. Clasificación del Rio Lampa y Cabanillas	37
Cuadro 11. Puntos de muestreo del rio Cabanillas	45
Cuadro 12. Puntos de muestreo del río Lampa.	46
Cuadro 13. Parámetros obtenidos del río Lampa.	52
Cuadro 14. Valores del Subíndice (Sub _i) del rio Lampa.	58
Cuadro 15 Índice de calidad de agua (ICA) del rio Lampa	58
Cuadro 16. Prueba de hipótesis en el rio Lampa	59
Cuadro 17. Parámetros obtenidos del Río Cabanillas	60
Cuadro 18. Valores del Subíndice (Sub _i) del rio Cabanillas	65
Cuadro 19. Índice de calidad de agua (ICA) del rio Cabanillas	65
Cuadro 20. Prueba de hipótesis en el rio Cabanillas.	66
Cuadro 21. Comparación de la Clasificación de la calidad de Agua ICA-NSF y	67
ANA	07
Cuadro 22. t-student entre los ríos Lampa y Cabanillas	69

ÍNDICE DE FIGURAS

	Pag.
Figura 1. Rangos de clasificación de los ICA	22
Figura 2. Diagrama de cajas y alambres	38
Figura 3. Grafico t-student	39
Figura 4. Ubicación del área de estudio	42
Figura 5. Valores de pH del Rio Lampa	53
Figura 6. Valores de la temperatura del Río Lampa	53
Figura 7. Valores de la turbiedad del Río Lampa	54
Figura 8. Valores de oxígeno disuelto del Río Lampa	55
Figura 9. Valores de DBO del Río Lampa	55
Figura 10. Valores de Fosfatos del Río Lampa	56
Figura 11. Valores de Nitratos del Río Lampa.	56
Figura 12. Valores de Solidos Disueltos Totales del Río Lampa	57
Figura 13. Valores de las Coliformes Fecales del Río Lampa	57
Figura 14. Valores de pH del Rio Cabanillas	60
Figura 15. Valores de la temperatura del Río Cabanillas	61
Figura 16. Valores de la turbiedad del Río Cabanillas	61
Figura 17. Valores de oxígeno disuelto del Río Cabanillas	62
Figura 18. Valores de DBO del Río Cabanillas	62
Figura 19. Valores de Fosfatos del Río Lampa.	63
Figura 20. Valores de Nitratos del Río Cabanillas	63
Figura 21. Valores de Solidos Disueltos Totales del Río Cabanillas	64
Figura 22. Valores las coliformes fecales del Río Cabanillas	64
Figura 23. Comparativo del Índice de calidad del Agua de los ríos Lampa y	
Cabanillas	68
Figura 24. Prueba t-student rio Lampa y Cabanillas	69

ÍNDICE DE ANEXOS

	Pag.
Anexo 1. Panel Fotográfico	78
Anexo 2. Resultados de Análisis físico-químico y microbiológico	83
Anexo 3. Ficha de ubicación de muestreo.	87
Anexo 4. Ficha de registro de datos de campo	88
Anexo 5. Cadena de custodia	89
Anexo 6. Modelo de etiqueta	91
Anexo 7. Curvas de Índice de Calidad de Agua	92
Anexo 8. Requisitos para toma de muestras de agua y preservación	97
Anexo 9. Estándares de Calidad de Agua (ECA-Agua)	99
Anexo 10. Clasificación de los cuerpos superficiales de agua	104
Anexo 11. Valores críticos de la distribución t de student	110
Anexo 12. Plano de trayectoria y lugar de puntos de muestreo	111

LISTA DE ABREVIATURAS

ANA: Autoridad Nacional del Agua

AWQI: Índice de Aceptabilidad de la Calidad del Agua

CETESB: Compañía de Tecnología de Saneamiento Ambiental

CVC: Corporación Autónoma Regional del Valle (Colombia)

DBO: Demanda Bioquímica de Oxigeno

DQO: Demanda Química de Oxigeno

DWQI: Índice de calidad de agua bebible

ECA: Estándar de Calidad Ambiental

FAO: Organización de las Naciones Unidas para la Agricultura y la

Alimentación

FAU: Unidades de Atenuación de Formazin

HWQI: Índice de Calidad del Agua de la Salud

ICA: Índice de Calidad de Agua

INRENA: Instituto de Reserva Nacional

ISQA: Índice simplificado de calidad de agua (España)

NSF: Fundación Nacional de Sanidad (EE.UU)

OD: Oxígeno Disuelto

OMS: Organización Mundial de la Salud

UNESCO: Organización de las Naciones Unidas para la Educación, la Ciencia y la

Cultura

UWQI: Indice universal de la calidad del agua (Europa)

WQI: Índice de calidad de Agua.

RESUMEN

La vertiente hidrográfica del lago Titicaca, de la cual forma parte los ríos Lampa y Cabanillas, ambos principales afluentes de la cuenca del río Coata, a pesar del enorme potencial hídrico que poseen, no son ajenos a la gran problemática del agua a nivel nacional y mundial. El agua es uno de los recursos más importantes y más amenazados, por lo que la estimación de su calidad y estrategias de conservación son muy importantes. El presente trabajo de investigación, se realizó a lo largo de los ríos Lampa y Cabanillas respectivamente. El objetivo del estudio fue estimar los Índices de Calidad de Agua, con la finalidad de comparar y obtener un instrumento de gestión para la planificación y conservación de ambos ríos. Para la determinación de los Índices de calidad de Agua se utilizó el método de Índices de Calidad de Agua (ICA) de la de la Fundación Nacional de Sanidad de Estados Unidos (NSF), para el análisis físico-químico y microbiológico se tomaron ocho muestras del río Lampa y siete muestras en el río Cabanillas, para evaluar de cada muestra los nueve parámetros como son pH, to, turbidez, oxígeno disuelto, DBO5, fosfatos, nitratos, solidos totales y coliformes fecales, los datos se utilizaron para determinar el Índice correspondiente. Los resultados obtenidos mostraron el Río Lampa presenta un valor de Índice de calidad de agua promedio de 70.16 y el Río Cabanillas 54.14, ambos valores se encuentran dentro de la clasificación de índice de calidad de agua media, cuyas características son muy similares a la clasificación de cuerpos de agua de la Autoridad Nacional del Agua; los parámetros evaluados de ambos ríos se encuentran dentro de los estándares de calidad ambiental para agua; excepto el DBO5 del río Cabanillas cuyos valores sobrepasan los 15mg/L, con un valor mínimo de 16.8 mg/L y máximo de 42.3 mg/L. Al comparar los resultados obtenidos entre ambos ríos, se concluye que los Índices de calidad de agua del río Lampa son estadísticamente significativos a los del río Cabanillas. Se puede concluir que el río Cabanillas presenta mayor impacto a nivel de contaminación.

Palabras claves: Índice de Calidad de Agua, análisis de parámetros, agua superficial.

ABSTRACT

The basin side of Lake Titicaca, which is part the Lampa and Cabanillas rivers, both major tributaries of the river basin Coata, despite the enormous water potential which possess, are not alien to the great problems of water at national and global levels. Water is one of the most important and most threatened resources so the estimation of its quality and conservation strategies are very important. This research work, were performed along the rivers Lampa and Cabanillas respectively. The objective of the study was to estimate the Indices of quality of water, in order to compare and get a management tool for the planning and conservation of both rivers. Method of indexes of quality water (WQI) of the National Sanitation Foundation (NSF) was used for the determination of water quality Indices, to physico-chemical and microbiological analysis eight samples of river Lampa and seven samples in the Cabanillas River, were taken to assess each sample nine parameters such as ph, t°, turbidity, dissolved oxygen, BOD5, phosphates, nitrates, total dissolved solids and fecal coliforms, the data was used to determine the corresponding index. The results showed Rio Lampa presents a value of average 70.16 water quality index and the river Cabanillas 54.14, both values are within the average water quality index classification, whose characteristics are very similar to the classification of the national water authority water bodies; the evaluated parameters of both rivers are within the standards of environmental quality for water; except the BOD5 of the Cabanillas River whose values exceed the 15mg/L, with a minimum of 16.8 mg/L and maximum of 42.3 mg/L. Comparing the results between both rivers, it is concluded that water quality of the river Lampa are statistically significant to the river Cabanillas. It can be concluded that river Cabanillas has greater impact of the level of pollution.

Key words: water quality index, analysis of parameters, surface water.

CAPITULO I

PLANTEAMIENTO DEL PROBLEMA, ANTECEDENTES Y OBJETIVOS DE LA INVESTIGACIÓN

1.1. INTRODUCCIÓN

El recurso agua es, sin duda alguna, vital para la existencia de todos los organismos vivientes, su disponibilidad y su composición química, física y biológica afectan la habilidad de los ambientes acuáticos para sostener la salud de los ecosistemas; no obstante, este valioso recurso se está viendo cada vez más amenazado en la medida que la población humana aumenta y demanda mayor volumen de agua de mejor calidad para propósitos domésticos y actividades económicas que en el corto o largo plazo tienen efectos desastrosos sobre estos. Dada la importancia que la calidad del agua tiene no solo para el medio ambiente sino también para sostener la salud y calidad de vida de las personas se requiere asegurar su protección y apoyar la gestión sostenible (Cano, 2010).

La calidad de aguas superficiales es un tema de discusión en todo el mundo; fundamentalmente porque se ve afectada con la introducción de agentes contaminantes de origen antrópico, cada vez más agresivos y que por su naturaleza química son más difíciles de tratar. Además, el cambio de uso de suelo influye significativamente sobre el paisaje alterando ecosistemas y recursos naturales (Rodríguez & autores, 2002) (Álvarez, et al. 2008).

Para impulsar una gestión adecuada del agua, es fundamental contar con la información necesaria sobre el estado del recurso, ya que de esta manera será posible guiar la toma de decisiones y definir las acciones para promover el uso sostenible del mismo. La evaluación periódica de la calidad del agua permite tomar las acciones de control y mitigación que garanticen el suministro de agua segura para la población. Una herramienta cada vez más utilizada para la evaluación del recurso hídrico son los Índices de Calidad de Agua (ICA). Los ICA surgen como una herramienta simple que expresa la calidad del recurso hídrico

mediante la integración de las mediciones de determinados parámetros de calidad (Torres *et al.* 2009).

En este contexto, el grado de contaminación del agua en la región de Puno, unida a la pobreza de los productores rurales que las habitan, constituyen uno de los problemas socio-ambientales más serios del país. Actualmente, la cuenca de rio Coata presenta sin duda la situación más crítica de la región de Puno, donde los procesos de contaminación, siguen incrementándose. Las causas que originan esta situación, se enmarcan dentro de distintas problemáticas que afectan a la región, como la fragilidad ambiental, los recursos escasos, la pobreza, el mal manejo del suelo y los recursos hídricos.

En este ámbito, la falta de información sobre el tema de la calidad de agua es un problema evidente. El planteamiento de instaurar recursos dirigidos hacia la cuantificación de la calidad de agua, es una necesidad creciente cuyo propósito es facilitar la toma de decisiones, lograr un manejo sustentable del recurso agua, para contribuir a mejorar la calidad de vida de la población.

En función de lo expuesto anteriormente, en esta investigación se realiza el análisis comparativo de los Índices de calidad de agua (ICA) de los ríos Lampa y Cabanillas afluentes principales del rio Coata, mediante la aplicación del método Brown de la National Sanitation Foundation de Estados Unidos (NSF).

1.2. PLANTEAMIENTO DEL PROBLEMA

En las zonas cercanas a los cauces de ríos y las zonas cercanas al Lago Titicaca, el acelerado crecimiento demográfico es uno de los factores desencadenantes de alteraciones del medio acuático, debido a que los desechos vertidos alteran las características propias del vital elemento; la población aledaña a los ríos Lampa y Cabanillas vive principalmente de la agricultura, mientras que en las zonas más alejadas se dedican mayormente a la ganadería por ser zonas con predominancia de pastos naturales y no ser apropiadas para cultivos por los riesgos inherentes al clima (ocurrencia de sequías, heladas y bajas temperaturas). Por consiguiente, el agua superficial en la cuenca de los ríos Cabanillas y Lampa representa un "input" económico de singular importancia para el desarrollo socioeconómico de la Región Puno.

En este ámbito, la falta de información sobre la calidad de agua superficial en Puno es un problema evidente. El planteamiento de instaurar recursos dirigidos hacia la cuantificación del grado de contaminación, es una necesidad creciente cuyo propósito es facilitar la toma de decisiones, siendo una alternativa los Índices de calidad de agua de la Fundación Nacional de Sanidad de EE.UU., con este método se lograra un manejo sustentable del recurso agua y el aumento en la calidad de vida de la población, que basa su economía en este recurso a raíz de este problema que surge la importancia de realizar la investigación, me permitirá responder la siguiente interrogante:

Problema general

¿Cuál es la diferencia de los índices de calidad de agua de los ríos Lampa y Cabanillas?

1.3. ANTECEDENTES

En México se realizó la determinación de los Índices de calidad de agua de los ríos Tecolutla y Cazones, con el método de Brown "WQI" (Water Quality Index) que fue desarrollada por la National Sanitation Foundation de Estados Unidos (NSF), posteriormente se realizó una comparación de los resultados de ambos ríos con la finalidad de distinguir cuál tiene más impacto ambiental utilizando un análisis estadístico. Los Resultados fueron que el rio Tecolutla presenta el mismo índice de calidad de agua en los puntos de muestreo, el ICA lo clasifica como Agua Regular el cual puede ser utilizado para uso Agrícola y para consumo humano requiere tratamiento, el rio cazones presenta el mismo ICA en sus puntos de muestreo, clasificado como Agua Regular, no obstante en un punto de muestreo existe variación en los resultados debido a actividades antropogénicas en el puente cazones de la ciudad de Poza Rica. Aplicando métodos estadísticos se verifica que los índices de calidad de agua de los ríos Tecolutla y Cazones son diferentes (Carrillo y Villalobos, 2011).

En Ecuador se estableció la calidad de agua utilizando el Índice de Calidad de Agua (ICA) de la Fundación Nacional de Sanidad de Estados Unidos (NSF) en los ríos alto andinos Ozogoche, Pichahuiña y Pomacocho (3100 a 3950 msnm) que forman parte del Parque Nacional Sangay en Ecuador, para analizar a futuro el cambio generado por cambios medioambientales y actividades antrópicas. Para el análisis físico-químico y microbiológico se establecieron 6 puntos de monitoreo en el río Ozogoche, 8 en el Río Pichahuiña y 4 en el Pomacocho. Los resultados promedio de nueve parámetros analizados, se utilizaron para determinar el ICA de cada río, determinando que, las tres microcuencas presentan buena calidad. Existen parámetros que muestran mayor variación como sólidos totales, sulfatos y conductividad (Coello *et al.* 2012).

En Honduras se realizó el estudio con el objetivo de caracterizar la calidad del agua subterránea de pozos perforados en el Departamento El Paraíso, Honduras para identificar las posibles fuentes de contaminación. Se realizaron muestreos en 35 pozos perforados en zonas rurales y urbanas. Se adaptaron dos índices de calidad de agua para facilitar la interpretación de los resultados el primero basado en el Índice Canadiense de Calidad de Agua (CWQI) aprobado por el Consulado Canadiense de

Ambiente (CCME), el cual considera el cumplimiento de los parámetros según los estándares de calidad para consumo humano. El segundo se basa en el Índice de Agua Subterránea (GWQI) y que considera el riesgo de cada parámetro a la salud asignándole un peso relativo. No hubo diferencias significativas en calidad entre los pozos ubicados en zonas rurales y urbanas. El cincuenta y siete por ciento de los pozos fueron catalogados como excelentes con base en el GWQI y ninguno con base en el CWQI. Los parámetros que más afectaron la calidad fueron la dureza, la turbidez, el color y las bacterias no termotolerantes (Velasco y Hazel 2012).

En Perú el Instituto Peruano de Energía Nuclear realiza La Investigación en el Rio Rímac, en la cuenca alta (de los 5 200 a los 3 500 msnm), en esta cuenca existe intensa actividad minera, para ello se tomó muestras en 09 puntos, el método que se utilizó para hallar el índice de calidad de agua (ICA) es la British Columbia Ministry of Environment, que fue adoptada por el Canadian Council of Ministers of the Environment, CCME. La calidad del agua del río Rímac en la Cuenca Alta está siendo impactada por las actividades mineras desarrolladas en la zona, donde la calidad del agua no está dentro de los niveles óptimos. La evaluación efectuada con los valores ICA coincide con la realizada por DIGESA, que utiliza los Estándares Nacionales de Calidad Ambiental (ECA) e identifica diferencias entre los puntos de monitoreo, respecto a la calidad del agua. El uso del ICA para la evaluación de la calidad de cursos de agua superficial ha probado ser una herramienta útil, aplicable a un gran número de datos. (Bedregal *et al.* 2010).

1.4. JUSTIFICACION

Uno de los problemas ambientales más serios que se está presentando a nivel mundial es la contaminación de las aguas superficiales, en el Perú específicamente el altiplano de Puno está inmerso en este problema ambiental, la región Puno posee un enorme potencial hídrico, pero hace varios años atrás presenta graves problemas de contaminación de los ríos, debido al desarrollo urbano y a las diferentes actividades antropogénicas, que contraen consigo mayor desequilibrio a los principales cuerpos de agua ya que el impacto directo e indirecto es inevitable, esto ha llevado a acelerar los intensos procesos de contaminación en diferentes cuencas de la región.

El presente trabajo de investigación se justifica desde el punto de vista para conocer la calidad del agua, mediante el método del Índice de calidad de agua de la Fundación Nacional de sanidad de EE.UU. evaluando la calidad de agua con 09 parámetros de los ríos Lampa y Cabanillas, en vista de que resulte un instrumento de gestión para la intervención por los gobiernos locales, regional y nacional en materia de manejo, conservación y restauración de las cuencas afectadas por la contaminación

1.5. OBJETIVOS

1.5.1. Objetivo General

Evaluar la diferencia de los Índices de calidad de Agua de los Ríos
 Cabanillas y Lampa.

1.5.2. Objetivos Específicos

- Evaluar los índices de calidad de agua en los puntos de muestreo del río Lampa.
- Evaluar los índices de calidad de agua en los puntos de muestreo del río Cabanillas.

CAPITULO II MARCO TEORICO

2.1. CUENCA HIDROGRAFICA

Según Vásquez (2000), indica que la cuenca hidrográfica es el área natural o unidad de territorio, delimitada por una divisoria topográfica (divortium aquarium), que capta la precipitación y drena el agua de escorrentía hasta un colector común, denominado río principal.

El área de aguas superficiales o subterráneas, que vierten a una red hidrográfica natural con uno o varios cauces naturales, de caudal continuo o intermitente, las cuales confluyen en un curso mayor, que a su vez, puede desembocar a un río principal, en un deposito natural de agua, en un pantano o directamente al mar, (Moreno y Renner, 2007).

2.2. CONTAMINACION DEL AGUA

El agua se contamina cuando se echan residuos o materiales contaminantes a las fuentes de agua. Puede ser una industria que vierte los desechos de sus procesos químicos al río; puede ser un agricultor que emplea sustancias tóxicas para eliminar plagas o hierbas en sus cultivos; puede ser una persona que deposita basura en los ríos o lagos, y hasta nosotros mismos en nuestras casas cuando arrojamos por el inodoro pinturas, aceites o sustancias venenosas. Es decir, desde las grandes empresas, los agricultores, mineros y a cada uno de nosotros, todas las personas tienen algún grado de responsabilidad en relación con la contaminación. Y si bien es cierto que algunos contaminan más que otros, en realidad, todos somos contaminantes potenciales. Dicho de otro modo, el cuidado y protección de la calidad del agua es responsabilidad de todos (Solsona F., 2002).

2.3. CALIDAD DE AGUA

El término de calidad de agua se refiere al conjunto de parámetros que indican que el agua puede ser usada para diferentes propósitos como doméstico, riego, recreación e industrias. La calidad del agua se define como el conjunto de características del agua que pueden afectar su adaptabilidad a un uso específico, la relación entre esta calidad del agua y las necesidades del usuario. También la calidad del agua se puede definir por sus contenidos de sólidos y gases, ya sea que estén presentes en suspensión o en solución. (Mendoza, 1996)

2.4. INDICE DE CALIDAD DE AGUA (ICA)

La valoración de la calidad del agua puede ser entendida como la evaluación de su naturaleza química, física y biológica en relación con la calidad natural, los efectos humanos y usos posibles (Prat, 1998). Para simplificar la interpretación de los datos de su monitoreo, existen índices de calidad de agua (ICA), los cuales reducen una gran cantidad de parámetros a una expresión simple de fácil interpretación entre técnicos, administradores ambientales y el público en general. La principal diferencia entre unos y otros está en la forma de evaluar los procesos de contaminación y el número de variables tenidas en cuenta en la formulación del índice respectivo (Fernández *et al.*, 2008).

En términos simples, un ICA es un número único que expresa la calidad del recurso hídrico mediante la integración de las mediciones de determinados parámetros de calidad del agua y su uso es cada vez más popular para identificar las tendencias integradas a los cambios en la calidad del agua (Samboni *et al.* 2007).

El Cuadro 1 presenta las principales ventajas y limitaciones de los ICA.

Cuadro 1. Ventajas y limitaciones del ICA

Ventajas	Limitaciones					
 Permiten mostrar la variación espacial y temporal de la calidad del agua. Método simple, conciso y válido para expresar la importancia de los datos generados regularmente en el laboratorio. Útiles en la evaluación de la calidad del agua para usos generales. Permiten a los usuarios una fácil interpretación de los datos. Pueden identificar tendencias de la calidad del agua y áreas problemáticas. Permiten priorizar para evaluaciones de calidad del agua más detalladas. Mejoran la comunicación con el público y aumentan su conciencia sobre las condiciones de calidad del agua. Ayudan en la definición de prioridades con fines de gestión 	 Proporcionan un resumen de los datos. No proporcionan información completa sobre la calidad del agua. No pueden evaluar todos los riesgos presentes en el agua. Pueden ser subjetivos y sesgados en su formulación. No son de aplicación universal debido a las diferentes condiciones ambientales que presentan las cuencas de una región a otra. Se basan en generalizaciones conceptuales que no son de aplicación universal. Algunos científicos y estadísticos tienden a rechazar y criticar su metodología, lo que afecta la credibilidad de los ICA como una herramienta para la gestión. 					
Fuente To	rres <i>et al.</i> (2009)					

Fuente. Torres et al. (2009)

2.4.1. Antecedentes del ICA

La evaluación general de la calidad del agua ha sido objeto de múltiples discusiones en cuanto a su aplicación para la regulación del recurso hídrico en el mundo ya que ésta considera criterios que no siempre garantizan el resultado esperado para regiones con diferentes características. Como consecuencia, muchos países han desarrollado estudios e indicadores tendentes a aplicar criterios de evaluación propios, de tal manera que su aplicabilidad corresponda con sus requerimientos y necesidades.

Los intentos para lograr construir un índice que permita calificar la calidad del agua tienen bastante historia. Existe información de que en Alemania en 1848

ya se realizaban algunos intentos por relacionar la presencia de organismos biológicos con la pureza del agua. En los últimos 130 años, varios países europeos han desarrollado y aplicado diferentes sistemas para clasificar la calidad de las aguas; sin embargo, el desarrollo de ICA basados en el empleo de valores numéricos para asignar una gradación de la calidad en un escala prácticamente continua son relativamente recientes (Behar *et al.* 1997).

Horton (1965) citado por Rodríguez et al. (1997) proponen el uso de ICA para estimar patrones o condiciones de contaminación acuática y son pioneros en la generación de una metodología unificada para su cálculo; sin embargo, el desarrollo e implementación de un ICA de manera formal y demostrada lo hicieron Brown et al. (1970) con el apoyo de la National Sanitation Foundation (NSF), basándose en la estructura del índice de Horton y en el método Delphi para definir los parámetros, pesos ponderados, subíndices y clasificación a ser empleados en el cálculo. La clasificación consideró las características que debe presentar la fuente de captación para su destinación para consumo humano. A pesar de haber sido desarrollado en Estados Unidos, es ampliamente empleado en el mundo y ha sido validado y/o adaptado en diferentes estudios.

En España, Queralt en el año 1982 desarrolló el índice simplificado de calidad del agua (ISQA) para las cuencas de Cataluña, el cual se basó en 5 parámetros fisicoquímicos y planteó una clasificación de la calidad del agua para 6 usos específicos del recurso, entre los cuales se destaca el abastecimiento para consumo humano (Agencia Catalana del Agua, 2003). Dinius (1987) planteó un ICA conformado por 12 parámetros fisicoquímicos y microbiológicos, el cual también se basó en el método Delphi, pero a diferencia del ICA-NSF, cuya clasificación está orientada a aguas a ser empleadas como fuente de captación para consumo humano, considera 5 usos del recurso como son de consumo humano, agricultura, pesca y vida acuática, industrial y recreación.

Los ICA más recientes, cuyo objetivo fundamental es la evaluación de la calidad del agua para consumo humano previo tratamiento, incluyen dentro de su

estructura parámetros fisicoquímicos y microbiológicos directamente relacionados con el nivel de riesgo sanitario presente en el agua.

Montoya *et al.* (1997) plantearon el ICA empleado como herramienta de indicación en el estudio sobre aguas superficiales del Estado de Jalisco-México, conformado por 18 parámetros fisicoquímicos y microbiológicos agrupados en 4 categorías como son cantidad de materia orgánica; materia bacteriológica presente; características físicas y materia orgánica. Este índice considera 9 usos, dentro de los cuales se destaca el abastecimiento público.

En Canadá, el Consejo Canadiense de Ministros de Medio Ambiente desarrolló un ICA orientado inicialmente a la evaluación de la calidad ecológica de las aguas basado en la comparación de los valores de cada parámetro con un punto de referencia, el cual generalmente es obtenido de una norma o guía de calidad del agua (Lumb *et al.* 2006); dada su flexibilidad en los parámetros y el uso de directrices para protección de la vida acuática que emplea, el índice permite evaluar la calidad de las aguas destinadas a consumo humano.

En Brasil, la Compañía de Tecnología de Saneamiento Ambiental (CESTESB, 2006) desarrolló e implementó el ICA de agua cruda para abastecimiento público – IAP como respuesta al aumento en la complejidad de los contaminantes vertidos a las fuentes de agua; su cálculo se realiza mediante el producto de la ponderación de los resultados del índice de calidad de agua (IQA) y el índice de sustancias tóxicas (ISTO), el primero adaptado a partir del ICA de NSF y el segundo desarrollado en el año 2002.

El ISTO complementa el IQA de tal forma que se garantice una evaluación integral del agua a ser destinada al abastecimiento público previo tratamiento; los parámetros que lo conforman son clasificados en tóxicos y organolépticos, y dado el amplio uso de cuerpos lénticos con presencia de cianobacterias, incluye el número de células de cianobacterias, además de pruebas genéticas como el Test de Ames.

Liou et al. (2004) desarrollaron un ICA para aguas superficiales de Taiwán basado en 13 parámetros fisicoquímicos y microbiológicos orientados a evaluar la presencia de materia orgánica, material particulado, sustancias tóxicas y microorganismos.

El Programa de Naciones Unidas para el Medio Ambiente (UNEP) presentó una primera versión de un ICA mundial de agua potable (Drinking Water Quality Index – DWQI) que se aplica a las fuentes de abastecimiento a ser usadas para producir agua potable y que fue desarrollado ante la necesidad de evaluar la situación mundial de las fuentes de captación. La estructura de cálculo es la del ICA - CCME y los parámetros y valores guía para su cálculo se basan en las guías para agua potable de la Organización Mundial de la Salud (OMS).

En Europa se desarrolló el Universal Water Quality Index –UWQI–conformado por 11 parámetros fisicoquímicos y uno microbiológico, con el objetivo de proporcionar un método más sencillo para describir la calidad de las aguas superficiales utilizadas para el abastecimiento de agua potable. El cálculo se basa en las directivas de la Unión Europea para aguas a ser destinadas al consumo humano previo tratamiento, con el fin de facilitar su uso en los diferentes países que la conforman (Boyacioglu, 2007).

En México se adaptó el ICA-NSF a las condiciones específicas del río Cauca, reduciendo el número de parámetros que lo conforman con base en el análisis del comportamiento de éstos en el tiempo y en el espacio y modificando los pesos porcentuales asignados a cada parámetro de acuerdo con su nivel de importancia en la evaluación de la calidad del agua del río Cauca.

Ramírez y Viña (1998) desarrollaron los índices de contaminación –ICO– a partir del análisis de componentes principales (ACP) aplicado a información físicoquímica resultante de diferentes estudios limnológicos relacionados con la industria colombiana del petróleo; estos índices evalúan el nivel de contaminación del agua mediante la agrupación de variables físicoquímicas que denotan la misma condición ambiental. Actualmente existen nueve ICO entre los cuales se destacan el ICO por materia orgánica ICOMO; el ICO por mineralización ICOMI; y el ICO por sólidos ICOSUS.

La Corporación Autónoma Regional del Valle del Cauca y la Universidad del Valle adaptaron el ICAUCA a las condiciones ambientales del río Cauca en el tramo Salvajina – La Virginia, la cual se basó en el comportamiento de la calidad del agua del río en este tramo y en la revisión de diferentes ICA desarrollados a nivel mundial a partir de los cuales se definieron los parámetros, subíndices y ecuaciones a ser considerados en el mismo (CVC y UNIVALLE, 2007).

Finalmente, hay que destacar el trabajo realizado en el 2005 por el grupo de Investigación de Ciencias Naturales en la línea de investigación, valoración y monitoreo de la calidad ambiental de la Universidad de Pamplona, que trabajo el software ICAtest V1.0. (Fernández *et al.*, 2003).

2.4.2. Estructura del cálculo de los ICA

La estructura de cálculo de la mayoría de los ICA se basa en la normalización de los parámetros que los conforman de acuerdo con sus concentraciones, para su posterior ponderación en función de su importancia en la percepción general de la calidad agua; se calcula mediante la integración de las ponderaciones de los parámetros a través de diferentes funciones matemáticas.

Existen dos enfoques para el cálculo como son *i*) el *producto ponderado* en el cual los pesos dan importancia a los puntajes y todos ellos son ponderados de acuerdo a la importancia de los pesos y luego son multiplicados y *ii*) la *suma ponderada*, en la cual cada puntaje es multiplicado por su peso y los productos son sumados para obtener el índice si los pesos son iguales para cada puntaje.

El valor del índice es llamado valor aritmético no ponderado, si la suma de los pesos no es igual, se conoce como valor aritmético de la calidad del agua (Ball & Church, 1980). El cuadro 2 muestra las ecuaciones de cálculo de los ICA, asociados por grupos de acuerdo con el tipo de ecuación utilizada.

Se observa que los ICA-NSF e ICA-Dinius desarrollados en Estados Unidos y aquellos adaptados para ríos de Latinoamérica (CETESB, 2006; Rojas, 1991; CVC y UNIVALLE, 2007) emplean para su cálculo el producto ponderado,

comúnmente conocido como ecuación de tipo multiplicativo. La NSF sugiere el empleo de ecuaciones de tipo multiplicativo ya que son más sensibles que las ecuaciones de tipo aditivo o suma ponderada a valores extremos en los subíndices, asociados generalmente con fuertes variaciones en la calidad del agua, evitando el fenómeno de eclipsamiento que se presenta cuando se calcula un valor satisfactorio aunque el subíndice no lo sea (Fernández *et al.*, 2008).

Cuadro 2. Ecuaciones de cálculo empleadas para la determinación de ICA

Índice	Ecuación	Observaciones
ICA NSF (EU) ICA DINIUS (EU) IQA CETESB (Brasil) ICA Rojas (Colombia) ICAUCA (Colombia)	$ICA_m = \prod_{i=1}^n I_i^{W_i}$	Promedio geométrico ponderado: Wi: peso o porcentaje asignado al i- ésimo parámetro Ii: subíndice de i-ésimo parámetro
CCME-WQI (Canadá) DWQI (EU)	$ICA = 100 - \left[\frac{\sqrt{F_1^1 + F_2^2 + F_3^3}}{1.732} \right]$	El índice incorpora tres elementos: Alcance (F1): porcentaje de parámetros que exceden la norma. Frecuencia (F2): porcentaje de pruebas individuales de cada parámetro que excede la norma. Amplitud (F3): magnitud en la que excede la norma cada parámetro que no cumple
UWQI (Europa)	$UWQI = \sum_{i=1}^{n} W_i I_i$	Promedio aritmético ponderado: Wi: peso o porcentaje asignado al i- ésimo parámetro Ii: subíndice de i-ésimo parámetro
ISQA (España)	ISQA = T(DQO + SS + OD + Cond)	T: Temperatura DQO: Demanda Química de Oxígeno OD: Oxígeno Disuelto Cond: Conductividad SS: Sólidos suspendidos A partir de 2003 el ISQA se empezó a calcular reemplazando la DQO por el carbono orgánico total (COT en mg/l)
IAP (Brasil)	$IAP = ISTO * IQA CETESB ISTO$ $= ST * SO$ $ST = Min - 1(q_1, q_2, q_n) * Min$ $- 2(q_1, q_2, q_n)$ SO $= Media Aritmetica (q_a, q_b, q_n)$	Dónde: IQA: Índice de Calidad del Agua adaptado del ICA NSF para las condiciones de Brasil ISTO: Índice de Sustancias Toxicas y Organolépticas ST: Ponderación de los dos subíndices mínimos más críticos del grupo de sustancias tóxicas SO: Ponderación obtenida a través de la media aritmética de los subíndices del grupo de sustancias organolépticas

Fuente. Torres et al. (2009)

Algunos de los ICA más recientes proponen estructuras de cálculo orientadas a una evaluación más amplia de calidad del agua (variación en el tiempo y el espacio) como CCME-WQI y DWQI, en los cuales se evalúa para un periodo de tiempo determinado el número de parámetros que exceden un punto de referencia, el número de registros que superan este punto y la magnitud en que se supera esta referencia. Estos índices requieren información medida a lo largo de un periodo de tiempo, lo que puede ser favorable principalmente en fuentes con amplias variaciones de calidad en el tiempo.

El UWQI de Europa emplea para una ecuación de tipo aditivo o suma ponderada que es menos sensible a variaciones extremas en la calidad del agua, condición que limita su uso en la evaluación de la calidad del agua en fuentes superficiales sometidas a cambios súbitos y extremos en sus características físicas, químicas y microbiológicas.

El ISQA emplea el producto de la temperatura por la sumatoria de los valores obtenidos mediante ecuaciones que transforman las concentraciones de DQO, sólidos suspendidos, oxígeno disuelto y conductividad en un número adimensional, tal como lo hacen otros ICA.

El IAP es el producto resultante de dos índices (IQA e ISTO), y está conformado por diferentes funciones de agregación; el IQA, al ser una adaptación del ICA-NSF, emplea una ecuación basada en el promedio ponderado y en el caso del ISTO; la ecuación empleada es el producto de la ponderación de los dos subíndices mínimos más críticos del grupo de sustancias tóxicas (ST) por la ponderación obtenida a través de la media aritmética de los subíndices del grupo de sustancias organolépticas (SO).

Es importante considerar que de los ICA mostrados y teniendo en cuenta las características del río Cauca, el índice que se proponga o adapte debe en lo posible considerar la tendencia a cambios en las condiciones extremas de la fuente tal como lo propone la estructura de cálculo de los índices CCME - WQI y DWQI.

2.4.3. Parámetros que conforman los ICA

Los parámetros a ser incluidos en los ICA han estado marcados, desde sus inicios, por la apreciación de expertos, agencias o entidades gubernamentales, que son los que determinan en el ámbito legislativo su importancia al establecerlos como estándares de calidad del agua (Fernández *et al.*, 2008).

Dunnette (1979), recomienda seleccionar los parámetros de las cinco categorías más comúnmente reconocidas como son a nivel de oxígeno, eutrofización, aspectos de salud, características físicas y sustancias disueltas. El cuadro 3 muestra los parámetros empleados en los ICA presentados.

Cuadro 3. Parámetros fisicoquímicos y microbiológicos empleados por diferentes ICA

País		ados nidos	UNEP-	-GEMS	Unión Europea	España	Brasil Co		Brasil Colombia		
Índice	ICA	ICA	DWQI		LIIA/O!	1504	IAP		ICA	1041104	Frec.
Parámetro		Dinius 1987	HWQI 2007	AWQI 2007	UWQI 2007	ISQA 1982	IQA 1975	ISTO 2002	Rojas 1991	ICAUCA 2004	
OD	Х	Х			Х	Х	Х		х	Х	0.70
рН	Х	х		х	х		Х		х	Х	0.70
DBO	Х	Х			Х		Х		х	х	0.60
Nitratos	Х	х	х		х						0.50
Coliformes Fecales	х	Х					х		х	х	0.50
Temperatura	Х	Х				х	Х				0.40
Turbiedad	Х						Х		х	Х	0.40
Sólidos Disueltos Totales	х						х		х	х	0.40
Fósforo Total					х		Х			Х	0.30
Cadmio			х		х			Х			0.30
Mercurio			Х		Х			Х			0.30
Conductividad		х				х					0.20
Sólidos Suspendidos						х				х	0.20
Color		х								Х	0.20
Nitrógeno Total							Х			Х	0.20
Cloruros		х		х							0.20
Plomo			х					Х			0.20
Cromo Total			х					Х			0.20
Arsénico			х		Х						0.20

País		ados nidos	UNEP-	GEMS	Unión Europea	España	Br	asil	Colombia		
Índice	ICA	ICA	DV	VQI			14	4 <i>P</i>	ICA	ICAUCA 2004	Frec.
Parámetro	NSF 1970	Dinius 1987	HWQI 2007	AWQI 2007	UWQI 2007	ISQA 1982	IQA 1975	ISTO 2002	Rojas 1991		
Fluoruro			Х		Х						0.20
Manganeso			х					Х			0.20
Zinc				х				Х			0.20
Coliformes Totales		х			х						0.20
DQO						х					0.10
Alcalinidad		х									0.10
Dureza		Х									0.10
Nitritos			х								0.10
Amoniaco				х							0.10
Fosfatos	Х										0.10
Sodio				х							0.10
Sulfatos				х							0.10
Hierro				х							0.10
Cobre			х								0.10
Boro			Х								0.10
Níquel								Х			0.10
Cianuro					Х						0.10
Selenio					Х						0.10
PFTHM									Х		0.10
Aluminio									х		0.10
Disuelto									_ ^		
Cobre disuelto									Х		0.10
Hierro Disuelto									Х		0.10
СОТ								Х			0.10
Total Parámetros	9	12	1	8	12	5	2	20	6	10	

Fuente. Torres et al. (2009)

En la última columna del cuadro 3 se presenta la frecuencia de uso de cada parámetro en los diez ICA presentados; se observa que los mayormente empleados pertenecen a las categorías recomendadas por Dunnette (1979), y son el oxígeno disuelto y el pH los parámetros de mayor uso (se usan en siete de diez ICA), seguidos en orden decreciente por la DBO, los nitratos y los coliformes fecales, la temperatura, la turbiedad y los sólidos disueltos totales.

Otros parámetros como los metales pesados, los cuales están relacionados con el riesgo químico, son incluidos principalmente en los ICA desarrollados en

los últimos años (DWQI, UWQI e IAP) y cuya evaluación se centra en la destinación del recurso para consumo humano previa potabilización.

Este comportamiento se relaciona con las tendencias actuales en cuanto a la vigilancia de la calidad del agua para consumo humano en la cual, de acuerdo con OMS (1998) se debe dar prioridad a aquellas sustancias que se sabe son de importancia para la salud y que sean conocidas por estar presentes en grandes concentraciones en las fuentes de abastecimiento de agua.

Los parámetros seleccionados en el UWQI son los representativos de la presencia de sustancias químicas en el agua y causantes de impactos sobre la salud y el ambiente, razón por la cual se incluyeron algunos recomendados por las guías de OMS (1998) para monitoreo y evaluación de la calidad química del agua potable. De forma similar fueron seleccionados los parámetros del DWQI, empleándose como criterio de selección las directrices de OMS para calidad de agua potable en las cuales los parámetros son agrupados en dos categorías salud y aceptabilidad, razón por la cual el DWQI se subdivide en dos índices, el ICA Salud (HWQI) y el ICA Aceptación (AWQI), los cuales consideran parámetros relacionados con la problemática a evaluar.

La complejidad de las sustancias químicas que pueden estar presentes en la fuentes de agua está estrechamente relacionada con las actividades socioeconómicas desarrolladas en la cuenca y las características de los suelos que la conforman; sin embargo, existen cuatro parámetros fundamentales en la evaluación de la calidad química del agua que se deben considerar, independiente de otras sustancias químicas seleccionadas de acuerdo con condiciones locales como fluoruro, arsénico, selenio y nitratos por su demostrado efecto perjudicial para la salud (Thompson *et al.* 2007).

En los ICA mostrados en el cuadro 3, fluoruro y arsénico sólo son considerados en DWQI y UWQI, ambos desarrollados teniendo en cuenta las últimas tendencias para la evaluación de la calidad del agua para consumo humano y concebido para ser aplicados a nivel mundial; en el caso del selenio este sólo es considerado en el UWQI.

Con relación a la evaluación del riesgo microbiológico, cinco de los diez ICA presentados emplean como parámetro indicador los coliformes fecales y es un parámetro que prevalece aún en los ICA más recientes. Esta tendencia confirma lo reportado por la OMS (1998) en el sentido que los riesgos microbiológicos siguen siendo la principal preocupación en los países desarrollados y en los países en desarrollo.

En el DWQI, que se encuentra actualmente en revisión, en su primera versión incluye los coliformes fecales, sin embargo, después de analizar su incidencia en el valor final del índice, son excluidos ya que representan más del 75% de dicho valor lo cual, de acuerdo con la UNESCO amerita una revisión detallada de este parámetro y la evaluación de la necesidad de plantear un índice de contaminación microbiológica complementario al DWQI.

En el cuadro 3 también se observa que los ICA adaptados al río Cauca consideran principalmente parámetros relacionados con la presencia de materia orgánica, material particulado y disuelto, nutrientes y patógenos pero no consideran los asociados con la presencia de sustancias tóxicas los cuales, teniendo en cuenta los principales usos del suelo en la cuenca alta del río Cauca (cultivo de caña de azúcar y ganadería extensiva, (CVC, 2007) que se caracterizan por el uso de agroquímicos como fertilizantes y pesticidas), podrían llegar a ser prioritarios en la evaluación de la calidad del agua para consumo humano.

Con relación al número de parámetros empleados, éste varía de un índice a otro; sin embargo, en la cuadro 3 se puede observar que los ICA desarrollados en los últimos años y cuyo principal objetivo es la evaluación del agua a ser destinada para consumo humano previo tratamiento, emplean un mayor número de parámetros principalmente de tipo físicoquímico, asociados a la evaluación del riesgo químico en el agua.

2.4.4. Asignación de pesos a cada parámetro

La asignación de pesos (ponderación) de cada parámetro tiene mucho que ver con la importancia de los usos pretendidos y la incidencia de cada variable en el índice (Fernández *et al.*, 2008).

Cuadro 4. Pesos relativos asignados a los parámetros que conforman los ICA

País	Estado	os Unidos	Unión Europea	Colombia			
Índice	ICA NSF ICA Dinius		UWQI	ICA Rojas	ICAUCA		
Parámetro	1970	1987	2007	1991	2004		
OD	0.17	0.109	0.114	0.25	0.21		
рН	0.11	0.077	0.029	0.17	0.08		
DBO	0.11	0.097	0.057	0.15	0.15		
Nitratos	0.10	0.090	0.086				
Coliformes Fecales	0.16	0.116		0.21	0.16		
Temperatura	0.10	0.077					
Turbiedad	0.08			0.11	0.07		
Sólidos Disueltos Totales	0.07			0.11	0.07		
Fósforo Total			0.057		0.08		
Cadmio			0.086				
Mercurio			0.086				
Conductividad		0.079					
Sólidos Suspendidos					0.05		
Color		0.063			0.05		
Nitrógeno Total					0.08		
Cloruros		0.074					
Arsénico			0.113				
Fluoruro			0.086				
Coliformes Totales			0.114				
DQO		0.090					
Alcalinidad							
Dureza		0.063					
Fosfatos		0.065					
Cianuro	0.10						
Selenio			0.086				
			0.086				

Fuente. Torres et al. (2009)

De acuerdo con Sacha y Espinoza (2001) en el caso de ICA aplicables a aguas superficiales pareciera que el mayor peso debiera ser otorgado a los parámetros OD, DBO, nitratos, sólidos suspendidos y coliformes totales. En el caso de ICA aplicables a fuentes de agua potable debiera otorgarse peso, además, al N-NO₃, color, arsénico y boro. El cuadro 4 presenta los pesos asignados a los

parámetros que conforman los ICA, de acuerdo con el grado de importancia dentro de cada uno de éstos.

Los ICA mostrados en el cuadro 4 son lo que emplean asignación de pesos (W) a cada uno de los parámetros que los conforman; los restantes emplean estructuras de cálculo que no requieren dicha asignación. Con relación al nivel de importancia de cada parámetro de acuerdo con el peso asignado, el oxígeno disuelto y los coliformes fecales tienen un alto grado de importancia, presentando en general los mayores pesos.

2.4.5. Clasificación de los ICA

El valor del ICA permite clasificar el recurso a partir de rangos establecidos que son definidos considerando el o los usos a evaluar. Las categorías, esquemas o escalas de clasificación, son un punto de igual o mayor interés que el cálculo en sí del índice, pues es aquí donde finalmente el valor obtenido es transformado en una característica que define la calidad final del agua (Fernández *et al.*, 2008). En el cuadro 5 y figura 1 se presentan los rangos de clasificación para cada uno de los ICA presentados.

Cuadro 5. Clasificación de los ICA

Cód.	ICA							
	ICA NSF	ICA Dinius	DWQI	UWQI	ISQA	IAP	ICA Rojas	ICAU CA
1	Muy Mala Calidad	Inaceptable su consumo	Pobre	Pobre	No puede usarse	Pésima	Muy Mala	Pésima
2	Mala Calidad	Dudoso para consumo	Marginal	Marginal	Recreación y Refrigeración	Mala	Inade- cuada	Inade- cuada
3	Mediana Calidad	Tto potabilizació n necesario	Regular	Regular	Consumo humano con tratamiento especial, Riego, Industrial	Regular	Acepta- ble	Acep- table
4	Buena Calidad	Dudoso consumo sin Tto	Buena	Buena	Consumo humano con tratamientos convencionales	Buena	Buena	Buena
5	Excelente Calidad	Tto menor requerido	Excelen -te	Excelente	Todos los usos	Optima	Optima	Optima
6	-	No requiere Tto Para consumo	-	-	-	-	-	-

Fuente: Torres et al. (2009)

En el cuadro 5 se observa que, con excepción del ICA Dinius, la generalidad de los ICA presenta 5 rangos de clasificación de calidad del agua los cuales varían de acuerdo con cada índice; sin embargo, los índices IAP, ICA e ICAUCA presentan rangos iguales (Rojas, 1991).

En cuanto a la clasificación de cada rango, ésta generalmente índica el nivel de calidad de la fuente o define los usos para los cuales es apto el recurso con base en la puntuación obtenida en cada ICA.

En general se observa que los rangos codificados con los números 1 y 2 clasifican el agua como de mala calidad la cual, de acuerdo con los ICA que definen usos es inaceptable para consumo humano; a partir del rango 3 hasta el 5, las clasificaciones describen aguas de mediana a excelente calidad, que de acuerdo con las recomendaciones dadas por los ICA que definen usos, requieren de tratamiento cuya complejidad depende del rango; así, a menor calidad mayores requerimientos en el tratamiento del agua.

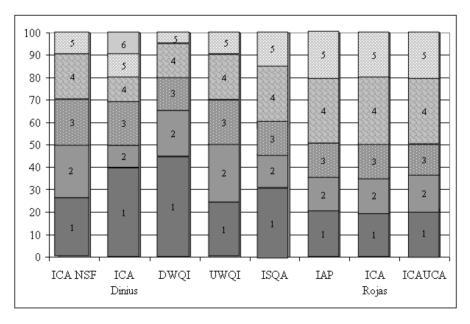


Figura 1. Rangos de clasificación de los ICA

Fuente: Torres et al. (2009)

2.5. INDICE DE CALIDAD DE AGUA DE LA FUNDACION NACIONAL DE SANIDAD (ICA-NSF)

El índice de calidad de agua (ICA) fue desarrollado por la Fundación Nacional de Sanidad (NSF) en 1970. La NSF ICA fue desarrollada para proporcionar un método estandarizado para comparar la calidad de las aguas de varios cuerpos de agua (Brown *et al*, 1970).

Para la determinación de este método se encuestaron a 142 científicos especialistas en calidad del agua quienes representaron un amplio rango a nivel local, estatal y nacional en los Estados Unidos (Brown *et al*, 1970). El proceso para el desarrollo del Índice de Calidad del agua se llevó acabo en las siguientes etapas:

- a. La identificación de factores claves (parámetros biológicos, químicos o físicos) que pueden utilizarse como indicadores de la calidad del agua, basados en el criterio profesional colectivo de personas con conocimientos relativos al medio acuático o al foco de contaminación (Brown et al, 1970). Mediante una serie de cuestionarios, a cada panelista se le pregunto que considerara 35 parámetros de calidad de agua para una posible inclusión en dicho índice. Este número se redujo finalmente a 9 parámetros.
- b. Asignación de los Pesos Relativos o Peso de importancia del Parámetro (wi) correspondientes a los factores de contaminación en aguas. En esta fase se corre el riesgo de introducir cierto grado de subjetividad en la evaluación, pero por otro lado sugiere que es importante una asignación racional y unificada de dichos pesos de acuerdo al uso del agua y de la importancia de los parámetros en relación al riesgo que implique el aumento o disminución de su concentración (Brown et al, 1970). En el caso de asignaciones de Pesos Relativos se identifican cuatro fases:

- El panel de expertos procede a la generación de las ideas que determinan los Pesos Relativos, escribiéndolas en un papel.
- Recolección de las ideas generadas por los participantes en un gráfico, mediante una discusión en serie.
- Discusión de cada idea recogida por el grupo con el fin de proceder a su clarificación y evaluación.
- Votación independiente sobre la prioridad de las ideas, es decir los Pesos Relativos, la decisión del grupo se determina mediante orientación matemática. Para esto se pueden establecer varias metodologías de índices como lo son las curvas funcionales.

Estos datos se promediaron dando origen a curvas que reflejan el criterio profesional de respuestas en una escala (Sub_i) de 0-100.

2.5.1. Parámetros del ICA-NSF

a. Coliformes Fecales

Son los microrganismos coliformes capaces de fermentar la lactosa a 45°C (OMS, 1998). Esta bacteria se encuentra en el excremento humano y de otros animales de sangre caliente entrando al sistema por medio de desecho directo de mamíferos y aves, entre otros (Mitchell *et al.* 1991). También pueden originarse en aguas provenientes de efluentes industriales, materiales vegetales en descomposición y suelos (OMS, 1998). Esta bacteria ocurre de manera natural en el aparato digestivo humano y ayuda en la digestión de los alimentos y por sí sola no es patógena, sin embargo, asociada con otros organismos patógenos, causan complicaciones en la salud humana.

b. Potencial de hidrogeno

Indica las concentraciones de iones de hidrógeno en el agua (Seoánez, 1999). Los cambios de pH en el agua son importantes para muchos organismos, la mayoría de ellos se han adaptado a la vida en el agua con un nivel de pH específico y pueden morir al experimentarse cambios en el pH (Mitchell *et al.* 1991). Ácidos minerales, carbónicos y

otros contribuyen a la acidez del agua (Malina, 1996), provocando que metales pesados puedan liberarse en el agua (Mitchell *et al.* 1991).

c. Demanda bioquímica de oxigeno (DBO 5 días)

Es uno de los parámetros más ampliamente utilizados; es una medida de la cantidad de oxígeno usado por poblaciones microbianas del agua en respuesta a la introducción de material orgánico degradable (Malina, 1996). La materia orgánica se alimenta por las bacterias aeróbicas que requieren oxígeno, en este proceso la materia es degradada y oxidada (Mitchell *et al.* 1991). Esto provoca cambios en la vida acuática, pues mucho del oxígeno disuelto (OD) libre se consume por la bacteria aeróbica, robando a otros organismos acuáticos el oxígeno necesario para vivir, así organismos más tolerantes a niveles bajos de OD pueden aparecer y volverse más numerosos, como la carpa, la larva jején y lombrices de drenaje (Mitchell *et al.* 1991).

d. Nitratos

Son obtenidos a partir de aguas de desecho descargadas directamente y de sistemas sépticos en mal funcionamiento. Estos muchas veces son colocados junto a pozos de agua, pudiendo contaminar el agua subterránea con nitratos, los cuales en niveles altos pueden ocasionar una condición llamada metahemoglobinemia (Mitchell *et al.* 1991). También se han encontrado altos niveles de nitratos en aguas subterráneas debajo de las tierras de cultivo, en las cuales el uso excesivo de fertilizantes pareciera ser la causa, especialmente en áreas de alta irrigación con suelos arenosos (Mitchell *et al.* 1991).

e. Fosfatos

Incluye fosfato orgánico e inorgánico. El fosfato orgánico es parte de las plantas y los animales y se adhiere a materia orgánica compuesta de plantas y animales vivos, ambos son los responsables de la presencia de algas y plantas acuáticas grandes. El exceso de algas ocasiona el "florecimiento de algas" iniciándose así la eutrofización, que no es más

que un enriquecimiento del agua, comúnmente producida por fosfato proveniente de actividades humanas (Mitchell *et al.* 1991).

Cuando las algas mueren, se depositan en el fondo y sirven como alimento para las bacterias; aumentando los procesos aeróbicos de bacterias que consumen demasiado oxígeno afectando a la vida acuática en general (Aguamarket, 2002).

f. Temperatura

Influye en la solubilidad de las sales y los gases, también en la disociación de las sales disueltas y por lo tanto en la conductividad eléctrica y pH del agua (Seoánez, 1999). La temperatura en un río es muy importante ya que afecta las características físicas, biológicas y químicas de un río. Así la cantidad de oxígeno disuelto en el agua, la velocidad de fotosíntesis de algas y plantas acuáticas, la velocidad metabólica de organismos y la sensibilidad de organismos a desechos tóxicos, parásitos y enfermedades, pueden ser afectados (Mitchell *et al.* 1991).

g. Turbidez

Es el resultado de sólidos suspendidos en el agua que reducen la transmisión de luz (Mitchell *et al.* 1991). Estos sólidos suspendidos son variados, así pueden ser arcillas, limos, materia orgánica y plancton y hasta desechos industriales y de drenaje (Seoánez, 1999) En niveles altos de turbidez, el agua pierde la habilidad de apoyar la diversidad de organismos acuáticos, aumenta la temperatura al sostener partículas que absorben el calor de la luz solar y el agua caliente conserva menos oxígeno que el agua fría, así al entrar menos luz disminuye la fotosíntesis necesaria para producir oxígeno. Otro efecto asociado a turbidez es la obstrucción de las agallas de los peces, por los sólidos suspendidos, reducción del crecimiento y la resistencia a las enfermedades, al igual que limita el desarrollo de huevos y larvas (Mitchell *et al.* 1991).

h. Solidos disueltos totales

Es una medida de las sales disueltas en una muestra de agua después de la remoción de sólidos suspendidos; también se define como la cantidad de residuos remanentes después que la evaporación del agua ocurre (Malina, 1996). Es común observarlos en terrenos agrícolas que han sufrido procesos fuertes de escorrentía (Ongley, 1997).

i. Oxígeno disuelto

Este es esencial para el mantenimiento de lagos y ríos saludables, pues la presencia de oxígeno es una señal positiva, mientras que la ausencia indica una fuerte contaminación (Mitchell *et al.* 1991). Es muy importante para mantener la vida acuática en los cuerpos de agua (Malina, 1996). Disminuciones repentinas o graduales en el oxígeno disuelto pueden ocasionar cambios bruscos en el tipo de organismos acuáticos, por ejemplo insectos acuáticos sensibles a un nivel bajo de oxígeno disuelto, pueden ser reducidas sus poblaciones (Mitchell *et al.* 1991).

2.5.2. Estimación del ICA-NSF

El "ICA" adopta para condiciones óptimas un valor máximo determinado de 100, que va disminuyendo con el aumento de la contaminación el curso de agua en estudio.

Las aguas con ICA mayor que 90 son capaces de poseer una alta diversidad de la vida acuática. Además, el agua también sería conveniente para todas las formas de contacto directo con ella.

Las aguas con un ICA de categoría "Regular" tienen generalmente menos diversidad de organismos acuáticos y han aumentado con frecuencia el crecimiento de las algas.

Las aguas con un ICA de categoría "Mala" pueden solamente apoyar una diversidad baja de la vida acuática y están experimentando probablemente problemas con la contaminación.

Las aguas con un ICA que caen en categoría "Muy Mala" pueden solamente poder apoyar un número limitado de las formas acuáticas de la vida, presentan problemas abundantes y normalmente no sería considerado aceptable para las actividades que implican el contacto directo con ella, tal como natación (Fernández y Solano, 2005).

Para determinar el valor del "ICA" en un punto deseado es necesario que se tengan las mediciones de los 9 parámetros implicados en el cálculo del Índice los cuales son Coliformes Fecales, pH, (DBO5), Nitratos, Fosfatos, Cambio de la Temperatura, Turbidez, Sólidos disueltos Totales, Oxígeno disuelto.

La evaluación numérica del "ICA", con técnicas multiplicativas y ponderadas con la asignación de pesos específicos se debe a Brown.

Para calcular el Índice de Brown se puede utilizar una suma lineal ponderada de los subíndices (ICAa) o una función ponderada multiplicativa (ICAm). Estas agregaciones se expresan matemáticamente como sigue:

$$ICA_a = \sum_{i=1}^{9} (Sub_i * w_i)$$

$$ICA_m = \prod_{i=1}^{9} Sub_i^{W_i}$$

Donde:

 W_i : Pesos relativos asignados a cada parámetro (Subi), y ponderados entre 0 y 1, de tal forma que se cumpla que la sumatoria sea igual a uno. Sub_i : Subíndice del parámetro i.

Landwehr y Denninger (1976), demostraron que el cálculo de los "ICA" mediante técnicas multiplicativas es superior a las aritméticas, es decir que son mucho más sensibles a la variación de los parámetros, reflejando con mayor precisión un cambio de calidad. Es por esta razón que la técnica que se aplicará en este estudio es la multiplicativa.

Para determinar el valor del "ICA" es necesario sustituir los datos en la ecuación 2 obteniendo los Sub_i de distintas gráficos de curvas dicho valor se eleva por sus respectivos W_i del se multiplican los 9 resultados obteniendo de esta manera el "ICA".

Cuadro 6. Pesos relativos para cada parámetro ICA-NSF

Subi	W_i
рН	0.11
Temperatura	0.10
Turbidez	0.08
Oxígeno Disuelto	0.17
DBO ₅	0.11
Fosfatos	0.10
Nitratos	0.10
Solidos Disueltos Totales	0.07
Coliformes Fecales	0.16

Fuente: Fernández y Solano, 2005

Para calcular el Sub_i de cada parámetro se realiza mediante curvas funcionales (Ver Anexo 7) siguiendo las siguientes condiciones.

pH:

Si el valor de pH es menor o igual a 2, el Sub_i es igual a 2, si el valor de pH es mayor o igual a 10 el Sub_i es igual a 3. Si el valor esta entre 2 y 10 buscar el valor en el eje de X y proceder a interceptar el valor en el eje Y. El valor encontrado es el Sub_i de pH.

Temperatura:

En el caso de la temperatura para obtener su Sub_i primero se debe calcular la diferencia entre la T° ambiente y la T° muestra. Una vez que se obtiene el valor del diferencial de temperatura y este es mayor de 15°C el Sub_i es igual a 5. Si el valor obtenido es menor de 15°C, se busca el valor en el eje X y se procede a interceptar al valor en el eje de Y. El valor encontrado es el Sub_i de la temperatura.

Turbidez:

Si la turbidez es mayor de 100 (FAU) Unidades de Turbidez de Formazina (1FTU = 1FAU) el Sub_i es igual a 5. Si la turbidez es menor de 100 FTU, buscar el valor en el eje de X e interceptar en el eje Y el valor, lo obtenido es el Sub_i de turbidez.

Oxígeno disuelto (OD):

Si él % de saturación de OD es mayor de 140 % el Sub_i es igual a 50. Si el valor obtenido es menor de 140 % de saturación de OD buscar el valor en el eje de las X y se procede a interceptar al valor en el Y. El valor encontrado es el Sub_i del oxígeno disuelto y se procede (conforme a la formula), a multiplicarlo por su peso relativo asignado (W_i).

Demanda bioquímica de oxigeno (DBO):

Para la DBO₅ si el valor es mayor de 30 mg/L el Sub_i es igual a 2, si es menor se busca en el eje X e interceptar al valor en el eje Y. El valor encontrado es el Sub_i de DBO₅.

Fosfatos:

Si los fosfatos son mayores de 10 mg/L el Sub_i es igual a 2. Si los fosfatos son menores de 10 mg/L buscar en el eje X e interceptar al valor en el eje Y. El valor encontrado es el Sub_i para fosfatos.

Nitratos:

Si los nitratos son mayores de 100 mg/L el Sub_i es igual a 1. Si este no es el caso encontrar el valor en eje de X e interceptar en el eje Y el valor de Sub_i para nitratos.

Sólidos disueltos totales (SDT):

Si los sólidos totales son mayores de 500 mg/L el Sub_i es igual a 20, si es menor, se busca el valor en el eje x e intercepta en el eje Y el valor de Sub_i, y este será el Sub_i de los sólidos totales.

Coliformes fecales:

Si los coliformes fecales son mayores de 100,000 NMP/L el Sub_i es igual a 3. Si el valor es menor de 100,000 Colonias/100mL, buscar el valor en el eje X e interceptar al valor del eje Y. El valor obtenido es el Sub_i de coliformes fecales, se continúa con multiplicarlo con su valor asignado de W_i.

Finalmente el valor obtenido de la función ponderada multiplicativa se interpreta mediante la clasificación del ICA propuesta por Brown ver Cuadro 7

Cuadro 7. Clasificación Del ICA-NSF Brown

RANGO	COLOR
Excelente: 91-100	
Buena: 71-90	
Media: 51-70	
Mala: 26-50	
Muy Mala: 0-25	

Fuente. Fernández y Solano 2005

Con la clasificación del índice de calidad de agua se determina el uso que se le puede dar para agua potable, uso agrícola, pesca y vida acuática, uso industrial y recreativo, ver Cuadro 8.

Cuadro 8. Usos del agua según su ICA

			USOS				
ICA	AGUA POTABLE	AGRICOLA	PESCA Y VIDA ACUATICA	INDUSTRIAL	RECREATIVO		
91-100	No requiere purificación para consumo	No requiere purificación para riego	Pesca y vida acuática abundante	No se requiere purificación	Cualquier tipo de deporte acuático		
71-90	Purificación menor para cultivos que requieran de alta calidad de agua Purificación menor para industrias que requieran alta calidad de agua Purificación menor para industrias que requieran alta calidad de agua para operación		Pesca y vida industrias que acuática requieran alta abundante calidad de agua para		menor para cultivos que requieran de alta calidad Pesca y vida acuática abundante		Cualquier tipo de deporte acuático
51-70	Tratamiento potabilizador necesario	Utilizable en mayoría de cultivos	Límite para peces muy sensitivos y dudosa la pesca sin riesgos de salud.	No requiere tratamiento para mayoría de industrias de operación normal	Restringir los deportes de inmersión, precaución si se ingiere dada la posibilidad de presencia de bacterias		
26-50	Inaceptable para consumo	Uso solo en cultivos muy resistentes o tratamiento necesario para la mayoría de los cultivos	Vida acuática limitada a especies muy resistentes e inaceptable para actividad pesquera	Tratamiento para mayoría de usos	Dudosa para contacto con el agua. Evitar contacto		
0-25	Inaceptable para consumo	Inaceptable para riego	Inaceptable para vida acuática	Inaceptable para cualquier industria	Contaminación visible, evitar cercanía. Inaceptable para recreación		

Fuente: Fernández y Solano, 2005

2.6. ESTANDARES DE CALIDAD

2.6.1. Estándares de calidad ambiental para Agua

El Decreto Supremo N° 002-2008-MINAM establece los estándares de calidad de ambiental para el agua en la República del Perú, con el objetivo de establecer el nivel de concentración o el grado de

elementos, sustancias o parámetros físicos, químicos y biológicos presentes en el agua, en su condición de cuerpo receptor y componente básico de los ecosistemas acuáticos, que no representa riesgo significativo para la salud de las personas ni para el ambiente. Los Estándares aprobados son aplicables a los cuerpos de agua del territorio nacional en su estado natural y son obligatorios en el diseño de las normas legales y las políticas públicas siendo un referente obligatorio en el diseño y aplicación de todos los instrumentos de gestión ambiental (Ver especificaciones en Anexo 9).

2.6.2. Categorías de los estándares de calidad ambiental para agua

En el Decreto Supremo N° 023-2009-MINAM se aprueban disposiciones para la implementación de los Estándares Nacionales de Calidad Ambiental (ECA) para Agua, los cuales se clasificación en las siguientes categorías:

2.6.2.1. Categoría 1: Poblacional y recreacional

a) Sub Categoría A.

Aguas superficiales destinadas a la producción de agua potable

- A1. Aguas que pueden ser potabilizadas con desinfección:
 Entiéndase como aquellas destinadas al abastecimiento de agua para consumo humano con desinfección, de conformidad con la normativa vigente.
 - A2. Aguas que pueden ser potabilizadas con tratamiento convencional: Entiéndase como aquellas destinadas al abastecimiento de agua para consumo humano con tratamiento convencional, que puede estar conformado para los siguientes procesos como decantación, coagulación, floculación, sedimentación, y/o filtración, o métodos equivalentes; edemas de la desinfección de conformidad con lo señalado en la normativa vigente.
 - A3. Aguas que pueden ser potabilizadas con tratamiento avanzado: Entiéndase como aquellas destinadas al abastecimiento de agua para consumo humane que incluya tratamiento físico y

químico avanzado como prefloración micro filtración, ultra filtración, nanofiltración, carbón activado osmosis inversa o método equivalente que sea establecido por el Sector competente.

b) Sub Categoría B: Aguas superficiales destinadas para recreación

- **B1.** Contacto primario: Aguas superficiales destinadas al uso recreativo de contacto primario por la Autoridad de Salud, incluyen actividades como natación, esquí acuático, buceo libre, surf, canotaje, navegación en tabla a vela, moto acuática, pesca submarina, o similares.
- B2. Contacto secundario: Aguas superficiales destinadas al uso recreativo de contacto secundario por la Autoridad de Salud, como deportes acuáticos con botes. lanchas o similares.

2.6.2.2. Categoría 2: Actividades Marino Costeras.

- a) Sub Categoría C1. Extracción y cultivo de moluscos bivalvos: Entiéndase a las aguas donde se extraen o cultivan los moluscos bivalves, definiéndose par moluscos bivalvos a los lamelibranquios que se alimentan par filtración, tales como ostras, almejas. choros, navajas, machas, conchas de abanico, palabritas, mejillones y similares se incluyen a los gasterópodos (ej. caracol, lapa), equinodermos (estrella de mar) y tunicados.
 - b) Sub Categoría C2. Extracción y cultivo de otras especies hidrobiológicas: Entiéndase a las aguas destinadas a la extracción 0 cultivo de otras especies hidrobiológicas para el consumo humano directo e Indirecto comprende a los peces y las algas comestibles.
- c) Sub Categoría C3. Otras actividades: Entiéndase a las aguas destinadas para actividades diferentes a las precisadas en las subcategorías C1 y C2, tales como transite comercial marítimo, infraestructura marina portuaria y de actividades industriales.

2.6.2.3. Categoría 3: Riego de vegetales y bebida de animales

a) Vegetales de tallo bajo: Entiéndase como aguas utilizadas para el riego de plantas, frecuentemente de porte herbáceo y de poca longitud

de tallo que usualmente tienen un sistema radicular difuso o fibroso y poco profundo. Ejemplos: ajo, lechuga. fresa, col, repollo, apio, arvejas y similares.

- **b)** Vegetales de tallo alto: Entiéndase como aguas utilizadas para el riego de plantas, de porte arbustivo o arbóreo que tienen una mayor longitud de tallo. Ejemplos: arboles forestales, árboles frutales, entre otros.
- c) Bebida de animales: Entiéndase como aguas utilizadas para bebida de animales mayores como ganado vacuno, ovino, porcino, equino o camélido, y para animales menares como ganado caprino, cuyes, aves y conejos.

2.6.2.4. Categoría 4: Conservación del ambiente acuático

Están referidos a aquellos cuerpos de agua superficiales, cuyas características requieren ser preservadas para formar parte de ecosistemas frágiles o áreas naturales protegidas y sus zonas de amortiguamiento.

- a) Lagunas y lagos: Comprenden todas las aguas que no presentan corriente continua, corresponde a aguas en estado lentico, incluyendo humedales.
- **b) Ríos:** Incluyen todas las aguas que se mueven continuamente en una misma dirección. Existe por consiguiente un movimiento definido y de avance irreversible; corresponde a aguas en estado lótico.
 - Ríos de la costa y sierra: Entiéndase como aquellos ríos y sus afluentes, comprendidos en la vertiente hidrográfica del Pacifico y del Titicaca, y en la vertiente oriental de la cordillera de los Andes.
 - Ríos de la selva: Entiéndase como aquellos ríos y sus afluentes, comprendidos en la vertiente oriental de la cordillera de los Andes; en las zonas meandricas.

c) Ecosistemas Marino Costeros:

- Estuarios: Entiéndase como zonas donde el agua de mar ingresa en valles o cauces de ríos, hasta el límite superior del nivel de marea; incluye marismas y manglares.
- Marinos: Entiéndase como zona del mar, comprendida desde los 500 m de la línea paralela de baja marea hasta el límite marítima

nacional, precísese que no se encuentran comprendidas dentro de las categorías señaladas, las aguas marinas con fines de potabilización, las aguas subterráneas, las aguas de origen minero-medicinal, aguas geotermales, aguas atmosféricas; y las aguas residuales tratadas para reuso.

En el Cuadro 9 se presenta la clasificación de las aguas superficiales, cinco clases, según las características de cada fuente o cada tramo de la unidad hidrográfica. Asimismo se indica para cada clase las categorías que corresponden a los Estándares de Calidad Ambiental (ECA) del agua.

Cuadro 9. Clasificación de los cuerpos de agua superficiales: Ríos, lagos y lagunas

CLASE (Basado en los ECA AGUA)	Categoría	Descripción de la Categoría	Tipo de Uso
Clase Especial	Categoría 4	Según las fuentes sean de la costa, sierra y selva.	Primario
Clase 1	Categoría 1-A	Aguas superficiales destinadas a la producción de agua potable: que puedan ser potabilizadas con simple desinfección	Todos los usos productivos, el uso poblacional con simple desinfección.
Clase 2	Categoría 1-A2	Aguas superficiales destinadas a la producción de agua potable: que puedan ser potabilizadas con tratamiento convencional	Todos los usos productivos, restringido para uso recreativo de contacto primario, el uso poblacional con tratamiento convencional.
Clase 3	Categoría 3	Referido a riego de vegetales tallo bajo y alto	Todos los usos productivos, restringido para uso recreativo de contacto primario, el uso poblacional con tratamiento convencional.
Clase 4	Categoría 1-A3	Aguas superficiales destinadas a la producción de agua potable con tratamiento avanzado	Todos los usos productivos, restringido para uso recreativo, el uso poblacional con tratamiento avanzado.

FUENTE: Autoridad Nacional del Agua

La Autoridad Nacional del Agua (ANA), mediante Resolución Jefatural N° 202-2010-ANA aprueba la clasificación de cuerpos de agua superficiales marino-costeros (ver Anexo 10). En la cual los ríos Lampa y Cabanillas pertenecen a la categoría 3 y clase 3, ver Cuadro 10.

Cuadro 10. Clasificación del Rio Lampa y Cabanillas

Cuerpo de Agua	Categoría	Clase	Cuenca
Río Lampa	Categoría 3	Clase 3	Lampa
Río Cabanillas	Categoría 3	Clase 3	Medio Bajo Coata

FUENTE: Autoridad Nacional del Agua

2.7. TOMA DE MUESTRAS

Para la realización de toma de muestras se tiene el Protocolo Nacional de Monitoreo de la Calidad en Cuerpos Naturales de Agua Superficial de la Autoridad Nacional del Agua (ANA), que permite estandarizar el procedimiento y criterios técnicos, para establecer parámetros de evaluación, puntos de monitoreo, toma de muestras, preservación, conservación, transporte de muestras y el aseguramiento de la calidad del desarrollo del monitoreo de los cuerpos naturales de agua superficial en el Perú. Este protocolo será de obligatorio cumplimiento para todas las instituciones públicas y privadas que realicen actividades relacionadas con los recursos hídricos (uso, vertimiento, reuso).

2.8. Diagrama de caja y alambres

Un diagrama de caja es un gráfico, basado en cuartiles, mediante el cual se visualiza un conjunto de datos. Está compuesto por un rectángulo, la "caja", y dos brazos, los "bigotes".

Es un gráfico que suministra información sobre los valores mínimo y máximo, los cuartiles Q1, Q2 o mediana y Q3, y sobre la existencia de valores atípicos y la simetría de la distribución.

Es la representación gráfica, basada en cuartiles, que ayuda a exhibir un conjunto de datos. Para construir un diagrama de caja, solo se necesita cinco estadísticos: el valor mínimo, Q1 (cuartel 1), la mediana, Q3 (cuartel 3) y el valor máximo.

Proporcionan una visión general de la simetría de la distribución de los datos; si la mediana no está en el centro del rectángulo, la distribución no es simétrica. Son útiles para ver la presencia de valores atípicos.

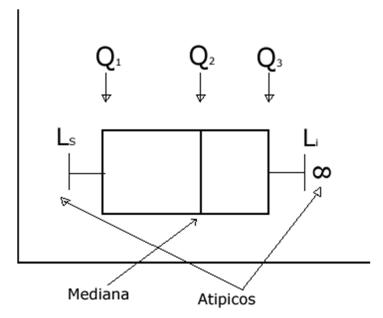


Figura 2. Diagrama de caja y alambres

2.9. PRUEBA t-student

Muchos fenómenos observados en la realidad tienen distribuciones de frecuencias relativas, que se pueden representar en forma adecuada mediante una normal; en tal caso las variables aleatorias que conforman la muestra tendrán como función de densidad a la distribución normal.

La distribución muestral *t*, conocida también como t de Student, tiene una gran importancia en los procesos de inferencia, que involucran a la media poblacional µ cuando el tamaño de muestra es menor que 30.

Cuando se tiene una muestra aleatoria $y_1, y_2, ..., y_n$ proveniente de una población normal con media μ y varianza σ^2 , se sabe que $\frac{y-\mu}{\sigma/\sqrt{n}}$ se distribuye exactamente, como una población normal estándar. Este resultado puede servir de base para estimar mediante un intervalo a la media μ , el único inconveniente es que, en la mayoría de los casos, el valor de σ es desconocido.

Una alternativa para subsanar esta limitante consiste en substituir a σ por la desviación estándar muestral s, en cuyo caso la variable aleatoria $\frac{y-\mu}{\sigma/\sqrt{n}}$ se

distribuye como una t con (n-1) grados de libertad. La gráfica de densidad de t es bastante similar a la normal estándar ya que es simétrica con respecto al eje Y (fig. 3)

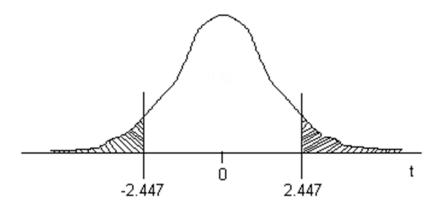


Figura 3. Grafico t-student

Para valores mayores de 30 la función de densidad t se aproxima tanto a la función de densidad normal, que las tablas que proporcionan valores y áreas para la distribución t solo calculan para valores de n menores de 30. Para valores mayores de 30 se emplean las tablas de la normal estándar.

Las tablas permiten obtener valores $t_{n,\alpha}$ tales que $P(Y > t_{n,\alpha}) = \alpha$, para una variable aleatoria Y que se distribuya como t con n grados de libertad.

Si x y s² son la media muestral y la varianza muestral para una muestra de tamaño n, obtenida de una población normal con media μ y varianza σ^2 entonces la variable aleatoria t-student se define como:

$$t = \frac{\bar{x} - \mu}{s / \sqrt{n}}$$

Cuando se desea comparar dos poblaciones a través de sus medias, se hace referencia al resultado que se indica a continuación:

Si y_i y S^2 son la media y la varianza muestral de una muestra de tamaño n_i , obtenida de una población normal estándar, para i=1, 2 y si ambas poblaciones tienen media μ_1 y μ_2 , respectivamente, y la misma varianza σ^2 , entonces la variable aleatoria t-student se determina como sigue:

TESIS UNA - PUNO

$$t = \frac{(\bar{y}_1 - \bar{y}_2) - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Donde Sp es una desviación estándar muestral ponderada, que hace uso de los datos de las dos muestras, para estimar su valor, se hace uso de la fórmula a partir de:

$$S_{p}^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}$$

CAPITULO III MATERIALES Y METODOS

3.1. ÁREA DE ESTUDIO

Las cuencas de los ríos Cabanillas y Lampa componen la cuenca del río Coata. El área de investigación está representada por los ríos Cabanillas y Lampa, que a su vez forman la cuenca del Río Coata, el cual desemboca en el Lago Titicaca esta forma parte de la vertiente de la cuenca hidrográfica del Lago Titicaca. Se caracteriza como un sistema de cuenca endorreica, ubicada entre las provincias de San Román, Lampa, Huancané y Puno en el Departamento de Puno.

La longitud de cauce más largo de la Cuenca Cabanillas es de 131.37 Km, y del rio Lampa es de 101.44 Km; la longitud del río Coata desde la confluencia – Lago Titicaca es de 57.20 Km (INRENA, 2007).

La cuenca del río Coata (Cuencas de los ríos Cabanillas y Lampa) presenta la siguiente ubicación geográfica, política y administrativa:

3.2. UBICACION GEOGRAFICA

Coordenadas Geográficas:

Latitud Sur : 15°06'36'' - 15°55'12''

Longitud Oeste : 71°12'00'' - 69°55'12''

Coordenadas UTM (WGS84)

Norte: 8'328,509 – 8'239,696

Este: 282,907 – 401,525

Variación Altitudinal: 3,800 - 5,300 m.s.n.m.

Límites Hidrográficos:

Norte: Cuenca Ramis.

Sur : Cuenca Illpa y cuenca Alto Tambo.

Este : Lago Titicaca.

Oeste: Cuenca Chili y cuenca Colca Siguas.

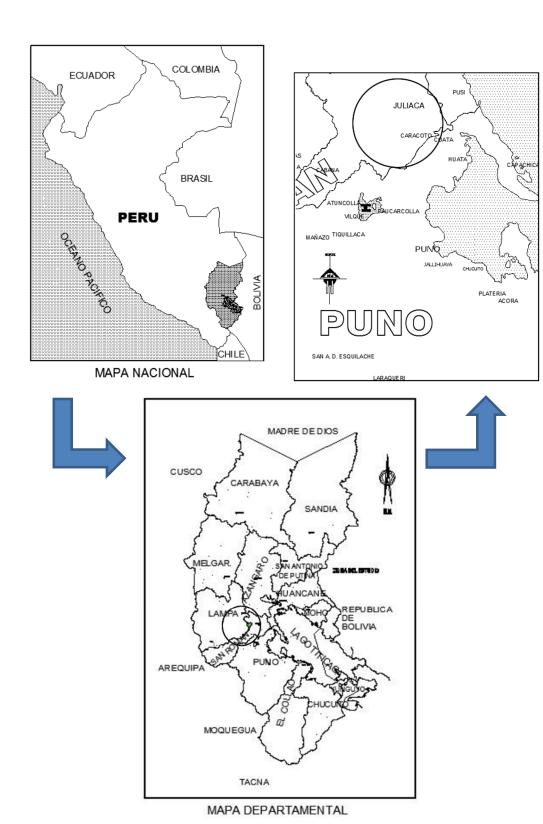


Figura 4. Ubicación del área de estudio

3.3. MATERIALES Y EQUIPOS

Los materiales y equipos utilizados para la obtención de información de campo y procesamiento de datos para el presente trabajo de investigación son los siguientes:

3.3.1. Materiales

- 01 Carta Nacional 1/100,000
- 02 millares de papel bond A-4 de 80 gr
- Lapicero, lápiz
- Tablero
- Fichas de registro de campo
- Libreta de campo
- Etiqueta de identificación de frascos
- Cadena de custodia
- Balde transparente
- Cinta adhesiva
- Plumón indeleble
- Envases de polietileno
- Envases de vidrio
- Guantes descartables
- Coolers

3.3.2. Equipos

- 01 Laptop
- Impresora de inyección a tinta HP 1026
- 01 Scanner
- 01 Usb
- 01 GPS
- Medidor Multímetro (pH, TDS, OD, T° CE)
- 01 Cámara Fotográfica
- 01 Unidad de transporte: camioneta

3.3.3. Indumentaria de protección

- Zapato de seguridad
- Pantalón
- Polo de manga larga y/o corta
- Casaca
- Chaleco
- Lentes
- Casco
- Gorra
- Botas de jebe

3.4. METODOLOGIA

Para la evaluación los Índices de calidad de agua de los ríos Lampa y Cabanillas, se realizó mediante toma de muestras a lo largo de los respectivos cauces, y su posterior análisis de laboratorio.

Planificación de los trabajos en función a los objetivos trazados

- Planificación de los trabajos
- Definición del Ámbito de Estudio
- Desplazamiento hacia el Ámbito de Estudio
- Obtención de información de campo, (Reconocimiento y ubicación, acondicionamiento, medición de parámetros y registro de información, toma de muestras)
- Procesamiento de información
- Interpretación de resultados

3.4.1 Planificación de los Trabajos

Para el desarrollo de la planificación de estrategias, planes, cronograma, metodología y criterios de optimización de los recursos se consideró los siguientes aspectos:

- > El ámbito o amplitud del terreno en estudio
- El tiempo establecidos para lograr los trabajos programados
- > Factores climáticos

Disponibilidad de equipos de medición y laboratorio para el análisis de los parámetros de agua.

3.4.2 Definición del Ámbito de Estudio

Es uno de los procedimientos más importantes: se definió los lugares de puntos de muestreo en los ríos Lampa y Cabanillas, donde se encuentran asentadas poblaciones.

La programación de trabajo se efectúa teniendo en cuenta el centro de base los laboratorios de Microbiología y laboratorio de Aguas y Suelos de la Universidad Nacional del Altiplano de Puno, en donde se realizó los análisis de laboratorio. Se definieron los puntos de muestreo del rio Lampa y Cabanillas como se observa en el plano (Ver Anexo 12).

3.4.3 Desplazamiento hacia el Ámbito de Estudio

El trabajo de desplazamiento fue fundamentalmente un trabajo de campo, que consistió en identificar los lugares de punto de muestreo, teniendo en cuenta los lugares, donde existe predominancia de actividades antropogénicas. Finalmente se procedió a tomar 08 muestras del río Lampa y 07 muestras del río Cabanillas.

Cuadro 11. Puntos de muestreo del rio Cabanillas.

Pto.	Coorde	nadas UTM	Lugar de Referencia
	Este	Norte	,
C1	331309	8265361	Rio Cabanillas - Santa Lucia
C2	331276	8265329	Rio Compuerta - Santa Lucia
C3	331612	8265113	Rio Compuerta Unión Rio Cabanillas
C4	338231	8265922	Puente Maravillas
C5	347455	8266154	Centro poblado Taye Taye
C6	356026	8271230	Cabanillas
C7	371694	8291206	Rio Cabanillas Puente Unocollo - Juliaca

Fuente: Datos obtenidos por el ejecutor.

Cuadro 12. Puntos de muestreo del río Lampa.

Pto.	Coorden	adas UTM	Lugar de Referencia
	Este	Norte	
L1	322484	8320150	Puente - Vila Vila
L2	329504	8314987	Rio Lampa – Palca
L3	328940	8314800	Rio Palca - Palca
L4	328922	8314823	Rio Vila Vila - Palca
L5	334997	8312819	Centro Poblado Chullunquiani
L6	340955	8311635	Centro Poblado Rivera Coilata
L7	353384	8299970	Puente Lampa - Lampa
L8	369868	8292657	Rio Lampa Puente Unocollo - Juliaca

Fuente: Datos obtenidos por el ejecutor.

3.4.4 Obtención de información de campo

a) Reconocimiento y ubicación de punto de muestreo

- Se realizó la descripción de las características del entorno al cuerpo natural del agua donde se realizó la toma de muestra de agua (Observando presencia de residuos, vegetación acuática, actividades humanas, presencia de animales, y otros factores que modifiquen las características naturales del medio ambiente).
- Se tomó lectura de las coordenadas de ubicación del punto de muestreo con un GPS en el sistema de coordenadas de geográficas UTM – WGS84.
- Se realizó la descripción precisa del punto de muestreo, registrándolo en la ficha de ubicación (ver Anexo 3).

b) Acondicionamiento

- Se procedió a preparar los envases a utilizar en el muestreo de acuerdo con los parámetros a evaluar.
- Las muestras de agua fueron recolectadas y preservadas teniendo en cuenta cada uno de los parámetros considerados, para ello se

siguió las instrucciones generales de preservación, etiquetado, embalaje y transporte de las muestras (Ver Anexo 8).

- Para el rotulado de frascos se utilizó plumón de tinta indeleble y se cubrió la etiqueta, con cinta adhesiva transparente.
- Las muestras de agua recolectada, preservadas y rotuladas, se colocaron en un cooler refrigerante, asegurando así su llegada al laboratorio en condiciones de conservación, en el caso de frascos de vidrios se utilizó bolsas de poli burbujas para evitar roturas.

c) Medición de parámetros de campo y registro de información

Para que la información obtenida de la medición de parámetros insitu pH, temperatura, oxígeno disuelto y solidos disueltos totales, reflejen las condiciones reales del agua se requirió:

- La verificación de la calibración de los equipos portátiles (multímetro, GPS, pH-metro), antes del inicio del trabajo, de acuerdo a las especificaciones del fabricante.
- Antes de realizar las mediciones, se procedió a enjuagar los electrodos con la muestra de agua, estando el equipo apagado, luego se realizó la medición, agitando ligeramente el electrodo, dejando estabilizar la lectura y registrando el resultado de la medición.
- Generalmente se realizaron las mediciones directamente en el cuerpo de agua y algunas se realizaron en un balde transparente limpio, debido a que las condiciones no lo permitían, priorizando la medición de oxígeno disuelto.
- La información recabada en la medición de parámetros de campo, así como la ubicación y descripción del punto de

muestreo, se ingresó en el Registro de datos de campo (Ver Anexo 4).

d) Toma de muestras

La toma de cada muestra de agua se realizaron con guantes descartables que fueron desechados luego de culminado el muestreo en cada punto.

Para la toma muestras se evitó en lo posible áreas de turbulencia excesiva, considerando las profundidades y accesos con pendiente pronunciada.

Para la toma de muestra se Utilizaron frascos de plástico y vidrio con cierre hermético, limpios y de primer uso.

- Parámetros Microbiológicos: Se utilizaron frascos de vidrio esterilizados y se abrieron solo al momento del muestreo, evitando tocar el interior de la botella o la cara interna de la tapa, se dejó una proporción del recipiente sin llenas (¼ aproximadamente), de manera que el aire contenido en esa zona asegure un adecuado suministro de oxígeno para los microorganismos, manteniendo en un cooler y luego fue trasladado al laboratorio para su respectivo análisis.
- Parámetros Inorgánicos: Se enjuagaron los frascos con el agua del punto de muestreo con la finalidad de eliminar posibles sustancias existente en su interior, agitando y desechando el aguade lavado corriente abajo. Las muestras se tomaron en contra de la corriente con ángulo apropiado para el ingreso del agua.
- **Parámetros Orgánicos:** En este caso para la Demanda Bioquímica de Oxigeno (DBO₅) se llenaron los frascos completamente sin (burbujas de aire) para evitar alteración de los resultados por procesos de oxidación.

e) Preservación

En este caso para la determinación de los parámetros necesarios para la investigación, las muestras solo necesitan refrigeración (Ver Anexo 8).

f) Etiquetado y rotulado de las muestras de agua

Los frascos fueron etiquetados y rotulados, con letra clara y legible, luego fue protegida con cinta adhesiva transparente, conteniendo la siguiente información:

- Numero de muestra (referido al orden de toma de la muestra).
- Código de identificación (red de monitoreo y punto de control).
- Tipo de muestra de agua.
- Descripción del punto de muestreo.
- Fecha y hora de la toma de la muestra.
- Preservación realizada, tipo de reactivo de preservación utilizado.
- Tipo de análisis requerido
- Nombre del responsable del muestreo

El modelo de la etiqueta se adjunta en el Anexo 6.

g) Llenado de cadena de custodia

Se realizó el llenado de la cadena de custodia con la información del registro datos de campo, indicando además parámetros a evaluar, tipo de frascos, tipo de muestra de agua o fuente, número de muestras, condiciones de conservación, responsable del muestreo y otros. (Ver Anexo 5).

h) Conservación, transporte de las muestras y análisis de laboratorio

Los recipientes de vidrio fueron embalados con cuidado para evitar roturas y derrames, las muestras recolectadas se conservaron en cajas térmicas a baja temperatura, las muestras perecibles (Coliformes y

DBO₅) fueron enviadas al laboratorio cumpliendo con el tiempo establecido en las recomendaciones para la preservación y conservación y fueron acompañadas con su respectiva custodia. Las muestras fueron trasladadas al laboratorio de la Facultad de Ciencias Agrarias y a la Facultad de Medicina Humana de la

Universidad Nacional del Altiplano para su respectivo análisis.

3.4.5 Procesamiento de la Información

a) calculo del ICA-NSF

El índice de calidad del agua se determinó por el método propuesto por Brown del "WQI" (Water Quality Index) que fue desarrollada por la Fundación de Nacional Sanidad de EE.UU. (NSF).

Se utilizaron los resultados de 9 parámetros, obtenidos en campo y en análisis de laboratorio, los cuales son:

- 1.- pH (en unidades de pH)
- 2.- Variación de la temperatura (en °C)
- 3.- Turbidez (en FTU)
- 4.- Oxígeno disuelto (OD en % saturación)
- 5.- Demanda Bioquímica de Oxigeno en 5 días (DBO5 en mg/L)
- 6.- Fosfatos (PO4 en mg/L)
- 7.- Nitratos (NO3- en mg/L)
- 8.- Sólidos totales (en mg/L)
- 9.- Coliformes Fecales (en NMP/L)

Para calcular el Índice de Brown utilizó función ponderada multiplicativa (ICAm). Estas agregaciones se expresan matemáticamente como sigue:

$$ICA_m = \prod_{i=1}^{9} Sub_i^{W_i}$$

Donde:

W_i = Pesos relativos asignado a cada parámetro.

Sub_i = Subíndice del parámetro i.

Los pesos relativos de los 9 parámetros se muestran en el Cuadro 6.

3.4.6 Interpretación de resultados

a) Parámetros del agua y Estándares de calidad para agua.

Mediante histogramas se realizó la comparación de los parámetros obtenidos de cada rio con los estándares de calidad ambiental.

b) Índice de calidad de Agua y Autoridad Nacional del Agua.

Se realizó la comparación de la clasificación del Índice de Calidad de Agua de los ríos Lampa y Cabanillas, con la clasificación de cuerpos de agua superficiales de la Autoridad Nacional del Agua.

c) Análisis estadístico

El análisis estadístico de la información se realizó utilizando el software SPSS 22.0 como se menciona a continuación:

- Se realizó el análisis comparativo, utilizando diagramas de cajas y alambres entre los dos ríos Lampa y Cabanillas.
- Posteriormente se realizó una prueba t-student de cada río, en el cual se determina si los puntos de muestreo tienen el mismo ICA.
- Y por último se realizo la prueba de t-student para determinar si los dos ríos tienen en promedio el mismo índice de la calidad del agua, bajo el supuesto de que la información tiene un comportamiento aproximadamente normal.

CAPITULO VI RESULTADOS Y DISCUSION

Para obtener los resultados del análisis comparativo entre los ríos Lampa y Cabanillas fue necesario primeramente realizar análisis de los parámetros fisicoquímicos y microbiológicos de las aguas de los dos ríos en base a la normatividad peruana vigente, se calculó el Índice de calidad de agua y finalmente se realizó el análisis estadístico.

4.1. RIO LAMPA

4.1.1. Determinación de parámetros

Los resultados de los parámetros obtenidos de las muestras del río Lampa se muestran el cuadro 13.

Cuadro 13. Parámetros obtenidos del río Lampa

	RIO LAMPA								
		PUNTOS DE MUESTREO							
PÁRAMETROS	UNIDADES	L1	L2	L3	L4	L5	L6	L7	L8
PH		8.14	8.12	8.05	7.84	7.92	8.03	8.15	8.11
T° Agua	°C	14.30	15.70	15.00	15.50	16.20	15.40	16.00	15.90
T° Ambiente	°C	20.40	18.00	17.50	12.50	18.40	12.20	12.60	12.70
Turbidez	FTU	1.73	2.52	2.75	1.94	2.17	1.67	1.79	5.87
O.D.	mg/L	7.12	7.68	7.67	8.06	7.74	7.29	7.96	8.32
DBO5	mg/L	2.68	4.32	4.36	2.80	4.90	4.16	3.96	4.52
PO4	mg/L	0.0190	0.0014	0.0170	0.0140	0.0150	0.0220	0.0270	0.0300
NO3	mg/L	0.0012	0.0014	0.0020	0.0018	0.0025	0.0021	0.0015	0.0030
Solidos Totales	mg/L	0.05	0.05	0.04	0.05	0.04	0.05	0.05	0.06
Coliformes Fecales	NMP/100ml	480	500	500	520	520	500	500	690

FUENTE: Elaboración propia.

4.1.2. Evaluación de parámetros

• Potencial de Hidrogeno (pH)

En la figura 5, los valores más altos en este grupo de muestreo se han registrado en el puente del Distrito de Vila Vila (L1), cuyo valor ha alcanzado 8.14 y en la salida del distrito de Lampa (L7), con el valor de

8.15 la calidad de agua de este río es principalmente afectado por las aguas servidas que emiten concentraciones de materia orgánica, este valor no sobrepasan los Estándares de Calidad Ambiental, cuyo rango establecido es de 6.5-8.5.

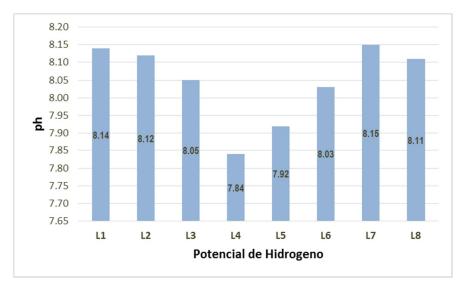
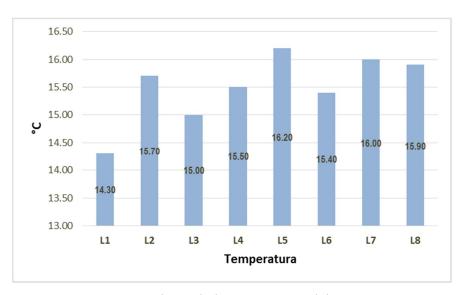



Figura 5. Valores de pH del Rio Lampa.

• Temperatura (°C)

En la figura 6, el valor más alto se ha registrado en la zona perteneciente al C.P. de Chullunquiani (L5), con un valor de 16.20 °C, mientras que el valor más bajo se registró en el puente del distrito de Vila Vila (L1), debido a que la temperatura depende de la zona altitudinal.

Figura 6. Valores de la temperatura del Río Lampa.

• Turbiedad (FTU)

En la figura 7, el valor más alto se ha registrado por el Puente Unocollo (L8), con un valor de 5.87 FTU, y los valores más bajos se registró en el Puente del distrito de Vila Vila (L1) y el Centro Poblado de Rivera Coilata (L6). Los valores están dentro de los Estándares de Calidad Ambiental, cuyo rango es de 100 FTU.

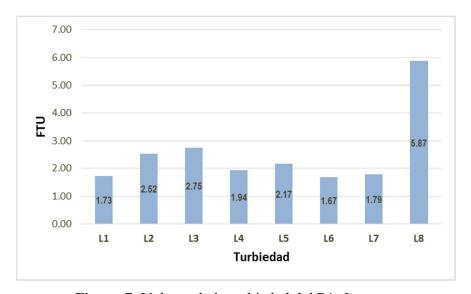


Figura 7. Valores de la turbiedad del Río Lampa.

• Oxígeno Disuelto (mg/l)

En la figura 8, el valor más alto se ha registrado en la salida del distrito de Lampa (L7), con el valor de 8.32 mg/L, por las concentraciones de oxígeno disuelto encontrados, estos factores son ocasionado principalmente por el por el incremento del caudal que presenta en esta época del año. Los valores se encuentran dentro Los Estándares de Calidad Ambiental, cuyo rango establecido es de >=4.

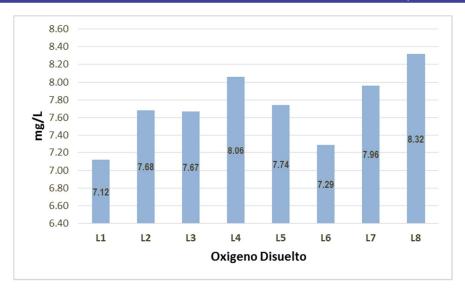


Figura 8. Valores de oxígeno disuelto del Río Lampa.

• Demanda Bioquímica de Oxigeno (DBO₅).

En la figura 9, los valores más altos obtenidos son los del C.P. Chullunquiani (L5), con 4.90 mg/L, y de la salida del distrito de Lampa, con 4.52 mg/L. Los datos no exceden los Estándares de Calidad Ambiental, cuyo valor es de 15 mg/L.

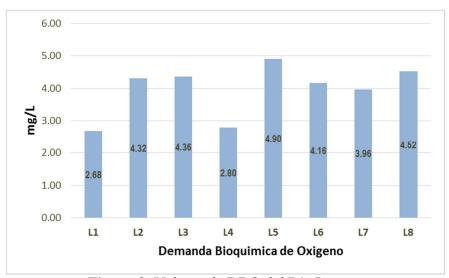


Figura 9. Valores de DBO del Río Lampa.

• Fosfatos (mg/l)

En la figura 10, la concentración más alta registrado se encuentra en el punto de muestreo L8 que se encuentra ubicado en el puente Unocollo, con 0.030 mg/l, estas concentraciones de fosfatos no exceden los Estándares de Calidad Ambiental, cuyo valor es de 1 mg/L.

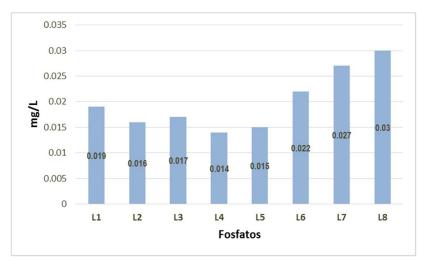
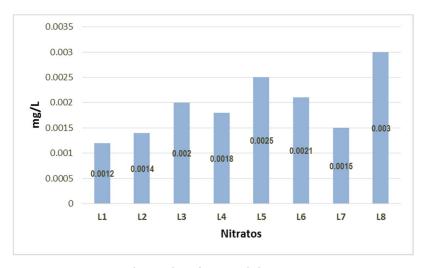



Figura 10. Valores de Fosfatos del Río Lampa.

Nitratos (mg/l)

En la figura 11, La concentración más alta de nitratos se ha encontrado en el punto de muestreo L8 situado en el puente Unocollo, cuya concentración se ha registrado de 0.03 mg/L; las concentraciones de nitratos se encuentran dentro de los rangos Estándares de Calidad Ambiental, su rango establecido es de 10 mg/l.

Figura 11. Valores de Nitratos del Río Lampa.

Sólidos Disueltos Totales (mg/l)

En la figura 12, La concentración más alta de sólidos disueltos se ha registrado en la muestra L8 correspondiente al puente Unocollo, cuyo valor es 0.06 mg/L, los valores de solidos disueltos totales, se encuentran dentro de los rangos Estándares de Calidad Ambiental, su rango establecido es de 1000 mg/l.

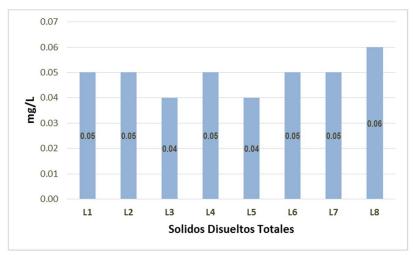


Figura 12. Valores de Solidos Disueltos Totales del Río Lampa.

• Coliformes Fecales (NMP/100ml)

En la figura 13, el valor más alto se ha registrado en el puente Unocollo (L8) cuya concentración encontrada es de 690 NMP/100mp, esto debido a las actividades antropogénicas de población del distrito de Juliaca; los valores se encuentran dentro de los ECA-AGUA cuyo valor es de 1000 NMP/100ml.

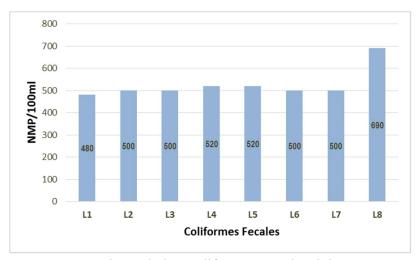


Figura 13. Valores de las Coliformes Fecales del Río Lampa.

4.1.3. Índice de calidad de agua

En el cuadro 14, se muestra los valores de los subíndices (Sub_i) los cuales se calcularon a partir de las gráficas funcionales (Ver anexo 7) mediante interpolación de datos de los 09 parámetros.

Cuadro 14. Valores del Subíndice (Sub_i) del rio Lampa

RIO LAMPA									
PÁRAMETROS	SUBi								
PARAMETROS	L1	L2	L3	L4	L5	L6	L7	L8	
PH	79	80	82	89	86	83	79	80	
Temperatura	67	84	83	82	84	81	80	81	
Turbidez	94	91	91	93	92	94	94	84	
O.D.	93	85	86	81	84	90	83	80	
DBO ₅	69	59	59	68	56	60	61	58	
PO4	99	100	99	99	99	99	99	99	
NO ₃	97	97	97	97	97	97	97	97	
Solidos Totales	79	79	79	79	79	79	79	79	
Coliformes Fecales	29	29	29	28	28	29	29	26	

FUENTE: Elaboración propia.

Los resultados del cálculo para la determinación del Índice de Calidad de Agua del rio Cabanillas se observan el cuadro 15.

Cuadro 15 Índice de calidad de agua (ICA) del rio Lampa

RIO LAMPA									
DÁDAMETDOS	Wi	ICA							
PÁRAMETROS	VV 1	1	2	3	4	5	6	7	8
PH	0.11	1.62	1.62	1.62	1.64	1.63	1.63	1.62	1.62
Temperatura	0.10	1.52	1.56	1.56	1.55	1.56	1.55	1.55	1.55
Turbidez	0.08	1.44	1.43	1.43	1.44	1.44	1.44	1.44	1.43
O.D.	0.17	2.16	2.13	2.13	2.11	2.12	2.15	2.12	2.11
DBO ₅	0.11	1.59	1.57	1.57	1.59	1.56	1.57	1.57	1.56
PO4	0.10	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58
NO3	0.10	1.58	1.58	1.58	1.58	1.58	1.58	1.58	1.58
Solidos Totales	0.07	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
Coliformes Fecales	0.16	1.71	1.71	1.71	1.70	1.70	1.71	1.71	1.68
TOTAL ICA		70.99	70.27	70.45	71.11	69.88	71.23	69.92	67.47
PROMEDIO ICA TOTAL 70.16									

FUENTE: Elaboración propia.

4.1.4. Prueba de hipótesis

Con la finalidad de verificar las hipótesis particulares planteadas al inicio en éste trabajo en las que se enuncian "Todos los puntos de muestreo del río Lampa tienen el mismo índice de calidad de agua" se muestra a continuación la elaboración de ellas utilizando la prueba t-student.

Hipótesis particular:

H₀: Los 8 puntos de muestreo del río Lampa tienen el mismo ICA.

H₁: Al menos existe un punto de muestreo con un ICA diferente al de los demás

 $\alpha = 0.05$ Nivel de Significancia

Cuadro 16. Prueba de hipótesis en el rio Lampa

Prueba t-Student RIO LAMPA							
t calculada	t tabulada	g.l.	Sig.	α (Nivel de Sig)			
164.369	2.365	7	0.001**	0.05			

FUENTE: Elaboración propia.

En esta tabla el valor importante es el de t calculada= 164.369, si comparamos éste valor con el t tabulada= 2.365 observamos que t calculada es mayor que la t tabulada por lo tanto se acepta la hipótesis alterna (H₁) la cual nos dice que existe un punto de muestreo ICA diferente al de los demás. (Ver tabla Anexo 11)

4.2. RIO CABANILLAS

4.2.1. Determinación de parámetros

Los resultados de los parámetros obtenidos de las muestras del río Cabanillas se muestran en el cuadro 17.

Cuadro 17. Parámetros obtenidos del Río Cabanillas

		RIO CA	BANII	LLAS						
		PUNTOS DE MUESTREO								
PÁRAMETROS	UNIDADES	C1	C2	C3	C4	C5	C6	C7		
PH		7.40	7.08	7.53	7.65	7.77	7.81	7.83		
T° Agua	°C	11	13.4	12.1	11.8	13.1	15.2	14.7		
T° Ambiente	°C	18.7	15.7	15.5	9.5	14.2	20.2	18		
Turbidez	FTU	5.35	98.20	57.80	7.54	6.61	4.53	3.77		
O.D.	mg/L	5.00	7.66	7.06	6.09	5.10	8.75	7.74		
DBO5	mg/L	18.00	42.30	25.60	30.00	23.60	18.00	16.80		
PO4	mg/L	0.0190	0.0023	0.0250	0.0240	0.0210	0.0260	0.0280		
NO3	mg/L	0.0021	0.0023	0.0022	0.0018	0.0025	0.0027	0.0029		
Solidos Totales	mg/L	0.13	0.17	0.18	0.19	0.20	0.22	0.23		
Coliformes Fecales	NMP/100ml	600	600	570	750	780	760	790		

FUENTE: Elaboración propia.

4.2.2. Evaluación de parámetros

• Potencial de Hidrogeno (pH)

En la figura 14, los valores más altos en este grupo de muestreo se han registrado en el puente Unocollo (C7), cuyo valor ha alcanzado 7.83 y en la salida del distrito de Cabanillas (C6), con el valor de 7.81 la calidad de agua de este río es principalmente afectado por las aguas servidas que emiten concentraciones de materia orgánica, este valor no sobrepasa los Estándares de Calidad Ambiental, cuyo rango establecido es de 6.5 - 8.5.

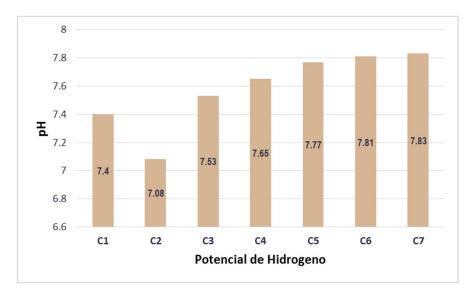


Figura 14. Valores de pH del Rio Cabanillas.

• Temperatura (°C)

En la figura 15, el valor más alto se ha registrado en el distrito de Cabanillas (C6), con un valor de 15.2 °C, mientras que el valor más bajo se registró en distrito de Santa Lucia.

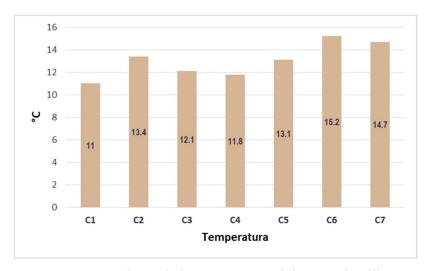


Figura 15. Valores de la temperatura del Río Cabanillas.

• Turbiedad (FTU)

En la figura 16, el valor más alto se ha registrado en el rio Compuerta (C2), con un valor de 98.2 FTU, debido al vertimiento de aguas servidas del distrito de Santa Lucia; los valores más bajos se registró en el Puente del distrito de Lampa (C6) y el puente Unocollo (C6). Los valores están dentro de los Estándares de Calidad Ambiental, cuyo rango es de 100 FTU.

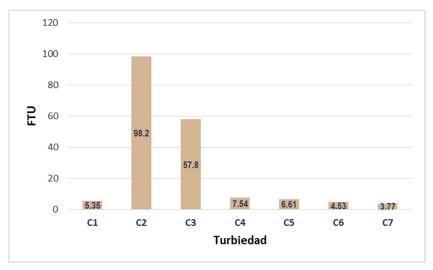


Figura 16. Valores de la turbiedad del Río Cabanillas.

• Oxígeno Disuelto (mg/l)

En la figura 17, el valor más alto se ha registrado en la salida del distrito de Cabanillas (C6), con el valor de 8.75 mg/L, por las concentraciones de oxígeno disuelto encontrados, estos factores son ocasionado principalmente por el por el incremento del caudal que presenta en esta época del año. Los valores se encuentran dentro Los Estándares de Calidad Ambiental, cuyo rango establecido es de >=4.

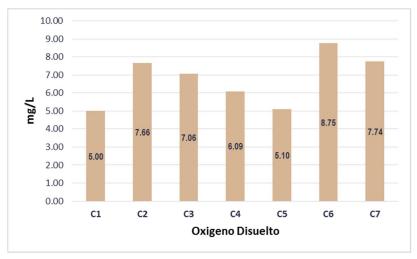


Figura 17. Valores de oxígeno disuelto del Río Cabanillas.

• Demanda Bioquímica de Oxigeno (DBO₅).

En la figura 18, los valores más altos obtenidos son los del rio Compuerta (C2), con 42.3 mg/L, y del puente Maravillas, con 30 mg/L. Los datos sobrepasan los Estándares de Calidad Ambiental, cuyo valor es de 15 mg/L.

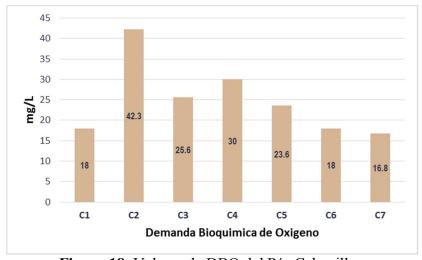


Figura 18. Valores de DBO del Río Cabanillas.

• Fosfatos (mg/l)

En la figura 19, la concentración más alta registrado se encuentra en el punto de muestreo C7 que se encuentra ubicado en el puente Unocollo, con 0.028 mg/l, estas concentraciones de fosfatos no exceden los Estándares de Calidad Ambiental, cuyo valor es de 1 mg/L.

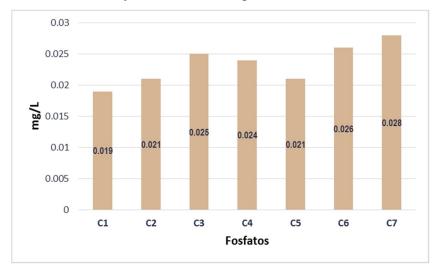


Figura 19. Valores de Fosfatos del Río Cabanillas.

• Nitratos (mg/l)

En la figura 20, la concentración más alta de nitratos se ha encontrado en el punto de muestreo C7 situado en el puente Unocollo, cuya concentración se ha registrado de 0.0029 mg/L; las concentraciones de nitratos se encuentran dentro de los rangos Estándares de Calidad Ambiental, su rango establecido es de 10 mg/l.

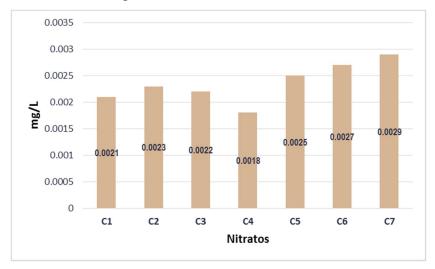


Figura 20. Valores de Nitratos del Río Cabanillas.

• Sólidos Disueltos Totales (mg/l)

En la figura 21, la concentración más alta de sólidos disueltos se ha registrado en la muestra C7 correspondiente al puente Unocollo, cuyo valor es 0.23 mg/L, los valores de solidos disueltos totales, se encuentran dentro de los rangos Estándares de Calidad Ambiental, su rango establecido es de 1000 mg/l.

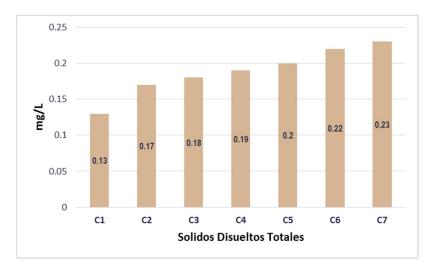


Figura 21. Valores de Solidos Disueltos Totales del Río Cabanillas.

• Coliformes Fecales (NMP/100ml)

En la figura 22, el valor más alto se ha registrado en el puente Unocollo (C7) cuya concentración encontrada es de 790 NMP/100mp; los valores se encuentran dentro de los ECA-AGUA cuyo valor es de 1000 NMP/100ml.

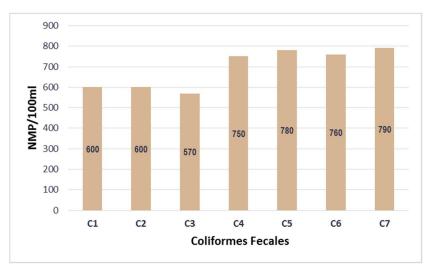


Figura 22. Valores las coliformes fecales del Río Cabanillas.

4.2.3. Índice de calidad de agua

En el cuadro 18, se muestra los valores de los subíndices (Sub_i) los cuales se calcularon a partir de las gráficas funcionales (Ver anexo 7) interpolación de datos de los 09 parámetros

Cuadro 18. Valores del Subíndice (Sub_i) del rio Cabanillas

	RIC	O CAB	ANILL	AS								
PÁRAMETROS		SUBi										
PARAMETROS	1	2	3	4	5	6	7					
PH	93	90	92	92	90	90	90					
Temperatura	57	84	79	84	89	73	80					
Turbidez	85	18	34	81	83	87	88					
O.D.	81	89	96	97	86	50	88					
DBO ₅	14	5	7	5	8	14	16					
PO4	99	100	99	99	99	99	99					
NO3	97	97	97	97	97	97	97					
Solidos Totales	79	79	79	79	79	79	79					
Coliformes Fecales	27	27	27	25	24	25	24					

FUENTE: Elaboración propia.

Los resultados del cálculo para la determinación del Índice de Calidad de Agua, del rio Cabanillas se observan en el cuadro 19.

Cuadro 19. Índice de calidad de agua (ICA) del rio Cabanillas

		RIO C	ABANI	LLAS				
PÁRAMETROS	Wi				ICA			
FARAMETROS	VV 1	1	2	3	4	5	6	7
PH	0.11	1.65	1.64	1.64	1.64	1.64	1.64	1.64
Temperatura	0.10	1.50	1.56	1.55	1.56	1.57	1.54	1.55
Turbidez	0.08	1.43	1.26	1.33	1.42	1.42	1.43	1.43
O.D.	0.17	2.11	2.14	2.17	2.18	2.13	1.94	2.14
DBO ₅	0.11	1.34	1.19	1.24	1.19	1.26	1.34	1.36
PO4	0.10	1.58	1.58	1.58	1.58	1.58	1.58	1.58
NO3	0.10	1.58	1.58	1.58	1.58	1.58	1.58	1.58
Solidos Totales	0.07	1.36	1.36	1.36	1.36	1.36	1.36	1.36
Coliformes Fecales	0.16	1.69	1.69	1.69	1.67	1.66	1.67	1.66
TOTAL ICA		57.16	47.49	52.28	53.77	55.40	53.22	59.67
PROMEDIO ICA TO	ΓAL	54.14						

FUENTE: Elaboración propia.

4.2.4. Prueba de hipótesis

Con la finalidad de verificar las hipótesis particulares planteadas al inicio en éste trabajo en las que se enuncian "Todos los puntos de muestreo del río Cabanillas tienen el mismo índice de calidad de agua"; se muestra a continuación la elaboración de ellas utilizando la prueba t-student.

Prueba de Hipótesis para el río Cabanillas

Hipótesis particular:

H₀: Los 7 puntos de muestreo del río Cabanillas tienen el mismo ICA.

H₁: Al menos existe un punto de muestreo con un ICA diferente al de los demás.

 $\alpha = 0.05$ Nivel de Significancia

Cuadro 20. Prueba de hipótesis en el rio Cabanillas

	I	Prueba t-Stud	lent	
	RI	O CABANII	LLAS	
t calculada	t tabulada	g.l.	Sig.	α (Nivel de Sig)
36.995	2.447	6	0.001**	0.05

FUENTE: Elaboración propia.

En esta tabla el valor importante es el de t calculada 36.955, si comparamos éste valor con el t tabulada 2.447 observamos que t calculada es mayor que la t tabulada por lo tanto se acepta la hipótesis alterna (H₁) la cual nos dice que existe un punto de muestreo ICA diferente al de los demás. (Ver Tabla Anexo 11)

4.3. COMPARACION DE LOS INDICES DE CALIDAD DE AGUA DE LOS RIOS LAMPA Y CABANILLAS

Los índices de calidad de agua del río Lampa y Cabanillas, son de calidad de agua media con valores de 70.16 y 54.14 respectivamente, este último presenta menor valor de calidad, debido a que a lo largo de su cauce se

encuentra situada mayor población (Distritos de Santa Lucia y Cabanillas), generando más contaminación por las actividades antropogénicas (Cuadro 15 y Cuadro 19); la misma ocurrencia existe en México, los Ríos Tecolutla y Cazones presentando una calidad de agua media (Carrillo & Villalobos, 2011) cuyos valores son 67.72 y 62.58 respectivamente, donde el río Cazones presenta menor índice de calidad debido a que hay mayor población situada a lo largo de su cauce.

4.3.1. Clasificación del Índice de calidad de agua y la Autoridad Nacional del Agua.

Cuadro 21. Comparación de la Clasificación de la calidad de Agua ICA-NSF y

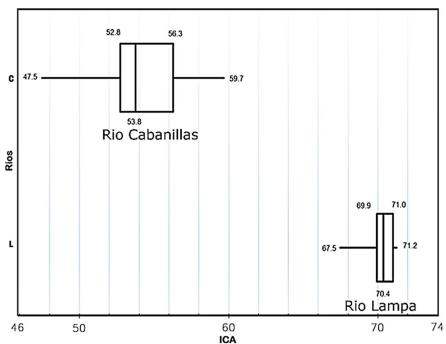
A	N	1	١
Δ	LN	Γ	•

	INDICE DE CALIDAD DE AGUA (ICA-NSF)	AUTORIDAD NACIONAL DEL AGUA
Uso del Agua	CLASIFICACION MEDIA	CATEGORIA 3 CLASE 3
Consumo Humano	Tratamiento potabilizador necesario.	Tratamiento convencional.
Agrícola	Utilizable en mayoría de cultivos.	Todos los usos productivos.
Recreativo	Restringir los deportes de inmersión, precaución si se ingiere dada la posibilidad de presencia de bacterias.	Restringido para uso recreativo de contacto primario.

FUENTE: Elaboración propia.

Según el Índice de Calidad de Agua (ICA) obtenido los ríos Lampa y Cabanillas tienen una clasificación media, y según la clasificación de cuerpos de agua superficiales de la Autoridad Nacional del Agua los ríos Lampa y Cabanillas se clasifican en categoría 3 y clase 3; estos dos refieren las mismas características a la calidad del agua. (ANA), así también el

estudio realizado por el Instituto Peruano Nuclear (Bedregal *et al.* 2010.) denominado Evaluación de las aguas del río Rímac en Lima, Perú, utilizando el Índice de Calidad de Agua, los valores del ICA coinciden con los Estándares Nacionales de Calidad Ambiental (ECA).


4.3.2. Análisis estadístico

Después de haber realizado los cálculos correspondientes para la determinación del Índice de Calidad del Agua (ICA) de los ríos Lampa y Cabanillas dentro de los puntos de muestreo establecidos se presentan los siguientes resultados.

• Diagrama de Caja y alambres

En la Figura 23 se observa que las dos cajas no se traslapan, lo que no indica que los ICA de los dos ríos son totalmente diferentes.

Al observar el tamaño de las cajas, se alcanza a distinguir que la del río Cabanillas es más grande que la del río Lampa lo cual indica que la información obtenida en los puntos de muestreo del río Cabanillas es más variable.

Figura 23. Comparativo del Índice de calidad del Agua de los ríos Lampa y Cabanillas.

Método comparativo (t-student)

Con la finalidad de establecer una comparación entre los Índices de Calidad del Agua de los 2 ríos se establece una prueba de hipótesis utilizando la distribución t-student, como sigue:

Hipótesis General:

Ho: El ICA del río Lampa es el mismo que el del río Cabanillas.

H1: El ICA del río Lampa es diferente al del río Cabanillas.

Cuadro 22. t-student entre los ríos Lampa y Cabanillas

	Prueba	t-Stude	nt	
RIO CABANILLAS - LAMPA				
RIOS	t _{calculada}	gl	Sig. (bilateral)	α (Nivel de Sig)
CABANILLAS - LAMPA	-10.886	6	0.000035	0.05

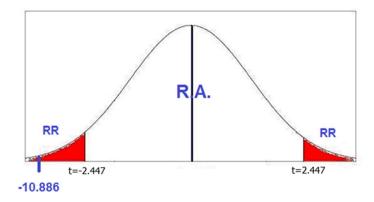


Figura 24. Prueba t-student rio Lampa y Cabanillas.

A partir de la tabla anterior el valor de prueba es t= -10.886, en tanto que los valores para la región de rechazo son t < -2.447 y t > 2.447 por lo que el valor t= -10.886 cae en la región de rechazo, por lo cual se acepta la hipótesis alternativa (H_1) la cual nos indica que los ICA entre los 2 ríos son diferentes.

CAPITULO V CONCLUSIONES

A partir del análisis se concluye que los Índices de Calidad de Agua de los ríos Lampa y Cabanillas son de calidad de agua media, con valores promedio de 70.16 y 54. 14 respectivamente, observando simetría o normalidad, destacando que la información recogida en el río Cabanillas es más variable que la del río Lampa, al realizar la comparación estadística de los Índices de Calidad de Agua entre los Ríos Cabanillas y Lampa se establece que son diferentes; el río Cabanillas presenta mayor contaminación.

En el río Lampa, los parámetros evaluados de las ocho muestras están dentro de los Estándares de Calidad Ambiental de Agua, los valores más importantes son el DBO₅ con un valor mínimo de 2.68 mg/L y máximo de 4.90 mg/L, las Coliformes Fecales con un valor mínimo de 480NMP/100ml y máximo de 520NMP/100ml; en tres puntos de muestreo el índice de calidad de agua es "buena" y en cinco puntos de muestreo "media", se observa una diferencia notable en el centro poblado de Chullunquiani y el puente Unocollo, esto nos indica que en esos tramos son impactados por las actividades antropogénicas, al comparar los datos con los análisis estadísticos, se concluye que de los ocho puntos de muestreo del río Lampa no todos tienen el mismo índice de calidad.

En el río Cabanillas los parámetros evaluados de las siete muestras están dentro de los parámetros de los Estándares de Calidad Ambiental de Agua, excepto los parámetros de DBO₅ cuyos valores sobrepasan los 15mg/L, con un valor mínimo de 16.8 mg/L y máximo de 42.3 mg/L; en seis puntos de muestreo el índice de calidad de agua "media" y en un punto de muestreo "mala", este último pertenece al río compuerta el cual es impactado significativamente por el vertimiento de aguas servidas del distrito de Santa Lucia, al comparar los datos con los análisis estadísticos, se concluye que de los siete puntos de muestreo del río Cabanillas no todos tienen el mismo índice de calidad.

CAPITULO VI RECOMENDACIONES

Que este trabajo se mantenga y se tome como base de datos, se continúe con el estudio de los índices de calidad del agua de ambos ríos y pueda observarse si se mejora, mantiene o incrementa el impacto antropogénico y esto permita a las autoridades la toma de decisiones sobre la contaminación del agua.

Se puede ampliar la investigación a través de monitoreo en estaciones del año (Invierno, otoño, verano y primavera) y así poder determinar y evaluar comportamientos temporales de los índices de calidad de agua.

El método utilizado se utilice como herramienta para determinar y evaluar las condiciones y la calidad en las que se encuentran los cuerpos de agua superficiales, para realizar estudios de ordenamiento territorial, zonificaciones ecológicas y otros en los distritos, provincias y regiones de nuestro País.

BIBLIOGRAFIA

- Agencia Catalana del Agua. 2003. Índices de calidad del agua. Revista Ambientum. (en línea). Consultado 02 de marzo de 2015. Disponible en: http://mediambient.gencat.net/aca/es/agencia/inici.jsp
- Aguamarket, (2002). Composición de las aguas residuales (en línea). Consultado 06 de mayo de 2015. Disponible en: www.aguamarket.com/temas interes/027.asp
- Álvarez, J., Panta, J., Ayala, C. y Acosta, E., (2008). Calidad integral del agua superficial del agua en la cuenca hidrológica del río Amajac. Revista Información Tecnológica. Hidalgo, MX. 19(6), pp. 21-32.
- ANA (Autoridad Nacional del Agua). (2011). Protocolo nacional de monitoreo de la calidad en cuerpos naturales de agua superficial. Ministerio de Agricultura. PE. 42 p.
- Ball, R. y Church, R. (1980). Water quality indexing and coring. Journal of the Environmental Engineering. Division. American Society of Civil Engineers, vol. 106, pp. 757-771.
- Bedregal, P., Mendoza, P., Ubillus, M., Montoya, E., Airas, R., Baca, L. y Fajardo W. (2010). Evaluación de las aguas del río Rímac en Lima, Perú, utilizando el Índice de Calidad de Agua (ICA). Informe Científico Tecnológico 2010, Instituto Peruano de Energía Nuclear. PE (1), 13-19.
- Behar, R., Zuñiga, M. y Rojas, O. (1997). Análisis y Valoración del Índice de Calidad de Agua (ICA) de la NSF: Casos Ríos Cali y Meléndez. Ingeniería y Competitividad, vol. 1, pp. 17-27.
- Boyacioglu, H. (2007). Development of a water quality index based on a European classification scheme. Water SA. vol. 33, pp. 101-106,

- Brown R., Macclelland, N., Deininger, R. (1970). A Water Quality Índex Do We Dare. Water and Sewage Works. Vol. 11, pp. 339 343, 1970.
- Cano, L. (2010). Estudio Comparativo de índices de calidad del agua mediante la aplicación y evaluación de un modelo armonizado en Latinoamérica, caso de estudio río Loa. Universidad Católica del Norte. CL. Pp. 17-18.
- Carrillo, A. y Villalobos, R. (2011). Análisis comparativo de los índices de calidad del agua (ICA) de los ríos Tecolutla y Cazones. Tesis Ing. Veracruz, Universidad Veracruzana. MX. 86 p.
- CETESB. (2006). Relatório de qualidade das águas interiores no estado de São Paulo, Anexo V. Companhia de Tecnologia de Saneamento Ambiental, São Paulo. BRA.
- Coello, J., Ormaza, R., Déley, A., Recalde, C. y Ríos, A., (2012). Aplicación del ICA-NSF para determinar la calidad del agua de los Ríos Ozogoche, Pichahuiña y Pomacocho - Parque Nacional Sangay, EC.
- CVC y UNIVALLE. (2007). El Río Cauca en su valle alto: Un aporte al conocimiento de uno de los ríos más importantes de Colombia. Cali. CO.
- CVC. (Corporación Autónoma Regional del Valle del Cauca). (2007). Plan de Acción Trienal 2007 2009. Valle del Cauca. CO. p. 96.
- Decreto Supremo N° 002-2008-MINAM. Estándares nacionales de calidad ambiental para agua. Diario oficial el Peruano. Lima, 31 de julio de 2008. PE.
- Decreto Supremo N° 023-2009-MINAM. Disposiciones para la implementación de los Estándares Nacionales de Calidad Ambiental (ECA) para Agua. Diario oficial el Peruano. Lima, 19 de diciembre de 2009. PE.
- Dinius, S. H. (1987). Design of a Índex of Water Quality. Journal of the American Water Resources Association. vol. 23.

- Dunnette, D. (1979). A Geographically Variable Water Quality Índex Used In Oregón. Journal of the Water Pollution Control Federation. Oregón, US. vol. 51, pp. 53-61.
- Fernández N., Ramírez, A. y Solano, F., (2008). Índices fisicoquímicos de calidad del agua. Un estudio comparativo. Conferencia Internacional Usos Múltiples del Agua: Para la vida y el desarrollo sostenible. Universidad del Valle/Instituto Cinar. CO. pp. 211-219.
- Fernández, N., Solano, F. (2005). Índices de Calidad y Contaminación del Agua, Universidad de Pamplona, Pamplona. CO. 166 p.
- Fernández, N., Ramos, G., y Solano, F. (2003). ICATEST V 1.0. Una herramienta informática para el análisis y valoración de la calidad del agua. Universidad de Pamplona. CO.
- Horton, R. K. (1965). Índex number system for rating water quality, Water Pollut, vol. 307, pp. 300–306.
- INRENA, (2007). Evaluación de los Recursos Hídricos en las Cuencas de los Ríos Cabanillas y Lampa. Reporte Técnico. Intendencia de recursos Hídricos. ATDR Juliaca PE.
- Landwehr, J. y Denninger, R. (1976). Comparison of several water quality índices. Water Pollution Control Fed 48(5), pp. 954-958.
- Liou S. M., Lo, S. L. y Wang, S. H. A generalized water quality index for Taiwán. Environmental Monitoring and Assessment. CN. vol. 96, no. 1-3, pp. 32-35.
- Lumb, A., Halliwell, D., y Sharma, T. (2006). Application of the CCME Water quality index to monitor water quality: a case study of the Mackenzie River Basin, Canadá," Environmental Monitoring and Assessment. CA. Vol. 113, pp. 411-429.

- Malina, J.F. (1996). Water quality. in. Mays, L. eds. Water resources Handbook. USA. McGraw-Hill. p. 8.3-8.49.
- Mendoza, M. 1996.Impacto de la tierra, en la calidad del agua en la cuenca del rio San Juan Turrialba. CR. 81 p.
- Mitchell, M., Stapp, W., Bixby, K., (1991). Manual de campo de Proyecto del Río: una guía para monitorear la calidad del agua en el Río Bravo. Segunda edición. Proyecto del Río. New México, US. 200p.
- Montoya, H., Contreras, C. y García, V. (1997). Estudio Integral de la Calidad del Agua en el estado de Jalisco. Guadalajara. Comisión Nacional del Agua. MX. 106 p.
- Moreno, D. y Renner, I. (2007). Gestión integral de cuencas: la experiencia del proyecto regional cuencas andinas. 1 ed. Lima, PE. s.e. 234 p.
- OMS (Organización Mundial de la Salud). (1998). Guías para la calidad del agua potable: vigilancia y control de los abastecimientos de agua a la comunidad. Segunda edición. Volumen 3. OMS, Ginebra. 255 p.
- Ongley, E.D. 1997. Lucha contra la contaminación agrícola de los recursos hídricos. Roma, Italia. Estudio FAO Riego y Drenaje. IT. 55, 1997. 116 p.
- Prat, N. 1998. Bioindicadores de calidad de las aguas. Memorias del curso de bioindicadores de Calidad del Agua. Universidad de Antioquia, Medellín. CO.
- Ramírez, A. y Viña, G. (1998). Limnología colombiana. Aportes a su conocimiento y Estadísticas de análisis. Universidad Jorge Tadeo Lozano, Bogotá. CO.
- Resolución Jefatural N° 202-2010-ANA. Clasificación de cuerpos de agua superficiales y marino costeros. Autoridad Nacional del Agua. Lima, 22 de Marzo de 2010. PE.

- Rodríguez, C., Mancini, M., Prosperi, C., Weyers, A., Alcantu, G. & Ferrero, S. (2002). Variaciones estacionales de la calidad del agua del río Chocancharava (río Cuarto), Córdoba, AR. pp. 65-72.
- Rodríguez, E., Ramos, A., Romero, Z. (1997). Aplicación de un Índice de Calidad Acuática en cuerpos de agua de Tabasco, MX.
- Rojas, O. (1991). Índices de Calidad del agua en Fuente de Captación. Seminario Internacional sobre calidad del agua para consumo. Cali. CO.
- Sacha, A., y Espinoza, C. (2001). Determinación de Contenido Natural e Índices de Calidad: ¿Presente y Futuro de Calidad de Aguas?. XIV Congreso Chileno de Ingeniería Sanitaria y Ambiental AIDIS. CL.
- Samboni, N., Carvajal, Y. y Escobar, J. (2007). Parámetros Fisicoquímicos como Indicadores de Calidad y Contaminación del Agua, Ingeniería e Investigación, vol. 27, pp. 172 181.
- Seoánez, M. (1999). Ingeniería del medioambiente aplicada al medio natural continental. Segunda edición, Ediciones Mundi-Prensa. Madrid. ES. 702 p.
- Solsona, F. (2002). Guías para elaborar normas de calidad de agua de bebida en los países en desarrollo. CEPIS/OPS Lima. PE. 77p.
- Thompson, T., Fawell, J., y Kunikane, S. 2007. Chemical safety of drinking-water: Assessing priorities for risk management. Geneva. CH.
- Torres, P., Cruz C. y Patiño, P. (2009). Índices de calidad de agua en fuentes superficiales utilizadas en la producción de agua para consumo humano. Una revisión crítica. Revista Ingenierías Universidad de Medellín. CO. vol. 8(15), pp. 79-94.

- UNEP. (2007). Global Drinking Water Quality Índex Development and Sensitivity Analysis Report. Ontario. CA.
- UNESCO, (2012). World Water Development Report 2012 Managing Water under Uncertainty and Risk Report.
- Vásquez, A. (2000). Manejo de cuencas alto andinas. Escuela superior e administración de aguas "Charles Sutton", Lima, PE. 516 p.
- Velasco, P., y Hazel, G. (2012). Caracterización del agua subterránea mediante índices de calidad en el departamento El Paraíso. Tesis Ing. Honduras, Escuela Agrícola Panamericana El Zamorano. HN. 48 p.

ANEXOS

Anexo 1. Panel Fotográfico

Fotografía Nº 1. Ubicación de las coordenadas del punto de muestreo con GPS.

78

Fotografía N° 3. Medición de parámetros con multímetro en el río Cabanillas

Fotografía N° 4. Medición de parámetros con ph-metro en el río Cabanillas

Fotografía N° 5. Toma de muestras de agua en el río Cabanillas

80

Fotografía N° 7. Medición de pH y temperatura en el rio Cabanillas

Fotografía N° 8. Toma de muestras en el río Lampa

Fotografía N° 9. Toma de muestras en el río Lampa

Fotografía N° 10. Medición de parámetros con multímetro en el río Lampa

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE CIENCIAS AGRARIAS

ESCUELA PROFESIONAL DE INGENIERIA AGRONOMICA

LABORATORIO DE AGUAS Y SUELOS

RESULTADO DE ANALISIS

Agua

8

Marco Antonio Monteagudo Quispe

Jr. Vilcapaza 207 - Huáscar

Solicitante Dirección

Producto Cantidad de muestra

Instrucciones de ensayo Enviadas por el solicitante

Procedencia de la muestra Rio Lampa - Puno - Agua Superficial

Fecha de muestreo 24-02-2015 Fecha de ingreso de muestra : 24-02-2015 Fecha de inicio de análisis 25-02-2015 Fecha de término de análisis 30-02-2015

Cód. N°	Descripción de la muestra	T° AMBIENTAL	T° AGUA	DU	SDT	OD	TURBIEDAD	DBO ₅	NO ⁻ 3	PO ₄
Cou. N	Declarado por Solicitante	°C	°C	PH	mg/L	mg/L	FTU	mg/L	mg/L	mg/L
L1	RVilVilPt	20.40	14.30	8.14	0.05	7.12	1.73	2.68	0.0012	0.019
L2	RLamPal	18.00	15.70	8.12	0.05	7.68	2.52	4.32	0.0014	0.016
L3	RPalPal	17.50	15.00	8.05	0.04	7.67	2.75	4.36	0.0020	0.017
L4	RVilPal	12.50	15.50	7.84	0.05	8.06	1.94	2.80	0.0018	0.014
L5	RLamChli	18.40	16.20	7.92	0.04	7.74	2.17	4.90	0.0025	0.015
L6	RLamRivCo	12.20	15.40	8.03	0.05	7.29	1.67	4.16	0.0021	0.022
L7	RLamLam	12.60	16.00	8.15	0.05	7.96	1.79	3.96	0.0015	0.027
L8	RLamPtUn	12.70	15.90	8.11	0.06	8.32	5.87	4.52	0.0030	0.030

Leyenda:

T(°C) pH : Temperatura

: Potencial De Hidrogeno SDT (mg/L) : Solidos Totales Disueltos

DBO₅ (mg/L) : Demanda Bioquímica Del Oxigeno

 $NO_3(m/L)$: Nitratos $PO_4(m/L)$: Fosfatos

Universidad Nacional del Altiplano - Puno FACULTAD DE CIENCIAS DE LA SALUD

DIRECCION DE ESTUDIOS DE LA CARRERA PROFESIONAL DE MEDICINA

RESULTADO DE ANALISIS MICROBIOLOGICO

Análisis solicitado Microbiológico de Agua (Colimetria)

Cantidad de muestras

Procedencia de la muestra Rio Lampa - Puno - Agua Superficial Interesado Marco Antonio Monteagudo Quispe

Fecha de muestreo 24-02-2015 Fecha de recepción de muestra : 24-02-2015 Fecha de análisis 25-02-2015

RESULTADOS

	Descripción	Coliformes Totales	Coliformes Fecales
Muestra	de la muestra	(NMP/100ml)	(NMP/100ml)
L1	RVilVilPt	4000	480
L2	RLamPal	4200	500
L3	RPalPal	4200	500
L4	RVilPal	5200	520
L5	RLamChll	5000	520
L6	RLamRivCo	4000	500
L7	RLamLam	4200	500
L8	RLamPtUn	6800	690

OBSERVACIONES.- Todas las muestras se decepcionaron en el Laboratorio de Microbiología

CALIFICACIÓN MICROBIOLÓGICO.- Requieren tratamiento químico para consumo humano.

orgio Palacios Frisancho B 1 0 L 0 G 0

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE CIENCIAS AGRARIAS

ESCUELA PROFESIONAL DE INGENIERIA AGRONOMICA

LABORATORIO DE AGUAS Y SUELOS

RESULTADO DE ANALISIS

Solicitante

Marco Antonio Monteagudo Quispe Dirección Jr. Vilcapaza 207 - Huáscar

Producto Agua Cantidad de muestra

Instrucciones de ensayo Enviadas por el solicitante

Procedencia de la muestra Rio Cabanillas - Puno - Agua Superficial

Fecha de muestreo 23-02-2015 Fecha de ingreso de muestra 23-02-2015 Fecha de inicio de análisis 24-02-2015 Fecha de término de análisis 29-02-2015

Cád No	Descripción de la muestra	T° AMBIENTAL	T° AGUA	DII	SDT	OD	TURBIEDAD	DBO ₅	NO ⁻ 3	PO ₄
Cód. N°	Declarado por Solicitante	°C	°C	PH	mg/L	mg/L	FTU	mg/L	mg/L	mg/L
C1	RCabSL	18.7	11	7.4	0.13	5.00	5.35	18	0.0021	0.019
C2	RComSL	15.7	13.4	7.08	0.17	7.66	98.20	42.3	0.0023	0.021
C3	RCabSL2	15.5	12.1	7.53	0.18	7.06	57.80	25.6	0.0022	0.025
C4	RCabPtM	9.5	11.8	7.65	0.19	6.09	7.54	30	0.0018	0.024
C5	RCabTayTa	14.2	13.1	7.77	0.2	5.10	6.61	23.6	0.0025	0.021
C6	RCabCab	20.2	15.2	7.81	0.22	8.75	4.53	18	0.0027	0.026
C7	RCabPtUn	18	14.7	7.83	0.23	7.74	3.77	16.8	0.0029	0.028

M.Sc. Angel Cari Choquehuanca

Leyenda:

T(°C) : Temperatura

: Potencial De Hidrogeno pH SDT (mg/L) : Solidos Totales Disueltos

DBO₅ (mg/L) : Demanda Bioquímica Del Oxigeno

 $NO_3(m/L)$: Nitratos PO₄ (m/L) : Fosfatos

Universidad Nacional del Altiplano - Puno FACULTAD DE CIENCIAS DE LA SALUD

DIRECCION DE ESTUDIOS DE LA CARRERA PROFESIONAL DE MEDICINA

RESULTADO DE ANALISIS MICROBIOLOGICO

Análisis solicitado

: 1

Microbiológico de Agua (Colimetria)

Procedencia de la muestra

Rio Cabanillas – Puno – Agua Superficial

Interesado

Marco Antonio Monteagudo Quispe

Fecha de muestreo Fecha de recepción de muestra 23-02-2015 23-02-2015

Fecha de análisis

24-02-2015

RESULTADOS

Muestra	Descripción	Coliformes Totales	Coliformes Fecales
Muestra	de la muestra	(NMP/100ml) (NMP/100ml	(NMP/100ml)
C1	RCabSL	5000	600
C2	RComSL	5000	600
C3	RCabSL2	4800	570
C4	RCabPtM	6000	750
C5	RCabTaýTa	6800	780
C6	RCabCab	7200	760
C7	RCabPtUn	8500	790

OBSERVACIONES.- Todas las muestras se decepcionaron en el Laboratorio de Microbiología

CALIFICACIÓN MICROBIOLÓGICO.- Requieren tratamiento químico para consumo humano.

orgio Palacios Frisuncko
BIOLOGO
CEP 2125

Anexo 3. Ficha de ubicación de muestreo.

FICHA UBICACIÓN DEL PUNTO DE MONITOREO

Cuerpo de Agua :		
Clasificación del Cuerpo de Agua		=
(Categorizado de Acuerdo al R. J. Nº 202-2010	0-ANA)	
Cuenca, sub cuenca o microcuenca		_
IDENTIFICACION DEL PUNTO		
Codigo del Punto de Monitoreo:		
Ubicación		
Accesibilidad		
Representatividad		
Estación Hidrométrica (*)		
(*) si existe		
Reconocimiento del Entorno :		
<u>UBICACIÓN</u>		
Distrito :	Provincia : Departamento :	_
		╝
Localidad		٦
		_
Coordenadas U.T.M. (WGS84 ó PSAD	<u>256)</u>	
Coordenadas U.T.M. (WGS84 6 PSAD		
Norte :	Este : Zona : (17, 18 o 19)	
Norte :	Este : Zona : (17, 18 o 19)	
Norte :	Este : Zona : (17, 18 o 19)	
Norte :	Este : Zona : (17, 18 o 19)	\
Norte :	Este : Zona : (17, 18 o 19))
Norte :	Este : Zona : (17, 18 o 19)	
Norte :	Este : Zona : (17, 18 o 19)	
Norte :	Este : Zona : (17, 18 o 19)	
Norte :	Este : Zona : (17, 18 o 19)	
Norte :	Este : Zona : (17, 18 o 19)	
Norte :	Este : Zona : (17, 18 o 19)	
Norte :	Este : Zona : (17, 18 o 19)	
Norte :	Este : Zona : (17, 18 o 19)	
Norte: Altitud:	Este: Zona: (17, 18 o 19) (metros sobre el nivel del mar)	
Norte :	Este: Zona: (17, 18 o 19) (metros sobre el nivel del mar)	

Nota: Todo texto a Henar debe ser en letra MAYÚSCULA

Dirección de Gestión de Calidad de los Recursos Hidricos

Anexo 4. Ficha de registro de datos de campo REGISTRO DE DATOS DE CAMPO

Altitud Norte Este 00 J/gu SDT mg/L T° Agua T° Amb. ပွ 펍 HORA FECHA N° PTO DE MUESTREO

Nombres y Apellidos Responsable del monitoreo

. Del 20...

2 50

REALIZADO POR:

Anexo 5. Formato de cadena de custodia de muestreo de agua

CADENA DE CUSTODIA

,												
e-mail:												
Responsable	Responsable del muestreo:											
DILAB(1)	qe csmbo	muestreo	oertreo	(2) srizeur	N° de envas de mu	N° de envases por punto de muestreo	(lm) latot	epevie	DESCRIPCION DE PUNTOS DE MUESTREO	Coordenadas UTM		Volumen total
OgiboO	o ogibò O	Еесһа de	Hora de	n əb oqiT	۵	>	nəmuloV	Prese	Origen de la fuente y ubicación de punto de muestreo	Este	Norte	(E)
(1) Campo exclus	(I) Campo exclusivo para el laboratorio	atorio										

(2) AP(Agua Poabel); AP(Agua Rasidual); AY(Agua Superficial); AY(Agua Subterránea); AM(Agua Puwal); BF(Blanco de Marix, AL(Agua Puwal); BF(Blanco de Frasco) (3) Yer issa de perémetros del decreto supremo Nº 002-2008-MINM Estanderes de Calidad Ambienta para Agua y otros que se requira para su investigación.

Condicion y temperatura de llegada de las muestras:

Comentarios:

Completar el Formulario en el dorso de la hoja

	OBSERVACIONES							OBSERVACIONES		
								ē		
os (3)								Hora		
Parámetros Biológicos (3)	Enterecocos							ha		
netros E	Salmonels SP							Fecha		
Parán	Coliformes fecales									
	Coliformes totales							Firma		
s(3)								Fir		
Plaguicidas(3)										
Pla										
								ncion		
	Rosfatos							Institucion		
	Nitratos									
	zəbidnuT									
icos - (3	GAW orunsi									
o Quimi	Aceites y grasas (M.E.H.)									
Parámetros Fisico Quimicos - (3)	Sulfuros									
arámetr	Demanda bioquimica de oxigeno									
P	Solidos totales disueltos									
	Solidototales suspendidos							ellidos		
	Nitrogeno Total							Nombres y apellidos		
	Foforo total							ombre		
	Nitrogeno Amoniacal							Z		
campo										
lidos en	Temperatura									
Parámetros medidos en campo	(J\gm) oʻsəlusib onəgixO									
	Conductividad (µs/cm)								OR:	. :
т.	Hq								ADO P)O PO!
	Codigo de campo								ENTREGADO POR:	RECIBIDO POR:

Anexo 6. Etiqueta para toma de muestras de agua.

N° de muestra:	Código de muestra:								
Solicitante/cliente:									
Origen de la Fuente:	Descripción del punto de muestreo:								
Fecha de muestreo:	Hora de muestreo:								
Parámetros requeridos:	Cantidad de muestra:								
	Tipo de muestra:								
Muestreado por									
Preservada: (SI) (NO)	Tipo de preservación:								

Anexo 7. Curvas de Índice de calidad de Agua

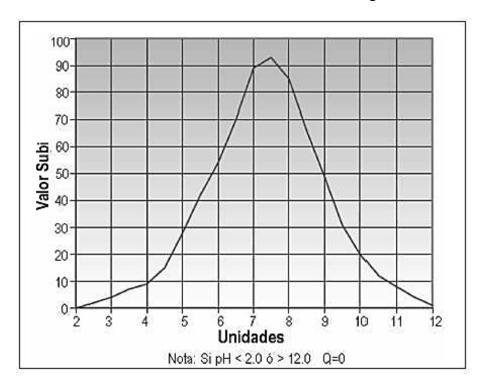


Grafico 1. Curva de calidad de pH

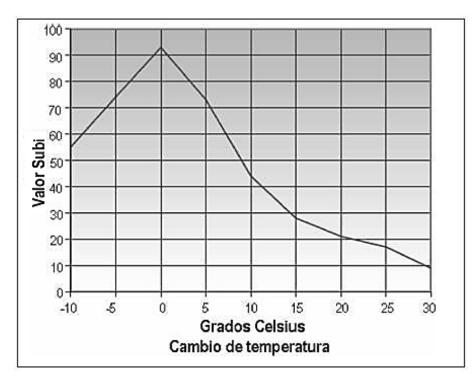
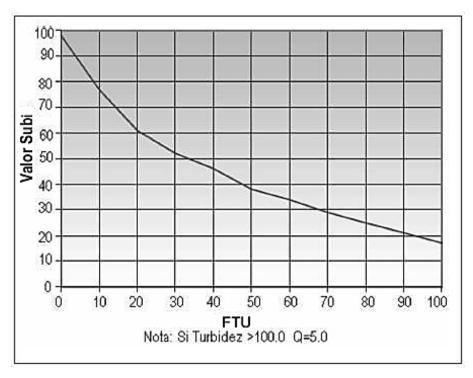



Grafico 2. Curva de calidad de temperatura

Grafico 3. Curva de calidad de turbidez

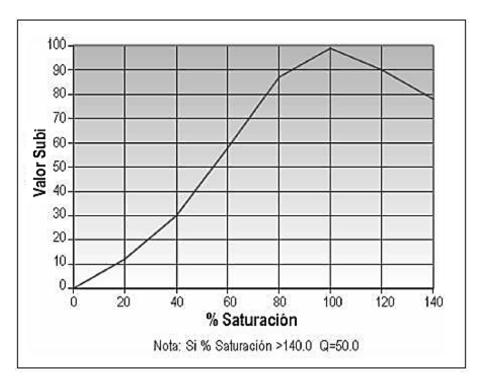


Grafico 4. Curva de calidad de OD

Grafico 5. Curva de calidad de DBO

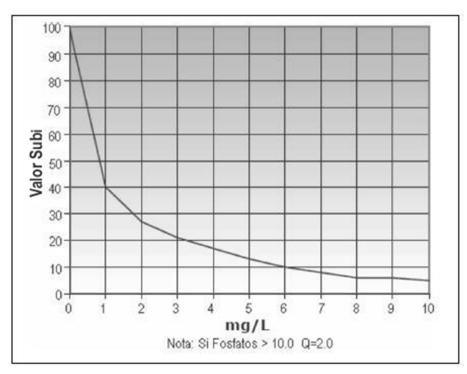


Grafico 6. Curva de calidad de fosfato

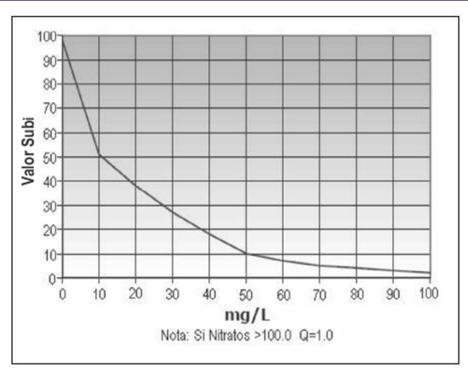


Grafico 7. Curva de calidad de nitratos

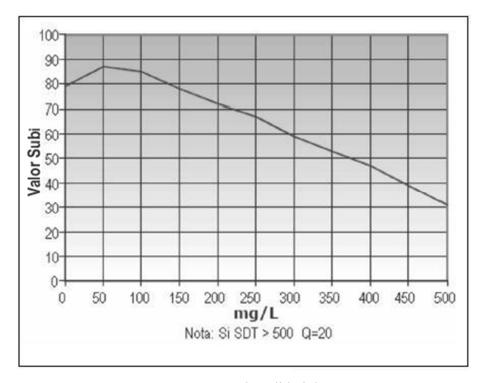


Grafico 8. Curva de calidad de SDT.

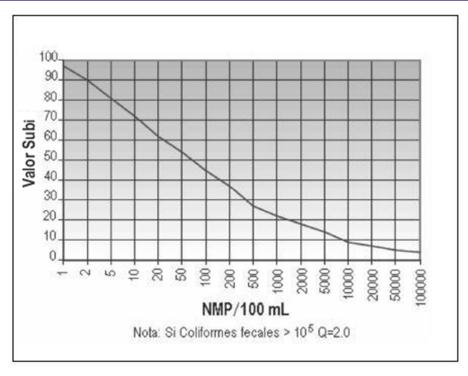


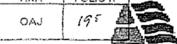
Grafico 9. Curva de calidad de coliformes fecales

Anexo 8. Requisitos para toma de muestras de agua y preservación

Autoridad Nacional del Agua

ANEXO Nº I

"REQUISITOS PARA TOMA DE MUESTRAS DE AGUA Y PRESERVACIÓN"


Determinación/parámetro -	Recipiente	Volumen minimo de muestra	Tipo de muestra	Preservación y conservación	Tiempo maximo de diaración
Fisico-quimico:					
Oxigeno disuelto			Análisis	inmediato en campo	
Temperatura			Análisis	inmediato en campo	
pΗ			Análisis	inmediato en campo	
Conductividad	P, V	500	AS, AR	Refrigerar	28 dias
Acidez	P, V	100 mL	As	Refrigerar	14 dias
Alcalinidad/CO ₃ /HCO ₃	P, V	200 mL	As	Refrigerar	14 dias
Turbidez	P, V	100 mL	AS, AR	Analizar el mismo dia; para más de 24 h guardar en oscuridad, refrigerar	48 horas
Boro	Р	100 mL	AS, AR	No requiere	6 meses
Bromuro	P, V	100 mL	AS, AR	No requiere	28 dias
Carbono orgánico total (COT)	v	100 mL	AS, AR	Análisis inmediato; o refrigerar y agregar H ₃ PO ₄ o H ₂ SO ₄ hasta pH<2	28 dias
Clorofila	P, V	500 mL	AS, AR	30 días en la oscuridad	30 dias
Cloruro	P. V	50 mL	AS, AR	No requiere	28 dias
Color	P, V	500 mL	AS, AR	Refrigerar	48 horas
Sustancias activas al azul de metileno	P, V	250	AS, AR	Refrigerar	48 horas
Fenoles	P, V	500 mL	AS, AR	Refrigerar; agregar H₂SO₄ hasta pH<2	40 dias después de extraer
DBO	P, V	1000 mL	As	Refrigerar	48 horas
DQO	P, V	100 mL	AS, AR	Analizar lo más pronto posible, o agregar H ₂ SO ₄ hasta pH<2; refrigerar	28 dias
Dureza	P, V	100 mL	AS, AR	Agregar HNO ₃ hasta pH<2	6 meses
Fluoruro	Р	300 mL	AS, AR	No requiere	28 dias
Fosfalo	V(A)	100 mL	As	Para fosfato disuelto filtrar inmediatamente; refrigerar	48 horas
Cianuro WAD/cianuro Libre/cianuro lotal	P.V	500 mL	AS, AR	Agregar NaOH hasta pH>12, refrigerar en la oscuridad	14 dias
Aceites y Grasas	V, ambar boca ancha calibrado	1000 mL	AS, AR	Agregar HCl hasta pH<2, refrigerar	28 dias
Hidrocarburos	V åmbar boca ancha	1 000 mL	As	Agregar HCl hasta pH < 2 refrigerar 4°C	28 dias
Metales, general	Р	100 mL	As	Agregar HNO ₃ hasta pH < 2	6 meses
Cromo VI	P (A) o V(A)	300 mL	As	Refrigerar	24 horas
Arsėnico	P (A) o V(A)	500 mL	As	Agregar HNO ₃ hasta pH<2, 4° C, refrigerar	2 meses
Mercurio	P (A), V(A)	500 mL	AS, AR	Agregar HNO ₃ hasta pH<2, 4* C, refrigerar	28 dias
N-Amoniacal	P.V	500 mL	AS, AR	Analizar lo más pronto posible, o agregar H ₂ SO ₄ hasta pH<2; refrigerar	28 dias
Nitralo	P, V	100 mL	AS, AR	Analizar lo más pronto posible o refrigerar	48 h (28 dias para muestras cloradas)
Nitrato + nitrito	P, V	200 mL	AS, AR	Agregar H₂SO₄ hasta pH<2, refrigerar	28 días
Nitrito	P, V	100 mL	AS, AR	Analizar la más pronto posible o refrigerar	48 horas
Orgánico, Kjeldahl (N-Orgánico)	P, V	500 mL	AS, AR	Refrigerar, agregar H ₂ SO ₄ hasta pH<2	28 dias

Autoridad Nacional dei Agua

ANEXO Nº I

"REQUISITOS PARA TOMA DE MUESTRAS DE AGUA Y PRESERVACIÓN"

Determinación/parametro	Recipionite -	Volumen minimo de muestra	Tipo de muestra	Preservación y conservación	Tiempo maximo de duaración		
Olor	v	500 mL	AS	Analizar lo más pronto posible; refrigerar	_		
Oxigeno disuelto (Electrodo)	P, V	1000 mL	AS	Análisis inmediato	_		
Oxigeno disuelto (Winkler)	botella winkler	300 mL	AS	Reativo 1 y reactivo 2	8 horas		
Sabor	V	500 mL	AS	Analizar lo más pronto posible; refrigerar	_		
Salinidad	V (sello de cera)	240 mL	AS	Análisis inmediato o usar sello de cera	_		
Silice	Р	200 mL	AS, AR	Refrigerar, no congelar	28 dias		
Sólidos totales suspendidos (TSS)	P,V	500 mL	AS	Refrigerar	2 a 7 dias		
Sólidos totales disueltos (STD)	P,V	500 mL	AS	Refrigerar	3 a 7 dlas		
Sólidos totales	P, V	200 mL	AS, AR	Refrigerar	2-7 dias, ver protocolo		
Sulfato	P, V	100 mL	AS, AR	Refrigerar	28 dias		
Sulfuro	P, V	100 mL	AS, AR	Refrigerar; agregar 4 gotas de acetato de zinc 2N/100 mL; agregar NaOH hasta pH>9	7 dias		
Plaguicidas	V(D) tapón de TFE	1000 mL	AS, AR	Refrigerar, agregar 1000 mg ácido ascórbico/L si hay cloro residual	7 dias		
Organoclorados	V(D)revestimiento de TFE	1 000 mL	AS	Añadir ácido ascórbico, 1.000 mg/L, si existe cloro residual; refrigerar 4° C	7 dias		
Bifenilopoliclorados	V(D)revestimiento de TFE	1 000 mL	AS	Añadir àcido ascórbico, 1.000 mg/L, si existe cloro residual; refrigerar 4° C	7 días		
Organofosforados	V(D)revestimiento de TFE	1 000 mL	AS	Añadir ácido ascórbico, 1.000 mg/L, si existe cloro residual; refrigerar 4° C	7 dias		
Piretroides	V(D)revestimiento de TFE	1 000 mL	AS	Añadir ácido ascórbico, 1.000 mg/L, si existe cloro residual; refrigerar 4° C	7 dias		
Trihalometanos	V(D)revestimiento de TFE	1 000 mL	AS	Añadir acido ascórbico, 1.000 mg/L, si existe cloro residual; refrigerar 4° C	7 dias		
Microbiológico:							
Coliformes termotolerantes (NMP)	٧	250 mL	AR, AS	refrigerar a 4 °C	6 - 24 horas		
Coliformes totales (NMP)	V	250 mL	AR, AS	refrigerar a 4 °C	6 - 24 horas		
Escherichia (NMP)	٧	250 mL	AR, AS	refrigerar a 4 °C	24 horas		
Enterococos (NMP)	٧	250 mL	AM	refrigerar a 4 °C	6 horas		
Salmonella (A/P)	V	2 a 4 L	AS	refrigerar a 4 °C	6 horas		
/ibrio cholerae (A/P)	V	2 a 4 L	AS	refrigerar a 4 °C	24 horas		
Enteroparásitos	PoV	1000 mL	AR cruda	refrigerar a 4 °C	24 horas		
Enteroparàsitos	Р	4000 mL	AR tratada 2da lag	refrigerar a 4 °C	24 horas		
Enteroparásitos	Р	2000 mL	AS	refrigerar a 4 °C	24 horas		
Biológico:							
itoplancton cuantitativo	VoP	250 mL	AS	Lugol ácido formalina 5 %	15 dias		
itoplancton cualitativo	VoP	>5L	AS	formalina 5 %	15 dias		
itoplancton cuali o cuantitativo	VoP	250 - 5 L	AS	refrigerar a 4 °C	24 horas		

Basado en los métodos normalizados para análisis de aguas potables y residuales, APHA, AWWA, WPCF, 17a edición 1987

²(V)=vidrio, (P)=plástico, (VA) o (PA): labado 1+1HNO₃, V(D)=lavado con acelona luego hexano

^{3 (}AS) Agua superficial, (AR) Agua residual, (AM) Agua de mar

ESTÁNDARES NACIONALES DE CALIDAD AMBIENTAL PARA AGUA

CATEGORÍA 1: POBLACIONAL Y RECREACIONAL

		Aguas super	ficiales destinadas a la producció	ón de agua potable	Aguas superficiales destinadas para recreación		
		A1 A2 A3			B1 B2		
PARÁMETRO	UNIDAD	Aguas que pueden ser potabilizadas con desinfección	Aguas que pueden ser potabilizadas con tratamiento convencional	Aguas que pueden ser potabilizadas con tratamiento avanzado	Contacto Primario	Contacto Secundario	
		VALOR	VALOR	VALOR	VALOR	VALOR	
FÍSICOS Y QUÍMICOS							
Aceites y grasas (MEH)	mg/L	1	1,00	1,00	Ausencia de	**	
			·		película visible	0.000	
Cianuro Libre Cianuro Wad	mg/L	0,005 0,08	0,022 0,08	0,022 0.08	0,022	0,022	
Cloruros	mg/L mg/L	250	250	250	1,00	**	
	Color verdadero						
Color	escala Pt/Co	15	100	200	sin cambio normal	sin cambio norm	
Conductividad	us/cm (®)	1 500	1 600	**	**	**	
D.B.O.,	mg/L	3	5	10	5	10	
D.Q.O.	mg/L	10	20	30	30	50	
Dureza	mg/L	500	**	**	**	**	
Detergentes (SAAM)	mg/L	0,5	0,5	na	0,5	Ausencia de espuma persistente	
Fenoles	mg/L	0,003	0,01	0,1	**	**	
Fluoruros	mg/L	1	**	**	**	**	
Fósforo Total	mg/L P	0,1	0,15	0,15	**	**	
Materiales Flotantes		Ausencia de material	**	**	Ausencia de	Ausencia de	
		flotante	40	40	material flotante	material flotante	
Nitratos	mg/L N	10	10	10	10	**	
Nitritos	mg/L N	1	1	1	1(5)	**	
Nitrógeno amoniacal	mg/L N	1,5	2	3,7		**	
Olor		Aceptable			Aceptable		
Oxígeno Disuelto	mg/L	>= 6	>= 5 5.5 – 9.0	>= 4 5.5 – 9.0	>= 5	>= 4	
pH	Unidad de pH	6,5 - 8,5	-11-		6-9 (2,5)	**	
Sólidos Disueltos Totales Sulfatos	mg/L	1 000 250	1 000	1 500	**	**	
Sulfuros	mg/L mg/L	0.05	**	**	0,05	**	
Turbiedad	UNT (b)	5	100	**	100	**	
	UNI ~	J	100		100	l	
INORGÁNICOS Aluminio		0.2	0,2	0.2	0.2	**	
Antimonio	mg/L mg/L	0.006	0.006	0.006	0,006	**	
Arsénico	mg/L	0,00	0,00	0,05	0,00	**	
Bario	mg/L	0,7	0,7	1	0,7	**	
Berilio	mg/L	0.004	0.04	0.04	0.04	**	
Boro	mg/L	0,5	0,5	0,75	0,5	**	
Cadmio	mg/L	0,003	0,003	0,01	0,01	**	
Cobre	mg/L	2	2	2	2	**	
Cromo Total	mg/L	0.05	0,05	0.05	0,05	**	
Cromo VI	mg/L	0.05	0,05	0.05	0,05	**	
Hierro	mg/L	0,3	1	1	0,3	**	
Manganeso	mg/L	0,1	0,4	0,5	0,1	**	
Mercurio	mg/L	0,001	0,002	0,002	0,001	**	
Níquel	mg/L	0,02	0,025	0,025	0,02	**	
Plata	mg/L	0,01	0,05	0,05	0,01	0,05	
Plomo	mg/L	0,01	0,05	0,05	0,01	**	
Selenio	mg/L	0,01	0,05	0,05	0,01	**	
Uranio	mg/L	0,02	0,02	0,02	0,02	0,02	
Vanadio	mg/L	0,1	0,1	0,1	0,1	0,1	
Zinc	mg/L	3	5	5	3	**	
ORGÁNICOS							
I. COMPUESTOS ORGÁNICOS VOLÁTIL	LES						
Hidrocarburos totales de petróleo, HTTP	mg/L	0,05	0,2	0,2			
Trihalometanos	mg/L	0,1	0,1	0,1	**	**	
Compuestos Orgánicos Volátiles,							
COVs	mg/L	2	2	**	**	**	
	IIIg/L		0,03	**	**	**	
<u>COVs</u>	mg/L	0,03	0,00				
<u>COVs</u> 1,1,1-Tricloroetano 71-55-6		0,03 0,03	0,03	**	**	**	
COVs 1,1,1-Tricloroetano 71-55-6 1,1-Dicloroeteno 75-35-4	mg/L			**	**	**	
COVs 1,1,1-Tricloroetano 71-55-6 1,1-Dicloroeteno 75-35-4 1,2 Dicloroetano 107-06-2 1,2-Diclorobenceno 95-50-1 Hexaclorobutadieno 87-68-3	mg/L mg/L	0,03	0,03	** **	**	**	
COVs 1,1,1-Tricloroetano 71-55-6 1,1-Dicloroetano 75-35-4 1,2 Dicloroetano 107-06-2 1,2-Diclorobenceno 95-50-1 Hexaclorobutadieno 87-68-3 Tetracloroeteno 127-18-4	mg/L mg/L mg/L	0,03 1 0,0006 0,04	0,03 1 0,0006 0,04	## ##	37 37	**	
COVs 1,1,1-Tricloroetano 71-55-6 1,1-Dicloroeteno 75-35-4 1,2 Dicloroetano 107-06-2 1,2-Diclorobenceno 95-50-1 Hexaclorobutadieno 87-68-3	mg/L mg/L mg/L mg/L	0,03 1 0,0006	0,03 1 0,0006	** **	**	**	

		Aguas super	Aguas superficiales destinadas para recreación				
		A1 A2		A3	B1	B2	
PARÁMETRO	UNIDAD	Aguas que pueden ser potabilizadas con desinfección	Aguas que pueden ser potabilizadas con tratamiento convencional	Aguas que pueden ser potabilizadas con tratamiento avanzado	Contacto Primario	Contacto Secundario	
		VALOR	VALOR	VALOR	VALOR	VALOR	
Benceno - 71-43-2	mg/L	0,01	0,01	**	**	**	
Etilbenceno 100-41-4	mg/L	0,3	0,3	**	**	**	
Tolueno - 108-88-3	mg/L	0,7	0,7	**	**	**	
Xilenos - 1330-20-7	mg/L	0,5	0,5	**	**	**	
Hidrocarburos Aromáticos							
Benzo(a)pireno 50-32-8	mg/L	0,0007	0,0007	**	**	**	
Pentaclorofenol (PCP)	mg/L	0,009	0,009	**	**	**	
Triclorobencenos (Totales)	mg/L	0,02	0,02	**	**	**	
Plaguicidas							
Organofosforados:							
Malatión	mg/L	0,0001	0,0001	##	**	**	
Metamidofós (restringido)	mg/L	Ausencia	Ausencia	Ausencia	**	**	
Paraquat (restringido)	mg/L	Ausencia	Ausencia	Ausencia	**	**	
Paratión	mg/L	Ausencia	Ausencia	Ausencia	**	**	
Organoclorados (COP)*:							
Aldrín 309-00-2	mg/L	Ausencia	Ausencia	Ausencia	**	**	
Clordano	mg/L	Ausencia	Ausencia	Ausencia	**	**	
DDT	mg/L	Ausencia	Ausencia	Ausencia	**	**	
Dieldrin 60-57-1	mg/L	Ausencia	Ausencia	Ausencia	**	**	
Endosulfán	mg/L	0.000056	0.000056	t	**	**	
Endrín 72-20-8	mg/L	Ausencia	Ausencia	Ausencia	**	**	
Heptacloro 76-44-8	mg/L	Ausencia	Ausencia	Ausencia	**	**	
Heptacloro epóxido 1024-57-3	mg/L	0.00003	0.00003	t	**	**	
Lindano	mg/L	Ausencia	Ausencia	Ausencia	**	**	
Carbamatos:	mg/c	riadorida	risidorida	raconola			
Aldicarb (restringido)	mg/L	Ausencia	Ausencia	Ausencia	**	**	
	Illy/L	Austricia	Austricia	Austricia			
Policloruros Bifenilos Totales		0.000001	0.000001	**	**	**	
(PCBs)	mg/L	0,000001	0,000001				
Otros							
Asbesto	Millones de fibras/L	7	**	**	**	**	
MICROBIOLÓGICO							
Colliformes Termotolerantes (44,5 °C)	NMP/100 mL	0	2 000	20 000	200	1 000	
Colliformes Totales (35 - 37 °C)	NMP/100 mL	50	3 000	50 000	1 000	4 000	
Enterococos fecales	NMP/100 mL	0	0		200	**	
Escherichia coli	NMP/100 mL	0	0		Ausencia	Ausencia	
Formas parasitarias	Organismo/Litro	0	0		0		
Giardia duodenalis	Organismo/Litro	Ausencia	Ausencia	Ausencia	Ausencia	Ausencia	
Salmonella	Presencia/100 mL	Ausencia	Ausencia	Ausencia	0	0	
Vibrio Cholerae	Presencia/100 mL	Ausencia	Ausencia	Ausencia	Ausencia	Ausencia	

CATEGORÍA 2: ACTIVIDADES MARINO COSTERAS

			AGUA DE MAR				
PARÁMETRO	UNIDADES	Sub Categoría 1	Sub Categoría 2	Sub Categoría 3			
PARAMETRO	UNIDADES	Extracción y Cultivo de Moluscos Bivalvos (C1)	Extracción y cultivo de otras especies hidrobiológicas (C2)	Otras Actividades (C3)			
ORGANOLÉPTICOS							
Hidrocarburos de Petróleo		No Visible	No Visible	No Visible			
FISICOQUÍMICOS.							
Aceites y grasas	mg/L	1,0	1,0	2,0			
DBO,	mg/L	**	10,0	10,0			
Oxígeno Disuelto	mg/L	>=4	>=3	>=2,5			
Н	Unided de pH	7 - 8,5	6,8 - 8,5	6,8 - 8,5			
Sólidos Suspendidos Totales	mg/L	**	50,0	70,0			
Sulfuro de Hidrógeno	mg/L	**	0,06	0,08			
Temperatura	celsius	* **delta 3 °C	* **delta 3 °C	* **delta 3 °C			
NORGÁNICOS							
Amoníaco	mg/L	**	0,08	0,21			
Arsénico total	mg/L	0,05	0,05	0,05			
Cadmio total	mg/L	0,0093	0,0093	0,0093			
Cobre total	mg/L	0,0031	0,05	0,05			
Cromo VI	mg/L	0,05	0,05	0,05			
Fosfatos (P-PO4)	mg/L	**	0,03 - 0,09	0,1			

UNT Unidad Nefelométrica Turbiedad
NMP/ 100 mL Número más probable en 100 mL
* Contaminantes Orgánicos Persistentes (COP)
** Se entenderá que para esta subcategoría, el parámetro no es relevante, salvo casos específicos que la Autoridad competente determine.

		AGUA DE MAR					
PARÁMETRO	UNIDADES	Sub Categoría 1	Sub Categoría 2	Sub Categoría 3			
PARAMETRO	ONIDADEO	Extracción y Cultivo de Moluscos Bivalvos (C1)	Extracción y cultivo de otras especies hidrobiológicas (C2)	Otras Actividades (C3)			
Mercurio total	mg/L	0,00094	0,0001	0,0001			
Níquel total	mg/L	0,0082	0,1	0,1			
Nitratos (N-NO3)	mg/L	**	0,07 - 0,28	0,3			
Plomo total	mg/L	0,0081	0,0081	0,0081			
Silicatos (Si-Si O3)	mg/L	**	0,14 - 0,70	**			
Zinc total	mg/L	0,081	0,081	0,081			
ORGÁNICOS		•					
Hidrocarburos de petróleo totales (fracción aromática)	mg/L	0,007	0,007	0,01			
MICROBIOLÓGICOS							
Colliformes Termotolerantes	NMP/100mL	* ≤14 (área aprobada)	≤30	1000			
Colliformes Termotolerantes	NMP/100mL	* ≤88 (área restringida)	1				

NMP/ 100 mL Número más probable en 100 mL

- NMP/ 100 mL Numero mas probabe en 100 mL

 Årea Aprobada: Áreas de dónde se extraen ó cultivan moluscos bivalvos seguros para el comercio directo y consumo, libres de contaminación fecal humana ó animal, de organismos patógenos ó cualquier sustancia deletérea ó venenosa y potencialmente peligrosa.

 Årea Restringida: Áreas acuáticas impactadas por un grado de contaminación donde se extraen moluscos bivalvos seguros para consumo humano luego de ser depurados

 Se entenderá que para este uso, el parámetro no es relevante, salvo casos específicos que la Autoridad competente lo determine

 La temperatura corresponde al promedio mensual multianual del área evaluada.

CATEGORÍA 3: RIEGO DE VEGETALES Y BEBIDAS DE ANIMALES

PARÁMETROS PARA RIEGO DE VEGETALES DE TALLO BAJO Y TALLO ALTO					
PARÁMETROS	UNIDAD	VALOR			
Fisicoquímicos					
Bicarbonatos	mg/L	370			
Calcio	mg/L	200			
Carbonatos	mg/L	5			
Cloruros	mg/L	100-700			
Conductividad	(uS/cm)	<2 000			
Demanda Bioquímica de Oxígeno	mg/L	15			
Demanda Química de Oxígeno	mg/L	40			
Fluoruros	mg/L	1			
Fosfatos - P	mg/L	1			
Nitratos (NO3-N)	mg/L	10			
Nitritos (NO2-N)	mg/L	0,06			
Oxígeno Disuelto	mg/L	>=4			
pH	Unidad de pH	6,5 – 8,5			
Sodio	mg/L	200			
Sulfatos	mg/L	300			
Sulfuros	mg/L	0,05			
Inorgánicos					
Aluminio	mg/L	5			
Arsénico	mg/L	0.05			
Bario total	mg/L	0.7			
Boro	mg/L	0,5-6			
Cadmio	mg/L	0,005			
Cianuro Wad	mg/L	0,1			
Cobalto	mg/L	0.05			
Cobre	mg/L	0.2			
Cromo (6+)	mg/L	0,1			
Hierro	mg/L	1			
itio	mg/L	2.5			
Magnesio	mg/L	150			
Manganeso	mg/L	0,2			
Mercurio	mg/L	0,001			
Níquel	mg/L	0,2			
Plata	mg/L	0,05			
Plomo	mg/L	0,05			
Selenio	mg/L	0,05			
Zinc	mg/L	2			
Orgánicos					
Aceites y Grasas	mg/L	1			
Fenoles	mg/L	0,001			
S.A.A.M. (detergentes)	mg/L	1			
Plaguicidas					
Aldicarb	ug/L	1			
Aldrin (CAS 309-00-2)	ug/L	0.004			
Clordano (CAS 57-74-9)	ug/L	0.3			
DDT	ug/L	0.001			
Dieldrín (N° CAS 72-20-8)	ug/L	0,7			
Endrín	ug/L	0.004			

PARÁMETROS PARA RIEGO DE VEGETALES DE TALLO BAJO Y TALLO ALTO								
PARÁMETROS UNIDAD VALOR								
Endosulfán	ug/L	0,02						
Heptacloro (N° CAS 76-44-8) y heptacloripoxido	ug/L	0,1						
Lindano	ug/L	4						
Paratión	ug/L	7,5						

CATEGORÍA 3: RIEGO DE VEGETALES Y BEBIDAS DE ANIMALES

PARÁMETRO	Manatalaa Tall A		
PARÁMETROS		Vegetales Tallo Bajo	Vegetales Tallo A
B. 17 1	Unidad	Valor	Valor
Biológicos Coliformes Termotolerantes	NMP/100mL	1 000	2 000(3)
Coliformes Totales	NMP/100mL	5 000	5 000(3)
Enterococos	NMP/100mL	20	100
Escherichia coli	NMP/100mL	100	100
Huevos de Helmintos	huevos/litro	<1	<1(1)
Salmonella sp.		Ausente	Ausente
Vibrion cholerae		Ausente	Ausente
PARÁMETROS PARA BEBIDAS	S DE ANIMALES		
PARÁMETROS	UNIDAD	VALOR	
Fisicoquímicos			
Conductividad Eléctrica	(uS/cm)	<=5000	
Demanda Bioquímica de Oxígeno	mg/L	<=15	
Demanda Química de Oxígeno	mg/L	40	
Fluoruro	mg/L	2	
Nitratos-(NO3-N)	mg/L	50	
Vitritos (NO2-N)	mg/L	1	
Oxigeno Disuelto	mg/L	>5	
DXIGENO DISUERIO	Unidades de pH	6,5 – 8,4	
Sulfatos		500	
	mg/L		
Sulfuros	mg/L	0,05	
norgánicos			
Aluminio	mg/L	5	
Arsénico	mg/L	0,1	
Berilio	mg/L	0,1	
Boro	mg/L	5	
Cadmio	mg/L	0,01	
Cianuro WAD	mg/L	0,1	
Cobalto	mg/L	1	
Cobre	mg/L	0,5	
Cromo (6+)	mg/L	1	
Hierro	mg/L	1	
Litio	mg/L	2,5	
Magnesio	mg/L	150	
-			
Manganeso	mg/L	0,2	
Mercurio	mg/L	0,001	
Niquel	mg/L	0,2	
Plata	mg/L	0,05	
Plomo	mg/L	0,05	
Selenio	mg/L	0,05	
Zinc	mg/L	24	
Orgánicos			
Aceites y Grasas	mg/L	1	
Fenoles	mg/L	0,001	
S.A.A.M. (detergentes)	mg/L	1	
Plaguicidas	· ·		
Aldicarb	ug/L	1	
Aldrin (CAS 309-00-2)	ug/L	0,03	
Clordano (CAS 57-74-9)	ug/L	0,3	
DDT		1	
Dieldrin (N° CAS 72-20-8)	ug/L ug/L	0,7	

Endrín	ug/L	0,004		
Heptacloro (N° CAS 76-44-8) y heptacloripóxido	ug/L	0,1		
Lindano	ug/L	4		
Paratión	ug/L	7,5		
Biológicos				
Coliformes Termotolerantes	NMP/100mL	1 000		
Coliformes Totales	NMP/100mL	5 000		
Enterococos	NMP/100mL	20		
Escherichia coli	NMP/100mL	100		
Huevos de Helmintos	huevos/litro	<1		
Salmonella sp.		Ausente		
Vibrion cholerae		Ausente		

NMP/100: Número más probable en 100 mL

Vegetales de Tallo alto: Son plantas cultivables o no, de porte arbustivo o arbóreo y tienen una buena longitud de tallo. las especies leñosas y forestales tienen un sistema radicular pivotante profundo (1 a 20 metros). Ejemplo, Forestales, árboles frutales, etc.

Vegetales de Tallo bajo: Son plantas cultivables o no, frecuentemente porte herbáceo, debido a su poca longitud de tallo alcanzan poca altura. Usualmente, las especies

herbaceas de porte bajo tienen un sistema radicular difuso o fibroso, poco profundo (10 a 50 cm). Ejemplo: Hortalizas y verdura de tallo corto, como ajo, lechuga, fresas, col, repollo, apio y arveja, etc.

Animales mayores: Entiéndase como animales mayores a vacunos, ovinos, porcinos, camélidos y equinos, etc.

Animales menores: Entiéndase como animales menores a caprinos, cuyes, aves y conejos SAAM: Sustancias activas de azul de metileno

CATEGORÍA 4: CONSERVACIÓN DEL AMBIENTE ACUÁTICO

PARÁMETROS	UNIDADES	LAGUNAS Y LAGOS	RÍOS			MAS MARINO TEROS
			COSTA Y SIERRA	SELVA	ESTUARIOS	MARINOS
FÍSICOS Y QUÍMICOS						
Aceites y grasas	mg/L	Ausencia de película visible	Ausencia de película visible	Ausencia de película visible	1	1
Demanda Bioquímica de Oxígeno (DBO5)	mg/L	<5	<10	<10	15	10
Nitrógeno Amoniacal	mg/L	<0,02	0,02	0,05	0,05	0,08
Temperatura	Celsius					delta 3 °C
Oxígeno Disuelto	mg/L	≥5	≥5	≥5	≥4	≥4
pH	unidad	6,5-8,5	6,5-8,5		6,8-8,5	6,8 - 8,5
Sólidos Disueltos Totales	mg/L	500	500	500	500	
Sólidos Suspendidos Totales	mg/L	≤25	≤25 - 100	≤25 - 400	≤25-100	30,00
INORGÁNICOS						
Arsénico	mg/L	0,01	0,05	0,05	0,05	0,05
Bario	mg/L	0,7	0,7	1	1	
Cadmio	mg/L	0,004	0,004	0,004	0,005	0,005
Cianuro Libre	mg/L	0,022	0,022	0,022	0,022	
Clorofila A	mg/L	10				
Cobre	mg/L	0,02	0,02	0,02	0,05	0,05
Cromo VI	mg/L	0,05	0,05	0,05	0,05	0,05
Fenoles	mg/L	0,001	0,001	0,001	0,001	
Fosfatos Total	mg/L	0,4	0,5	0,5	0,5	0,031 - 0,093
Hidrocarburos de Petróleo Aromáticos Totales	Ausente				Ausente	Ausente
Mercurio	mg/L	0,0001	0,0001	0,0001	0,001	0,0001
Nitratos (N-NO3)	mg/L	5	10	10	10	0,07 - 0,28
INORGÁNICOS						
Nitrógeno Total	mg/L	1,6	1,6			
Níquel	mg/L	0,025	0,025	0,025	0,002	0,0082
Plomo	mg/L	0,001	0,001	0,001	0,0081	0,0081
Silicatos	mg/L					0,14-0,7
Sulfuro de Hidrógeno (H2S indisociable)	mg/L	0,002	0,002	0,002	0,002	0,06
Zinc	mg/L	0,03	0,03	0,3	0,03	0,081
MICROBIOLÓGICOS						
Coliformes Termotolerantes	(NMP/100mL)	1 000	2 000		1 000	≤30
Coliformes Totales	(NMP/100mL)	2 000	3 000		2 000	

NOTA: Aquellos parámetros que no tienen valor asignado se debe reportar cuando se dispone de análisis

Dureza: Medir "dureza" del agua muestreada para contribuir en la interpretación de los datos (método/técnica recomendada: APHA-AWWA-WPCF 2340C)

Nitrógeno total: Equivalente a la suma del nitrógeno Kjeldahl total (Nitrógeno orgánico y amoniacal), nitrógeno en forma de nitrato y nitrógeno en forma de nitros (NO)

Amonio: Como NH3 no ionizado
NMP/100 mL: Número más probable de 100 mL
Ausente: No deben estar presentes a concentraciones que sean detectables por olor, que afecten a los organismos acuáticos comestibles, que puedan formar depósitos de sedimentos en las orillas o en el fondo, que puedan ser detectados como películas visibles en la superficie o que sean nocivos a los organismos acuáticos presentes.

RJ-202-2010-ANA

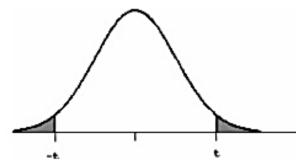
Rio Zarumilla (pausa shajo del Puente Bolsico en Aguas Verdes) Calegoria 3 Clase 3 13952 Zarumilla (pausa chajo del Puente Bolsico en Aguas Verdes) Calegoria 3 Clase 3 13952 Zarumilla (pausa delajo de pausa pode) Calegoria 3 Clase 3 13954 Tumbes (pausa delajo de capatación de agua pode) Calegoria 1.42 Clase 2 1394 Tumbes (pausa delajo de capatación de agua pode) Calegoria 3 Clase 3 13954 Tumbes (pausa delajo de capatación de agua pode) Calegoria 3 Clase 3 138 Chira (pausa delajo de capatación de agua dela pode) Calegoria 3 Clase 3 138 Chira (pausa delajo de capatación de agua del penal fuel rela verde dela pode) Calegoria 3 Clase 3 138 Chira (pausa delajo dela pausa pode) Calegoria 3 Clase 3 138 Chira (pausa delajo dela pausa del penal de río Seco) Calegoria 3 Clase 3 138 Chira (pausa delajo dela capatación de agua del Penal de río Seco) Calegoria 3 Clase 3 138 Chira (pausa delajo de capatación de agua del Penal de río Seco) Calegoria 3 Clase 3 1376 Piura (pausa delajo de capatación de agua del Penal de río Seco) Calegoria 3 Clase 3 1377 Piura (pausa delajo de capatación de agua del Penal de río Seco) Calegoria 3 Clase 3 1377 Clase		CLASIFICACIÓN DE CUERPOS DE AGUA SUPERFICIALES: RÍOS, LAGOS, LAGUNAS								
Rio Zurumila (session enclente hosto Puerte Bolsico en Aguas Verdes)	-	CUERPO DE AGUA	CATEGORÍA	CLASE		PERTENECE EL				
Rio Tumbes (Instala capación de aqua potable) Calegoría 1.42 Clase 2 1394 Tumbes	13952	Río Zarumilla (aguas abajo del Puente Bólsico en Aguas Verdes)	Categoría 4	Clase Especial	13952	Zarumilla				
Rio Tumbes (Instala capación de aqua potable) Calegoría 1.42 Clase 2 1394 Tumbes	13952		Categoría 3		13952	Zarumilla				
Rio Tumbes (quaus debajo de capatación de aqua potable)						Tumbes				
Rio Chira (capacitación de agua para localidad Santa Victoria hasta océano Pacifico) Categoría 3 Clase 3 138 Chira			Categoría 3	Clase 3						
Rio Chiria (nacionte hasta represa Poechos)	138									
Ric Chipilico	138									
Ric Quiroz Ric Quiroz Categoria 3 Case 3 1386 Outroz										
Rio Plura (hasta la capatición de agua de Penal rio Seco) Categoría 1-A2 Clase 2 1378 Plura										
Rio Plura Laquas debajo de capatacion de aqua de Penal de rio Seco) Categoria 3 Clase 3 13778 Plura										
Ro Olmos Calegoria 3										
1377728 Rio Choloque Categoria 3										
Rotation			1							
13776										
13776-1										
13776-2 Rio Lambayeque Categoría 3 Clase 3 13776 Chancay-Lambayeque Categoría 3 Clase 3 13775 Zaña Categoría 3 Clase 3 13774 Zaña Categoría 3 Clase 3 13774 Zaña		,								
137754 Rio Zana Categoria 3 Clase 3 137754 Zana 13774 Rio Jequetepeque Categoria 3 Clase 3 13774 Jequetepeque 13774-1 Rio San Juan Categoria 3 Clase 3 13774 Jequetepeque 13774-2 Cuebrada Chotén Categoria 3 Clase 3 13774 Jequetepeque 13774-3 Rio Magdalena Categoria 3 Clase 3 13774 Jequetepeque 13774-3 Rio Magdalena Categoria 3 Clase 3 13774 Jequetepeque 13774-5 Rio San Miquelino Categoria 3 Clase 3 13774 Jequetepeque 13774-6 Rio Tinte o Grande Categoria 3 Clase 3 13774 Jequetepeque 13774-7 Rio Rejo o Chico Categoria 3 Clase 3 13774 Jequetepeque 13774-8 Rio Tinte o Grande Categoria 3 Clase 3 13774 Jequetepeque 13774-9 Rio Rejo o Chico Categoria 3 Clase 3 13774 Jequetepeque 13774-9 Rio de Aqua Duice o Yanahuanga Categoria 3 Clase 3 13774 Jequetepeque 13774-9 Rio de Aqua Duice o Yanahuanga Categoria 3 Clase 3 13774 Jequetepeque 13774-10 Quebrada San Antonio Ojos Categoria 3 Clase 3 13774 Jequetepeque 13774-11 Quebrada San Antonio Ojos Categoria 3 Clase 3 13774 Jequetepeque 13774-12 Quebrada San Antonio Ojos Categoria 3 Clase 3 13774 Jequetepeque 13774-13 Quebrada San Antonio Ojos Categoria 3 Clase 3 13774 Jequetepeque 13774-17 Rio Kinama Categoria 3 Clase 3 13774 Jequetepeque 13774-18 Rio Viru Categoria 3 Clase 3 13771 Jequetepeque 13771-18 Rio Viru Categoria 3 Clase 3 13771 Viru 13771-19 Rio Carabamba Categoria 3 Clase 3 13771 Viru 13771-19 Rio Carabamba Categoria 3 Clase 3 13771 Viru 13771-19 Rio Carabamba Categoria 3 Clase 3 13774 Viru 13771-19 Rio Carabamba Categoria 3 Clase 3 13764 Tablachaca 1376-10 Rio Santa Categoria 3 Clase 3 13764 Tablachaca 13759-10 Rio Nepena Categoria 3 Clase 3 13759 Rio Nepena 13759-10 Rio Carabama Categoria 3 Clase 3										
13774 Rio Jeguelepeque Categoría 3 Clase 3 13774 Jequelepeque 13774-1 Rio San Juan Categoría 3 Clase 3 13774 Jequelepeque 13774-1 Rio San Juan Categoría 3 Clase 3 13774 Jequelepeque 13774-3 Rio Magdalena Categoría 3 Clase 3 13774 Jequelepeque 13774-3 Rio Magdalena Categoría 3 Clase 3 13774 Jequelepeque 13774-5 Rio San Miguelino Categoría 3 Clase 3 13774 Jequelepeque 13774-6 Rio San Miguelino Categoría 3 Clase 3 13774 Jequelepeque 13774-7 Rio Rejo o Chico Categoría 3 Clase 3 13774 Jequelepeque 13774-7 Rio Rejo o Chico Categoría 3 Clase 3 13774 Jequelepeque 13774-7 Rio Rejo o Chico Categoría 3 Clase 3 13774 Jequelepeque 13774-7 Rio Lapino Categoría 3 Clase 3 13774 Jequelepeque 13774-10 Quebrada Mina Categoría 3 Clase 3 13774 Jequelepeque 13774-10 Quebrada Mina Categoría 3 Clase 3 13774 Jequelepeque 13774-11 Quebrada San Antonio Ojos Categoría 3 Clase 3 13774 Jequelepeque 13774-11 Quebrada San José Categoría 3 Clase 3 13774 Jequelepeque 13774-12 Quebrada San José Categoría 3 Clase 3 13774 Jequelepeque 13774-12 Quebrada San José Categoría 3 Clase 3 13774 Jequelepeque 13774-13 Quebrada Shillamayo Categoría 3 Clase 3 13774 Jequelepeque 13774-14 Quebrada Shillamayo Categoría 3 Clase 3 13774 Jequelepeque 13774-17 Rio Moche Categoría 3 Clase 3 13774 Jequelepeque 13774-17 Rio Moche Categoría 3 Clase 3 13774 Jequelepeque 13774-17 Rio Moche Categoría 3 Clase 3 13776 Rio Moche Categoría 3 Clase 3 13759 Categoría 3 Clase 3 13759 Categoría 3 Clase 3										
13774-1										
13774-2 Quebrada Choten Calegoria 3 Clase 3 13774 Jequetepeque										
13774-3										
13774.4										
13774-5										
13774-6										
13774-7										
13774-8										
13774-9										
13774-10* Quebradd Mina Categoría 3 Clase 3 13774 Jequelepeque 13774-11* Quebrada San Antonio Ojos Categoría 3 Clase 3 13774 Jequelepeque 13774-12* Quebrada San José Categoría 3 Clase 3 13774 Jequelepeque 13774-13* Quebrada Shillamayo Categoría 3 Clase 3 13774 Jequelepeque 137710 Río Moche Categoría 3 Clase 3 13771 Dequelepeque 137716 Río Moche Categoría 3 Clase 3 13771 Moche 137714-11* Río Carabamba Categoría 3 Clase 3 137714 Virú 137714-11* Río Carabamba Categoría 3 Clase 3 137714 Virú 13764-11* Río Santa Categoría 1-A2 Clase 2 1376 Santa 13764-11* Río Negro Categoría 3 Clase 3 13764 Tablachaca 137598 Río Negro Categoría 3 Clase 3 13759 Nepeña 137595-2 Río Casma <td></td> <td>·</td> <td>1</td> <td></td> <td></td> <td></td>		·	1							
13774-11										
13774-12* Quebrada San José Categoría 3 Clase 3 13774 Jequetepeque 13774-13* Quebrada Shillamayo Categoría 3 Clase 3 13774 Jequetepeque 13772 Río Chicama Categoría 3 Clase 3 137716 Moche 137714 Río Moche Categoría 3 Clase 3 137714 Virú 137714-1* Río Carabamba Categoría 3 Clase 3 137714 Virú 13764 Río Santa Categoría 1-A2 Clase 2 1376 Santa 13764-1* Río Negro Categoría 1-A2 Clase 2 13764 Tablachaca 137598 Río Negro Categoría 3 Clase 3 137594 Tablachaca 137599 Río Casma Categoría 3 Clase 3 137596 Nepeña 137596 Río Casma Categoría 3 Clase 3 137596 Nepeña 137595-2 Río Culebras Categoría 3 Clase 3 137596 Casma 137597 Río Huarmey Categoría 3 <										
13774-13* Quebrada Shillamayo Categoría 3 Clase 3 13774 Jequetepeque 13772 Río Chicama Categoría 3 Clase 3 13772 Chicama 137716 Río Moche Categoría 3 Clase 3 137716 Moche 137714 Río Virú Categoría 3 Clase 3 137714 Virú 13764 Río Carabamba Categoría 3 Clase 2 1376 Santa 13764 Río Santa Categoría 1-A2 Clase 2 1376 Santa 13764-13764 Río Negro Categoría 3 Clase 3 13764 Tablachaca 137598 Río Nepeña Categoría 3 Clase 3 13764 Tablachaca 137595-2 Río Casma Categoría 3 Clase 3 137598 Nepeña 137592 Río Luarmey Categoría 3 Clase 3 137596 Came 3 137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 13758-1* Río Pativilca Categoría 3 Clase 3	13774-11 *	Quebrada San Antonio Ojos		Clase 3		Jequetepeque				
13772 Río Chicama Categoría 3 Clase 3 13772 Chicama 137716 Río Moche Categoría 3 Clase 3 137716 Moche 137714 Río Virú Categoría 3 Clase 3 137714 Virú 137714-1** Río Carabamba Categoría 3 Clase 3 137714 Virú 1376 Río Santa Categoría 1-A2 Clase 2 1376 Santa 13764-1** Río Negro Categoría 3 Clase 3 13764 Tablachaca 137598 Río Nepeña Categoría 3 Clase 3 137598 Nepeña 137595-2 Río Culebras Categoría 3 Clase 3 137596 Casma 137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 137592 Río Fortaleza Categoría 3 Clase 3 137599 Fortaleza 13758-1* Río Pativilca Categoría 3 Clase 3 13758 Pativilca 13758-2* Río Pampan Categoría 3 Clase 3	13774-12 *	Quebrada San José				Jequetepeque				
137716 Río Moche Categoría 3 Clase 3 137716 Moche 137714 Río Virú Categoría 3 Clase 3 137714 Virú 137714-1* Río Carabamba Categoría 3 Clase 3 137714 Virú 1376 Río Santa Categoría 1-A2 Clase 2 1376 Santa 13764 Río Tablachaca Categoría 1-A2 Clase 2 13764 Tablachaca 137594 Río Negro Categoría 3 Clase 3 137598 Nepeña 137595 Río Casma Categoría 3 Clase 3 137596 Casma 137595 Río Culebras Categoría 3 Clase 3 137596 Casma 137594 Río Huarmey Categoría 3 Clase 3 137592 Culebras 137592 Río Fortaleza Categoría 3 Clase 3 137594 Huarmey 13758-1* Río Pativilca Categoría 3 Clase 3 13758 Pativilca 13758-2* Río Pampan Categoría 3 Clase 3										
137714 Río Virú Categoría 3 Clase 3 137714 Virú 137714-1* Río Carabamba Categoría 3 Clase 3 137714 Virú 1376 Río Santa Categoría 1-A2 Clase 2 1376 Santa 13764 Río Tablachaca Categoría 1-A2 Clase 2 13764 Tablachaca 13764-1* Río Negro Categoría 3 Clase 3 13764 Tablachaca 137598 Río Nepeña Categoría 3 Clase 3 137598 Nepeña 137596 Río Casma Categoría 3 Clase 3 137596 Casma 137592 Río Culebras Categoría 3 Clase 3 1375952 Culebras 137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 137592 Río Fortaleza Categoría 3 Clase 3 137592 Fortaleza 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Patívilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 <t< td=""><td>13772</td><td></td><td>Categoría 3</td><td>Clase 3</td><td>13772</td><td>Chicama</td></t<>	13772		Categoría 3	Clase 3	13772	Chicama				
137714-1* Río Carabamba Categoría 3 Clase 3 137714 Virú 1376 Río Santa Categoría 1-A2 Clase 2 1376 Santa 13764 Río Tablachaca Categoría 1-A2 Clase 2 13764 Tablachaca 13764-1* Río Negro Categoría 3 Clase 3 13764 Tablachaca 137598 Río Nepeña Categoría 3 Clase 3 137598 Nepeña 137596 Río Casma Categoría 3 Clase 3 137596 Casma 137592 Río Culebras Categoría 3 Clase 3 1375952 Culebras 137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 137592 Río Fortaleza Categoría 3 Clase 3 137592 Fortaleza 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Patívilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 Patívilca 13758-3* Río Cahua Categoría 3 Clase	137716	Río Moche	Categoría 3	Clase 3	137716	Moche				
1376 Río Santa Categoría 1-A2 Clase 2 1376 Santa 13764 Río Tablachaca Categoría 1-A2 Clase 2 13764 Tablachaca 13764-1* Río Negro Categoría 3 Clase 3 13764 Tablachaca 137598 Río Nepeña Categoría 3 Clase 3 137598 Nepeña 137596 Río Casma Categoría 3 Clase 3 137596 Casma 1375952 Río Culebras Categoría 3 Clase 3 1375952 Culebras 137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 137592 Río Fortaleza Categoría 3 Clase 3 137592 Fortaleza 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Patívilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 Patívilca 13758-3* Río Cahua Categoría 3 Clase 3 13758 Patívilca	137714	Río Virú	Categoría 3	Clase 3	137714	Virú				
13764 Río Tablachaca Categoría 1-A2 Clase 2 13764 Tablachaca 13764-1* Río Negro Categoría 3 Clase 3 13764 Tablachaca 137598 Río Nepeña Categoría 3 Clase 3 137598 Nepeña 137596 Río Casma Categoría 3 Clase 3 137596 Casma 1375952 Río Culebras Categoría 3 Clase 3 1375952 Culebras 137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 137592 Río Fortaleza Categoría 3 Clase 3 137592 Fortaleza 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Patívilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 Patívilca 13758-3* Río Cahua Categoría 3 Clase 3 13758 Patívilca	137714-1 *	Río Carabamba	Categoría 3	Clase 3	137714	Virú				
13764-1* Río Negro Categoría 3 Clase 3 13764 Tablachaca 137598 Río Nepeña Categoría 3 Clase 3 137598 Nepeña 137596 Río Casma Categoría 3 Clase 3 137596 Casma 1375952 Río Culebras Categoría 3 Clase 3 1375952 Culebras 137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 137592 Río Fortaleza Categoría 3 Clase 3 137592 Fortaleza 13758 Río Pativilca Categoría 3 Clase 3 13758 Pativilca 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Pativilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 Pativilca 13758-3* Río Cahua Categoría 3 Clase 3 13758 Pativilca	1376	Río Santa	Categoría 1-A2	Clase 2	1376	Santa				
137598 Río Nepeña Categoría 3 Clase 3 137598 Nepeña 137596 Río Casma Categoría 3 Clase 3 137596 Casma 1375952 Río Culebras Categoría 3 Clase 3 1375952 Culebras 137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 137592 Río Fortaleza Categoría 3 Clase 3 137592 Fortaleza 13758 Río Patívilca Categoría 3 Clase 3 13758 Patívilca 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Patívilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 Patívilca 13758-3* Río Cahua Categoría 3 Clase 3 13758 Patívilca	13764	Río Tablachaca	Categoría 1-A2	Clase 2	13764	Tablachaca				
137596 Rio Casma Categoría 3 Clase 3 137596 Casma 1375952 Río Culebras Categoría 3 Clase 3 1375952 Culebras 137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 137592 Río Fortaleza Categoría 3 Clase 3 137592 Fortaleza 13758 Río Patívilca Categoría 3 Clase 3 13758 Patívilca 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Patívilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 Patívilca 13758-3* Río Cahua Categoría 3 Clase 3 13758 Patívilca	13764-1 *	Río Negro	Categoría 3	Clase 3	13764	Tablachaca				
137596 Rio Casma Categoría 3 Clase 3 137596 Casma 1375952 Río Culebras Categoría 3 Clase 3 1375952 Culebras 137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 137592 Río Fortaleza Categoría 3 Clase 3 137592 Fortaleza 13758 Río Patívilca Categoría 3 Clase 3 13758 Patívilca 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Patívilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 Patívilca 13758-3* Río Cahua Categoría 3 Clase 3 13758 Patívilca	137598	Río Nepeña	Categoría 3	Clase 3	137598	Nepeña				
137592 Río Culebras Categoría 3 Clase 3 137592 Culebras 137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 137592 Río Fortaleza Categoría 3 Clase 3 137592 Fortaleza 13758 Río Pativilca Categoría 3 Clase 3 13758 Pativilca 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Pativilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 Pativilca 13758-3* Río Cahua Categoría 3 Clase 3 13758 Pativilca	137596					Casma				
137594 Río Huarmey Categoría 3 Clase 3 137594 Huarmey 137592 Río Fortaleza Categoría 3 Clase 3 137592 Fortaleza 13758 Río Pativilca Categoría 3 Clase 3 13758 Pativilca 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Pativilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 Pativilca 13758-3* Río Cahua Categoría 3 Clase 3 13758 Pativilca	1375952									
137592 Río Fortaleza Categoría 3 Clase 3 137592 Fortaleza 13758 Río Pativilca Categoría 3 Clase 3 13758 Pativilca 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Pativilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 Pativilca 13758-3* Río Cahua Categoría 3 Clase 3 13758 Pativilca	137594									
13758 Río Pativilca Categoría 3 Clase 3 13758 Pativilca 13758-1* Río Gorgor Categoría 3 Clase 3 13758 Pativilca 13758-2* Río Pampan Categoría 3 Clase 3 13758 Pativilca 13758-3* Río Cahua Categoría 3 Clase 3 13758 Pativilca	137592									
13758-1 * Río Gorgor Categoría 3 Clase 3 13758 Pativilca 13758-2 * Río Pampan Categoría 3 Clase 3 13758 Pativilca 13758-3 * Río Cahua Categoría 3 Clase 3 13758 Pativilca	13758		1							
13758-2 * Río Pampan Categoría 3 Clase 3 13758 Pativilca 13758-3 * Río Cahua Categoría 3 Clase 3 13758 Pativilca	13758-1 *									
13758-3 * Río Cahua Categoría 3 Clase 3 13758 Pativilca										
TOTOU TIL LINU FINALY INCOME TO THE STREET OF THE STREET TO TOUR TO THE STREET TO THE	13758-4 *	Río Huayllas o Huayllias	Categoría 3	Clase 3	13758	Pativilca				

13756	Río Huaura	Categoría 3	Clase 3	13756	Huaura
13756-1 *	Río Paton	Categoría 3	Clase 3	13756	Huaura
13756-2 *	Río Quichas	Categoría 3	Clase 3	13756	Huaura
13756-3 *	Río Checras	Categoría 3	Clase 3	13756	Huaura
13756-4 *	Río Ulerías	Categoría 3	Clase 3	13756	Huaura
13756-5 *	Río Colpa	Categoría 3	Clase 3	13756	Huaura
137558	Río Chancay	Categoría 3	Clase 3	137558	Chancay - Huaral
137558-1 *	Río Palca	Categoría 3	Clase 3	137558	
137558-2 *	Río Vichaycocha o Viscaycocha	Categoría 3	Clase 3	137558	Chancay - Huaral Chancay - Huaral
137558-3 *	Río Baños	Categoría 3	Clase 3	137558	Chancay - Huaral
		Categoría 1-A2			Chillón
137556	Río Chillón (hasta la captación de agua potable de SEDAPAL)		Clase 2	137556	Chillón
137556 137554	Río Chillón (Aguas abajo de la capatción de agua potable SEDAPAL) Río Rímac (hasta la capatción de agua potable La Atarjea SEDAPAL)	Categoría 3	Clase 3	137556 137554	Rimac
		Categoría 1-A2 Categoría 3	Clase 2		
137554	Río Rímac (Aguas abajo de la capatción de agua potable La Atarjea SEDAPAL)		Clase 3	137554	Rimac
137554-1 *	Río Blanco	Categoría 1-A2	Clase 2	137554	Rimac
137554-2 *	Quebrada Chinchán	Categoría 1-A2	Clase 2	137554	Rimac
137554-3 *	Río Aruri	Categoría 1-A2	Clase 2	137554	Rimac
137554-4 *	Río Santa Eulalia	Categoría 1-A2	Clase 2	137554	Rimac
137554-5 *	Quebrada Huaycoloro	Categoría 1-A2	Clase 2	137554	Rimac
1375534	Río Lurin	Categoría 3	Clase 3	1375534	Lurín
137552	Río Mala	Categoría 3	Clase 3	137552	Mala
137552-1 *	Río Huarochirí	Categoría 3	Clase 3	137552	Mala
137552-2 *	Río Huampará	Categoría 3	Clase 3	137552	Mala
13754	Río Cañete	Categoría 3	Clase 3	13754	Cañete
13754-1 *	Río Siria	Categoría 3	Clase 3	13754	Cañete
13754-2 *	Río Tomas	Categoría 3	Clase 3	13754	Cañete
13754-3 *	Río Alis	Categoría 3	Clase 3	13754	Cañete
13754-4 *	Río Laraos	Categoría 3	Clase 3	13754	Cañete
137532	Río San Juan	Categoría 3	Clase 3	137532	San Juan
13752	Río Pisco	Categoría 3	Clase 3	13752	Pisco
13752-1 *	Río Chiri o Ticrapo	Categoría 3	Clase 3	13752	Pisco
13752-2 *	Río Huaytará	Categoría 3	Clase 3	13752	Pisco
1374	Río Ica	Categoría 3	Clase 3	1374	Ica
1372	Río Grande	Categoría 3	Clase 3	1372	Grande
13726	Río Ingenio	Categoría 3	Clase 3	13726	Ingenio
13722	Río Nazca	Categoría 3	Clase 3	13722	Nazca
13722-1 *	Río Ajá	Categoría 3	Clase 3	13722	Nazca
13729-1 *	Río Palpa	Categoría 3	Clase 3	13729	Alto Grande
13728	Río Vizcas	Categoría 3	Clase 3	13728	Vizcas
136	Río Ocoña	Categoría 3	Clase 3	136	Ocoña
134	Río Camaná-Majes	Categoría 3	Clase 3	134	Camaná
13468	Río Orcopampa	Categoría 3	Clase 3	13468	Umachulco
132	Río Quilca	Categoría 3	Clase 3	132	Quilca-Vitor-Chili
132	Río Chili (hasta la capatción de agua potable de SEDAPAR)	Categoría 1-A2	Clase 2	132	Quilca-Vitor-Chili
132	Río Chili (aguas debajo de la captación de agua potable de SEDAPAR)	Categoría 3	Clase 3	132	Quilca-Vitor-Chili
1322	Río Sihuas	Categoría 3	Clase 3	1322	Sihuas
1318	Río Tambo	Categoría 3	Clase 3	1318	Tambo
13186-1 *	Río Vizcachas	Categoría 3	Clase 3	13186	Coralaque
13186-2 *	Río Titire	Categoría 3	Clase 3	13186	Coralaque
13185-1 *	Río Carumas	Categoría 3	Clase 3	13185	Medio Tambo
13186-3 *	Río Chilota	Categoría 3	Clase 3	13186	Coralaque
13186-4 *	Río Margaritani	Categoría 3	Clase 3	13186	Coralaque
13186	Río Coralaque	Categoría 3	Clase 3	13186	Coralaque
13172	Río Ilo-Osmore-Moquegua	Categoría 3	Clase 3	13172	Ilo - Moquegua
13172-1 *	Río Asana	Categoría 3	Clase 3	13172	Ilo - Moquegua

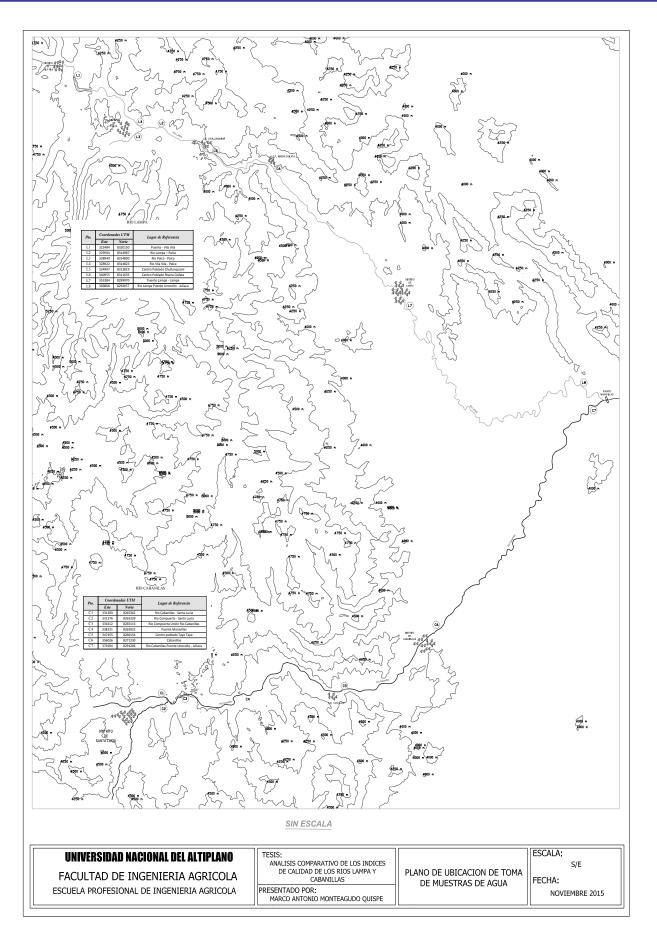
13172-2 *	Río Torata	Categoría 3	Clase 3	13172	Ilo - Moquegua
13172-3 *	Río Tumilaca	Categoría 3	Clase 3	13172	Ilo - Moquegua
13172-4 *	Río Huaracane	Categoría 3	Clase 3	13172	Ilo - Moquegua
13172-5 *	Quebrada Quellaveco	Categoría 3	Clase 3	13172	Ilo - Moquegua
13172-6 *	Quebrada Millune	Categoría 3	Clase 3	13172	Ilo - Moquegua
13172-7 *	Quebrada Sarallenque	Categoría 3	Clase 3	13172	Ilo - Moquegua
13172-8 *	Rio Chuchusquea	Categoría 3	Clase 3	13172	Ilo - Moquegua
13172-9 *	Rio Arondaya	Categoría 3	Clase 3	13172	Ilo - Moquegua
13172-10 *	Rio Titijones	Categoría 3	Clase 3	13172	Ilo - Moquegua
1316	Río Locumba	Categoría 1-A2	Clase 2	1316	Locumba
13166-1 *	Río Huanuara	Categoría 3	Clase 3	13166	llabaya
13166-2 *	Río Camilaca	Categoría 3	Clase 3	13166	llabaya
13165-1 *	Río Salado	Categoría 3	Clase 3	13165	Medio Locumba
13169-1 *	Río Callazas	Categoría 3	Clase 3	13169	Alto Locumba
13167-1 *	Río Curibaya	Categoría 3	Clase 3	13167	Medio Alto Locumba
13166	Río Ilabaya	Categoría 3	Clase 3	13166	Ilabaya
13158	Río Sama	Categoría 3	Clase 3	13158	Sama
13158-1 *	Río Tarucachi	Categoría 3	Clase 3	13158	Sama
13158-2 *					
13158-2	Río Yabroco Río Pistala	Categoría 3 Categoría 3	Clase 3 Clase 3	13158 13158	Sama Sama
13156	Río Caplina	Categoría 3	Clase 3	13156	Caplina
131552	Río Uchusuma	Categoría 1-A2	Clase 2	131552	Uchusuma
13156-1 *	Río Toquela	Categoría 1-A2	Clase 2	13156	Caplina
4977	Río Amazonas	Categoría 4	Clase Especial	4977	Unidad Hidrográfica 4977
49798	Río Itaya	Categoría 4	Clase Especial	49798	Itaya
4974	Río Putumayo	Categoría 4	Clase Especial	4974	Putumayo
4978	Río Napo	Categoría 4	Clase Especial	4978	Napo
49784	Río Curaray	Categoría 4	Clase Especial	49784	Curaray
49794	Río Nanay	Categoría 4	Clase Especial	49794	Nanay
49794-1 *	Río Pintuyacu	Categoría 4	Clase Especial	49794	Nanay
4982	Río Tigre	Categoría 4	Clase Especial	4982	Tigre
49824	Río Corrientes	Categoría 4	Clase Especial	49824	Corriente
4986	Río Pastaza	Categoría 4	Clase Especial	4986	Pastaza
49878	Río Santiago	Categoría 4	Clase Especial	49878	Santiago
49879-1 *	Río Nieva	Categoría 4	Clase Especial	49879	Unidad Hidrográfica 49879
4988	Río Cénepa	Categoría 4	Clase Especial	4988	Cenepa
49892	Río Chinchipe	Categoría 3	Clase 3	49892	Chinchipe
49892-1 *	Río Tabaconas	Categoría 3	Clase 3	49892	Chinchipe
49892-2 *	Río Chirinos	Categoría 3	Clase 3	49892	Chinchipe
49892-3 *	Río Canchis	Categoría 3	Clase 3	49892	Chinchipe
49892-4 *	Río San Francisco	Categoría 3	Clase 3	49892	Chinchipe
49892-5 *	Río Santa Agueda	Categoría 3	Clase 3	49892	Chinchipe
49892-6 *	Río Supayacu	Categoría 3	Clase 3	49892	Chinchipe
49894	Río Utcubamba	Categoría 3	Clase 3	49894	Utcubamba
49894-1 *	Río Sonche	Categoría 3	Clase 3	49894	Utcubamba
49894-1	Río Jucusbamba	Categoría 3	Clase 3	49894	Utcubamba
49896	Río Chamaya	Categoría 3	Clase 3	49896	Chamaya
49896-1 *	Río Charlaya Río Chontali	Categoría 3	Clase 3	49896	Chamaya
49896-2 *	Quebrada Amojú	Categoría 3	Clase 3	49896	Chamaya
49897-1 *	Río Llaucano	Categoría 3	Clase 3	49897	Unidad Hidrográfica 49897
49897-2 *	Río Tingo	Categoría 3	Clase 3	49897	Unidad Hidrográfica 49897
	1-1	zatogoria o	51450 0		Unidad Hidrográfica
49897-3 *	Quebrada La Eme	Categoría 3	Clase 3	49897	49897

49897-4 *	Río Maygasbamba	Categoría 3	Clase 3	49897	Unidad Hidrográfica 49897
49897-5 *	Río Hualgayoc	Categoría 3	Clase 3	49897	Unidad Hidrográfica 49897
49897-6 *	Río Chonta	Categoría 3	Clase 3	49897	Unidad Hidrográfica 49897
49899-1 *	Río Lauricocha	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49899-2 *	Río Nupe	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49899-3 *	Río Torres	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49899-4 *	Río Mosna	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49899-5 *	Río Puchca	Categoría 1-A2	Clase 2	49899	Unidad Hidrográfica 49899
49899-6 *	Río Ayash	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49898-1 *	Río Grande en Mashcón	Categoría 1-A2	Clase 2	49898	Crisnejas
49898-2 *	Quebrada Encajón	Categoría 1-A2	Clase 2	49898	Crisnejas
49898-3 *	Río Quilich o Quilish	Categoría 1-A2	Clase 2	49898	Crisnejas
49898-4 *	Río Porcón	Categoría 1-A2	Clase 2	49898	Crisnejas
49898-5 *	Río Mashcón	Categoría 3	Clase 3	49898	Crisnejas
49897-6 *	Río San Miguel	Categoría 4	Clase Especial	49897	Unidad Hidrográfica 49897
49899-7 *	Río Porvenir	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49899-8 *	Río Llacuabamba	Categoría 4	Clase Especial	49899	Unidad Hidrográfica 49899
49899-9 *	Río Parcoy	Categoría 4	Clase Especial	49899	Unidad Hidrográfica 49899
49899-10 *	Río Chuspic	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49899-11 *	Río Vizcarra	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49898-1 *	Río Grande (en Chonta)	Categoría 3	Clase 3	49898	Crisnejas
49899-12 *	Río Carash	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49899-6 *	Quebrada Ayash	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49899-13 *	Quebrada Yanacocha	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49899-14 *	Quebrada Colla Grande	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
49899-15 *	Quebrada Shauana	Categoría 3	Clase 3	49899	Unidad Hidrográfica 49899
498	Río Marañón (ambito de ALA Alto Marañón)	Categoría 4	Clase Especial	498	Marañón
498	Río Marañón (aguas debajo de ALA Alto Marañón)	Categoría 3	Clase 3	498	Marañón
	No Maranon (aguas ucbajo uc ALA Alto Maranon)				
49842	Río Paranapura	Categoría 1-A2	Clase 2	49842	Paranapura
49896		Categoría 1-A2 Categoría 3	Clase 2 Clase 3	49842 49896	Paranapura Chamaya
	Río Paranapura	Categoría 1-A2			
49896	Río Paranapura Río Huancabamba	Categoría 1-A2 Categoría 3	Clase 3	49896	Chamaya
49896 49834-1 *	Río Paranapura Río Huancabamba Río Chambira	Categoría 1-A2 Categoría 3 Categoría 4	Clase 3 Clase Especial	49896 49834	Chamaya Patayacu
49896 49834-1 * 4984	Río Paranapura Río Huancabamba Río Chambira Río Mayo Río Biavo	Categoría 1-A2 Categoría 3 Categoría 4 Categoría 4 Categoría 4	Clase 3 Clase Especial Clase Especial Clase Especial	49896 49834 4984	Chamaya Patayacu Huallaga Biabo
49896 49834-1 * 4984 49846 49847-1 *	Río Paranapura Río Huancabamba Río Chambira Río Mayo Río Biavo Río Sisa	Categoría 1-A2 Categoría 3 Categoría 4 Categoría 4 Categoría 4 Categoría 4	Clase 3 Clase Especial Clase Especial Clase Especial Clase Especial	49896 49834 4984 49846 49847	Chamaya Patayacu Huallaga Biabo Medio Alto Huallaga
49896 49834-1 * 4984 49846 49847-1 * 49847-2 *	Río Paranapura Río Huancabamba Río Chambira Río Mayo Río Biavo Río Sisa Río Saposoa	Categoría 1-A2 Categoría 3 Categoría 4 Categoría 4 Categoría 4 Categoría 4 Categoría 4 Categoría 4	Clase 3 Clase Especial Clase Especial Clase Especial Clase Especial Clase Especial Clase Especial	49896 49834 4984 49846 49847 49847	Chamaya Patayacu Huallaga Biabo Medio Alto Huallaga Medio Alto Huallaga
49896 49834-1 * 4984 49846 49847-1 * 49847-2 *	Río Paranapura Río Huancabamba Río Chambira Río Mayo Río Biavo Río Sisa Río Saposoa Río Huayabamba	Categoría 1-A2 Categoría 3 Categoría 4	Clase 3 Clase Especial	49896 49834 4984 49846 49847 49847 49848	Chamaya Patayacu Huallaga Biabo Medio Alto Huallaga Medio Alto Huallaga Huayabamba
49896 49834-1 * 4984 49846 49847-1 * 49847-2 *	Río Paranapura Río Huancabamba Río Chambira Río Mayo Río Biavo Río Sisa Río Saposoa	Categoría 1-A2 Categoría 3 Categoría 4 Categoría 4 Categoría 4 Categoría 4 Categoría 4 Categoría 4	Clase 3 Clase Especial Clase Especial Clase Especial Clase Especial Clase Especial Clase Especial	49896 49834 4984 49846 49847 49847	Chamaya Patayacu Huallaga Biabo Medio Alto Huallaga Medio Alto Huallaga

49849-1 *	Río Uchiza	Categoría 4	Clase Especial	49849	Alto Huallaga
49849-2 *	Río Tocache	Categoría 4	Clase Especial	49849	Alto Huallaga
49849-3 *	Río Panao	Categoría 3	Clase 3	49849	Alto Huallaga
49849-4 *	Río Monzón	Categoría 4	Clase Especial	49849	Alto Huallaga
49849-5 *	Río Higueras (hasta la capatacion de agua potable ciudad de Huanuco)	Categoría 1-A2	Clase 2	49849	Alto Huallaga
49849-5 *	, , , ,		Clase 3	49849	Alto Huallaga
49849-6 *	Río Huertas	Categoría 3 Categoría 3	Clase 3	49849	Alto Huallaga
49849-7 *	Río Chaupihuaranga	Categoría 3	Clase 3	49849	Alto Huallaga
49849-8 *	Río Pariamarca	Categoría 3	Clase 3	49849	Alto Huallaga
49849-9 *	Río Pucayacu	Categoría 3	Clase 3	49849	Alto Huallaga
49849-10 *	Río Pucurhuay	Categoría 3	Clase 3	49849	Alto Huallaga
49849-11 *	Río Tingo	Categoría 3	Clase 3	49849	Alto Huallaga
49849-12 *	Río Lloclla	Categoría 3	Clase 3	49849	Alto Huallaga
49916	Río Aguaytia	Categoría 4	Clase Especial	49916	Aguaytia
4994	Río Urubamba	Categoría 4	Clase Especial	4994	Urubamba
49949-1 *	Río Huatanay	Categoría 3	Clase 3	49949	Alto Urubamba
4994-1 *	Río Vilcanota	Categoría 3	Clase 3	4994	Urubamba
49954	Río Perené	Categoría 4	Clase Especial	49954	Perene
49954-1 *	Río Tarma	Categoría 3	Clase 3	49954	Perene
49954-1	Río Tulumayo	Categoría 3	Clase 3	49954	Perene
49954-2 *	Río Puntayacu	Categoría 3	Clase 3	49954	Perene
49954-4 *	Río Paucartambo	Categoría 3	Clase 3	49954	Perene
49954-5 *	Rio Chanchamayo	Categoría 3	Clase 3	49954	Perene
49904-0	Rio Chanchamayo	Categoria 3	Clase 3	47704	Unidad Hidrográfica
49951	Río Tambo	Categoría 4	Clase Especial	49951	49951
49954	Río Pangoa	Categoría 4	Clase Especial	49954	Perene
17701	This i drigod	outegoria i	Old3C Especial	17701	Unidad Hidrográfica
49955	Río Ene	Categoría 4	Clase Especial	49955	49955
4996	Río Mantaro	Categoría 3	Clase 3	4996	Mantaro
49964	Río Ichu (hasta antes de la captacion de agua potable de Huancavelica)	Categoría 1-A2	Clase 2	49964	Ichu
49964	Río Ichu (aguas abajo de la captacion de agua potable Huancavelica)	Categoría 3	Clase 3	49964	Ichu
49962-1 *	Río Lircay	Categoría 3	Clase 3	49962	Huarpa
49961-1 *	Río Opamayo	Categoría 3	Clase 3	49961	Bajo Mantaro
49962-2 *	Río Palcapampa	Categoría 3	Clase 3	49962	Huarpa
49969-1 *	Río Escalera	Categoría 3	Clase 3	49969	Alto Mantaro
49969-2 *	Río Yauli	Categoría 3	Clase 3	49969	Alto Mantaro
49969-3 *	Río Tishgo	Categoría 1-A2	Clase 2	49969	Alto Mantaro
49969-4 *	Río Andaychagua-Huayhuay-Huari	Categoría 3	Clase 3	49969	Alto Mantaro
49969-5 *	Río Pachacayo	Categoría 3	Clase 3	49969	Alto Mantaro
49968	Río Cunas	Categoría 3	Clase 3	49968	Conas
49967-1 *	Río Shulcas (hasta antes de capatación de SEDA Huancayo)	Categoría 1-A2	Clase 2	49967	Medio Alto Mantaro
49967-1 *	Río Shulcas (aguas debajo de captación de SEDa Huancayo)	Categoría 3	Clase 3	49967	Medio Alto Mantaro
49969-6 *	Río Anticona	Categoría 3	Clase 3	49969	Alto Mantaro
49969-7 *	Río Conocancha o Conacancha	Categoría 3	Clase 3	49969	Alto Mantaro
49969-8 *	Río San José	Categoría 3	Clase 3	49969	Alto Mantaro
49969-9 *	Río Andacancha	Categoría 3	Clase 3	49969	Alto Mantaro
49966-1 *	Rio Jarpa	Categoría 3	Clase 3	49966	Vilca
49968-1 *	Rio Chalhuas	Categoría 3	Clase 3	49968	Conas
49969-10 *	Río Hualmayo	Categoría 3	Clase 3	49969	Alto Mantaro
49969-10 *	Río Chacachimpa	Categoría 3	Clase 3	49969	Alto Mantaro
		Categoría 3	Clase 3	49969	Conas
	I Din Cachi		Clast 3	47700	CUIIAS
49968-2 *	Río Cachi			40040	Alto Mantaro
49968-2 * 49969-12 *	Río Pachacayo	Categoría 3	Clase 3	49969	Alto Mantaro
49968-2 *				49969 49964 49969	Alto Mantaro Ichu Alto Mantaro


49962-3 *	Río Sicra	Categoría 3	Clase 3	49962	Huarpa
4999	Río Apurímac (Hasta el Puente San Francisco)	Categoría 4	Clase Especial	4999	Alto Ucayali
4999	Río Apurímac (Aguas abajo del Puente San Francisco)	Categoría 3	Clase 3	4999	Alto Ucayali
49992	Río Pachachaca (Chalhuanca)	Categoría 3	Clase 3	49992	Pachachaca
49992-1 *	Río Antabamba	Categoría 3	Clase 3	49992	Pachachaca
49993-1 *	Río Lucmus	Categoría 3	Clase 3	49993	Unidad Hidrográfica 49993
49993-2*	Río Blanco	Categoría 3	Clase 3	49993	Unidad Hidrográfica 49993
49999-1 *	Río Salado	Categoría 3	Clase 3	49999	Unidad Hidrográfica 49999
49999-2*	Río Cañipia	Categoría 3	Clase 3	49999	Unidad Hidrográfica 49999
49992-2 *	Río Huinchuyo	Categoría 3	Clase 3	49992	Pachachaca
4998	Río Pampas	Categoría 3	Clase 3	4998	Pampas
49981-1 *	Río Chumbao	Categoría 3	Clase 3	49981	Bajo Pampas
49987-1 *	Río Macros	Categoría 3	Clase 3	49987	Medio Alto Pampas
49989-1 *	Río Caracha	Categoría 3	Clase 3	49989	Alto Pampas
49986-1 *	Río Mishca	Categoría 3	Clase 3	49986	Sondondo
49986	Río Sondondo	Categoría 3	Clase 3	49986	Sondondo
4991	Rio Ucayali	Categoría 4	Clase Especial	4991	Bajo Ucayali
49917-1 *	Río Calleria	Categoría 3	Clase 3	49917	Unidad Hidrográfica 49917
49917-2 *	Río Abujao	Categoría 4	Clase Especial	49917	Unidad Hidrográfica 49917
4992	Rio Pachitea	Categoría 4	Clase Especial	4992	Pachitea
46646	Río Las Piedras	Categoría 4	Clase Especial	46646	De Las Piedras
46646-1 *	Río Pariamanu	Categoría 4	Clase Especial	46646	De Las Piedras
46646-2 *	Río Pariamarca	Categoría 4	Clase Especial	46646	De Las Piedras
46644	Río Tambopata	Categoría 4	Clase Especial	46644	Tambopata
46644-1 *	Río Malinowski	Categoría 4	Clase Especial	46644	Tambopata
46644-2 *	Río Azul	Categoría 4	Clase Especial	46644	Tambopata
46648	Río Inambari	Categoría 4	Clase Especial	46648	Inambari
46648-1 *	Río Dos de Mayo	Categoría 4	Clase Especial	46648	Inambari
46648-2 *	Río Huepetuhe	Categoría 4	Clase Especial	46648	Inambari
4664	Río Madre de Dios	Categoría 4	Clase Especial	4664	Madre de Dios
46649-1 *	Río Colorado	Categoría 4	Clase Especial	46649	Alto Madre de Dios
46622	Río Manuripe	Categoría 4	Clase Especial	46622	Manuripe
46649-2 *	Río Puquiri	Categoría 4	Clase Especial	46649	Alto Madre de Dios
46649-3 *	Río Huasoroco	Categoría 4	Clase Especial	46649	Alto Madre de Dios
46649-4 *	Río Manu	Categoría 4	Clase Especial	46649	Alto Madre de Dios
46649-5 *	Río Chilive	Categoría 4	Clase Especial	46649	Alto Madre de Dios
46649-6 *	Río Amigo	Categoría 4	Clase Especial	46649	Alto Madre de Dios
01762	Río Lampa	Categoría 3	Clase 3	01762	Lampa
0179	Río Ramis	Categoría 3	Clase 3	0179	Unidad Hidrográfica 0179
019	Río Azángaro	Categoría 3	Clase 3	019	Azangaro
0183-1 *	Río Ayaviri	Categoría 3	Clase 3	0183	Medio Bajo Pucará
0196	Río Antauta	Categoría 3	Clase 3	0196	Antauta
0195-1 *	Río Crucero	Categoría 3	Clase 3	0195	Medio Azángaro
01763-1 *	Río Cabanillas	Categoría 3	Clase 3	01763	Medio Bajo Coata
016	Río llave	Categoría 3	Clase 3	016	llave
014	Río Maure	Categoría 3	Clase 3	014	Maure
014	Río Maure	Categoría 3	Clase 3	014	Maure

^{*} Códigos provisionales



Anexo 11. Valores críticos de la distribución t de student

Distribución t de student

1	ÁREA DE DOS COLAS						
gl	0,20	0,10	0,05	0,02	0,01	0,001	0,0001
1	3,078	6,314	12,706	31,821	63,657	636,619	6366,198
2	1,886	2,920	4,303	6,695	9,925	31,598	99,992
3	1,638	2,353	3,182	4,541	5,841	12,924	28,000
4	1,533	2,132	2,776	3,747	4,604	8,610	15,544
5	1,476	2,015	2,571	3,365	4,032	6,869	11,178
6	1,440	1,943	2,447	3,143	3,707	5,959	9,082
7	1,415	1,895	2,365	2,998	3,499	5,408	7,885
8	1,397	1,860	2,306	2,896	3,355	5,041	7,120
9	1,383	1,833	2,262	2,821	3,250	4,781	6,594
10	1,372	1,812	2,228	2,764	3,169	4,587	6,211
11	1,363	1,796	2,201	2,718	3,106	4,437	5,921
12	1,356	1,782	2,179	2,681	3,055	4,318	5,694
13	1,350	1,771	2,160	2,650	3,012	4,221	5,513
14	1,345	1,761	2,145	2,624	2,977	4,140	5,363
15	1,341	1,753	2,131	2,602	2,947	4,073	5,239
16	1,337	1,746	2,120	2,583	2,921	4,015	5,134
17	1,333	1,740	2,110	2,567	2,898	3,965	5,044
18	1,330	1,734	2,101	2,552	2,878	3,922	4,966
19	1,328	1,729	2,093	2,539	2,861	3,883	4,897
20	1,325	1,725	2,086	2,528	2,845	3,850	4,837
21	1,323	1,721	2,080	2,518	2,831	3,819	4,784
22	1,321	1,717	2,074	2,508	2,819	3,792	4,736
23	1,319	1,714	2,069	2,500	2,807	3,767	4,693
24	1,318	1,711	2,064	2,492	2,797	3,745	4,654
25	1,316	1,708	2,060	2,485	2,787	3,725	4,619
26	1,315	1,706	2,056	2,479	2,779	3,707	4,587
27	1,314	1,703	2,052	2,473	2,771	3,690	4,558
28	1,313	1,701	2,048	2,467	2,763	3,674	4,530
29	1,311	1,699	2,045	2,462	2,756	3,659	4,506
30	1,310	1,697	2,042	2,457	2,750	3,646	4,482
40	1,303	1,684	2,021	2,423	2,704	3,551	4,321
60	1,296	1,671	2,000	2,390	2,660	3,460	4,169
100	1,290	1,660	1,984	2,364	2,626	3,390	4,053
140	1,288	1,656	1,977	2,353	2,611	3,361	4,006
•	1,282	1,645	1,960	2,326	2,576	3,291	3,891

