

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE CIENCIAS AGRARIAS ESCUELA PROFESIONAL DE INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

COMPARACIÓN DE LA PRECISIÓN DE COORDENADAS (X, Y, Z) DE UN LEVANTAMIENTO FOTOGRAMÉTRICO A DIFERENTES TRASLAPES Y ALTURAS DE VUELO CONTRASTADO CON LA TOPOGRAFÍA CONVENCIONAL

TESIS

PRESENTADA POR:

Bach. WILDER ALBERTO CHOQUE VIZCARRA

Bach. JOEL ABRAHAM MAMANI CARRILLO

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO TOPOGRAFO Y AGRIMENSOR

PUNO – PERÚ

2024

Page 1 of 122 - Cover Page

Submission ID trn:oid:::10159:74825101

WILDER ALBERTO CHOQUE VIZCARRA

COMPARACIÓN DE LA PRECISIÓN DE COORDENADAS (X, Y, Z) DE UN LEVANTAMIENTO FOTOGRAMÉTRICO A DIFERENTES ...

- 😫 My Files
- My Files

Universidad Nacional del Altiplano

Document Details

Submission ID trn:oid:::10159:74825101

Submission Date

Dec 26, 2024, 9:53 AM GMT-5 Download Date

Dec 26, 2024, 10:01 AM GMT-5

File Name

COMPARACIÓN_DE_LA_PRECISIÓN_DE_COORDENADAS_X,_Y,_Z_DE_UN_LEVANTAMIENTO.docx

File Size 10.9 MB

Dr. Valeriano CONDORI APAZA SUBDIRECTOR DE INVESTIGACIÓN EPITA - FCA

116 Pages

18,045 Words

109,489 Characters

Submission ID trn:oid:::10159:74825101

Page 1 of 122 - Cover Page

Page 2 of 122 - Integrity Overview

10% Reporte Similitud

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- Bibliography
- Quoted Text
- Cited Text
- Small Matches (less than 10 words)

Top Sources

- 10% 🌐 Internet sources
- 4% 🕅 Publications
- 1% 💄 Submitted works (Student Papers)

Integrity Flags

1 Integrity Flag for Review

Replaced Characters 38 suspect characters on 12 pages

38 suspect characters on 12 pages Letters are swapped with similar characters from another alphabet. Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Dr. Valeriano CONDORI APAZA SUBDIRECTOR DE INVESTIGACIÓN EPITA - FCA

Angel Abrahun Araco Rodo 01323279 DSC5012

Page 2 of 122 - Integrity Overview

Submission ID trn:oid:::10159:74825101

Submission ID trn:oid:::10159:74825101

DEDICATORIA

A mi querida madre, Carmen, por ser mi faro inquebrantable y brindarme su apoyo incondicional en cada paso de mi camino académico. A mi valioso padre, Alejandro, cuya constante presencia ha sido el pilar sólido que me ha permitido alcanzar mis metas, aportando fortaleza y seguridad a cada uno de mis sueños. A mi hermano, Juan, cuyas vidas son mi inspiración diaria y el recordatorio constante de por qué nunca debo rendirme en la búsqueda de mis objetivos. A mis hermanas Sonia y Lizbeth, cuyas alegrías y energías contagiosas iluminan mis días y han hecho de este viaje uno mucho más significativo. A todos ustedes, por ser la fuerza y el apoyo incondicional detrás de cada logro. Gracias por ser mi motor y mi refugio.

Wilder Alberto Choque Vizcarra

A mis padres, quienes me han enseñado que "La vida, si sabes cómo usarla, es larga." Habéis sido un ejemplo constante de trabajo arduo, integridad y amor inquebrantable. Vuestra sabiduría ha sido el faro que ha iluminado mi camino en momentos de duda y dificultad.

A mis hermanos, que, con su compañerismo y comprensión, me han mostrado que "La felicidad de tu vida depende de la calidad de tus pensamientos," como dijo Marco Aurelio. Vuestra presencia en mi vida ha sido un recordatorio constante de la importancia de la familia y el apoyo mutuo.

Joel Abraham Mamani Carrillo

AGRADECIMIENTOS

En primer lugar, queremos expresar nuestra más profunda gratitud a Dios, nuestro creador, por permitirnos llegar a este punto en nuestras vidas y por otorgarnos la salud y la fortaleza necesarias para alcanzar nuestros objetivos. Su infinita bondad y amor han sido nuestra guía y sustento a lo largo de este camino.

A nuestros distinguidos miembros del jurado: M.Sc. Victor Cipriano Flores Flores, M.Sc Edwin Llanque Chayña e Ing. Alfredo Ponce Flores, les agradecemos sinceramente por compartir sus vastos conocimientos y experiencias. Su apoyo y orientación han sido esenciales para nuestro crecimiento tanto personal como profesional.

Al Ing. Angel Abrahan Franco Pineda, nuestro director de tesis, le expresamos nuestra profunda gratitud por su paciencia y dedicación. Su guía experta y sus valiosos consejos han sido fundamentales para la culminación exitosa de este proyecto.

Reconocemos con agradecimiento a nuestra querida Universidad Nacional del Altiplano y a la escuela profesional de Ingeniería Topográfica y Agrimensura, por brindarnos la oportunidad de estudiar en sus prestigiosas instalaciones. La calidad educativa y el entorno inspirador que nos ofrecieron han hecho de nuestra experiencia académica algo verdaderamente memorable y enriquecedor.

ÍNDICE GENERAL

DEDICATORIA	
AGRADECIMIENTOS	
ÍNDICE GENERAL	
ÍNDI	CE DE TABLAS
ÍNDI	CE DE FIGURAS
ÍNDICE DE ANEXOS	
ACRÓNIMOS	
RESUMEN	
ABS	ГКАСТ 16
	CAPÍTULO I
	INTRODUCCIÓN
1.1.	PLANTEAMIENTO DEL PROBLEMA17
1.2.	FORMULACIÓN DEL PROBLEMA18
	1.2.1. Problema general
	1.2.2. Problemas específicos
1.3.	HIPÓTESIS DE LA INVESTIGACIÓN19
	1.3.1. Hipótesis general19
	1.3.2. Hipótesis especificas
1.4.	JUSTIFICACIÓN DE LA INVESTIGACIÓN
1.5.	OBJETIVOS DE LA INVESTIGACIÓN 22
	1.5.1. Objetivo general
	1.5.2. Objetivos específicos

CAPÍTULO II

Pág.

REVISIÓN DE LITERATURA

2.1.	ANTECEDENTES DE LA INVESTIGACIÓN	23
	2.1.1. Antecedentes internacionales	23
	2.1.2. Antecedentes nacionales	25
	2.1.3. Antecedentes locales	28
2.2.	MARCO TEÓRICO	29
	2.2.1. Fotogrametría	29
	2.2.2. Pixel	30
	2.2.3. Traslape longitudinal	30
	2.2.4. Altura de vuelo	31
	2.2.5. Geodesia satelital	31
	2.2.6. Topografía	32
	2.2.7. Procesamiento de líneas base	33
	2.2.8. Efemérides	33
	2.2.9. Lecturas estáticas y cinemáticas	34
	2.2.10. Errores y correcciones	34
	2.2.11. Factor escala	35
	2.2.12. Coordenadas topográficas	36
	CAPÍTULO III	

MATERIALES Y MÉTODOS

3.1.	ZONA DE ESTUDIO	38
3.2.	ACCESIBILIDAD A LA ZONA DE ESTUDIO	39
3.3.	CONDICIONES CLIMATICAS DE LA ZONA DE ESTUDIO	39
	3.3.1. Temperatura	39
	3.3.2. Luvias	39

	3.3.3. Viento
	3.3.4. Heladas
	3.3.5. Topografía
3.4.	DURACIÓN DEL ESTUDIO 41
3.5.	MATERIALES 41
	3.5.1. Materiales
	3.5.2. Equipos y accesorios
	3.5.3. Programas
3.6.	METODOLOGÍA DE LA INVESTIGACIÓN 43
	3.6.1. Tipo de investigación
	3.6.2. Diseño de la investigación
	3.6.3. Enfoque de la investigación
	3.6.4. Nivel de investigación
	3.6.5. Variables de la investigación
	3.6.5.1. Variable dependiente
	3.6.5.2. Variable independiente
	3.6.6. Población
	3.6.7. Muestra
	3.6.8. Prueba estadística
	3.6.8.1. Error absoluto medio
	3.6.8.2. Error porcentual absoluto medio
	3.6.8.3. Error de sesgo medio
	3.6.8.4. Coeficiente de Pearson
3.7.	CALIDAD Y CONFIABILIDAD DE LOS EQUIPOS EMPLEADOS 47
3.8.	METODOLOGÍA EXPERIMENTAL Y RECOLECCIÓN DE DATOS 48

3.8.1. Etapa de	planificación	48
3.8.1.1.	Fase de preparación	48
3.8.1.2.	Instalación de equipos diferenciales y lectura de datos GNSS.	49
3.8.2. Recolect	ción de datos de acuerdo al objetivo específico 1	51
3.8.2.1.	Etapa de campo	51
3.8.2.2.	Levantamiento topográfico convencional	54
3.8.2.3.	Levantamiento fotogramétrico	54
3.8.3. Recopila	ción de datos de acuerdo al objetivo específico 2	55
3.8.3.1.	Etapa de campo	55
3.8.3.2.	Etapa de gabinete	55

CAPITULO IV

RESULTADOS Y DISCUSIÓN

4.1.	. DETERMINACIÓN DE LOS TRASLAPES A 60/70, 70/80 Y 80/90 EN	
	PRECISIÓN DE COORDENADAS OBTENIDAS DE IMÁGENES DE LOS	
	LEVANTAMIENTOS FOTOGRAMÉTRICOS66	
	4.1.1. Traslapes para las coordenadas X66	
	4.1.2. Traslapes para las coordenadas Y	
4.2.	EVALUACIÓN DE LA PRECISIÓN A DIFERENTES ALTURAS DE	
	VUELO DE 80, 120 Y 160 METROS CON DRONES	
	FOTOGRAMÉTRICOS FRENTE A LOS LEVANTAMIENTOS	
	TOPOGRÁFICOS CONVENCIONALES70	
V. CO	DNCLUSIONES	
VI. R	ECOMENDACIONES	
VII. F	REFERENCIAS BIBLIOGRÁFICAS76	
ANEX	XOS	

ÁREA: Topografía, Geodesia, Cartografía y Catastro.

TEMA: Otras ingenierías y tecnologías.

FECHA DE SUSTENTACIÓN:27 de diciembre del 2024

ÍNDICE DE TABLAS

Pág.
I UG

Tabla 1	Accesibilidad al área de estudio	39
Tabla 2	Traslape de coordenadas X	52
Tabla 3	Traslape de coordenadas Y	53
Tabla 4	Obtención de cotas de los traslape a diferentes alturas de vuelo	57
Tabla 5	Coordenadas procesadas de los puntos ITA-01, ITA-02 Y PUN08005	59
Tabla 6	Coordenadas ajustadas de los puntos de análisis	61
Tabla 7	Coordenadas ajustadas de los puntos de fotocontrol	62
Tabla 8	Métricas estadísticas para las coordenadas "X" según traslape y altura	de
	vuelo	67
Tabla 9	Métricas estadísticas para las coordenadas "Y" según traslape y altura	de
	vuelo	69
Tabla 10	Métricas estadísticas para las cotas "Z" según traslape y altura de vuelo	71

ÍNDICE DE FIGURAS

Pág.

Figura 1	Ubicación de la zona de estudio	
Figura 2	Instalación del GPS diferencial en el punto PUN0800549	
Figura 3	Instalación del GPS diferencial en el punto ITA-0150	
Figura 4	Instalación del GPS diferencial en el punto ITA-0251	
Figura 5	Levantamiento topográfico con estación total Leica TS-0654	
Figura 6	Vuelo fotogramétrico con dron Phantom 458	
Figura 7	Flujograma resumen del procesamiento de fotos aéreas65	
Figura 8	Correlación r ² x(control) – x (A diferentes alturas y diferentes traslapes).68	
Figura 9	Error absoluto promedio y(control) - y (A diferentes alturas y diferentes	
	traslapes)70	
Figura 10	Configuración del sistema de referencia geodésico	
Figura 11	Añadir las fotos aéreas	
Figura 12	Orientación de las fotos aéreas	
Figura 13	Generación de la nube de puntos densa	
Figura 14	Generación de la malla	
Figura 15	Ubicación manual de los fotocontroles	
Figura 16	Importación de los puntos de fotocontrol	
Figura 17	Optimización de la orientación de las cámaras	
Figura 18	Generación del modelo digital de elevaciones	
Figura 19	Generación de las curvas de nivel	
Figura 20	Generación de la ortofoto	

ÍNDICE DE ANEXOS

Pág.

ANEXO 1	Procesamiento de fotos aéreas
ANEXO 2	Reporte de procesamiento GNSS
ANEXO 3	Certificado de calibración de los equipos99
ANEXO 4	Ajuste de puntos de fotocontrol y puntos de análisis por mínimos cuadrados
ANEXO 5	Certificado IGN del punto geodésico111
ANEXO 6	Plano 112
ANEXO 7	Declaración jurada de autenticidad de tesis113
ANEXO 8	Autorización para el depósito de tesis en el Repositorio Institucional114
ANEXO 9	Declaración jurada de autenticidad de tesis115
ANEXO 10	Autorización para el depósito de tesis en el Repositorio Institucional116

ACRÓNIMOS

GNSS:	Sistema global de navegación por satélite
GPS:	Sistema de Posicionamiento Global
UTM:	Universal Transverse Mercator
RPAS:	Sistema de Aeronaves tripuladas por control remoto
RTK:	Navegación cinética satelital en tiempo real
VANT:	Vehículo Aéreo No Tripulado
GLONASS:	Sistema de Navegación Global por Satélite
RTK:	Corrección en tiempo real
DTM:	Modelo Digital de Terreno
WGS84:	World Geodetic System 1984
UAV:	Vehículo Aéreo No Tripulado
GNSS:	Global Navigation Satellite System
GSD:	Distancia de Muestra Terrestre
RMSE:	Error Cuadrático Medio de Raíz
CE:	Conformité Européenne
FCC:	Federal Communications Commission
RoHS:	Restriction of Hazardous Substances
UL:	Underwriters Laboratories
ISO:	Organización Internacional de Normalización

RESUMEN

La precisión es fundamental en las mediciones. Mientras que la topografía convencional es reconocida por su fiabilidad, la fotogrametría presenta una precisión variable que depende de factores como el traslape y la altura de vuelo. Se tiene por objetivo general, determinar la precisión de las coordenadas obtenidas mediante levantamientos fotogramétricos, variando los traslapes y las alturas de vuelo, con aquellas generadas por métodos de topografía convencional. La población de la investigación es el área de 4 ha, en el Centro de Producción de Bienes y Servicios Chuquibambilla de la UNAP. La muestra incluyó 20 puntos de control, tomando como base un punto geodésico de orden C con código PUN08005. Del postproceso se obtuvieron las coordenadas de los puntos geodésicos ITA-01 e ITA-02. Se analizaron coordenadas X, Y y Z a través de nueve vuelos fotogramétricos con alturas de 80 m, 120 m y 160 m, y traslapes de 60/70%, 70/80% y 80/90%. Los resultados mostraron alta correlación en las coordenadas X (R²: 0.998-0.995) con un error absoluto medio mínimo de 0.011 m a 80 m y traslape 80/90, y máximo de 0.067 m a 120 m y traslape 60/70. En Y, la correlación fue igualmente alta (R²: 0.994-0.999), con errores absolutos medios más estables (0.015-0.023 m). En las alturas Z, se observó mayor variabilidad (R²: 0.843-0.998), con menor error a 80 m (0.021 m), aumentando a mayores alturas. El error porcentual absoluto medio osciló entre 3.3% y 48.7%, resaltando la sensibilidad del método según los parámetros utilizados, lo que sugiere que bajo ciertas condiciones los desplazamientos obtenidos con fotogrametría difieren de los obtenidos mediante métodos convencionales.

Palabras clave: Coordenadas, Fotogrametría, Precisión, Topografía, Traslape.

ABSTRACT

Accuracy is fundamental in measurements. While conventional surveying is recognized for its reliability, photogrammetry exhibits variable accuracy depending on factors such as overlap and flight altitude. The general objective is to determine the accuracy of coordinates obtained through photogrammetric surveys by varying overlaps and flight altitudes, compared to those generated by conventional surveying methods. The research population is a 4-hectare area located in the Chuquibambilla Goods and Services Production Center of UNAP. The sample included 20 control points, using a C-order geodetic point with the code PUN08005 as the reference. Post-processing provided the coordinates of geodetic points ITA-01 and ITA-02. The X, Y, and Z coordinates were analyzed through nine photogrammetric flights conducted at altitudes of 80 m, 120 m, and 160 m, with overlaps of 60/70%, 70/80%, and 80/90%. The results showed a high correlation in the X coordinates (R²: 0.998–0.995), with a minimum mean absolute error of 0.011 m at 80 m and 80/90 overlap, and a maximum of 0.067 m at 120 m and 60/70 overlap. For Y coordinates, the correlation was similarly high (R²: 0.994–0.999), with more stable mean absolute errors (0.015-0.023 m). In the Z altitudes, greater variability was observed (R²: 0.843–0.998), with the smallest error at 80 m (0.021 m), increasing at higher altitudes. The mean absolute percentage error ranged between 3.3% and 48.7%, highlighting the sensitivity of the method to the parameters used. This suggests that under certain conditions, the displacements obtained through photogrammetry differ from those obtained using conventional methods.

Keywords: Coordinates, Accuracy, Photogrammetry, Overlap, Topography.

CAPÍTULO I

INTRODUCCIÓN

1.1. PLANTEAMIENTO DEL PROBLEMA

En el ámbito de las mediciones geoespaciales, la precisión es un factor que demanda tiempo y costos, la obtención de coordenadas deben ser en tiempos y costos menores por lo que hoy en día se busca utilizar diversas aplicaciones que mejoren el trabajo en el área de ingeniería, que van desde la ingeniería civil hasta la planificación urbana y la gestión ambiental. Históricamente, la topografía convencional ha sido un método confiable para obtener mediciones detalladas del terreno, mediante técnicas como la nivelación y la triangulación (Deliry & Avdan, 2021). No obstante, el surgimiento de la fotogrametría, es una alternativa tecnológicamente que es utilizada en proyectos de ingeniería por su empleo de imágenes de aéreas extensas capturando datos del terreno en grandes cantidades, ofrece nuevas oportunidades y desafíos para los profesionales del sector (Pulido et al., 2023).

La fotogrametría puede ofrecer ventajas significativas en términos de velocidad y cobertura del área, pero su precisión puede variar considerablemente dependiendo de factores como el traslape de las imágenes y la altura de vuelo del dron o la aeronave que captura las imágenes (Mancini & Salvini, 2019). A pesar de su creciente popularidad, hay una notable escasez de estudios comparativos que analicen de manera sistemática cómo estas variables influyen en la precisión de las coordenadas obtenidas mediante fotogrametría, en contraste con los métodos topográficos convencionales. Esta carencia en la literatura limita la capacidad de los profesionales para tomar decisiones informadas sobre la elección del método de medición más adecuado para proyectos específicos.

Aunque la precisión de la fotogrametría ha sido investigada en contextos limitados, aún falta un entendimiento integral sobre cómo diferentes configuraciones de traslape y alturas de vuelo afectan los errores sistemáticos y la variabilidad de las mediciones. Esta investigación es especialmente crucial, ya que los errores en las mediciones pueden generar costosas correcciones en proyectos de construcción y planificación territorial.

Por lo tanto, este estudio busca llenar estas lagunas de conocimiento comparando directamente la precisión de las coordenadas (x, y, z) obtenidas a través de levantamientos fotogramétricos bajo diferentes configuraciones de traslape y alturas de vuelo con aquellas obtenidas mediante la topografía convencional. Esta investigación no solo aportará a la literatura académica, sino que también proveerá guías prácticas para los ingenieros y planificadores en la selección de técnicas de medición geoespacial.

1.2. FORMULACIÓN DEL PROBLEMA

El problema radica en la falta de comprensión precisa sobre cómo los parámetros de vuelo en fotogrametría aérea, especialmente la altura de vuelo y el traslape entre imágenes, afectan la precisión de las coordenadas (X, Y, Z) obtenidas (Galcerá et al., 2009). A pesar del uso extendido de drones en este campo, el conocimiento insuficiente sobre el impacto de estos parámetros compromete la capacidad de garantizar la exactitud de los datos topográficos generados. Esta deficiencia en la investigación puede resultar en configuraciones de vuelo inadecuadas, lo que lleva a resultados inexactos que afectan la calidad y fiabilidad de los datos obtenidos (Pino, 2019).

A pesar de las teorías extendida entre los profesionales de la fotogrametría de que volar a alturas más bajas y con mayores niveles de traslape mejora la precisión de los datos, esta suposición no ha sido validada de manera científica. La falta de estudios rigurosos que demuestren la relación precisa entre estos parámetros y la calidad de los

resultados genera incertidumbre en la práctica (Saharahui et al., 2019). Al mismo tiempo, aunque los métodos topográficos tradicionales son valorados por su precisión, son comparativamente más lentos que las técnicas fotogramétricas, lo que limita su eficiencia en algunos casos. La dificultad permanece en la ausencia de evidencia empírica que respalde las teorías actuales sobre la configuración óptima de los parámetros de vuelo en fotogrametría. Esto impide la estandarización de las prácticas y, potencialmente, lleva a decisiones basadas en supuestos incorrectos que afectan la confiabilidad y eficacia de los resultados (Chaverri & Arguedas, 2020).

1.2.1. Problema general

¿Cuál es la precisión de las coordenadas obtenidas mediante levantamientos fotogramétricos, variando los traslapes y las alturas de vuelo, con aquellas generadas por métodos de topografía convencional?

1.2.2. Problemas específicos

- ¿Los traslapes tendrán influencia en la precisión de las coordenadas con levantamiento fotogramétrico?
- ¿La variación en la altura de vuelo tendrá influencia en la precisión de cotas con levantamiento fotogramétrico?

1.3. HIPÓTESIS DE LA INVESTIGACIÓN

1.3.1. Hipótesis general

La influencia de los traslapes y las alturas de vuelo mediante de los levantamientos fotogramétricos tendrán la precisión de las coordenadas obtenidas por los vuelos, frente a los generadas por los métodos de topografía convencional.

1.3.2. Hipótesis especificas

- Los distintos traslapes de imagen (60/70, 70/80, 80/90) tienen un efecto significativo en la precisión de las coordenadas obtenidas mediante levantamientos fotogramétricos.
- Las diversas alturas de vuelo (80, 120, 160 metros) impactan significativamente en la precisión de las cotas obtenidas mediante levantamientos fotogramétricos.

1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN

Esta investigación proporciona una nueva fuente de información sobre cómo los parámetros de vuelo en fotogrametría aérea, en particular la altura de vuelo y el traslape entre imágenes, influyen en la precisión de las coordenadas (X, Y, Z) obtenidas. A pesar del creciente uso de la fotogrametría aérea, especialmente mediante drones, aún existe una falta de claridad en la exactitud de los datos de los datos obtenidos por estas. Este conocimiento es de gran relevancia para realizar los proyectos de ingeniería, ya que una correcta configuración de los parámetros de vuelo es fundamental para garantizar la calidad de los datos topográficos generados (Molina & Sánchez, 2021). Actualmente, la configuración de los parámetros de vuelo varía considerablemente entre los profesionales. Algunos prefieren utilizar alturas de vuelo más bajas y mayores solapes, bajo el supuesto de que estas configuraciones mejoran la precisión de los datos (García & Ortiz, 2020). No obstante, esta suposición aún no ha sido respaldada por estudios rigurosos, y la relación exacta entre estos parámetros y la precisión de los datos sigue siendo incierta. Por otro lado, se ha observado que los métodos topográficos tradicionales, aunque precisos, suelen requerir más tiempo para completar un levantamiento, en contraste con la eficiencia que se asocia a las técnicas fotogramétricas. Para llenar esta brecha de

conocimiento, la presente investigación se propone comparar de manera exhaustiva los datos obtenidos mediante fotogrametría aérea con diversas configuraciones de altura y traslape, frente a los datos obtenidos mediante métodos topográficos convencionales (Miranda & Ortiz, 2020). Los métodos tradicionales, validados y de larga data, servirán como referencia para evaluar la precisión de los datos fotogramétricos. Esta comparación permitirá determinar si las configuraciones actuales realmente ofrecen una mayor precisión o si existen alternativas más efectivas (Pérez & Gutiérrez, 2019).

Los resultados de este estudio serán de gran utilidad para profesionales en los campos de la cartografía, ingeniería topográfica y planificación territorial. Comprender cómo influyen la altura de vuelo y el traslape en la precisión de los datos permitirá desarrollar mejores prácticas y directrices para la configuración de drones en levantamientos fotogramétricos. Esto no solo incrementará la calidad de los datos obtenidos, sino que también optimizará la eficiencia y reducirá los costos de los proyectos, aprovechando las ventajas de rapidez que ofrece la fotogrametría aérea. La investigación proporcionará una base sólida para validar o refutar las teorías actuales sobre la relación entre los parámetros de vuelo y la precisión de los datos (lbarrera, 2022). Al basarse en evidencia empírica, estas recomendaciones contribuirán a la estandarización de prácticas en el sector, fomentando la mejora continua en las técnicas de fotogrametría. Como resultado, se facilitará una aplicación más eficaz y confiable de esta tecnología en diversas áreas profesionales.

1.5. OBJETIVOS DE LA INVESTIGACIÓN

1.5.1. Objetivo general

Determinar la precisión de las coordenadas obtenidas por levantamientos fotogramétricos con variaciones en traslapes y diferentes alturas de vuelo, con respecto a los levantamientos topográficos convencionales.

1.5.2. Objetivos específicos

- Determinar la influencia de los traslapes a 60/70, 70/80 y 80/90 en la precisión de coordenadas obtenidas de imágenes de los levantamientos fotogramétricos.
- Evaluar la precisión de las cotas a diferentes alturas de vuelo de 80, 120 y 160 metros con drones fotogramétricos frente a los levantamientos topográficos convencionales.

CAPÍTULO II

REVISIÓN DE LITERATURA

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

2.1.1. Antecedentes internacionales

Jiménez et al. (2019), realizaron su investigación de "Análisis comparativo entre levantamientos topográficos con estación total como método directo y el uso de drones y GPS como métodos indirectos". Tuvo como objetivo: Realizar un análisis comparativo entre levantamientos topográficos con Estación Total como método directo y el uso de Dron y GPS como métodos. Metodología: planteo una metodología con enfoque cuantitativo, de diseño experimental, desarrollado en cuatro etapas: la primera corresponde a la planeación del trabajo de campo, la segunda hace referencia a la recopilación de información de campo, la tercera pertenece al procesamiento de la información y la cuarta es la evaluación estadística de los valores obtenidos en los proyectos fotogramétricos. Los datos utilizados en la presente investigación son 24 puntos 8 tomados con dron, 8 con estación total y 8 con GPS diferencial Resultados: Las coordenadas obtenidas en el levantamiento de la bóveda en la Universidad de El Salvador, realizado con estación total respecto a las coordenadas obtenidas con GPS en modo RTK presentan desviaciones que varían entre 1 a 3.5 cm; así también la comparación entre estación total y Dron presenta desviaciones que varían entre 1 a 5 cm. considerando que el uso de estación total conlleva a errores más grandes, los resultados obtenidos son satisfactorios para ambos casos por presentar poca variación entre ellos.

Rios & Puerto (2019), realizaron una investigación sobre "Control terrestre en el proceso fotogramétrico usando vehículos aéreos no tripulados con fines cartográficos en el municipio de Cómbita", en la investigación se abordó el proceso de foto-control que es una etapa importante para la fotogrametría y es por esto necesario analizar la eficiencia de su implementación y la manera adecuada de ejecución, teniendo en cuenta las técnicas que han surgido con la fotogrametría VANTs y reconociendo al foto-control como una etapa esencial de la fotogrametría clásica. El objetivo general de la investigación es determinar la importancia de la etapa de fotocontrol en el proceso fotogramétrico con vehículos aéreos no tripulados en el municipio de Cómbita departamento de Boyacá. Se planteo una metodología con enfoque cuantitativo, de diseño experimental, desarrollado en cuatro etapas: la primera corresponde a la planeación del trabajo de campo, la segunda hace referencia a la ejecución de vuelos y control terrestre, la tercera pertenece al procesamiento de la información y la cuarta es la evaluación estadística de los valores obtenidos en los proyectos fotogramétricos. Para poder realizar esto, se establecieron 22 proyectos fotogramétricos y 24 puntos de control, los cuales se validan estadísticamente, teniendo en cuenta los parámetros de la ASPRS, que permitieron identificar las distribuciones para la mejora de la eficacia del foto-control como etapa de la fotogrametría clásica.

Santos et al. (2022), en su investigación denominada "Overlap influence in images obtained by an unmanned aerial vehicle on a digital terrain model of altimetric precisión", se analizaron los datos fotogramétricos se utilizan sistemáticamente en varios segmentos. Productos como Modelo Digital de Terreno (DTMs) proporcionan información detallada de la superficie, sin embargo, la confiabilidad geométrica de estos productos es cuestionable en

comparación con los datos recopilados por el estudio topográfico por GNSS RTK. La presente investigación evalúa la calidad de los DTM obtenidos utilizando un Vehículo Aéreo No Tripulado (UAV) con diferentes parámetros, porcentajes de superposición y direcciones de vuelo, comparando los resultados con los del método topográfico Global Navigation Satellite System – Real-Time Kinematic (GNSS RTK). Se realizaron doce planes de vuelo con diferentes superposiciones (90x90, 80x80, 80x60, 70x50, 70x30 y 60x40%) y direcciones (transversales y longitudinales a la línea de siembra). Los parámetros de altura (Above Ground Land- AGL) y velocidad se fijaron a 90 m y 3 m/s respectivamente y se obtiene una Distancia de Muestra Terrestre (GSD) de 0,1 m para todos los vuelos. En general, el vuelo con superposición de 70x50% en la dirección transversal generó los mejores resultados, con un tiempo de procesamiento total de 12 minutos y 17 segundos (aproximadamente 1.5 horas más rápido que 90x90%), un Error Cuadrático Medio de Raíz (RMSE) de 0.589 m, y cumple con el solapamiento mínimo requerido por aerofotogrametría de 60X30%; además, los resultados no difirieron estadísticamente de los superposiciones altas de 90x90% y 80x80%.un Error Cuadrado Medio Raíz (RMSE) 0.589 m, y cumple con la superposición mínima requerida por aerofotogrametría 60X30%; además, los resultados no difirieron estadísticamente de las superposiciones altas de 90x90% y 80x80%.un Error Cuadrado Medio Raíz (RMSE) 0.589 m, y cumple con la superposición mínima requerida por aerofotogrametría 60X30%; además, los resultados no difirieron estadísticamente de las superposiciones altas de 90x90% y 80x80%.

2.1.2. Antecedentes nacionales

Mallma (2020), realizó su investigación denominada "Análisis comparativo del método fotogramétrico y convencional para el levantamiento

topográfico de la Av. Ferrocarril – Pachacamac", tuvo como objetivo comparar la precisión, el costo y el tiempo entre el levantamiento topográfico convencional y el método fotogramétrico con drones en la Av. Ferrocarril, Pachacamac. La metodología incluyó el uso de una estación total y nivel electrónico para el método convencional, y un drone DJI Phantom Pro v2.0 para el fotogramétrico. Los datos fueron procesados en AutoCad Civil 3D y Agisoft Photoscan, respectivamente. Los resultados mostraron que la diferencia en precisión fue mínima (2 cm en X, Y y 3 cm en Z), pero el método con drones resultó 42.93% más económico y 28.41% más rápido. En conclusión, el levantamiento con drones es más eficiente en costo y tiempo, con una precisión comparable al método convencional.

Alvarado (2020), en su investigación denominada "Análisis de la precisión entre los levantamientos Aero fotogramétrico realizado con el dron EBEE plus y topográfico realizado con el GPS diferencial en la universidad nacional Hermilio Valdizan Huánuco - 2019", ha comparado la precisión del levantamiento Aero fotogramétrico con un levantamiento topográfico. La población de estudio fue el campus de la universidad Nacional Hermilio Valdizan, con un área de 17 hectáreas. La obtención de datos fotogramétricos se hizo en función a 5, 6, 7, 8, 9 puntos de control (determinados por un GPS diferencial Trimble R8) para todas las misiones (3 misiones) y las características de la misión Nº 1, fueron: resolución de 3cm/pixel, altura de vuelo de 127.5m y con solape/traslape del 50%/70%, para la misión Nº 02: resolución de 3.5cm/pixel, altura de vuelo de 148.8m y con un solape/traslape de 55%/75% y para la misión Nº 03: resolución de 4cm/pixel, altura de vuelo de 170m y con solape/traslape de 70%/60%, en total se hicieron 15 vuelos fotogramétricos y para el levantamiento topográfico se empleó un GPS diferencial de la marca Trimble de la serie R8 en modo cinemático. Para una

resolución espacial de r=3cm/pixel, en las coordenadas este se obtiene un nivel de significancia de α =0.906, para las coordenadas norte un α =0.902 y para la elevación un α =0.901, para una resolución espacial de r=3.5 cm/pixel, para la coordenada este, se obtiene un nivel de significancia de α =0.814, para la coordenada norte, un nivel de significancia de α =0.814 y para la elevación un nivel de significancia de α =0.813 y finalmente para la resolución espacial de r=4 cm/pixel, para la coordenada este se obtiene un nivel de significancia de α =0.714, para la coordenada norte se obtiene un nivel de significancia de α =0.724 y para la elevación se obtiene un nivel de significancia de α =0.713, encontrándose los 3 grupos dentro del rango de excelente confiabilidad.

Hinostroza (2021), realizó su investigación titulada "Evaluación de errores máximos permisibles entre levantamiento topográfico empleando dron y sistema de posicionamiento global diferencial", en esta investigación se tuvo como problema general: ¿Cuál es el resultado de la evaluación de los errores máximos entre levantamiento topográfico empleando ¿Dron y Sistema de posicionamiento Global Diferencial?, y como objetivo general: analizar los resultados de la evaluación de los errores máximos permisibles entre un levantamiento topográfico empleando el Diferencial?, y como objetivo general: analizar los resultados de la evaluación de los errores máximos permisibles entre un levantamiento topográfico empleando el Dron DJI Phantom 4 pro y un receptor GNSS y la hipótesis general: los errores máximos permisibles están en función al método de levantamiento topográfico empleando un dron y sistema de posicionamiento global diferencial. El método general de investigación es científico de tipo aplicada y de nivel explicativo, el diseño es no experimental. La muestra está conformada por los terrenos la Universidad Peruana Los Andes; mientras que la muestra fue tomada de acuerdo con el método no probabilístico o intencional formada por el campus universitario de chorrillos. Como conclusión principal se obtuvo que, de los

levantamientos topográficos analizados en este trabajo de investigación se establece que el efectuado con el sistema de posicionamiento global diferencial es más y exacto teniendo un error máximo de 0.674m en altimetría y un error máximo de 0.007m en planimetría a comparación del dron; en el tema de costos el uso del dron es el 21.25% más económico que el receptor GNSS ya que abarca mayor área en menos tiempo.

2.1.3. Antecedentes locales

Ordoñez & Condori (2022), en su investigación titulada "Análisis de la precisión de un levantamiento topográfico utilizando fotogrametría con RPAS y su relación a la densidad de puntos de control terrestre", el objetivo fue determinar la altura de vuelo, los traslapes y la densidad de puntos de control óptimos para un levantamiento topográfico utilizando RPAS en un área de 15 hectáreas en el Centro de Producción de Bienes y Servicios Illpa UNA - Puno. La metodología incluyó el establecimiento de dos puntos geodésicos de orden "c" con un receptor GNSS, la planificación de vuelos fotogramétricos con un Dji Phantom 4 Pro RTK y la ejecución de cuatro vuelos a diferentes alturas (100m y 120m) y traslapes. Se establecieron 15 puntos de control con un receptor GNSS y una estación total Leica. Los resultados mostraron que una menor altura de vuelo y un mayor número de puntos de control mejoran la precisión del levantamiento fotogramétrico. Se concluye que la altura de vuelo y la densidad de puntos de control influyen directamente en la precisión de los resultados.

2.2. MARCO TEÓRICO

2.2.1. Fotogrametría

La fotogrametría es una técnica que emplea fotografías para obtener medidas precisas y generar representaciones detalladas del terreno. Se basa en la captura de imágenes desde diferentes ángulos y alturas, ya sea mediante aeronaves, drones o cámaras terrestres. Estas imágenes se procesan para crear modelos tridimensionales del terreno, así como mapas topográficos que reflejan con precisión las características geográficas del área (Iñiguez, 2024). La fotogrametría es una técnica avanzada que utiliza imágenes fotográficas para obtener mediciones precisas y generar representaciones detalladas tanto de superficies terrestres como de objetos (Ordóñez et al., 2019). Este método se fundamenta en la captura de fotografías desde diferentes ángulos y alturas, lo cual permite captar múltiples perspectivas de un área o estructura. Dependiendo de las necesidades del proyecto, estas imágenes pueden tomarse desde aeronaves tripuladas, drones, satélites, o cámaras fijas situadas en tierra (Pérez, 2016). Cada uno de estos sistemas proporciona información esencial para diferentes aplicaciones, desde la cartografía hasta la ingeniería civil.

El proceso fotogramétrico en topografía permite la creación de Modelos Digitales del Terreno (DTMs), que muestran las variaciones en la elevación y otros detalles del paisaje. Los datos obtenidos a partir de estas imágenes permiten medir dimensiones y distancias entre objetos, documentar cambios en el terreno a lo largo del tiempo y elaborar mapas que incluyen carreteras, cuerpos de agua y otras características relevantes (Nájera, 2021).

La fotogrametría se valora por su capacidad para capturar grandes áreas de manera eficiente y con alta precisión. Esta técnica no solo proporciona una visión detallada del terreno, sino que también ofrece una herramienta poderosa para la toma de decisiones informadas en diversas aplicaciones topográficas (Claros et al., 2016).

2.2.2. Pixel

El píxel es el componente fundamental y más pequeño de una imagen digital, y se encuentra en una cantidad masiva que, en conjunto, constituye la imagen completa. Cada píxel actúa como una unidad de color uniforme, y la combinación de múltiples píxeles con una gama diversa de colores genera una imagen con diferentes niveles de complejidad. Los píxeles pueden tener tres o cuatro colores diferentes, como rojo, verde y azul, o magenta, amarillo y cian (Diaz et al., 2014)

2.2.3. Traslape longitudinal

En fotogrametría, el traslape longitudinal se refiere al porcentaje de superposición entre imágenes consecutivas tomadas a lo largo de la trayectoria de vuelo de un vehículo aéreo. Esta superposición es esencial para asegurar que las imágenes adyacentes se alineen correctamente, lo que permite una cobertura completa del área de interés. El traslape longitudinal garantiza que todas las áreas del terreno sean capturadas de manera continua y precisa, facilitando la reconstrucción tridimensional y el modelado detallado del terreno. El traslape longitudinal se ajusta para mejorar la calidad de los datos obtenidos y la precisión en la creación de modelos digitales del terreno. Una superposición adecuada

permite que las áreas no capturadas en una imagen sean cubiertas por las imágenes siguientes, evitando vacíos y errores en el modelo final (Neira, 2005).

2.2.4. Altura de vuelo

En topografía, la altura de vuelo se refiere a la altitud a la que un vehículo aéreo no tripulado (UAV) opera durante la captura de imágenes o la realización de levantamientos fotogramétricos. Esta altura es importante ya que determina el área de cobertura y la resolución de los datos obtenidos. A mayor altura de vuelo, mayor será el área cubierta en una sola pasada, pero con menor resolución; a menor altura de vuelo, se obtiene una mayor resolución, pero se cubre una menor área (Erazo, 2023).

2.2.5. Geodesia satelital

La geodesia satelital se enfoca en la observación y análisis de las señales provenientes de satélites artificiales en órbita alrededor de la Tierra para establecer posiciones exactas en la superficie terrestre y modelar su forma y dimensiones. Esta área se apoya en principios matemáticos y físicos que facilitan el cálculo de la posición tridimensional de puntos en la Tierra mediante la recepción de señales de sistemas de navegación por satélite como el GPS (Sistema de Posicionamiento Global) (Zepeda, 2015).

La geodesia satelital igualmente comprende la teoría de la observación de satélites, que investiga el comportamiento de las señales emitidas por los satélites mientras atraviesan la atmósfera terrestre hacia los receptores en la superficie. Este estudio implica calcular el tiempo de tránsito de las señales, corregir las alteraciones atmosféricas, y precisar la posición exacta del satélite en el espacio en un instante determinado (Marijan & Tomislav, 2021).

La geodesia satelital utiliza sistemas de coordenadas terrestres que facilitan la representación de puntos en la superficie de la Tierra a través de coordenadas geográficas (latitud, longitud, altura) o coordenadas cartesianas (x, y, z) basadas en un elipsoide de referencia. Estos sistemas de coordenadas son esenciales para la geolocalización y el posicionamiento exacto en aplicaciones como navegación, cartografía, ingeniería y ciencias de la Tierra (Delva et al., 2023).

2.2.6. Topografía

Detallada la superficie de la Tierra, incluyendo sus formas y características, tanto naturales como artificiales. Su objetivo principal es medir y representar en un plano o mapa las dimensiones y la ubicación de terrenos, elevaciones, pendientes, accidentes geográficos, y estructuras construidas por el ser humano. Para ello, se emplean técnicas de medición como el uso de instrumentos especializados (como teodolitos, niveles, estaciones totales, y sistemas GPS) que permiten obtener datos precisos sobre la forma y el relieve de una zona (Claros et al., 2016).

La precisión y la exactitud son principios fundamentales en el campo de la medición geoespacial. La precisión se refiere a la coherencia y la capacidad de repetir los resultados de una medición, o sea, la habilidad de un método para producir resultados consistentes bajo condiciones idénticas. Por su parte, la exactitud indica la proximidad de los resultados de una medición al valor verdadero o reconocido como correcto. En efecto, la exactitud se asocia con la ausencia de sesgos en la medición y la capacidad de un método para ofrecer resultados que se acerquen al valor real (Anderson, 2019).

2.2.7. Procesamiento de líneas base

En la geodesia satelital, el procesamiento de líneas base implica determinar las distancias y posiciones relativas entre dos o más receptores GNSS fijos en la superficie terrestre. Este procedimiento se fundamenta en la captura simultánea de señales de múltiples satélites por los receptores y el análisis comparativo de las diferencias en el tiempo de llegada de estas señales para calcular con alta precisión las distancias entre los receptores (Dabove & Di Pietra, 2019).

El procesamiento de líneas base involucra el análisis de datos crudos de pseudorrango o fases de portadora de satélite, capturados por receptores GNSS. Estos datos se analizan mediante algoritmos de ajuste, como el método de mínimos cuadrados, para calcular las coordenadas tridimensionales de los receptores y los parámetros de reloj y efemérides de los satélites. Se realizan además correcciones para mitigar errores sistemáticos tales como el retraso atmosférico, la interferencia de señales y los errores del reloj del receptor (Moya, 2022).

El resultado del procesamiento de líneas base es la determinación exacta de las coordenadas relativas entre los receptores GNSS. Esto facilita la formación de redes geodésicas de gran precisión, las cuales son esenciales para aplicaciones como el control de deformaciones del suelo, el monitoreo de movimientos tectónicos y la elaboración de cartografía detallada (Paniagua & Valverde, 2017).

2.2.8. Efemérides

En la geodesia satelital, las efemérides se refieren a los datos que especifican la posición y la velocidad de los satélites en un momento determinado. Estos datos son fundamentales para determinar la ubicación exacta de los

receptores GNSS en la superficie terrestre. Las efemérides detallan la trayectoria orbital de cada satélite, su posición relativa al sistema de coordenadas terrestres y su velocidad instantánea en el espacio (Cedeño & Alfaro, 2018).

2.2.9. Lecturas estáticas y cinemáticas

En geodesia satelital, las lecturas estáticas y dinámicas representan dos métodos diferenciados para la recolección de datos de posicionamiento por satélite, cada uno adaptado a necesidades y aplicaciones particulares. Las lecturas estáticas consisten en la captura de señales GNSS durante un tiempo extendido, típicamente desde una ubicación fija. A lo largo de este período, los receptores GNSS capturan de manera continua las señales de satélites y determinan la ubicación precisa del receptor en un punto específico sobre la superficie terrestre. Este método se emplea frecuentemente en tareas que demandan gran precisión, como la creación de puntos de control geodésicos o el seguimiento de cambios en el terreno a lo largo del tiempo (Zepeda, 2015).

En contraste, las lecturas dinámicas en geodesia satelital involucran la captura de señales GNSS mientras el receptor se encuentra en movimiento. Aquí, el receptor monitorea las señales de los satélites mientras se desplaza, lo que facilita la determinación de su posición en tiempo real y el seguimiento preciso de su ruta. Este método se aplica en contextos como la navegación vehicular, la cartografía móvil y el posicionamiento en tiempo real, donde es esencial conocer la ubicación del receptor durante su movimiento (Iñiguez, 2024).

2.2.10. Errores y correcciones

En la geodesia satelital, los errores y sus correcciones son elementos cruciales que se deben considerar para asegurar la precisión en las mediciones de

posicionamiento por satélite. Estos errores pueden originarse en varias fuentes y comprometer la exactitud de los resultados. Algunos de los errores más habituales incluyen los errores atmosféricos, los errores de reloj en el receptor, los errores de multipath y los errores en las efemérides (Yuan et al., 2023). Los errores atmosféricos ocurren debido a la refracción de las señales GNSS al pasar por la atmósfera terrestre, lo que puede alterar la velocidad de propagación de las señales y, en consecuencia, impactar la precisión en las mediciones de distancia. Para mitigar estos errores, se aplican modelos atmosféricos y técnicas de corrección que consideran variables como la presión atmosférica, la temperatura y la humedad (Nikolaidou et al., 2020).

Los errores de reloj del receptor se relacionan con las diferencias entre el tiempo registrado por el reloj interno del receptor GNSS y el tiempo real del GPS. Estas discrepancias pueden generar imprecisiones en las mediciones de tiempo y, por ende, en la determinación de la ubicación del receptor. Para rectificar estos errores, se emplean señales de tiempo precisas suministradas por estaciones terrestres de monitoreo GPS, y se realizan correcciones diferenciales a las mediciones de tiempo (Mikoś et al., 2023). Los errores de efemérides se deben a inexactitudes en los modelos empleados para pronosticar la ubicación de los satélites GPS en el espacio. Estos errores pueden generar imprecisiones en las estimaciones de la posición del receptor y necesitan ser corregidos mediante el uso de efemérides actualizadas y precisas (Montenbruck et al., 2015).

2.2.11. Factor escala

El factor de escala es un elemento esencial en la geodesia, empleado para ajustar las mediciones de distancias en la superficie terrestre y asegurar la

precisión de los cálculos geodésicos. Sirve para corregir las dimensiones observadas en la Tierra, considerando la esfericidad y las deformaciones del elipsoide terrestre (Torres et al., 2010).

En la geodesia, las mediciones de distancias se ven afectadas por distorsiones originadas por la curvatura de la Tierra y las irregularidades en su forma. Por ello, resulta importante aplicar correcciones para lograr mediciones precisas y consistentes en diversas áreas geográficas. El factor de escala, a menudo representado por la letra 'k', es utilizado con este fin (Marijan & Tomislav, 2021).

Este factor se calcula basándose en la posición geográfica del área bajo estudio y se utiliza para calibrar las coordenadas planas o geodésicas. La corrección toma en cuenta las variaciones en longitud y latitud, así como las diferencias en la esfericidad de la Tierra en distintas localizaciones (Delva et al., 2023).

La relevancia del factor de escala se debe a su habilidad para corregir las distorsiones propias de la proyección cartográfica empleada, asegurando mediciones precisas y coherentes en diferentes aplicaciones geodésicas. En áreas como la cartografía, la ingeniería civil, la navegación marítima, y otras disciplinas afines, el factor de escala es fundamental para mantener la precisión y uniformidad de los datos geoespaciales utilizados (Delva et al., 2023; Moya Zamora, 2022).

2.2.12. Coordenadas topográficas

Las coordenadas topográficas representan un sistema de referencia empleado en topografía para detallar la posición de puntos en la superficie de la Tierra respecto a un plano de referencia y una altitud determinada. Este sistema utiliza coordenadas cartesianas, aplicando unidades de longitud (típicamente

metros) para definir la ubicación horizontal de un punto y unidades de altura (comúnmente metros sobre el nivel del mar) para señalar la altitud del punto en comparación con una superficie de referencia (Anderson, 2019).

Las coordenadas topográficas se determinan utilizando métodos de medición topográfica como la taquimetría, la triangulación y la medición por satélite. Estos métodos facilitan la determinación de las coordenadas horizontales (en los ejes X e Y) y la altitud (eje Z) de un punto concreto en la superficie terrestre. Las coordenadas topográficas son ampliamente empleadas en diversas áreas como la ingeniería civil, la geología, la cartografía y la planificación urbana, entre otros campos (Kolkos et al., 2022).

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1. ZONA DE ESTUDIO

La zona de estudio está ubicada en el Centro Experimental de la Universidad Nacional del Altiplano CHUQUIBAMBILLA, ubicado en el distrito de Ayaviri, provincia de Melgar, departamento de Puno.

Coordenadas este 313494.2445m,

Coordenada norte 8363679.0470m

Cota 3912.71843m, las que se puede e evidencia en la figura 1.

Figura 1

Ubicación de la zona de estudio

3.2. ACCESIBILIDAD A LA ZONA DE ESTUDIO

El trayecto para llegar al centro experimental de Chuquibambilla comienza en la ciudad de Puno y sigue la ruta 3S en dirección norte. Desde Puno, se viaja pasando por las ciudades de Paucarcolla, Juliaca y Pucara. Posteriormente, se llega a la ciudad de Ayaviri. Desde Ayaviri, se continúa el viaje en dirección norte hasta alcanzar el centro experimental de Chuquibambilla, como se aprecia en la tabla 1.

Tabla 1

Medio de Transporte	Ruta	Punto de Partida	Puntos Intermedios	Punto de Llegada	Tiempo Estimado	Condiciones del Camino
Vehículo	Ruta 3S	Puno	Paucarcolla, Juliaca, Pucara, Ayaviri	Centro Experimental de Chuquibambilla	2 horas 50min	Asfaltado hasta el centro experimental

Accesibilidad al área de estudio

3.3. CONDICIONES CLIMATICAS DE LA ZONA DE ESTUDIO

3.3.1. Temperatura

En el centro experimental Chuquibambilla, los veranos son breves, frescos y nublados, mientras que los inviernos son también cortos pero muy fríos, secos y parcialmente nublados. A lo largo del año, la temperatura oscila generalmente entre -5 °C y 18 °C, con raras ocasiones en que desciende por debajo de -7 °C o supera los 21 °C (Weather Spark, 2019).

3.3.2. Luvias

La temporada de lluvias en el centro experimental de Chuquibambilla dura aproximadamente 7.6 meses, desde el 13 de septiembre hasta el 1 de mayo, con

un acumulado móvil de 31 días de al menos 13 milímetros de lluvia. Enero es el mes más lluvioso, con un promedio de 85 milímetros de precipitación. Por otro lado, el período seco dura alrededor de 4.4 meses, desde el 1 de mayo hasta el 13 de septiembre. Julio es el mes más seco, con un promedio de solo 3 milímetros de lluvia (Weather Spark, 2019).

3.3.3. Viento

La velocidad del viento en el centro experimental Chuquibambilla varía ligeramente a lo largo del año. El periodo más ventoso dura 7.4 meses, de mayo a enero, con julio como el mes más ventoso (10.4 km/h). El periodo más calmado, de enero a mayo, tiene a abril como el mes más tranquilo (7.6 km/h) (Weather Spark, 2019).

3.3.4. Heladas

En el centro experimental Chuquibambilla, ubicado a 3912 metros sobre el nivel del mar en la provincia de Melgar, Puno, las heladas son comunes debido a la altitud y clima. Estas ocurren principalmente entre mayo y septiembre, con mayor intensidad en julio y agosto. Aunque el SENAMHI indica que las heladas en la región son leves, son persistentes, especialmente en zonas por encima de los 4,000 metros (Senamhi, 2020).

3.3.5. Topografía

La topografía del centro experimental de Chuquibambilla es mayormente plana, con pendientes menores al 10% y ligeras variaciones en el lado este del centro experimental, donde se alcanza una altura máxima de 3,940 metros sobre el nivel del mar. El área del centro experimental está atravesada por dos ríos: el

río Santa Rosa y el río Macari, lo que contribuye a la diversidad del paisaje y puede influir en las actividades de investigación y manejo de recursos en la región.

3.4. DURACIÓN DEL ESTUDIO

El estudio se llevó a cabo entre los meses de octubre y diciembre de 2022, con el objetivo de recolectar datos de campo. En los meses siguientes, se procedió al procesamiento de todos los datos obtenidos. Tras completar las fases de recolección y procesamiento de datos, se inició la elaboración de la redacción detallada, fundamentada en la bibliografía existente y en investigaciones previas. Este enfoque meticuloso permitió integrar adecuadamente los hallazgos del estudio con el conocimiento académico y científico disponible.

3.5. MATERIALES

3.5.1. Materiales

- Coordenadas x: La posición de un punto en el eje horizontal, que generalmente se orienta en la dirección este-oeste.
- Coordenadas y: Representan la dirección norte-sur.
- Alturas z: Indican la elevación o altura sobre un nivel de referencia, como el nivel del mar.

3.5.2. Equipos y accesorios

 Receptor GNSS (Sistema Global de Navegación por Satélite) de la marca Trimble Modelo R8 de alta precisión utilizado principalmente en aplicaciones topográficas y geodésicas, en la investigación se ha utilizado en la obtención de coordenadas de los puntos de control.

- GPS Diferencial SOUTH Galaxy G6: Es un receptor GNSS diseñado para aplicaciones de topografía y geodesia.
- Estacion total Leyca TS06: Es un instrumento de medición utilizado en topografía y construcción, diseñado para ofrecer alta precisión y confiabilidad en el levantamiento de datos geoespaciales.
- Dron Phantom 4: Es una herramienta versátil y potente que ha sido ampliamente adoptada tanto por aficionados como por profesionales en diversas industrias.

3.5.3. Programas

- Trimble Bussines Center: Este programa se empleó para procesar los datos GNSS recolectados mediante el GPS diferencial, utilizando la versión 5.20 con una licencia de prueba.
- Civil 3D 2021: Este programa se utilizó para generar las curvas de nivel y extraer las coordenadas de los puntos de análisis, empleando la versión 2021 con una licencia de estudiante.
- Agisoft Metashape Proffesional: Se utilizó este programa para procesar las imágenes recolectadas por el dron, empleando la versión 2.1.2 con una licencia de prueba.
- IDLE (Python 3.12): Es un entorno de desarrollo integrado para Python, utilizado para realizar las pruebas estadísticas; el programa es de acceso libre.

3.6. METODOLOGÍA DE LA INVESTIGACIÓN

3.6.1. Tipo de investigación

La investigación "correlacional" Examina la relación entre dos o más variables para determinar si existe una asociación sin implicar causalidad. Es aplicada porque se sitúa en el ámbito de la ingeniería y tecnología, ya que busca aplicar métodos fotogramétricos y de topografía convencional en condiciones controladas (Castro et al., 2023).

3.6.2. Diseño de la investigación

El diseño es "transversal" porque recoge datos en un solo punto en el tiempo (Hernández et al., 2014).

3.6.3. Enfoque de la investigación

Según Hernández et al. (2014) la investigación es cuantitativo porque se dedica a recopilar, procesar y analizar datos cuantitativos, como numéricos y estadísticos sobre variables previamente establecidas. De acuerdo a Arturo & Murillo (2022), la investigación es cuantitativa, ya que se recolectan datos numéricos sobre la precisión de las coordenadas (x, y, z) obtenidas mediante diferentes métodos y condiciones (traslapes y alturas de vuelo).

3.6.4. Nivel de investigación

Es descriptivo, ya que se dedica a identificar las características que generan determinados fenómenos y entender la relación de las variables implicadas. Este tipo de estudio busca comprender por qué y cómo suceden ciertos eventos, estableciendo relaciones de causalidad entre las variables involucradas. Es

fundamental para el desarrollo de teorías y modelos explicativos (Hernández et al., 2014).

3.6.5. Variables de la investigación

3.6.5.1. Variable dependiente

• Las variables dependientes son las coordenadas este(x), norte (y) y altura (z) obtenidas de las imágenes de un vuelo fotogramétrico.

Definición: La variable dependiente es el componente de un estudio que se mide para determinar el efecto que tienen las variables independientes sobre ella. Este tipo de variable refleja las modificaciones y resultados que se producen debido a la manipulación de las variables independientes en un experimento. Según Hernández et al. (2014), la variable dependiente es aquella que se busca explicar o predecir en la investigación. Complementariamente, destacan que la variable dependiente es la que se observa y mide para analizar cómo varía en respuesta a los cambios introducidos por el investigador en las variables independientes.

- **Dimensiones:** Precisión de las coordenadas.
- Indicadores: Desviación estándar de las coordenadas las mismas que serán analizadas con métricas estadísticas en altura (Z) y en horizontal (X, Y).
- **Escala de medición:** Escala de razón.

3.6.5.2. Variable independiente

• Traslapes y alturas de vuelo.

Definición: La variable independiente es el elemento que el investigador manipula para evaluar su impacto sobre la variable dependiente. Este tipo de variable es fundamental para establecer relaciones causales en un estudio. Señalan que la variable independiente es aquella que se modifica para observar cómo afecta a otra variable. Por otro lado, Hernández et al. (2014) explican que las variables independientes son los factores o condiciones que el investigador introduce y controla deliberadamente para determinar sus efectos en el fenómeno que se estudia.

- **Dimensiones:** Altura de vuelo y traslape.
- Indicadores: Porcentaje de traslape y solape, Altura de absoluta sobre el nivel del terreno.
- **Escala de medición:** Escala de razón.

3.6.6. Población

La población abarca todos los elementos que cumplen con ciertos criterios para un estudio específico (Hernández et al., 2014). En esta presente investigación, la población de estudio corresponde a las cuatro hectáreas que está ubicadas en el Centro de Producción de Bienes y Servicios Chuquibambilla de la Universidad Nacional del Altiplano (UNA) – Puno. Este centro está ubicado en la localidad de Chuquibambilla, en el distrito de Ayaviri, provincia de Melgar y departamento de Puno.

3.6.7. Muestra

Es un muestreo intencional y no probabilístico porque la muestra se recolecta a criterio y juicio subjetivo del investigador (Otzen & Manterola, 2017). En el contexto de esta investigación, la muestra está compuesta por 20 puntos de análisis distribuidos en un área de 4 hectáreas, en el Centro de Producción de Bienes y Servicios Chuquibambilla de la Universidad Nacional del Altiplano (UNA) – Puno. Estos puntos fueron comparados bajo distintas condiciones de traslape y altura de vuelo mediante levantamientos fotogramétricos. Para establecer la precisión de las coordenadas obtenidas, se utilizó un grupo control conformado por lecturas de coordenadas obtenidas con una estación total, conocida por su alta precisión y fiabilidad.

3.6.8. Prueba estadística

Para determinar el nivel de investigación en un estudio estadístico, es fundamental considerar varios aspectos que guían la elección de técnicas y métodos analíticos. Los niveles de investigación se clasifican generalmente en seis categorías: exploratorio, descriptivo, relacional, explicativo, predictivo y aplicativo. A continuación, se describen cada uno de estos niveles y cómo se relacionan con el uso de análisis estadísticos.

3.6.8.1. Error absoluto medio

$$MAE = \frac{1}{n} \times \sum_{i=1}^{n} |O_i - P_i|$$

 Σ |Oi - Pi | representa la suma de los errores absolutos, donde |Oi -Pi| denota la diferencia absoluta entre cada valor observado (Oi) y su valor previsto correspondiente (Pi). El símbolo Σ significa suma, lo que indica

que estamos sumando estas diferencias absolutas en todos los puntos de datos del conjunto de datos.

3.6.8.2. Error porcentual absoluto medio

$$MAPE = 100 \times \frac{1}{n} \times \sum_{i=1}^{n} \left| \frac{Obs_{i} - Model_{i}}{Obs_{i}} \right|$$

Donde Obs i representa el valor observado y Model i denota el valor pronosticado para cada punto de datos i. MAPE proporciona una medida estandarizada de precisión de predicción, lo que permite realizar comparaciones entre diferentes modelos o técnicas de pronóstico.

3.6.8.3. Error de sesgo medio

$$\text{MBE} = \frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)$$

Donde Oi es el valor de observación y Pi es el valor de pronóstico.

3.6.8.4. Coeficiente de Pearson

$$r = \frac{\sum_{i=1}^{n} (o_i - \bar{O})(P_i - \bar{P})}{\sqrt{\sum_{i=1}^{n} (O_i - \bar{O})^2} \sqrt{\sum_{i=1}^{n} (P_i - \bar{P})^2}}$$

Donde Oi representa el valor de observación, Pi denota el valor de pronóstico, \overline{O} significa el promedio de los valores de observación y \overline{P} denota el promedio de los valores de pronóstico.

3.7. CALIDAD Y CONFIABILIDAD DE LOS EQUIPOS EMPLEADOS

El dron DJI Phantom utilizado para los vuelos fotogramétricos cuenta con las certificaciones CE (Conformité Européenne), FCC (Federal Communications

Commission), RoHS (Restriction of Hazardous Substances), ISO 9001 y la Marca UL (Underwriters Laboratories). La estación total empleada es el modelo TS-06 de la marca Leica, con un certificado de calibración vigente emitido por Catacora Laboratorio Topográfico. Para el posicionamiento diferencial se utilizaron un receptor GNSS Trimble modelo R8 y un GPS diferencial GALAXY SOUTH modelo G6, ambos con certificados de operatividad emitidos por Ingenieros COIPSA ICT E.I.R.L. y COSOLA GROUP S.A.C., respectivamente.

3.8. METODOLOGÍA EXPERIMENTAL Y RECOLECCIÓN DE DATOS

3.8.1. Etapa de planificación

En esta etapa de procedió a definir el área de estudio, las cuatro hectáreas que está ubicadas en el Centro de Producción de Bienes y Servicios Chuquibambilla de la Universidad Nacional del Altiplano (UNA) – Puno, sobre el cual se distribuyó uniformemente los 20 puntos de análisis y los dos puntos geodésicos.

3.8.1.1. Fase de preparación

En esta fase se realizan dos trabajos, la monumentación de los puntos de control geodésico con los códigos ITA-01 e ITA-02 en ubicaciones estratégicas dentro del área de estudio (alejado de edificios, arboles, antenas). Estos puntos sirvieron como referencias para las mediciones con estación total, el establecimiento de puntos de foto control y también sirvieron para el enlace del trabajo de investigación a la Red Geodésica Nacional. En esta fase también se revisaron que todos los equipos (dron DJI Phantom 4, estación total Leica TS-06, receptor GNSS

Trimble R8, y GPS diferencial GALAXY SOUTH G6) están calibrados y en óptimas condiciones de operatividad.

3.8.1.2. Instalación de equipos diferenciales y lectura de datos GNSS

Se instaló el primer equipo GNSS en el punto geodésico de orden C con código PUN08005, como se observa en la imagen 2, ubicado en los exteriores de la ciudad de Ayaviri, a 19.3 km en dirección sureste del área de estudio. Este punto sirvió como estación de rastreo permanente. Se ubican dos receptores GNSS en los puntos de control geodésico dentro del área de estudio, con códigos ITA-01 e ITA-02. En el punto geodésico PUN08005 se estacionó el receptor GNSS Trimble R8 Model 1, con número de serie 4507144944.

Figura 2

Instalación del GPS diferencial en el punto PUN08005

En el punto de control geodésico ITA-01, como se puede observar en la figura 3, se colocó el receptor GNSS SOUTH Modelo GALAXY G6, con número de serie SG61B1126376667EDD, y en el punto de control

geodésico ITA-02, como se observa en la figura 4, se instaló otro receptor

GNSS Trimble R8 Model 1, con número de serie 4603105763.

Figura 3

Instalación del GPS diferencial en el punto ITA-01

El receptor GNSS en el punto PUN08005 inició la lectura de datos a las 09:10:14 AM el 13/08/2022, con un intervalo de recolección de datos de 5 segundos. La recolección de datos en el punto de control geodésico ITA-01 comenzó a las 10:09:20 AM del mismo día, y en el punto de control geodésico ITA-02, a las 10:15:20 AM. La recolección de datos GNSS finalizó en el punto PUN08005 a la 01:30:22 PM, en el punto ITA-01 a la 01:28:55 PM, y en el punto ITA-02 a la 01:36:20 PM, todo el mismo día 13/08/2022. El tiempo total de recolección de datos GNSS fue de 4 horas, 20 minutos y 8 segundos para el punto PUN08005; 3 horas, 19 minutos y 35 segundos para el punto ITA-01; y 3 horas, 21 minutos y 0 segundos para el punto ITA-02.

Figura 4

Instalación del GPS diferencial en el punto ITA-02

3.8.2. Recolección de datos de acuerdo al objetivo específico 1

Efecto de distintos traslapes de imagen (60/70, 70/80, 80/90) en la precisión de las coordenadas obtenidas mediante levantamientos fotogramétricos

3.8.2.1. Etapa de campo

Levantamiento fotogramétrico: Se llevaron a cabo los vuelos fotogramétricos utilizando el dron DJI Phantom 4, con planificación de vuelos y traslapes específicos (60%/70%, 70%/80%, y 80%/90%) a diversas alturas de vuelo (80m, 120m, y 160m). Esta actividad incluyó la planificación de las rutas de vuelo para asegurar una cobertura adecuada y recopilación de datos fotogramétricos con traslapes definidos.

Traslape de coordenadas X

	Grupo control		l'raslape: 60/7(6	T	XASLAPE: 70 /	80	TR	ASLAPE: 80/	06
$^{\circ}\mathbf{Z}$	(Estación Total)	80m	120m	160m	80m	120m	160m	80m	120m	160m
	X(m)	X(m)	X(m)	X(m)	X(m)	X(m)	X(m)	X(m)	X(m)	X(m)
1	313385.3222	313385.3239	313385.3066	313385.3271	313385.3202	313385.2929	313385.3151	313385.3221	313385.3061	313385.3061
2	313401.4625	313401.4662	313401.4631	313401.4984	313401.4696	313401.4712	313401.4897	313401.4753	313401.482	313401.4815
3	313413.4794	313413.4933	313413.5124	313413.5058	313413.4944	313413.497	313413.5046	313413.4956	313413.5007	313413.4997
4	313421.6299	313421.6199	313421.6209	313421.6359	313421.6104	313421.6187	313421.6408	313421.6335	313421.621	313421.6205
5	313429.7073	313429.6944	313429.6735	313429.721	313429.6856	313429.7221	313429.701	313429.7069	313429.7301	313429.71
9	313437.7697	313437.7588	313437.7559	313437.772	313437.7608	313437.7647	313437.7627	313437.7678	313437.7698	313437.7716
L	313445.851	313445.8473	313445.8247	313445.856	313445.8401	313445.8265	313445.8593	313445.8309	313445.8461	313445.8351
8	313466.0019	313466.013	313465.9948	313466.0189	313466.0192	313466.0071	313465.9859	313466.0099	313465.9938	313466.0124
6	313486.1857	313486.1975	313486.2204	313486.2083	313486.2047	313486.2345	313486.1962	313486.199	313486.2201	313486.191
10	313494.2445	313494.2691	313494.2489	313494.2545	313494.238	313494.2081	313494.2707	313494.2513	313494.2526	313494.2488
11	313502.3101	313502.2985	313502.3075	313502.2929	313502.2983	313502.3347	313502.3331	313502.3103	313502.3072	313502.3192
12	313510.3382	313510.3113	313510.3414	313510.3406	313510.3267	313510.3221	313510.3688	313510.3359	313510.3184	313510.3583
13	313518.4592	313518.4513	313518.4534	313518.4381	313518.4501	313518.4759	313518.4555	313518.4621	313518.4629	313518.4538
14	313558.6971	313558.7121	313558.7098	313558.7074	313558.7081	313558.7186	313558.6998	313558.7008	313558.7026	313558.7047
15	313566.8683	313566.8552	313566.8856	313566.866	313566.8791	313566.8814	313566.8694	313566.8922	313566.8997	313566.8806
16	313574.895	313574.8711	313574.8763	313574.8638	313574.8926	313574.8931	313574.8614	313574.8914	313574.8897	313574.8944
17	313582.9199	313582.9135	313582.9091	313582.9138	313582.9091	313582.919	313582.9136	313582.932	313582.9151	313582.9073
18	313591.1875	313591.1764	313591.2222	313591.2063	313591.1917	313591.2152	313591.1918	313591.2209	313591.2289	313591.2171
19	313603.1467	313603.1468	313603.1735	313603.1524	313603.1502	313603.1375	313603.1668	313603.1317	313603.1642	313603.1425
20	313619.1098	313619.1245	313619.1575	313619.1444	313619.1307	313619.1281	313619.1567	313619.1491	313619.126	313619.1429
Nota: La tabli	a presenta los va	lores de las coo	ordenadas X obt	tenidas median	te levantamient	o convencional	es y levantamic	entos fotograme	étricos.	

52

Υ
enadas
coord
de
Traslape

Ž	Grupo control (Estación		lraslape: 60/7(TF	ASLAPE: 70/	80	TR	ASLAPE: 80/	06
	Total)	80m	120m	160m	$80\mathrm{m}$	120m	160m	80m	120m	160m
	Y(m)	$\mathbf{Y}(\mathbf{m})$	Y(m)	Y(m)	Y(m)	Y(m)	Y(m)	$\mathbf{Y}(\mathbf{m})$	$\mathbf{Y}(\mathbf{m})$	Y(m)
1	8363638.458	8363638.462	8363638.488	8363638.465	8363638.465	8363638.485	8363638.482	8363638.478	8363638.483	8363638.482
2	8363595.146	8363595.172	8363595.153	8363595.159	8363595.170	8363595.189	8363595.177	8363595.180	8363595.157	8363595.174
3	8363673.686	8363673.700	8363673.686	8363673.697	8363673.682	8363673.697	8363673.705	8363673.683	8363673.673	8363673.686
4	8363652.026	8363652.031	8363652.028	8363652.019	8363652.035	8363652.030	8363652.008	8363652.050	8363652.050	8363652.052
5	8363630.381	8363630.374	8363630.377	8363630.407	8363630.384	8363630.388	8363630.378	8363630.379	8363630.399	8363630.404
9	8363608.742	8363608.766	8363608.752	8363608.760	8363608.756	8363608.769	8363608.745	8363608.766	8363608.762	8363608.768
7	8363587.111	8363587.132	8363587.142	8363587.175	8363587.161	8363587.150	8363587.179	8363587.137	8363587.144	8363587.141
8	8363643.903	8363643.924	8363643.922	8363643.942	8363643.947	8363643.918	8363643.937	8363643.921	8363643.934	8363643.917
6	8363700.718	8363700.712	8363700.733	8363700.720	8363700.703	8363700.719	8363700.716	8363700.718	8363700.707	8363700.726
10	8363679.047	8363679.067	8363679.051	8363679.043	8363679.076	8363679.071	8363679.040	8363679.080	8363679.061	8363679.054
11	8363657.564	8363657.578	8363657.586	8363657.574	8363657.583	8363657.587	8363657.583	8363657.568	8363657.591	8363657.586
12	8363635.848	8363635.877	8363635.869	8363635.869	8363635.863	8363635.883	8363635.874	8363635.866	8363635.869	8363635.865
13	8363614.231	8363614.251	8363614.281	8363614.271	8363614.261	8363614.217	8363614.268	8363614.235	8363614.249	8363614.252
14	8363727.912	8363727.863	8363727.879	8363727.902	8363727.887	8363727.904	8363727.916	8363727.911	8363727.887	8363727.898
15	8363706.274	8363706.267	8363706.245	8363706.233	8363706.275	8363706.269	8363706.225	8363706.271	8363706.255	8363706.262
16	8363684.673	8363684.666	8363684.675	8363684.669	8363684.675	8363684.690	8363684.661	8363684.670	8363684.692	8363684.681
17	8363663.021	8363663.056	8363663.037	8363663.023	8363663.054	8363663.048	8363663.023	8363663.051	8363663.027	8363663.025
18	8363641.346	8363641.373	8363641.388	8363641.367	8363641.365	8363641.338	8363641.388	8363641.338	8363641.400	8363641.365
19	8363719.743	8363719.753	8363719.739	8363719.725	8363719.737	8363719.773	8363719.731	8363719.767	8363719.740	8363719.741
20	8363676.890	8363676.891	8363676.910	8363676.851	8363676.898	8363676.941	8363676.852	8363676.908	8363676.888	8363676.864
Nota: La ta	bla presenta los va	lores de las coc	rdenadas Y obt	enidas mediant	e levantamient	os convenciona	iles y levantami	entos fotogram	iétricos.	

53

3.8.2.2. Levantamiento topográfico convencional

En esta fase, se realizó el levantamiento topográfico con la estación total marca Leica, modelo TS-06 1". El proceso comenzó con el estacionamiento del equipo en uno de los puntos geodésicos. Posteriormente, se procedió con la lectura de los 10 foto controles, codificados como F, y de los 20 puntos de análisis, codificados como P. Se hicieron 24 lecturas de cada punto (foto controles y puntos de análisis), registrando un total de 720 puntos con sus coordenadas x (este), y (norte) y z (elevación).

Figura 5

Levantamiento topográfico con estación total Leica TS-06

3.8.2.3. Levantamiento fotogramétrico

En esta etapa, se llevaron a cabo los vuelos fotogramétricos, tal como se muestra en la figura 6. El proceso comenzó con el ensamblaje del dron DJI Phantom 4, asegurando que todos sus componentes estuvieran en

óptimas condiciones para el levantamiento. Paralelamente, se realizó una detallada planificación de las rutas de vuelo utilizando la aplicación DJI Pilot, lo que permitió definir parámetros esenciales como la altura, traslape frontal y lateral, y velocidad del vuelo, garantizando una cobertura eficiente del área de estudio. En total, se planificaron 9 rutas de vuelo, cada una diseñada con el propósito de cubrir diferentes sectores del terreno bajo diversas condiciones de traslape y altura, a fin de obtener una variedad de datos fotogramétricos que permitieran una evaluación precisa de las coordenadas (X, Y, Z).

3.8.3. Recopilación de datos de acuerdo al objetivo específico 2

Impacto de diversas alturas de vuelo (80, 120, 160 metros) sobre la precisión de los levantamientos fotogramétricos.

3.8.3.1. Etapa de campo

Levantamiento fotogramétrico: Durante los vuelos fotogramétricos, se emplearon alturas de vuelo específicas (80m, 120m, y 160m) en combinación con los traslapes establecidos. La variación en la altura de vuelo permite analizar cómo afecta la precisión de los puntos en coordenadas X, Y, Z.

3.8.3.2. Etapa de gabinete

Procesamiento de fotos aéreas: En el software Agisoft Metashape, se ajustaron las configuraciones de referencia geodésica y se procesaron las imágenes considerando las diferentes alturas de vuelo. Esto

permitió examinar el efecto de la altura en la precisión de las coordenadas obtenidas.

Procesamiento de fotos aéreas: Con el software Agisoft Metashape, versión 2.1.2, se procesaron las fotografías aéreas obtenidas para evaluar el impacto de los distintos traslapes en la precisión de las coordenadas finales.

Esta planificación minuciosa fue clave para asegurar la calidad y precisión de los resultados obtenidos durante el proceso de levantamiento:

- Para los traslapes del 60%/70% con alturas de vuelo de 80m, 120m y 160m.
- Para los traslapes del 70%/80% con alturas de vuelo de 80m, 120m y 160m.
- Para los traslapes del 80%/90% con alturas de vuelo de 80m, 120m y 160m.

	Grupo control		[raslape: 60/70		TR	ASLAPE: 70/	80	TR	ASLAPE: 80/	06
°	(Estación Total)	80m	120m	160m	80m	120m	160m	80m	120m	160m
	Z(m)	Z(m)	Z(m)	Z(m)	Z(m)	Z(m)	Z(m)	Z(m)	Z(m)	Z(m)
1	3912.762	3912.800	3912.800	3912.800	3912.800	3912.800	3912.765	3912.799	3912.800	3912.798
2	3912.706	3912.676	3912.676	3912.667	3912.676	3912.683	3912.685	3912.668	3912.670	3912.734
3	3912.813	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800
4	3912.696	3912.675	3912.681	3912.701	3912.708	3912.714	3912.681	3912.800	3912.670	3912.680
5	3912.694	3912.657	3912.672	3912.682	3912.718	3912.721	3912.679	3912.800	3912.676	3912.753
9	3912.658	3912.662	3912.664	3912.706	3912.682	3912.685	3912.678	3912.795	3912.685	3912.699
L	3912.749	3912.800	3912.800	3912.800	3912.800	3912.800	3912.739	3912.800	3912.800	3912.797
8	3912.835	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800
6	3912.662	3912.630	3912.646	3912.642	3912.682	3912.683	3912.694	3912.695	3912.702	3912.682
10	3912.718	3912.693	3912.698	3912.721	3912.735	3912.761	3912.738	3912.741	3912.741	3912.734
11	3912.721	3912.699	3912.711	3912.699	3912.757	3912.781	3912.751	3912.762	3912.740	3912.742
12	3912.817	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800
13	3912.810	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800	3912.800
14	3912.584	3912.600	3912.600	3912.600	3912.600	3912.600	3912.600	3912.600	3912.600	3912.600
15	3912.545	3912.600	3912.600	3912.594	3912.600	3912.600	3912.576	3912.600	3912.580	3912.593
16	3912.443	3912.498	3912.498	3912.468	3912.498	3912.490	3912.465	3912.470	3912.468	3912.475
17	3912.522	3912.520	3912.513	3912.531	3912.552	3912.570	3912.575	3912.562	3912.540	3912.539
18	3912.571	3912.600	3912.600	3912.600	3912.600	3912.600	3912.593	3912.600	3912.600	3912.600
19	3912.603	3912.600	3912.600	3912.600	3912.600	3912.600	3912.600	3912.600	3912.600	3912.600
20	3912.509	3912.529	3912.519	3912.521	3912.539	3912.535	3912.534	3912.535	3912.530	3912.490
Nota: La tabla	presenta los va.	lores de las altu	ıras Z obtenidas	mediante leva	ntamientos con	vencionales y	levantamientos	fotogramétrico.	s.	

Obtención de cotas de los traslape a diferentes alturas de vuelo

Tabla 4

57

Figura 6

Vuelo fotogramétrico con dron Phantom 4

a. Post proceso de datos GNSS

En esta etapa se procesaron los datos GNSS recolectados en campo mediante el software Trimble Business Center (versión 5.52), configurando la zona UTM correspondiente, el geoide EGM2008PERU y el datum WGS1984. Luego, se generaron líneas base desde el punto geodésico PUN08005 hacia los puntos de control ITA-01 e ITA-02 para verificar la precisión y exactitud de las mediciones GNSS, aplicando correcciones diferenciales y validando que las coordenadas obtenidas cumplieran con los estándares geodésicos establecidos.

Tabla 5

ID	Este	Norte	Elevación	Factor de	Factor de	Factor de	Ángulo de
	(Metro)	(Metro)	(Metro)	proyección	altura	combinada	de meridiano
ITA-01	313722.318	8363558.739	3912.094	1.000029209	0.999379858	0.999409048	0°26'32"
ITA-02	313667.793	8363823.68	3912.281	1.00002946	0.999379827	0.999409269	0°26'32"
PUN08005	329871.672	8354110.378	4027.197	0.999958003	0.999361757	0.999319787	0°24'23"

Coordenadas procesadas de los puntos ITA-01, ITA-02 Y PUN08005

La tabla 5, presenta las coordenadas X (este), Y (norte), Z (elevación), Factor de escala de proyección, Factor de escala de altura, Factor de escala combinada y el Ángulo de convergencia de meridiano.

b. Procesamiento de los puntos tomados con la estación total

Se descargaron los datos de la estación total, obteniendo 24 lecturas por cada punto de análisis. Estos datos fueron ajustados utilizando el método de mínimos cuadrados, el cual se basa en las ecuaciones de observación. Este método estadístico busca minimizar la suma de los cuadrados de las diferencias (residuos) entre los valores observados y los valores ajustados. Al aplicar esta técnica a las 24 lecturas de coordenadas, se obtuvo que los valores ajustados coincidían con el promedio de los datos observados.

Este ajuste demuestra que el promedio de las observaciones es la mejor estimación de los valores verdaderos cuando se minimizan los residuos cuadráticos.

Las fórmulas para el ajuste de las coordenadas se aplican en el orden mostrado:

c. Planteamiento de ecuaciones de observación

Para cada coordenada, se plantea una ecuación de observación:

$$x_i = X_i - \hat{X}$$
$$y_i = Y_i - \hat{Y}$$
$$z_i = Z_i - \hat{Z}$$

Donde X_i , Y_i , Z_i son observaciones y \hat{X} , \hat{Y} , \hat{Z} , son los valores

ajustados (Montgomery, 2017).

d. Función objetivo para cada coordenada

La función objetivo para minimizar es la suma de los cuadrados de los residuos para cada coordenada:

$$S_{X} = \sum_{i=1}^{n} (X_{i} - \hat{X})^{2}$$
$$S_{Y} = \sum_{i=1}^{n} (Y_{i} - \hat{Y})^{2}$$
$$S_{Z} = \sum_{i=1}^{n} (Z_{i} - \hat{Z})^{2}$$

e. Minimización de la solución

Tomando la derivada de cada función objetivo y resolviendo para $X^, Y^, Z^$, se obtiene:

$$\hat{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
$$\hat{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
$$\hat{Z} = \frac{1}{n} \sum_{i=1}^{n} Z_i$$

Así, los valores ajustados \hat{X} , \hat{Y} , \hat{Z} , son los promedios de las observaciones X_i , Y_i , Z_i (Montgomery, 2017)

Se siguieron todos los procedimientos mencionados anteriormente para el ajuste de las coordenadas X, Y y elevación Z de los 20 puntos de análisis (ver tabla 6) y los 10 puntos de foto control (ver tabla 7). A continuación, se presentan las coordenadas finales obtenidas.

Tabla 6

	Coorde	nadas De Puntos I	De Análisis	
N°	X(m)	Y(m)	Z(m)	Código
1	313385.3222	8363638.4584	3912.7618	P1
2	313401.4625	8363595.1464	3912.7062	P2
3	313413.4794	8363673.6856	3912.8126	P3
4	313421.6299	8363652.0258	3912.6963	P4
5	313429.7073	8363630.3811	3912.6936	P5
6	313437.7697	8363608.7424	3912.6583	P6
7	313445.8510	8363587.1106	3912.7491	P7
8	313466.0019	8363643.9026	3912.8351	P8
9	313486.1857	8363700.7179	3912.6618	P9
10	313494.2445	8363679.0470	3912.7184	P10
11	313502.3101	8363657.5643	3912.7214	P11
12	313510.3382	8363635.8477	3912.8169	P12
13	313518.4592	8363614.2312	3912.8104	P13
14	313558.6971	8363727.9117	3912.5845	P14
15	313566.8683	8363706.2738	3912.5450	P15
16	313574.8950	8363684.6732	3912.4426	P16
17	313582.9199	8363663.0211	3912.5220	P17
18	313591.1875	8363641.3464	3912.5707	P18
19	313603.1467	8363719.7429	3912.6033	P19
20	313619.1098	8363676.8897	3912.5085	P20

Coordenadas ajustadas de los puntos de análisis

Nota: La tabla muestra las coordenadas X, Y y la altura Z de los puntos de análisis.

En la tabla 6 se muestran las coordenadas X, Y y la altura Z de los

puntos de análisis.

Tabla 7

	Coorden	adas De Puntos I	De Fotocontrol	
N°	X(m)	Y(m)	Z(m)	Código
1	313377.295	8363660.15	3912.77909	F1
2	313393.435	8363616.87	3912.68597	F2
3	313409.337	8363573.6	3912.69739	F3
4	313457.912	8363665.56	3912.85222	F4
5	313474.068	8363622.29	3912.82869	F5
6	313530.464	8363692.76	3912.59717	F6
7	313546.643	8363649.44	3912.64253	F7
8	313594.975	8363741.54	3912.61065	F8
9	313611.257	8363698.19	3912.54493	F9
10	313627.322	8363654.86	3912.56583	F10

Coordenadas ajustadas de los puntos de fotocontrol

Nota: La tabla muestra las coordenadas X, Y y la altura Z de los puntos de fotocontrol.

En la tabla 7 se muestra las coordenadas X, Y y la altura Z de los puntos de fotocontrol.

El proceso de ajuste para cada punto de análisis y cada foto control se muestra en el Anexo 4.

f. Procesamiento de fotos aéreas

Para el procesamiento de fotografías áreas se empleó el software Agisoft Metashape: Professional en su versión 2.1.2, en el cual se siguieron los siguientes pasos, que se detallan a continuación.

Se inició con la configuración del sistema de referencia geodésico, tal como se aprecia en el anexo 1, ya que el datum y la zona UTM son esenciales para toda medición geoespacial y para el enlace correcto de la presente investigación a la red geodésica nacional. Se eligió la zona UTM 19S en datum WGS84.

Seguidamente, se añadieron las fotos aéreas al software Agisoft Metashape, tal como se aprecia en el anexo 1. Las imágenes obtenidas de los vuelos fotogramétricos están en formato JPG. La adición de estas imágenes se realizó empleando la herramienta "Flujo de trabajo" y seleccionando "Añadir fotos". Con las fotos cargadas en el software Agisoft Metashape, se procedió a realizar la orientación de las imágenes, como se observa en el anexo 1. Este proceso aseguró la correcta alineación y superposición de las imágenes. Los parámetros establecidos fueron precisión alta y preselección de referencia de origen. Después de orientar las fotos, se generó la nube de puntos densa, la cual proporciona una representación tridimensional del área de estudio. Se eligieron los parámetros de calidad alta y el filtrado de profundidad agresivo, como se ve en el anexo 1. Con la nube de puntos densa generada, se procedió a generar la malla. Este proceso creó un modelo poligonal a partir de los datos tridimensionales. Se seleccionaron como origen de datos los mapas de profundidad, calidad alta y número de caras alta, como se observa en el anexo 5.

Los fotocontroles se ubicaron manualmente en las fotos aéreas, punto por punto en cada fotografía en la cual estaban presentes. Se identificaron los 10 puntos de fotocontrol, como se aprecia en el anexo 1.

Con los fotocontroles ya ubicados en el modelo dentro del software Agisoft Metashape, se procedió a importar los fotocontroles a partir de un archivo de texto que contiene las coordenadas X, Y, Z. Este proceso se realizó mediante la herramienta "Importar referencia", como se observa en el anexo 1.

Para el correcto enlace a los puntos de fotocontrol, se optimizó la orientación de las cámaras, como se observa en el anexo 1. Este proceso garantizó el correcto enlace a la red geodésica nacional de la investigación. Este paso conlleva repetir los procesos de generación de la nube de puntos densa y la creación de la malla.

Finalizando con la optimización de las cámaras, se procedió a generar nuevamente la nube de puntos densa, seleccionando nuevamente los parámetros de calidad alta y filtrado de profundidad agresivo. Habiendo generado nuevamente la nube de puntos densa, se procedió a generar la malla con los parámetros de origen de datos mapas de profundidad, calidad alta y número de caras alta.

Con todos los pasos seguidos minuciosamente, se generó el modelo digital de elevaciones con una resolución de píxel al centímetro, como se aprecia en el anexo 1.

Sobre el modelo digital de elevaciones generado correctamente, se generaron las curvas de nivel con un intervalo de 0.2 m para curvas menores y 1.0 m para curvas mayores, como se aprecia en el anexo 1.

Finalmente, se generó la ortofoto a partir del modelo digital de elevaciones y las fotos ortorrectificadas, garantizando una imagen aérea precisa y corregida geométricamente del área de estudio, en formato TIFF, como se observa en el anexo 1.

Todo el proceso descrito se representa en el flujograma

Figura 7

Flujograma resumen del procesamiento de fotos aéreas

CAPITULO IV

RESULTADOS Y DISCUSIÓN

En este capítulo, se presentan los resultados obtenidos al comparar la precisión de las coordenadas generadas mediante levantamientos fotogramétricos con aquellas obtenidas por métodos de topografía convencional utilizando una estación total. Se analizan las coordenadas de 20 puntos de análisis, considerando variaciones en los traslapes de imagen (60/70, 70/80, 80/90) y diferentes alturas de vuelo (80, 120, 160 metros).

4.1. DETERMINACIÓN DE LOS TRASLAPES A 60/70, 70/80 Y 80/90 EN LA PRECISIÓN DE COORDENADAS OBTENIDAS DE IMÁGENES DE LOS LEVANTAMIENTOS FOTOGRAMÉTRICOS.

4.1.1. Traslapes para las coordenadas X

Correlación R² que mide la fuerza y dirección de una relación lineal entre dos variables. Un valor cercano a 1 indica una fuerte correlación positiva, mientras que un valor cercano a -1 indica una fuerte correlación negativa. Un valor cercano a 0 sugiere poca o ninguna correlación. Por lo que se observó una correlación muy alta en todas las combinaciones de traslape y altura de vuelo, con valores cercanos a 1.00 siendo estos valores 0.998 a 0.995 lo que indica una fuerte relación con los datos topográficos convencionales.

El error absoluto medio se tuvo un error vario significativamente con el traslape y altura a 80 metros de altura, el error medio es de 0.011metros con un traslape 80/90 y aumenta a 0.067 metros a 120 m de altura con traslape 60/70. Esto también ha sido comparado con el error porcentual absoluto Medio que

indica los errores porcentuales fueron más altos a 60/70 de traslape, alcanzando hasta un 48.7% en ciertas combinaciones de traslape 70/80 a 120 metros de altura. Y el coeficiente de Pearson indicó una relación lineal fuerte, con valores entre 0.999 y 0.997.

La precisión en general a alturas menores de 80 metros, los errores absolutos en las coordenadas X son significativamente más bajos. A medida que la altura aumenta, por ejemplo, a 120 metros, el error absoluto medio puede aumentar hasta 0.067 el cual se puede evidenciar en la tabla 8 y en la Figura 8.

Tabla 8

Métricas estadísticas para las coordenadas "X" según traslape y altura de vuelo

NIO	Tr	aslape: 60	/70	TRA	SLAPE: 7	70/80	TRAS	SLAPE: 8	0/90
N	80m	120m	160m	80m	120m	160m	80m	120m	160m
Correlación R ²	0.998	0.996	0.997	0.998	0.995	0.998	0.998	0.997	0.998
Error absoluto medio	0.012	0.067	0.015	0.011	0.018	0.064	0.011	0.064	0.012
Error porcentual absoluto medio	32.5%	6.7%	9.8%	48.7%	19.8%	5.8%	25.5%	5.2%	31.9%
Error de sesgo medio	-0.002	0.004	0.007	0.000	0.004	0.008	0.007	0.008	0.006
Coeficiente de Pearson	0.999	0.998	0.999	0.999	0.997	0.999	0.999	0.998	0.999

En la tabla 8 se muestran los resultados estadísticos obtenidos al comparar los levantamientos fotogramétricos en diferentes traslapes (60/70, 70/80 y 80/90) y alturas de vuelo (80m, 120m y 160m). Se incluyen los valores de correlación R², error absoluto medio, error porcentual absoluto medio, error de sesgo medio y el coeficiente de Pearson, en las coordenadas X.

Figura 8

Correlación $r^2 x(control) - x$ (A diferentes alturas y diferentes traslapes)

4.1.2. Traslapes para las coordenadas Y

La correlación R² resulto similar a las coordenadas X, con valores entre 0.994 y 0.999 que indica una fuerte relación con los datos topográficos convencionales, mientras que con el error absoluto medio oscila entre 0.015 y 0.023, mostrando un comportamiento relativamente estable con cambios en la altura.

El error porcentual absoluto medio nos indica que los errores son menores en comparación con las coordenadas X, variando entre 9% y 18%. Y el coeficiente

de Pearson también reflejó una fuerte relación lineal (0.999 a 0.996), indicando que las coordenadas Y son igualmente precisas.

La precisión general similar a las coordenadas X, las coordenadas Y muestran un mejor rendimiento a alturas menores. El error absoluto medio es más bajo de 0.015 a 80 metros en comparación con alturas mayores el cual se puede evidenciar en la tabla 9 y en la Figura 9.

Tabla 9

Métricas estadísticas para las coordenadas "Y" según traslape y altura de vuelo

	Tı	raslape: 60/	70	TR	ASLAPE: 7	70/80	TRA	SLAPE: 8	0/90
N°	80m	120m	160m	80m	120m	160m	80m	120m	160m
Correlación R ²	0.997	0.996	0.994	0.997	0.997	0.9992	0.998	0.996	0.998
Error absoluto medio	0.017	0.018	0.02	0.018	0.021	0.023	0.015	0.019	0.016
Error porcentual absoluto medio	15.4%	9.9%	9.0%	17.8%	15.1%	12.4%	18.6%	12.4%	11.4%
Error de sesgo medio	0.01	0.012	0.008	0.013	0.017	0.008	0.0013	0.012	0.011
Coeficiente de Pearson	0.998	0.998	0.997	0.999	0.998	0.996	0.999	0.998	0.999

En la tabla 9 se muestran los resultados estadísticos obtenidos al comparar los levantamientos fotogramétricos en diferentes traslapes (60/70, 70/80 y 80/90) y alturas de vuelo (80m, 120m y 160m). Se incluyen los valores de correlación R², error absoluto medio, error porcentual absoluto medio, error de sesgo medio y el coeficiente de Pearson, en las coordenadas Y.

Figura 9

traslapes)

4.2. EVALUACIÓN DE LA PRECISIÓN A DIFERENTES ALTURAS DE VUELO DE 80, 120 Y 160 METROS CON DRONES FOTOGRAMÉTRICOS FRENTE A LOS LEVANTAMIENTOS TOPOGRÁFICOS CONVENCIONALES.

La correlación R² para las alturas son más variables, especialmente a mayores alturas, con valores que van desde 0.843 hasta 0.998. mientras que el error absoluto medio

indica que los errores son más consistentes en alturas menores, pero aumentan a alturas mayores; por ejemplo, el error medio es de 0.021 a 160 m.

Error Porcentual Absoluto Medio este error fue relativamente bajo, oscilando entre el 3.3% y el 6.4%. Y el Coeficiente de Pearson mantuvo valores significativos (entre 0.918 y 0.973), indicando buena precisión en general.

La precisión en general las alturas en Z son las más afectadas por la altura de vuelo. A alturas menores, los errores absolutos son relativamente bajos como es el caso 0.021, pero aumentan notablemente a mayores alturas, el cual se muestra como evidencia en la tabla 10.

Tabla 10

Métricas estadísticas para las cotas "Z" según traslape y altura de vuelo

NO	Tr	aslape: 60	/70	TRA	SLAPE: '	70/80	TRA	SLAPE:	80/90
N°	80m	120m	160m	80m	120m	160m	80m	120m	160m
Correlación R ²	0.943	0.944	0.955	0.945	0.973	0.843	0.949	0.947	0.998
Error absoluto medio	0.026	0.023	0.023	0.027	0.03	0.021	0.042	0.025	0.026
Error porcentual absoluto medio	4.1%	3.6%	3.5%	4.3%	4.8%	3.3%	6.4%	3.8%	4.0%
Error de sesgo medio	0.001	0.003	0.006	0.016	0.02	0.007	0.03	0.009	0.015
Coeficiente de Pearson	0.965	0.971	0.972	0.977	0.972	0.986	0.918	0.974	0.973

En la tabla 10 se muestran los resultados estadísticos obtenidos al comparar los levantamientos fotogramétricos en diferentes traslapes (60/70, 70/80 y 80/90) y alturas de vuelo (80m, 120m y 160m). Se incluyen los valores de correlación R², error absoluto

medio, error porcentual absoluto medio, error de sesgo medio y el coeficiente de Pearson,

en las alturas Z.

V. CONCLUSIONES

- **PRIMERA:** Los resultados indican que los levantamientos fotogramétricos son precisos, especialmente a menores alturas de vuelo y con traslapes mayores (80/90), ya que proporcionan más puntos de referencia para la triangulación y mejor calidad de imagen. La correlación entre las coordenadas obtenidas por fotogrametría y las convencionales es alta, lo que sugiere que la fotogrametría es un método efectivo para obtener datos geoespaciales.
- SEGUNDA: El traslape y la altura impactan significativamente en la precisión; los mayores traslapes (80/90) y menores alturas (80 m) generaron los menores errores absolutos, mientras que la precisión disminuye con el aumento de la altura. En comparación con la topografía convencional, la fotogrametría no solo se acerca a su precisión, sino que en muchos casos supera las expectativas.
- TERCERA: En comparación con la topografía convencional, la fotogrametría no solo se acerca a la precisión de los métodos topográficos tradicionales, sino que en muchos casos supera las expectativas esperadas en su efectividad. Los resultados mostraron alta correlación en las coordenadas X (R²: 0.998-0.995) y Y (R²: 0.994-0.999), con errores absolutos medios mínimos de 0.011 m a 80 m y traslape 80/90, mientras que en Z hubo mayor variabilidad (R²: 0.843-0.998) con menor error a 80 m (0.021 m). El error porcentual medio osciló entre 3.3% y 4.8%.
- **CUARTA:** En conclusión, las coordenadas X e Y muestran mayor precisión que las alturas Z, destacando la importancia de seleccionar adecuadamente las

alturas de vuelo y traslapes para optimizar la precisión en levantamientos

fotogramétricos.

VI. RECOMENDACIONES

- PRIMERA: Optimización del Traslape se recomienda utilizar un traslape mínimo del 80% para maximizar la precisión en levantamientos fotogramétricos. Para la altura de vuelo ajustada la aplicación requerida para una alta precisión, se sugiere mantener las alturas de vuelo alrededor de los 80 metros. Tanto para las coordenadas X como Y, se observa que la precisión mejora significativamente cuando se trabaja a menores alturas de vuelo.
- **SEGUNDA:** Para la validar los datos obtenidos continuamente a través de los drones se debe implementar un sistema regular de validación comparativa entre métodos fotogramétricos y topográficos para asegurar la calidad y precisión continua del proceso fotogramétricos. Además, se debe tener la capacitación técnica a fin de que la intervención de los operadores de drones y personal técnico sobre las mejores prácticas en levantamientos fotogramétricos.
- **TERCERA:** Se adoptar el uso de software avanzado para el procesamiento de imágenes que pueda mejorar aún más la precisión mediante algoritmos optimizados.
- **CUARTA:** Estos hallazgos subrayan el potencial significativo del uso de drones y técnicas fotogramétricas en aplicaciones geoespaciales, ofreciendo una alternativa viable a métodos tradicionales con beneficios claros en términos de costo y eficiencia operativa.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Alvarado Calderon, C. R. (2020). Análisis de la precisión entre los levantamientos aerofotogrametrico realizado con el dron EBEE plus y topográfico realizado con el GPS diferencial en la universidad nacional hermilio valdizan huanuco
 2019 [Tesis de pregrado, Universidad Nacional Hermilio Valdizán]. https://hdl.handle.net/20.500.13080/6056
- Anderson, S. W. (2019). Uncertainty in quantitative analyses of topographic change: error propagation and the role of thresholding. Earth Surface Processes and Landforms, 44(5), 1015–1033. https://doi.org/10.1002/esp.4551
- Arturo, S., & Murillo, A. (2022). Enfoques metodológicos en la investigación histórica: cuantitativa, cualitativa y comparativa. 9(2), 1–35. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2594-29562021000200147
- Cedeño-Montoya, B., & Alfaro-Chavarria, C. (2018). Herramientas GNSS en la Enseñanza de Geografía y Cartografía: Aspectos Metodológicos. Revista Geográfica de América Central, 1(60), 71–92. https://doi.org/10.15359/rgac.61-2.3
- Chaverri, P., & Arguedas, A. (2020). Políticas Públicas Basadas en Evidencia: una revisión del concepto y sus características. Revista ABRA, 40(60), 1–28. https://doi.org/10.15359/abra.40-60.2
- Claros, R., Guevara, A., & Pacas, N. (2016). Aplicación de fotogrametría aérea en levantamientos topográficos mediante el uso de vehículos aéreos no tripulados [Tesis de Pregrado, Universidad de el Salvador]. https://repositorio.ues.edu.sv/items/2c050c7c-dd31-43cc-959f-7fdb8787dfa8
- Dabove, P., & Di Pietra, V. (2019). Single-baseline RTK positioning using dualfrequency GNSS receivers inside smartphones. Sensors (Switzerland), 19(19). https://doi.org/10.3390/s19194302

- Delva, P., Altamimi, Z., Blazquez, A., Blossfeld, M., Böhm, J., Bonnefond, P., Boy, J. P., Bruinsma, S., Bury, G., Chatzinikos, M., Couhert, A., Courde, C., Dach, R., Dehant, V., Dell'Agnello, S., Elgered, G., Enderle, W., Exertier, P., Glaser, S., ... Zajdel, R. (2023). GENESIS: co-location of geodetic techniques in space. Earth, Planets and Space, 75(1). https://doi.org/10.1186/s40623-022-01752-w
- Diaz, G., Lencinas, J., & Del Valle, H. (2014). Introducción a la fotografía hemisférica en ciencias forestales. Madera y Bosques, 20, 109–117. https://doi.org/https://doi.org/10.21829/myb.2014.201180
- Erazo, R. (2023). Drones Multírotor en Levantamientos Topográficos de Zonas Montañosas. Revista Ingenio, 6(1), 13–19. https://doi.org/https://doi.org/10.29166/ingenio.v6i1.4304
- Galcerá, S., Seguí, A., Portalés, C., Lerma, J., Ramírez, A., & Esteban, A. (2009).
 Optimización de proyectos de vuelo en Fotogrametría aérea. 1–8. https://folcomuns.firabcn.es/Globalgeo_Proceedings/Proceedings/Fotogram etr%C3%ADa%20y%20Teledetecci%C3%B3n/Aerial%20Photogrammetry /Optimizaci%C3%B3n%20de%20proyectos%20de%20vuelo%20en%20Fo togrametr%C3%ADa%20a%C3%A9rea.pdf
- Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. del P. (2014). Metodología de la investigación (McGraw-Hill, Ed.; 6^a ed.).
- Hinostroza Quijada, P. S. (2021). Evaluación de errores máximos permisibles entre levantamiento topográfico empleando dron y sistema de posicionamiento global diferencial [Tesis de pregrado]. Universidad Peruana los Andes.
- Iñiguez, V. (2024). Análisis comparativo entre levantamientos topográficos con estación total y vehículos aéreos no tripulados (UAVS) en los Andes del sur del Ecuador. https://dspace.ups.edu.ec/handle/123456789/28270
- Jimenez Calero, N. M., Magaña Monge, A. O., & Soriano Melgar, E. (2019). Análisis comparativo entre levantamientos Topográficos con estación total como método directo y el uso de drones y GPS como métodos indirectos

[Tesis de pregrado, Universidad de el Salvador]. https://hdl.handle.net/20.500.14492/16439

- Kolkos, G., Stergiadou, A., Kantartzis, A., & Tselepis, A. (2022). Accuracy of topographical instruments and Unmanned Aerial Systems for mapping and surveying environmental projects. IOP Conference Series: Earth and Environmental Science, 1123(1). https://doi.org/10.1088/1755-1315/1123/1/012015
- lbarrera, W. (2022). Gestión de la calidad de los datos: Qué, por qué, cómo y mejores prácticas. https://dataladder.com/es/gestion-de-la-calidad-de-los-datos-quepor-que-como-y-mejores-practicas/
- Mallma Palacios, R. (2020). Análisis comparativo del método fotogramétrico y convencional para el levantamiento topográfico de la Av. Ferrocarril-Pachacamac [Tesis de Pregrado, Universidad César Vallejo]. https://hdl.handle.net/20.500.12692/56130
- Mancini, F., & Salvini, R. (2019). Applications of photogrammetry for environmental research. ISPRS International Journal of Geo-Information, 8(12). https://doi.org/10.3390/ijgi8120542
- Marijan, G., & Tomislav, B. (2021). Radar Satellite Altimetry in Geodesy-Theory,
 Applications and Recent Developments. Geodetic Sciences Theory,
 Applications and Recent Developments, 1–18.
 https://doi.org/10.5772/intechopen.97349
- Mikoś, M., Kazmierski, K., & Sośnica, K. (2023). Characteristics of the IGS receiver clock performance from multi-GNSS PPP solutions. GPS Solutions, 27(1). https://doi.org/10.1007/s10291-023-01394-9
- Miranda, S., & Ortiz, J. (2020). Los paradigmas de la investigación: un acercamiento teórico para reflexionar desde el campo de la investigación educativa. RIDE Revista Iberoamericana Para La Investigación y El Desarrollo Educativo, 11(21), 1–18. https://doi.org/10.23913/ride.v11i21.717

- Montenbruck, O., Steigenberger, P., & Hauschild, A. (2015). Broadcast versus precise ephemerides: a multi-GNSS perspective. GPS Solutions, 19(2), 321– 333. https://doi.org/10.1007/s10291-014-0390-8
- Moya Zamora, J. (2022). Procesamiento GNSS en el Marco Geodésico CR-SIRGAS: influencia de las épocas de observación y referencia. Ingeniería, 32(2), 48–85. https://doi.org/10.15517/ri.v32i2.50181
- Nájera, A. (2021). Metodología para generación de ortofotos y modelos digitales de elevación de alta resolución a través de imágenes obtenidas con drones no-fotogramétricos [Universidad Autónoma de Guerrero]. http://ri.uagro.mx/bitstream/handle/uagro/2498/TE_851102_2021.pdf?sequ ence=1&isAllowed=y
- Neira Ricouz, R. A. (2005). "FOTOGRAFIA AEREA" [Tesis de Pregrado]. Universidad Austral del Chile.
- Nikolaidou, T., Santos, M., Williams, S. D. P., & Geremia-Nievinski, F. (2020). A simplification of rigorous atmospheric raytracing based on judicious rectilinear paths for near-surface GNSS reflectometry. Earth, Planets and Space, 72(1). https://doi.org/10.1186/s40623-020-01206-1
- Ordoñez Avendaño, J. R., & Condori Mamani, G. N. (2022). Análisis de la precisión de un levantamiento topográfico utilizando fotogrametría con RPAS y su relación a la densidad de puntos de control terrestre [Tesis de pregrado, Universidad Nacional del Altiplano]. http://repositorio.unap.edu.pe/handle/20.500.14082/18121
- Ordóñez, S., Saharahui, A., Pineda, D., Brenes, B., & González, J. (2019).
 Fotogrametría: cómo crear modelos tridimensionales de bajo costo, con características realistas y fácil manipulación. Investigacion En Educacion Medica, 8(32), 1–12.
 https://doi.org/10.22201/facmed.20075057e.2019.32.18157
- Otzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio Sampling Techniques on a Population Study. Int. J. Morphol, 35(1),

1–6. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022017000100037

- Paniagua-Jiménez, D., & Valverde-Calderón, J. (2017). Comparación de los resultados en la resolución de ambigüedades para una red de estaciones GNSS en Europa con el uso de datos GPS y la combinación con datos GLONASS, utilizando el programa de procesamiento Bernese. Uniciencia, 31(2), 1. https://doi.org/10.15359/ru.31-2.1
- Pérez, R. (2016). Acerca del método de la observación y algunos alcances al estudio experimental para la construcción de imágenes. 66, 1–11. https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853-35232018000100011
- Pino, E. (2019). Los drones una herramienta para una agricultura eficiente: un futuro de alta tecnología. Idesia (Arica), 37(1), 1–10. https://doi.org/10.4067/s0718-34292019005000402
- Rios Monroy, A. P., & Puerto Caro, L. N. (2019). Control terrestre en el proceso fotogramétrico usando vehículos aéreos no tripulados con fines cartográficos en el municipio de cómbita [Tesis de pregrado, Universidad Distrital Francisco Jose de Caldas]. http://hdl.handle.net/11349/15113
- Saharahui, A., Ordóñez, S., Pineda, D., Brenes, B., & González, J. (2019). Photogrammetry: cow to create three-dimensional models of low-cost, with realistic characteristics and easy handling, for use in teaching and medical diagnosis. Investigación En Educación Medica, 8(32), 1–12. https://doi.org/10.22201/facmed.20075057e.2019.32.18157
- Santos, L., Lopes, N., Araújo, G., & Barata, R. (2022). Overlap influence in images obtained by an unmanned aerial vehicle on a digital terrain model of altimetric precision. European Journal of Remote Sensing, 55(1), 263–276. https://doi.org/10.1080/22797254.2022.2054028
- Torres, N., Franquet, J., & Gonzáles, J. (2010). Nivelación de terrenos por regresión tridimensional. https://e-spacio.uned.es/entities/publication/53dc0bed-fefe-473d-8e4a-8b0afa958032

- Yuan, H., Zhang, Z., He, X., Dong, Y., Zeng, J., & Li, B. (2023). Multipath mitigation in GNSS precise point positioning using multipath hierarchy for changing environments. GPS Solutions, 27(4). https://doi.org/10.1007/s10291-023-01531-4
- Zepeda, R. (2015). Geodesia satelital GNSS. https://www.academia.edu/39745642/GEODESIA_SATELITAL_GNSS_R evisi%C3%B3n_2

ANEXOS

ANEXO 1. Procesamiento de fotos aéreas

Para el procesamiento de fotografías áreas se empleó el software Agisoft Metashape: Professional en su versión 2.1.2, en el cual se siguieron los siguientes pasos, que se detallan a continuación.

Se inició con la configuración del sistema de referencia geodésico, tal como se aprecia en la figura 11, ya que el datum y la zona UTM son esenciales para toda medición geoespacial y para el enlace correcto de la presente investigación a la red geodésica nacional. Se eligió la zona UTM 19S en datum WGS84.

Figura 10

Configuración del sistema de referencia geodésico

Seguidamente, se añadieron las fotos aéreas al software Agisoft Metashape, tal como se aprecia en la figura 12. Las imágenes obtenidas de los vuelos fotogramétricos están en formato JPG. La adición de estas imágenes se realizó empleando la herramienta "Flujo de trabajo" y seleccionando "Añadir fotos".

Añadir las fotos aéreas

<u>A</u> rchivo <u>E</u> dición <u>V</u> er	<u>Elujo de trabajo</u> <u>M</u> odelo <u>I</u> magen <u>O</u> rto <u>H</u> erramientas Ay <u>u</u> da
	Añadir fotos
	Qrientar fotos
Cámaras - Longitud	Alinear encaneos laser Crear <u>m</u> alla
✓ ■ DJI_0132 -70.732122	Crear textura Crear modelo de teselas
✓ M DJI_0133 -70.732311 ✓ M DJI_0134 -70.732499	Crear nube de puntos
✓ ■ DJI_0135 -70.732685 ✓ ■ DJI_0136 -70.732870	Crear modelo digital de elevaciones Crear ortomosaico
✓ ■ DJI_0137 -70.733058	Crear Panorámica
✓ ■ DJI_0138 -70.733439	Orientar bloques Fusionar bloques
DII 0140 -70 733626	Proceso por lotes
irror total	Laurud
Puntos de ap	
Puntos de co	

Con las fotos cargadas en el software Agisoft Metashape, se procedió a realizar la orientación de las imágenes, como se observa en la figura 13. Este proceso aseguró la correcta alineación y superposición de las imágenes. Los parámetros establecidos fueron precisión alta y preselección de referencia de origen.

Figura 12

Orientación de las fotos aéreas

Después de orientar las fotos, se generó la nube de puntos densa, la cual proporciona una representación tridimensional del área de estudio. Se eligieron los parámetros de calidad alta y el filtrado de profundidad agresivo, como se ve en la figura 14.

Generación de la nube de puntos densa

Crear nube de puntos de p	Jaso								
Generales Origen de datos:	Manas de profundidad								
c-lid-d.		_							
Reutilizar mapas de profundidad									
 Avanzados 									
Filtrado de profundidad:	Agresivo	Ψ.							
Colorear puntos									
Estimar nivel de confianza de los puntos									
Sustituir la nube de puntos por defecto									
	the Consults								

Con la nube de puntos densa generada, se procedió a generar la malla. Este proceso creó un modelo poligonal a partir de los datos tridimensionales. Se seleccionaron como origen de datos los mapas de profundidad, calidad alta y número de caras alta, como se observa en la figura 15.

Figura 14

Generación de la malla

Crear modelo		×					
Origen de datos:		Mapas de profundidad					
Tipo de superficie:		Arbitrario (3D)					
Calidad:		Alta					
Número de caras:		Alta					
 Bloques Fraccionar en bloques Sistema de coordenadas: Tamaño del bloque (m): 	WGS 250	84 / UTM zone 19S (EPSG 👘 帐					
Origen de la cuadrícula: X: 313174 Y: 8363442 Saltar bloques fuera del polígono de delimitación Previsualizar.							
► Avanzado	atar	Cancelar					
Ace	Jlar	Caricelar					

Los fotocontroles se ubicaron manualmente en las fotos aéreas, punto por punto en cada fotografía en la cual estaban presentes. Se identificaron los 10 puntos de fotocontrol, como se aprecia en la figura 16.

Ubicación manual de los fotocontroles

Con los fotocontroles ya ubicados en el modelo dentro del software Agisoft Metashape, se procedió a importar los fotocontroles a partir de un archivo de texto que contiene las coordenadas X, Y, Z. Este proceso se realizó mediante la herramienta "Importar referencia", como se observa en la figura 17.

Figura 16

Importación de los puntos de fotocontrol

Para el correcto enlace a los puntos de fotocontrol, se optimizó la orientación de las cámaras, como se observa en la figura 18. Este proceso garantizó el correcto enlace a la red geodésica nacional de la investigación.

Este paso conlleva repetir los procesos de generación de la nube de puntos densa y la creación de la malla.

Optimización de la orientación de las cámaras

Finalizando con la optimización de las cámaras, se procedió a generar nuevamente la nube de puntos densa, seleccionando nuevamente los parámetros de calidad alta y filtrado de profundidad agresivo.

Habiendo generado nuevamente la nube de puntos densa, se procedió a generar la malla con los parámetros de origen de datos mapas de profundidad, calidad alta y número de caras alta.

Con todos los pasos seguidos minuciosamente, se generó el modelo digital de elevaciones con una resolución de píxel al centímetro, como se aprecia en la figura 19.

Figura 18

Generación del modelo digital de elevaciones

Sobre el modelo digital de elevaciones generado correctamente, se generaron las curvas de nivel con un intervalo de 0.2 m para curvas menores y 1.0 m para curvas mayores, como se aprecia en la figura 20.

Figura 19

Generación de las curvas de nivel

Finalmente, se generó la ortofoto a partir del modelo digital de elevaciones y las fotos ortorrectificadas, garantizando una imagen aérea precisa y corregida geométricamente del área de estudio, en formato TIFF, como se observa en la figura 21.

Figura 20

Generación de la ortofoto

ANEXO 2. Reporte de procesamiento GNSS

Procesamiento de líneas base del punto geodésico de orden C PUN08005 al punto

geodésico ITA-01.

10.0 deg
Sí
AUT00001
No
Sí
Automático
Preciso/a
Múltiples frecuencias
Usar todos los datos
No

Criterios de aceptación

Componente del vector	Indicador 🔶	Fallida 🏲
Precisión horizontal >	0.050 m + 1.000 ppm	0.100 m + 1.000 ppm
Precisión vertical >	0.100 m + 1.000 ppm	0.200 m + 1.000 ppm

PUN08005 - ITA-01 (10:53:20 a.m.-01:36:20 p.m.) (S3)

Observación de línea base:	PUN08005 ITA-01 (B3)
Procesados:	15/08/2022 05:09:42 p.m.
Tipo de solución:	Fija
Frecuencia utilizada:	Frecuencia doble (L1, L2)
Precisión horizontal:	0.005 m
Precisión vertical:	0.018 m
RMS:	0.017 m
PDOP máximo:	2.346
Efemérides utilizadas:	Preciso/a
Modelo de antena:	NGS Absolute
Hora de inicio de procesamiento:	13/08/2022 10:53:20 a.m. (Desajuste con respecto a GPS: -5hr)
Hora de detención de procesamiento:	13/08/2022 01:36:20 p.m. (Desajuste con respecto a GPS: -5hr)
Duración del procesamiento:	02:43:00
Intervalo de procesamiento:	5 segundos

Componentes de vector (Marca a marca)

De:	PUN08005											
Cuad	irícula		Local	Global								
Este	329871.672 m	Latitud	S14°52'55.58288"	Latitud	S14°52'55.58288"							
Norte	8354110.378 m	Longitud	W70°34'53.18548"	Longitud	W70°34'53.18548"							
Elevación	4027.197 m	Altura	4074.301 m	Altura	4074.301 m							

A:	ITA-01	-01												
Cuadrícula			Loc	cal	Global									
Este	313722.318 m	Latitu	ud	S14°47'44	4.28816"	Latitud		S14°47'44.28816"						
Norte	8363558.739 m	Long	gitud	W70°43'50).99389"	Longitud		W70°43'50.99389"						
Elevación	3912.094 m	Altur	a	3958.669 m		Altura		3958.669 m						
Vector														
∆Este	-16149.35	54 m 🗛	Acimut Adelant	te NS		300°44'07"	ΔΧ	-14405.786 m						
∆Norte	9448.36	61 m D	Dist. elip			18710.372 m	ΔY	-7537.315 m						
∆Elevación	-115.10)3 m 🛆	∆Altura			-115.632 m	ΔZ	9284.128 m						

Errores estándar

Errores de vector:							
σ ΔEste	0.002 m	σ Acimut NS delantero	0°00'00"	σ ΔΧ	0.003 m		
σ ΔNorte	0.002 m	σ Dist. elipsoide	0.002 m	σ ΔΥ	0.008 m		
σ ΔElevación	0.009 m	σ ΔAltura	0.009 m	σ ΔΖ	0.003 m		

Matriz de covarianzas a posteriori (Metro²)

	Х	Y	Z
x	0.0000115080		
Y	-0.0000233739	0.0000707218	
z	-0.0000074704	0.0000206812	0.000088575

Ocupaciones

	De	A
ID de punto:	PUN08005	ITA-01
Archivo de datos:	J:\CONSULTORIA-2022\492-	J:\CONSULTORIA-2022\492-
Tipo de receptor:	R8	Galaxy G6-SG6X
Número de serie del receptor:	4507144944	SG61B1126376667
Tipo de antena:	R8/5800/SPS78x Internal	Galaxy G6-SG2X
Número de serie de la antena:		SG61B1126376667
Altura de la antena (medida):	1.648 m	1.650 m
Método de antena:	Centro del tope protector	Centro de fase de la antena

Diagrama de barras de observación satelital donde se grafican los tiempos de visibilidad de distintos satélites de la línea base del punto geodésico de orden C PUN08005 al punto geodésico ITA-01.

SV		13/08/2	2022 1	0:53	3:20 a	a.m.	Dur	ación	: 02:4	3:00	Interv	alo	principal	00:10	0:00	13/0	8/2022	2 01:36	5:20 p.	m.
		3				1					1		1	1						_
G2	12																1			_
G5	L1 L2																			
G6	L1 L2	3	-																	
G 11	L1 L2	3																	4	
G 12	L1 L2																			
G 13	L1 L2																			-
G 15	L1 L2				1				4											
G 17	L1 L2				1															
G 19	L1 L2																			
G 20	L1 L2																			
G 24	L1 L2				4															
G 25	L1 L2	3			4								ł							
G 29	L1 L2	3																		
G 30	L1 L2																			
R 1	L1 L2									;	5 12									_
R2	L1 L2	3																<u>14</u>		
R6	11																			
R7	L1 L2				10 10								_							
R8	L1 L2	5 2			20 51				•72											_
R9	L1 L2	2																		

Resumen de seguimiento

SV	13/08/	2022 10	:53:20	a.m.	Dura	ción: (02:43:00	Inter	valo p	principal	: 00:1	0:00	13/08	3/2022	01:36:	20 p.m.
P 10		I						1			1	- 1				
RIU	142															
R 11	L2		-										2	C		
R 12	L1 L2														<mark>-</mark> 34	
R 20	L1													_		
R 21	L1			Ť			•			ŗ.						_
E 1	E1		84 							10 1/2			ų	1		
E 4	E1 E5												1 1			
E 7	E1						*** •//									
E 13	E1						a H			1				23 12		
E 15	E1 E5										•? •?					
E 19	E1										- (ti.	
E 21	E1						*									
E 26	E1 E5				k J										- 14 12	
E 27	E1									12						
E 33	E1 E5															-

Residuales mas precisas de la línea base del punto geodésico de orden C PUN08005 al punto geodésico ITA-01.

Procesamiento de líneas base del punto geodésico de orden C PUN08005 al punto geodésico ITA-02.

Estilo de procesamiento:	
Máscara de elevación:	10.0 deg
Autoiniciar procesamiento:	Sí
Iniciar numeración automática de ID:	AUTO0001
Vectores continuos:	No
Generar residuales:	Sí
Modelo de antena:	Automático
Tipo de efeméride:	Preciso/a
Frecuencia:	Múltiples frecuencias
Intervalo de procesamiento:	Usar todos los datos
Forzar flotante:	No

Criterios de aceptación

Componente del vector	Indicador 🛛 📔	Fallida 🟲
Precisión horizontal >	0.050 m + 1.000 ppm	0.100 m + 1.000 ppm
Precisión vertical >	0.100 m + 1.000 ppm	0.200 m + 1.000 ppm

15/08/2022 17:11:59	J:\CONSULTORIA-2022\492-CHUQUIBAMBILLA-	Trimble Business Center

Datos del archivo	del proyecto			Sistema de	e coordena	das			
Nombre:	J:\CONSUL	LTORIA-2022	2\492-	Nombre:		World wide	/UTM		
Tamaño:	47 KB			Datum:		WGS 1984			
Modificado/a:	15/08/2022	2 05·10·44 p	m (LITC:-5)			19 South			
Zana hararia	Here est D	2 00.10.77 p.	márica						
zona norana:	nora est. r	aciiico, Suua	imenca	Geolde:		EGIVIZUUOF	ERU		
Numero de referenci	a:			Datum vertic	al:				
Descripción:									
Comentario 1:									
Comentario 2:									
Comentario 3:									
	Info	rme de	procesam	iento de l	líneas b	ase			
			Procesando	resumen					
Observación	De	Α	Tipo de	Prec. H.	Prec. V.	Aci.	Dist. elip	∆Altura	
PUN08005 ITA-	PUN08005	ITA-02	Fija	0.003	0.014	301°20'43"	18892.295	-115.436	
02 <mark>(</mark> B1)									
PUN08005 ITA-	PUN08005	IIA-01	Fija	0.005	0.018	300°44'07"	18/10.3/2	-115.632	
			Resumen de	aceptación					
Procesad	0	Pas	ado	Indicador	P	Fa	allida	•	
2		:	2	(0 0				
Obasana sián da lá	PUNO	8005 - IT	A-02 (10:09:2	0 a.m01:2	28:55 p.m	.) (S1)			
Observación de li	nea base:		PUN	08005 11A-02	2 (ВТ)				
Procesados:			15/08	8/2022 05:09:43	8 p.m.				
lipo de solucion:			Fija		1.1.0.				
Precisión borizon	da: tal:		Freci	uencia dobie (L	I,LZ)				
Precisión vertical			0.01	4 m					
RMS:	•		0.014	4 m					
PDOP máximo:			2.34	В					
Efemérides utiliza	adas:		Preci	Preciso/a					
Modelo de antena	:		NGS	NGS Absolute					
Hora de inicio de	procesamien	to:	13/08	13/08/2022 10:09:20 a.m. (Desajuste con respecto a GPS: -5hr)					
Hora de detenció	n de procesar	miento:	13/0	13/08/2022 01:28:55 p.m. (Desajuste con respecto a GPS: -5hr)					
Duración del proc	esamiento:		03:19	03:19:35					
Intervalo de proce	esamiento:		5 seg	jundos					
Componentes de	vector (Mar	ca a marca	a)						
De:	PUN08005			-1			Nahal		
Cuad	Incula		Loc	aı		(JODAI		
Este	329871	.672 m Lati	tud	S14°52'55.58	3288" Latitu	Id	S14°5	2'55.58288"	
Norte	8354110	.378 m Lon	gitud	W70°34'53.18	3548" Longi	itud	W70°3	4'53.18548"	
Elevación	4027	.197 m Altu	ra	4074.3	01 m Altura	3	4	4074.301 m	

A:	ITA-02							
Cuad	rícula		Lo	cal			Globa	al
Este	313	667.793 m	Latitud	S14°47'3	5.65485"	Latitud		S14°47'35.65485"
Norte	8363	823.680 m	Longitud	W70°43'5	52.74876" Longitud			W70°43'52.74876"
Elevación	3	912.281 m	Altura	395	58.865 m	Altura		3958.865 m
Vector								
∆Este		-16203.87	9 m Acimut Adelant	te NS		301°20'43"	ΔX	-14432.917 m
∆Norte		9713.30	2 m Dist. elip			18892.295 m	ΔΥ	-7618.823 m
ΔElevación		-114.91	5 m ∆Altura			-115.436 m	ΔZ	9540.789 m
Errores estándar								
Errores de vector:		0.001 m	a Acimut NS delan	tero		0°00'00" 🗖 \Lambda	v	0.002 m
		0.001 m	σ Dist elinsoide	leio		0 00 00 0 0 Δ	^ V	0.002 m
σ AFlevación		0.007 m	σ AAltura			0.007 m σ Δ	7	0.002 m
Matriz de covaria	nzas a po	osteriori ((Metro²) X		Y			Z
x			0.0000059690					
Y			-0.0000131778		0.0000402444			
z			-0.0000042071		0.0000117532			0.0000049622
Ocupaciones								
			D	e			A	
ID de punto:			PUN08005			ITA-02		
Archivo de datos:			J:\CONSULTORIA-2022\492-			J:\CONSULTORIA-2022\492-		
Tipo de receptor:			R8			R8		
Número de serie d	el recepto	or:	4507144944			4603105763		
Tipo de antena:			R8/5800/SPS78x Inter	rnal		R8/5800/SP	678x Intern	al
Número de serie d	e la anter	na:						
Altura de la antena	a (medida):	1.648 m			1.691 m		
Método de antena:			Centro del tope protec	Centro del tope protector Centro del tope protector			or	

Diagrama de barras de observación satelital donde se grafican los tiempos de visibilidad de distintos satélites de la línea base del punto geodésico de orden C PUN08005 al punto geodésico ITA-02.

SV	13/08/2022 10:09:20 a.m. Duración: 03:19:35 Intervalo principal: 00:10:00 13/08/2022 01:28:55 p.r
G2	
G 5	L1
G 6	11
G 11	12
G 12	12
G 13	12
G 14	12
G 15	12
G 17	12
G 19	12
G 20	12
G 24	12
G 25	
G 29	
G 30	11

Resumen de seguimiento

Residuales más precisas de la línea base del punto geodésico de orden C PUN08005 al punto geodésico ITA-02.

ANEXO 3. Certificado de calibración de los equipos

	INGEN Topogra	VIEROS COIL ufia total SERVICIOS-VENTA-O	SAICT E.I.R.I calibracion-reparacio	SERVICIOS TOPOGRÀFICOS CARRETERAS - CANALES UDERIAS - MONTAUE REPRESAS - FUENTES - LINEAS MINIERIÀ SUPERFICIAL MINIERIÀ SUPERFICIAL MINIERIÀ SUBTERRANEA N					
	CERT	IFICADO DE OF							
Mant. General	Reparació	n	Garantia	Nuevo					
DATOS DEL EQ	DATOS DEL EQUIPO DATOS DEL CLIENTE								
Equipo Fabricante	RECEPTOR GNSS TRIMBLE	Persona Natural o Juridica	PROYECTOS E INGENI GENERA	ERIA CONTRATISTRAS LES EIRL					
Modelo	R8	Dirección	JR. CAJAMARC	A № 111- PUNO					
N° Serie	4507144944	RUC / DNI	20447	783941					
CERTIFICADO D Nro : Fecha :	DE OPERATIVIDAD 185-09/2024 12/09/2024	Imagen de Receptor							
INGENIEROS CO	DIPSA ICT E.I.R.L. : Certifica que el equipo acionales establecidos.	topografico arriba descrito	cumple con las especificacione	s técnicas de la fábrica y los					
fabricante.	En las pruebas efectua	adas en Tiempo real los e	quipos, estos se encuentran d	lentro de las tolerancias del					
PRESICIÓN LEV	ANTAMIENTO GPS I	Post Proceso (Estatic &	Fast Estatic) Y Cinematico	Tiempo Real (RTK)					
HORIZO	NTAL ±5 mm + 0.5 pp CAL ±5 mm + 1 ppn	m RMS	HORIZONTAL 10 mm + 1 ppm VERTICAL 20 mm + 1 ppm	RMS					
FECHA DE MAN	TENIMIENTO								
Fecha	Mantenimiento	Prueba de Operatividad	Fecha de Vencimiento	Observación					
12/09/2024	X	X	12/09/2025	% 100 OPERATIVO					
Respons	sable Técnico		GERENTE GENERAL						
		Ing Rep	"Jasmani Yovani Flores Teves	s.					
				ORD. Nº 185-09/24					
JR. GAMALIEL C	CHURATA N° 351 - PUN	0 - PERU	RPC 942352221 - Jasmanitev	es@ingenieroscoipsa.pe					

HURIZUNTAL	±5 mm + 0.5 ppm Rivis
VERTICAL	±5 mm + 1 ppm RMS

HORIZONTAL	10 mm + 1 ppm RMS
VERTICAL	20 mm + 1 ppm RMS

FECHA DE MANTENIMIENTO

геспа	Mantenimiento	Prueba de Operatividad	Fecha de Vencimiento	Observación
12/09/2024	x	x	12/09/2025	% 100 OPERATIVO
Respons	sable Técnico	Ī	GERENTE GENERAL	A
J. YOVANI	FLORES TEVES		INGENIEROS COIPSA ICT E.I.R	. L .
	100		// / /	
and and		Ing Rej	^o Jasmani Yovani Flores Tev presentante Legal CIP 1955	ves 71

CERTIFICADO DE OPERATIVIDAD

Mantenimiento general	Reparacion	Operatividad OK	Garantia 1 año OK	Nuevo OK
-----------------------	------------	--------------------	----------------------	-------------

DATOS DEL EQUIPO

ecicion (RMS) 1 2 3
0.5 ppm RMS
pm RMS
on: Va de 4 a 30 minutos en funcion de la
eptores y otros factores ambientales
HG6SG6X-T970A

CERTIFICADO DE OPERATIVIDAD

Nro. : 008-00386

Fecha : 15/10/2024

METODOLOGIA APLICADA Y TRAZABILIDAD DE LOS PATRONES

ⁿ Los valores de rendimiento asumen un mínimo de 4 satélite, siguiendo los procedimientos recomendados en el manual del producto. Las zona de elevada recepción múltiple, los valores alto del PDOP y los periodos de condiciones atmosférica extremas pueden afectar al rendimiento

COSOLA GROUP S.A.C. bajo la acreditación de SGS ISO 9001-2008 certifica que el instrumento identificado a sido verificado en concordancia con los procedimientos de verificación establecida por el fabricante

CALIBRACIÓN Y MANTENIMIENTO

Fecha	Mantenimiento	Calibración	Próxima Operatividad		Observación	
15/10/2024		Х	1 AÑO	%	100 OPERATIVO	
Responsab	e de Verificación	P	ropietario		RUC	
COSOLA	GROUP S.A.C.	PROYECTOS E ING GENER	TOS E INGENIERIA CONTRATISTAS GENERALES E.I.R.L. 2044778:			
LABORATORIO Sonia A JEFE DPTO. TE (Equipy Firm	COSOLA GROUP SAC Traffa Girao SMCO Y REPARACIÓN GPS y Ores) Ta y Sello	Fir	ma y Sello			

CMTACORA

CALIBRACIÓN y MANTENIMIENTO DE INSTRUMENTOS DE TOPOGRAFÍA •

LABORAIORIO	OFUGRAFICU	N° CERT	004-24
CERTIFICADO DE	CALIBRACION	AÑO	2024
SOUTHFORJ CONS S.A.C.	Precisión Angular	P '	
20611694122	LecturaMínima	1"	
Estación Total	Precisión de Distancia/Prisma	2 mm+2 ppm	
LEICA	Precisión de Distancia/DR	3 mm+2 ppm	
TS 06 1"	Alcance con Prisma Sin Prisma	1.4 a 5000m. con 0 a 1000m	01prisma
1375830	Lectura Distancia Mínima	1.4 m	
	CERTIFICADO DE SOUTHFORJ CONS S.A.C. 20611694122 Estación Total LEICA TS 06 1" 1375830	CERTIFICADO DE CALIBRACION SOUTHFORJ CONS S.A.C. Precisión Angular 20611694122 LecturaMínima Estación Total Precisión de Distancia/Prisma LEICA Precisión de Distancia/DR TS 06 1" Alcance con Prisma Sin Prisma 1375830 Lectura Distancia Mínima	CERTIFICADO DE CALIBRACION Nº CERI SOUTHFORJ CONS S.A.C. Precisión Angular I° 20611694122 LecturaMínima I° Estación Total Precisión de Distancia/Prisma 2 mm+2 ppm LEICA Precisión de Distancia/DR 3 mm+2 ppm TS 06 1" Alcance con Prisma Sin Prisma 1.4 a 5000m. con 0 a 1000m 1375830 Lectura Distancia Mínima 1.4 m

MEDICION DE SISTEMA ANGULAR

PATRON DE MEDIDAS													
GF	GRADOS MINUTO			TOS SEGUNDOS									
	0 90				(0					0		_
						0					0		
					LE	СТ	URAS	DE	EQU	IP	0	1	
	ANGULO		LOD	IR	ECT	0	ANC	SUI	OIN	VE	RSO		DELTA
AH	0	0	0	•	0		180	0	00	•	07	-	07"
	-											_	
AV	90	0	00		11		269	•	59		54		05"

1	VALOR	A CORREGIR	
	GRADO	S MINUTOS	SEGUNDOS
HORIZONT.	0	0	07
VERT.	0	0	05
and the second	DESPUE	S DE COLIMACIO	N
ANCINOD	IPECTO	ANGULOINVE	DELTA
ANGOLOD	INLUIU	ANGOLO INVER	00 1 0 1
0 0	0 "	180 00	00 0

89 ° 59 ′ 57 ″ 270 ° 00 ′ 03 ″ **0** ″

SISTEMA DE MEDIDIDAS DE DISTANCIA

PATRON DE MEDIDAS	0.735mts	2.144mts	5.981mts	6.183mts	6.420mts
VALOR LEIDO EN EL INSTRUMENTO	0.735mts	2.144mts	5.981mts	6.183mts	6.420mts
ERROR PARA CORREGIR	00.00mm	00.00mm	00.00mm	00.00mm	00.00mm

EQUIPO DE CALIBRACION UTILIZADO:

Colimador marca SOUTH, modelo F420-3T, serie COL3T0001, precisión de 2" y aumento de lentes 30X. PRECISION DEL INSTRUMENTO: la precisión angular es de 2" lectura mínima en el Display 1" Sistema de medición de Distancia ± (2mm+2ppm).

Certificamos que el Equipo Topográfico mencionado cumple con las especificaciones técnicas de la fábrica y los estándares internacionales.

PATRON UTILIZADO PARA CALIBRACION DEL COLIMADOR

Estación Total marca TOPCON IS-01, número de serie 9R0057. CERTIFICADO Nº C2019

Nivel Leica Sprinter 250M Serie 2210165 1mm/km - Certificado Nº C2095

La verificación del alineamiento de los colimadores se realiza diariamente según manual de Instrucción de la fábrica estándar basada en La norma: ISO 9001:2008/FM/ISO14001 y Cumplimos con los Estándar de Fabrica Establecidos en Equipos de Precisión y Topografía, Normas Internacionales Establecidos según (DIN18723).

Puno, 18 de Agosto del 2024.

FECHA DE CALIBRACION	PROXIMA CALIBRACION	PROX. MANTENIMIENTO	CALIBRACION
18/08/2024	20/09/2025	20/09/2025	Х
Servicio Técnico	Propietario	Técnico Res	ponsable
GRUPD CATACORA ERL REPRESENTANTE		RESTONSABLE D	LABORATORIO

DATOS: ESTE EQUIPO ANTES DE SALIR DE ALMACEN HA SIDO CHEQUEADO, Y SE ENCUENTRA EN PERFECTO ESTADO, ES DE SU RESPONSABILIDAD EL ADECUADO CUIDADO, ESTA EMPRESA NO SE RESPONSABILIZA POR POSIBLES DAÑOS CAUSADOS POR UNA MALA MANIPULACION Y/O TRANSPORTE INAPROPIADO. A LA FIRMA SE MUESTRA LA CONFORMIDAD.

Jr. Justo Riquelme # 182. Puno Perú Cel. 993412540 Email: serviciotecnicogrupocatacora@gmail.com

ANEXO 4. Ajuste de puntos de fotocontrol y puntos de análisis por mínimos cuadrados

AJUSTE DEL I	AJUSTE DEL PUNTO DE FOTOCONTROL F1 POR MINIMOS CUADRADOS ECUACIONES DE CONDICION									
	v	v	7	ERRORES	DE LA OBS	ERVACION	Σ errores			
LECTORA	Λ	1	L	δx	δy	δz	cuadráticos			
1	313377.29920	8363660.16590	3912.77540	0.0047	0.0129	-0.0037	0.0002023			
2	313377.29740	8363660.16630	3912.77940	0.0029	0.0133	0.0003	0.0001856			
3	313377.29830	8363660.16600	3912.78370	0.0038	0.0130	0.0046	0.0002049			
4	313377.29960	8363660.16650	3912.78550	0.0051	0.0135	0.0064	0.0002495			
5	313377.30110	8363660.16750	3912.78690	0.0066	0.0145	0.0078	0.0003150			
6	313377.30220	8363660.16780	3912.78450	0.0077	0.0148	0.0054	0.0003078			
7	313377.29520	8363660.17070	3912.78500	0.0007	0.0177	0.0059	0.0003490			
8	313377.29220	8363660.16880	3912.78500	-0.0023	0.0158	0.0059	0.0002901			
9	313377.29260	8363660.16780	3912.78710	-0.0019	0.0148	0.0080	0.0002870			
10	313377.30110	8363660.16350	3912.78990	0.0066	0.0105	0.0108	0.0002708			
11	313377.30360	8363660.16240	3912.79160	0.0091	0.0094	0.0125	0.0003277			
12	313377.28740	8363660.14060	3912.78070	-0.0071	-0.0124	0.0016	0.0002066			
13	313377.28220	8363660.14480	3912.77690	-0.0123	-0.0082	-0.0022	0.0002233			
14	313377.28910	8363660.14020	3912.77530	-0.0054	-0.0128	-0.0038	0.0002072			
15	313377.29490	8363660.14050	3912.77380	0.0004	-0.0125	-0.0053	0.0001842			
16	313377.30360	8363660.13850	3912.77250	0.0091	-0.0145	-0.0066	0.0003362			
17	313377.29850	8363660.13900	3912.77580	0.0040	-0.0140	-0.0033	0.0002226			
18	313377.29020	8363660.14320	3912.77500	-0.0043	-0.0098	-0.0041	0.0001311			
19	313377.28910	8363660.14070	3912.77490	-0.0054	-0.0123	-0.0042	0.0001979			
20	313377.28770	8363660.14150	3912.77410	-0.0068	-0.0115	-0.0050	0.0002033			
21	313377.29020	8363660.14260	3912.77360	-0.0043	-0.0104	-0.0055	0.0001567			
22	313377.29130	8363660.14040	3912.77170	-0.0032	-0.0126	-0.0074	0.0002235			
23	313377.29100	8363660.14370	3912.77150	-0.0035	-0.0093	-0.0076	0.0001562			
24	313377.29040	8363660.14290	3912.76840	-0.0041	-0.0101	-0.0107	0.0002330			
Promedio	313377.29450	8363660.15299	3912.77909			Σ	0.0056713			
		Coordenada ajus	stada por mínim	os cuadrados						
	Х	Y	Z							
	313377.2945	8363660.1530	3912.7791							

LECTURA	v	V	7	ERRORES	DE LA OBS	ERVACION	Σ errores
	Λ	1	L	δx	δy	δz	cuadráticos
1	313393.43640	8363616.86730	3912.72760	0.0015	-0.0017	0.0416	0.0017387
2	313393.43470	8363616.86770	3912.72770	-0.0002	-0.0013	0.0417	0.0017435
3	313393.43350	8363616.86570	3912.67950	-0.0014	-0.0033	-0.0065	0.0000547
4	313393.43460	8363616.86670	3912.67570	-0.0003	-0.0023	-0.0103	0.0001109
5	313393.43320	8363616.86820	3912.67550	-0.0017	-0.0008	-0.0105	0.0001130
6	313393.43360	8363616.86790	3912.67330	-0.0013	-0.0011	-0.0127	0.0001633
7	313393.43210	8363616.86820	3912.67310	-0.0028	-0.0008	-0.0129	0.0001738
8	313393.43030	8363616.86930	3912.67380	-0.0046	0.0003	-0.0122	0.0001689
9	313393.42860	8363616.87270	3912.67400	-0.0063	0.0037	-0.0120	0.0001958
10	313393.43360	8363616.86880	3912.68110	-0.0013	-0.0002	-0.0049	0.0000253
11	313393.43500	8363616.86860	3912.68080	0.0001	-0.0004	-0.0052	0.0000269
12	313393.43460	8363616.87090	3912.68150	-0.0003	0.0019	-0.0045	0.0000235
13	313393.43330	8363616.87120	3912.68180	-0.0016	0.0022	-0.0042	0.0000245
14	313393.43760	8363616.86970	3912.68090	0.0027	0.0007	-0.0051	0.0000336
15	313393.43910	8363616.86870	3912.68220	0.0042	-0.0003	-0.0038	0.0000323
16	313393.44040	8363616.86860	3912.68420	0.0055	-0.0004	-0.0018	0.0000340
17	313393.42990	8363616.86770	3912.68370	-0.0050	-0.0013	-0.0023	0.0000315
18	313393.43420	8363616.86930	3912.68520	-0.0007	0.0003	-0.0008	0.0000011
19	313393.43590	8363616.87040	3912.68840	0.0010	0.0014	0.0024	0.0000089
20	313393.43590	8363616.87070	3912.68870	0.0010	0.0017	0.0027	0.0000113
21	313393.44120	8363616.87060	3912.68980	0.0063	0.0016	0.0038	0.0000574
22	313393.43960	8363616.87010	3912.69190	0.0047	0.0011	0.0059	0.0000588
23	313393.43790	8363616.86890	3912.69150	0.0030	-0.0001	0.0055	0.0000399
24	313393.43140	8363616.86880	3912.69130	-0.0035	-0.0002	0.0053	0.0000405
Promedio	313393.43486	8363616.86903	3912.68597			Σ	0.0049122
		Coordenada ajus	stada por mínim	os cuadrados			
	Х	Y	Z				
	313393.4349	8363616.8690	3912.6860				

AJUSTE DEL PUNTO DE FOTOCONTROL F2 POR MINIMOS CUADRADOS ECUACIONES DE CONDICION

_	AJUSTE DEL PUNTO DE FOTOCONTROL F3 POR MINIMOS CUADRADOS ECUACIONES DE CONDICION									
	LECTURA	v	V	7 -	ERRORES	DE LA OBS	ERVACION	Σ errores		
	LLCTORIT		•		δx	δy	δz	cuadráticos		
	1	313409.33570	8363573.59930	3912.69440	-0.0008	-0.0057	-0.0030	0.0000418		
	2	313409.33970	8363573.60350	3912.69580	0.0032	-0.0015	-0.0016	0.0000150		
	3	313409.33800	8363573.60330	3912.69570	0.0015	-0.0017	-0.0017	0.0000079		
	4	313409.33680	8363573.60500	3912.69500	0.0003	0.0000	-0.0024	0.0000058		
	5	313409.34150	8363573.60480	3912.69470	0.0050	-0.0002	-0.0027	0.0000323		
	6	313409.33590	8363573.60460	3912.69530	-0.0006	-0.0004	-0.0021	0.0000049		
	7	313409.33600	8363573.60620	3912.69630	-0.0005	0.0012	-0.0011	0.0000029		
	8	313409.33070	8363573.60110	3912.69460	-0.0058	-0.0039	-0.0028	0.0000564		

9	313409.33360	8363573.60340	3912.69540	-0.0029	-0.0016	-0.0020	0.0000148
10	313409.33770	8363573.60200	3912.69460	0.0012	-0.0030	-0.0028	0.0000181
11	313409.33450	8363573.60580	3912.69670	-0.0020	0.0008	-0.0007	0.0000051
12	313409.33460	8363573.60870	3912.69560	-0.0019	0.0037	-0.0018	0.0000207
13	313409.33630	8363573.61040	3912.69610	-0.0002	0.0054	-0.0013	0.0000311
14	313409.33540	8363573.60270	3912.69720	-0.0011	-0.0023	-0.0002	0.0000064
15	313409.33550	8363573.60310	3912.69960	-0.0010	-0.0019	0.0022	0.0000094
16	313409.33790	8363573.60640	3912.69900	0.0014	0.0014	0.0016	0.0000066
17	313409.33970	8363573.61370	3912.70110	0.0032	0.0087	0.0037	0.0001001
18	313409.33690	8363573.61440	3912.70160	0.0004	0.0094	0.0042	0.0001067
19	313409.33010	8363573.60430	3912.70150	-0.0064	-0.0007	0.0041	0.0000582
20	313409.33150	8363573.60390	3912.70100	-0.0050	-0.0011	0.0036	0.0000391
21	313409.33730	8363573.60410	3912.70090	0.0008	-0.0009	0.0035	0.0000137
22	313409.33760	8363573.60310	3912.70000	0.0011	-0.0019	0.0026	0.0000115
23	313409.34370	8363573.60260	3912.69750	0.0072	-0.0024	0.0001	0.0000576
24	313409.33930	8363573.60300	3912.69780	0.0028	-0.0020	0.0004	0.0000119
Promedio	313409.33650	8363573.60498	3912.69739			Σ	0.0006783
		Coordenada ajus	stada por mínimo	os cuadrados			
	Х	Y	Z				
	313409.3365	8363573.6050	3912.6974				

AJUSTE DEL PUNTO DE FOTOCONTROL F4 POR MINIMOS CUADRADOS ECUACIONES DE CONDICION									
ΙΕΛΤΗΡΑ	V	x v	7	ERRORES	Σ errores				
LECTORA	Λ	1	L	δx	δy	δz	cuadráticos		
1	313457.91120	8363665.56440	3912.83980	-0.0009	0.0012	-0.0124	0.0001566		
2	313457.91250	8363665.56400	3912.84270	0.0004	0.0008	-0.0095	0.0000915		
3	313457.91290	8363665.56350	3912.84730	0.0008	0.0003	-0.0049	0.0000250		
4	313457.91350	8363665.56320	3912.85040	0.0014	0.0000	-0.0018	0.0000053		
5	313457.90980	8363665.56450	3912.85150	-0.0023	0.0013	-0.0007	0.0000076		
6	313457.91110	8363665.56380	3912.84960	-0.0010	0.0006	-0.0026	0.0000083		
7	313457.91300	8363665.56360	3912.84990	0.0009	0.0004	-0.0023	0.0000064		
8	313457.91040	8363665.56380	3912.85220	-0.0017	0.0006	0.0000	0.0000033		
9	313457.91130	8363665.56310	3912.85320	-0.0008	-0.0001	0.0010	0.0000016		
10	313457.91030	8363665.56350	3912.85320	-0.0018	0.0003	0.0010	0.0000043		
11	313457.91420	8363665.56160	3912.85610	0.0021	-0.0016	0.0039	0.0000219		
12	313457.91290	8363665.56170	3912.85970	0.0008	-0.0015	0.0075	0.0000587		
13	313457.91280	8363665.56170	3912.86040	0.0007	-0.0015	0.0082	0.0000695		
14	313457.91020	8363665.56220	3912.85890	-0.0019	-0.0010	0.0067	0.0000491		
15	313457.91040	8363665.56340	3912.85980	-0.0017	0.0002	0.0076	0.0000604		
16	313457.91170	8363665.56330	3912.84010	-0.0004	0.0001	-0.0121	0.0001471		
17	313457.91310	8363665.56360	3912.85880	0.0010	0.0004	0.0066	0.0000445		
18	313457.91360	8363665.56390	3912.85540	0.0015	0.0007	0.0032	0.0000129		
19	313457.91240	8363665.56420	3912.84190	0.0003	0.0010	-0.0103	0.0001077		
20	313457.91350	8363665.56300	3912.85540	0.0014	-0.0002	0.0032	0.0000121		

21	313457.91380	8363665.56310	3912.85180	0.0017	-0.0001	-0.0004	0.0000031
22	313457.91300	8363665.56300	3912.85470	0.0009	-0.0002	0.0025	0.0000070
23	313457.91060	8363665.56220	3912.85700	-0.0015	-0.0010	0.0048	0.0000260
24	313457.91210	8363665.56160	3912.85350	0.0000	-0.0016	0.0013	0.0000041
Promedio	313457.91210	8363665.56316	3912.85222			Σ	0.0009339
		Coordenada ajus	stada por mínimo	os cuadrados			
	Х	Y	Z				
	313457.9121	8363665.5632	3912.8522				

AJUSTE DEL PUNTO DE FOTOCONTROL F5 POR MINIMOS CUADRADOS ECUACIONES DE CONDICION

LECTURA	х	X Y	Z	ERRORES DE LA OBSERVACION			Σ errores
				δx	δy	δz	cuadráticos
1	313474.06540	8363622.29320	3912.83470	-0.0030	-0.0004	0.0060	0.0000453
2	313474.06930	8363622.29390	3912.83320	0.0009	0.0003	0.0045	0.0000212
3	313474.06660	8363622.29270	3912.83290	-0.0018	-0.0009	0.0042	0.0000218
4	313474.06900	8363622.29620	3912.83240	0.0006	0.0026	0.0037	0.0000209
5	313474.06850	8363622.29390	3912.83150	0.0001	0.0003	0.0028	0.0000080
6	313474.07070	8363622.29300	3912.82890	0.0023	-0.0006	0.0002	0.0000056
7	313474.06630	8363622.29320	3912.82730	-0.0021	-0.0004	-0.0014	0.0000066
8	313474.06790	8363622.29390	3912.82560	-0.0005	0.0003	-0.0031	0.0000099
9	313474.06900	8363622.29240	3912.82300	0.0006	-0.0012	-0.0057	0.0000342
10	313474.06690	8363622.29320	3912.82320	-0.0015	-0.0004	-0.0055	0.0000326
11	313474.06900	8363622.29290	3912.82440	0.0006	-0.0007	-0.0043	0.0000192
12	313474.07180	8363622.29510	3912.82600	0.0034	0.0015	-0.0027	0.0000210
13	313474.07070	8363622.29310	3912.82750	0.0023	-0.0005	-0.0012	0.0000069
14	313474.06880	8363622.29290	3912.82900	0.0004	-0.0007	0.0003	0.0000007
15	313474.06770	8363622.29360	3912.82880	-0.0007	0.0000	0.0001	0.0000005
16	313474.06730	8363622.29300	3912.82790	-0.0011	-0.0006	-0.0008	0.0000022
17	313474.06760	8363622.29370	3912.82670	-0.0008	0.0001	-0.0020	0.0000046
18	313474.06960	8363622.29320	3912.82810	0.0012	-0.0004	-0.0006	0.0000019
19	313474.06750	8363622.29310	3912.83230	-0.0009	-0.0005	0.0036	0.0000141
20	313474.06640	8363622.29360	3912.82790	-0.0020	0.0000	-0.0008	0.0000047
21	313474.06850	8363622.29270	3912.83180	0.0001	-0.0009	0.0031	0.0000105
22	313474.06890	8363622.29400	3912.82330	0.0005	0.0004	-0.0054	0.0000295
23	313474.06990	8363622.29460	3912.83020	0.0015	0.0010	0.0015	0.0000055
24	313474.06860	8363622.29520	3912.83200	0.0002	0.0016	0.0033	0.0000136
Promedio	313474.06841	8363622.29360	3912.82869			Σ	0.0003410
		Coordenada aju	stada por mínim	os cuadrados			
	Х	Y	Z				
	313474.0684	8363622.2936	3912.8287				

LECTURA	Х	Y	Z	ERRORES	Σ errores		
				δx	δy	δz	cuadráticos
1	313530.46310	8363692.75750	3912.60140	-0.0006	-0.0004	0.0042	0.0000185
2	313530.46580	8363692.75590	3912.60180	0.0021	-0.0020	0.0046	0.0000301
3	313530.46370	8363692.75710	3912.60180	0.0000	-0.0008	0.0046	0.0000222
4	313530.46310	8363692.75760	3912.60100	-0.0006	-0.0003	0.0038	0.0000152
5	313530.46040	8363692.75930	3912.60100	-0.0033	0.0014	0.0038	0.0000273
6	313530.46140	8363692.75870	3912.59920	-0.0023	0.0008	0.0020	0.0000099
7	313530.46630	8363692.75660	3912.59650	0.0026	-0.0013	-0.0007	0.0000091
8	313530.46500	8363692.75780	3912.59570	0.0013	-0.0001	-0.0015	0.0000039
9	313530.46340	8363692.75890	3912.59300	-0.0003	0.0010	-0.0042	0.0000183
10	313530.46230	8363692.76040	3912.59220	-0.0014	0.0025	-0.0050	0.0000326
11	313530.46470	8363692.75860	3912.59310	0.0010	0.0007	-0.0041	0.0000180
12	313530.46480	8363692.75690	3912.59300	0.0011	-0.0010	-0.0042	0.0000197
13	313530.46450	8363692.75740	3912.59250	0.0008	-0.0005	-0.0047	0.0000227
14	313530.46530	8363692.75750	3912.59240	0.0016	-0.0004	-0.0048	0.0000255
15	313530.46170	8363692.75640	3912.59970	-0.0020	-0.0015	0.0025	0.0000128
16	313530.46270	8363692.75980	3912.59720	-0.0010	0.0019	0.0000	0.0000044
17	313530.46080	8363692.75790	3912.59710	-0.0029	0.0000	-0.0001	0.0000083
18	313530.46620	8363692.75970	3912.59480	0.0025	0.0018	-0.0024	0.0000150
19	313530.46350	8363692.75640	3912.60050	-0.0002	-0.0015	0.0033	0.0000135
20	313530.46120	8363692.75810	3912.59980	-0.0025	0.0002	0.0026	0.0000131
21	313530.46610	8363692.75910	3912.59500	0.0024	0.0012	-0.0022	0.0000118
22	313530.46530	8363692.75830	3912.59230	0.0016	0.0004	-0.0049	0.0000264
23	313530.46220	8363692.75740	3912.60010	-0.0015	-0.0005	0.0029	0.0000111
24	313530.46500	8363692.75750	3912.60090	0.0013	-0.0004	0.0037	0.0000159
Promedio	313530.46369	8363692.75795	3912.59717			Σ	0.0004055
		Coordenada ajus	stada por mínim	os cuadrados			
	Х	Y	Z				
	313530.4637	8363692.7580	3912.5972				

AJUSTE DEL PUNTO DE FOTOCONTROL F6 POR MINIMOS CUADRADOS ECUACIONES DE CONDICION

AJUSTE DEL PUNTO DE FOTOCONTROL F7 POR MINIMOS CUADRADOS ECUACIONES DE CONDICION									
LECTURA	Х	Y	Z	ERRORES DE LA OBSERVACION			Σ errores		
				δx	δy	δz	cuadráticos		
	1	313546.64370	8363649.44340	3912.63940	0.0007	-0.0003	-0.0031	0.0000103	
	2	313546.64170	8363649.44500	3912.63960	-0.0013	0.0013	-0.0029	0.0000119	
	3	313546.64760	8363649.44160	3912.63980	0.0046	-0.0021	-0.0027	0.0000330	
	4	313546.64770	8363649.44160	3912.64040	0.0047	-0.0021	-0.0021	0.0000310	
	5	313546.64210	8363649.44470	3912.64160	-0.0009	0.0010	-0.0009	0.0000027	
	6	313546.64510	8363649.44430	3912.64290	0.0021	0.0006	0.0004	0.0000049	
	7	313546.64290	8363649.44500	3912.64320	-0.0001	0.0013	0.0007	0.0000021	
	8	313546.64460	8363649.44440	3912.64580	0.0016	0.0007	0.0033	0.0000138	

9	313546.64080	8363649.44530	3912.64620	-0.0022	0.0016	0.0037	0.0000209
10	313546.64170	8363649.44450	3912.64370	-0.0013	0.0008	0.0012	0.0000037
11	313546.64130	8363649.44470	3912.64340	-0.0017	0.0010	0.0009	0.0000046
12	313546.63960	8363649.44530	3912.64410	-0.0034	0.0016	0.0016	0.0000166
13	313546.64250	8363649.44360	3912.64320	-0.0005	-0.0001	0.0007	0.0000007
14	313546.63990	8363649.44500	3912.64150	-0.0031	0.0013	-0.0010	0.0000123
15	313546.64400	8363649.44290	3912.64050	0.0010	-0.0008	-0.0020	0.0000057
16	313546.64310	8363649.44340	3912.63970	0.0001	-0.0003	-0.0028	0.0000081
17	313546.64290	8363649.44370	3912.63900	-0.0001	0.0000	-0.0035	0.0000124
18	313546.64250	8363649.44250	3912.64300	-0.0005	-0.0012	0.0005	0.0000019
19	313546.64380	8363649.44160	3912.64120	0.0008	-0.0021	-0.0013	0.0000068
20	313546.63990	8363649.44370	3912.64480	-0.0031	0.0000	0.0023	0.0000148
21	313546.64470	8363649.44470	3912.64510	0.0017	0.0010	0.0026	0.0000105
22	313546.64480	8363649.44270	3912.64600	0.0018	-0.0010	0.0035	0.0000163
23	313546.64270	8363649.44350	3912.64360	-0.0003	-0.0002	0.0011	0.0000013
24	313546.64240	8363649.44180	3912.64290	-0.0006	-0.0019	0.0004	0.0000041
Promedio	313546.64300	8363649.44370	3912.64253			Σ	0.0002507
		Coordenada ajus	stada por mínimo	os cuadrados			
	Х	Y	Z				
	313546.6430	8363649.4437	3912.6425				

AJUSTE DEL PUNTO DE FOTOCONTROL F8 POR MINIMOS CUADRADOS ECUACIONES DE CONDICION								
	A X Y Z ERRORE				DE LA OBS	Σ errores		
LECTORA	Λ	I	L	δx	δy	δz	cuadráticos	
1	313594.97310	8363741.53920	3912.61230	-0.0022	0.0018	0.0016	0.0000109	
2	313594.97270	8363741.53610	3912.61290	-0.0026	-0.0013	0.0022	0.0000137	
3	313594.97320	8363741.53650	3912.61200	-0.0021	-0.0009	0.0013	0.0000072	
4	313594.97650	8363741.53830	3912.61230	0.0012	0.0009	0.0016	0.0000049	
5	313594.97750	8363741.53710	3912.60990	0.0022	-0.0003	-0.0008	0.0000054	
6	313594.97810	8363741.53610	3912.60820	0.0028	-0.0013	-0.0025	0.0000154	
7	313594.97670	8363741.53880	3912.60900	0.0014	0.0014	-0.0017	0.0000065	
8	313594.97420	8363741.53870	3912.60820	-0.0011	0.0013	-0.0025	0.0000090	
9	313594.97410	8363741.53760	3912.60840	-0.0012	0.0002	-0.0023	0.0000066	
10	313594.97390	8363741.53660	3912.60900	-0.0014	-0.0008	-0.0017	0.0000054	
11	313594.97660	8363741.53810	3912.61040	0.0013	0.0007	-0.0003	0.0000022	
12	313594.97600	8363741.53660	3912.60930	0.0007	-0.0008	-0.0014	0.0000029	
13	313594.97290	8363741.53710	3912.60900	-0.0024	-0.0003	-0.0017	0.0000087	
14	313594.97510	8363741.53760	3912.61080	-0.0002	0.0002	0.0001	0.0000001	
15	313594.97590	8363741.53720	3912.61080	0.0006	-0.0002	0.0001	0.0000004	
16	313594.97560	8363741.53760	3912.61120	0.0003	0.0002	0.0005	0.0000004	
17	313594.97540	8363741.53720	3912.61150	0.0001	-0.0002	0.0008	0.0000008	
18	313594.97520	8363741.53810	3912.61270	-0.0001	0.0007	0.0020	0.0000047	
19	313594.97650	8363741.53680	3912.61290	0.0012	-0.0006	0.0022	0.0000068	
20	313594.97630	8363741.53750	3912.61280	0.0010	0.0001	0.0021	0.0000056	

21	313594.97490	8363741.53690	3912.61030	-0.0004	-0.0005	-0.0004	0.0000006			
22	313594.97660	8363741.53740	3912.61100	0.0013	0.0000	0.0003	0.0000017			
23	313594.97500	8363741.53750	3912.60830	-0.0003	0.0001	-0.0024	0.0000057			
24	313594.97590	8363741.53730	3912.61250	0.0006	-0.0001	0.0018	0.0000037			
Promedio	313594.97533	8363741.53741	3912.61065			Σ	0.0001292			
	Coordenada ajustada por mínimos cuadrados									
	Х	Y	Z							
	313594.9753	8363741.5374	3912.6107							

AJUSTE DEL PUNTO DE FOTOCONTROL F9 POR MINIMOS CUADRADOS ECUACIONES DE CONDICION

I FCTUR A	x	Y	7.	ERRORES DE LA OBSERVACION			Σ errores
		1	L	δx	δy	δz	cuadráticos
1	313611.25770	8363698.18910	3912.54570	0.0005	-0.0007	0.0008	0.0000013
2	313611.25860	8363698.18750	3912.54520	0.0014	-0.0023	0.0003	0.0000073
3	313611.25570	8363698.19180	3912.54490	-0.0015	0.0020	0.0000	0.0000062
4	313611.25890	8363698.18740	3912.54450	0.0017	-0.0024	-0.0004	0.0000088
5	313611.25920	8363698.18700	3912.54460	0.0020	-0.0028	-0.0003	0.0000120
6	313611.25470	8363698.19270	3912.54450	-0.0025	0.0029	-0.0004	0.0000148
7	313611.25570	8363698.19130	3912.54490	-0.0015	0.0015	0.0000	0.0000045
8	313611.25720	8363698.18790	3912.54530	0.0000	-0.0019	0.0004	0.0000037
9	313611.25810	8363698.19230	3912.54470	0.0009	0.0025	-0.0002	0.0000072
10	313611.25600	8363698.18820	3912.54470	-0.0012	-0.0016	-0.0002	0.0000040
11	313611.25560	8363698.18920	3912.54550	-0.0016	-0.0006	0.0006	0.0000032
12	313611.25880	8363698.19070	3912.54500	0.0016	0.0009	0.0001	0.0000034
13	313611.25670	8363698.19020	3912.54500	-0.0005	0.0004	0.0001	0.0000004
14	313611.25700	8363698.19030	3912.54480	-0.0002	0.0005	-0.0001	0.0000003
15	313611.25670	8363698.18990	3912.54490	-0.0005	0.0001	0.0000	0.0000003
16	313611.25840	8363698.19170	3912.54500	0.0012	0.0019	0.0001	0.0000051
17	313611.25880	8363698.19250	3912.54470	0.0016	0.0027	-0.0002	0.0000100
18	313611.25550	8363698.18890	3912.54540	-0.0017	-0.0009	0.0005	0.0000039
19	313611.25810	8363698.18790	3912.54480	0.0009	-0.0019	-0.0001	0.0000044
20	313611.25760	8363698.19110	3912.54490	0.0004	0.0013	0.0000	0.0000019
21	313611.25910	8363698.18930	3912.54460	0.0019	-0.0005	-0.0003	0.0000040
22	313611.25520	8363698.18800	3912.54480	-0.0020	-0.0018	-0.0001	0.0000072
23	313611.25540	8363698.18980	3912.54540	-0.0018	0.0000	0.0005	0.0000034
24	313611.25780	8363698.19030	3912.54460	0.0006	0.0005	-0.0003	0.0000007
Promedio	313611.25719	8363698.18979	3912.54493			Σ	0.0001181
		Coordenada ajus	stada por mínim	os cuadrados			
	Х	Y	Z				
	313611.2572	8363698.1898	3912.5449				

I ECTURA	v	v	7	ERRORES DE LA OBSERVACION			Σ errores
	A	1	L	δx	δy	δz	cuadráticos
1	313627.32560	8363654.85490	3912.56760	0.0033	-0.0029	0.0018	0.0000225
2	313627.32820	8363654.85200	3912.56720	0.0059	-0.0058	0.0014	0.0000705
3	313627.32220	8363654.85850	3912.56770	-0.0001	0.0007	0.0019	0.0000040
4	313627.31870	8363654.86290	3912.56690	-0.0036	0.0051	0.0011	0.0000401
5	313627.31800	8363654.86310	3912.56530	-0.0043	0.0053	-0.0005	0.0000468
6	313627.31860	8363654.86260	3912.56310	-0.0037	0.0048	-0.0027	0.0000441
7	313627.32040	8363654.86070	3912.56310	-0.0019	0.0029	-0.0027	0.0000195
8	313627.32040	8363654.86050	3912.56370	-0.0019	0.0027	-0.0021	0.0000154
9	313627.32210	8363654.85890	3912.56430	-0.0002	0.0011	-0.0015	0.0000036
10	313627.32320	8363654.85780	3912.56660	0.0009	0.0000	0.0008	0.0000015
11	313627.32030	8363654.86050	3912.56680	-0.0020	0.0027	0.0010	0.0000122
12	313627.32410	8363654.85680	3912.56740	0.0018	-0.0010	0.0016	0.0000068
13	313627.32160	8363654.85910	3912.56770	-0.0007	0.0013	0.0019	0.0000057
14	313627.32020	8363654.86050	3912.56820	-0.0021	0.0027	0.0024	0.0000173
15	313627.32840	8363654.85100	3912.56800	0.0061	-0.0068	0.0022	0.0000883
16	313627.32350	8363654.85960	3912.56590	0.0012	0.0018	0.0001	0.0000049
17	313627.31850	8363654.85110	3912.56510	-0.0038	-0.0067	-0.0007	0.0000593
18	313627.32590	8363654.85400	3912.56730	0.0036	-0.0038	0.0015	0.0000297
19	313627.32110	8363654.85920	3912.56330	-0.0012	0.0014	-0.0025	0.0000098
20	313627.32090	8363654.85890	3912.56460	-0.0014	0.0011	-0.0012	0.0000046
21	313627.31910	8363654.85450	3912.56430	-0.0032	-0.0033	-0.0015	0.0000231
22	313627.32500	8363654.85500	3912.56580	0.0027	-0.0028	0.0000	0.0000152
23	313627.32150	8363654.85910	3912.56440	-0.0008	0.0013	-0.0014	0.0000044
24	313627.32680	8363654.85550	3912.56570	0.0045	-0.0023	-0.0001	0.0000258
Promedio	313627.32226	8363654.85778	3912.56583			Σ	0.0005750
		Coordenada aju	stada por mínim	os cuadrados			
	Х	Y	Z				
	313627.3223	8363654.8578	3912.5658				

AJUSTE DEL PUNTO DE FOTOCONTROL F10 POR MINIMOS CUADRADOS ECUACIONES DE CONDICION

ANEXO 5. Certificado IGN del punto geodésico

INSTITUTO GEOGRÁFICO NACIONAL DEPARTAMENTO DE GEODESIA

CERTIFICADO DE PUNTO GEODÉSICO

Visto el informe de procesamiento del punto geodésico PUN08005 y habiendo verificado el resultado obtenido por la empresa PROYECTOS E INGENIERIA CONTRATISTAS GENERALES E.I.R.L., el Instituto Geográfico Nacional procede a certificar la calidad del resultado obtenido, el cual cumple con los requisitos establecidos según Norma Técnica Geodésica, de acuerdo a las siguientes características:

CÓDIGO D	EL PUNTO GEODÉSICO	PUN08005				
/	COORDEN	ADAS WGS-84	Constant of the second s			
	UTM	GEODÉSICAS				
NORTE	8354110.378 m	LATITUD	14°52'55.58288"S			
ESTE	329871.672 m	LONGITUD	70°34'53.18548"O			
ZONA	19 Sur	ALT. ELIPSOIDAL	4074.301 m			

ORDEN: "C"
UBICACIÓN (Prov. – Dpto.): MELGAR - PUNO
ESTACIÓN GNSS BASE: JULIACA (PU02) - 2019
ÉPOCA DE OBSERVACIÓN: JULIO 2019
NÚM. CORRELATIVO: 1002 – 2019/IGN/DIG/SDC/DG

Lima, 04 de septiembre de 2019

COMPETENCIA

La certificación del punto geodésico y el resultado obtenido, no certifica ni define límites de propiedad o posesión, tampoco jurisdiccional, política y administrativa.

ANEXO 6. Plano

ANEXO 7. Declaración jurada de autenticidad de tesis

ANEXO 8. Autorización para el depósito de tesis en el Repositorio Institucional

FIRMA (obligatoria)

ANEXO 9. Declaración jurada de autenticidad de tesis

DECLARACIÓN JURADA DE AUTENTICIDAD DE TESIS

Por el presente documento, Yo_JDEL_ABRAHAM MAMANI CAPP(LLO identificado con DNI_77481037_ en mi condición de egresado de:

REscuela Profesional, □ Programa de Segunda Especialidad, □ Programa de Maestría o Doctorado INGENIERIA TOPOGRÁFICA Y ÀGRIMENSURA

INFORMO QUE LE ELADORADO ELA PRE CISIÓN DE CODE DENALDAS (Z, Y,Z) DE UN LEVANTAMIENTO FOTOGRAMÉTRICO A DIFERENTES TRAS LA PES Y ALTURA DE NUELO CONTRASTADO CON LA TOPOGRAFIA CONVENCIONAL"

Es un tema original.

Declaro que el presente trabajo de tesis es elaborado por mi persona y **no existe plagio/copia** de ninguna naturaleza, en especial de otro documento de investigación (tesis, revista, texto, congreso, o similar) presentado por persona natural o jurídica alguna ante instituciones académicas, profesionales, de investigación o similares, en el país o en el extranjero.

Dejo constancia que las citas de otros autores han sido debidamente identificadas en el trabajo de investigación, por lo que no asumiré como suyas las opiniones vertidas por terceros, ya sea de fuentes encontradas en medios escritos, digitales o Internet.

Asimismo, ratifico que soy plenamente consciente de todo el contenido de la tesis y asumo la responsabilidad de cualquier error u omisión en el documento, así como de las connotaciones éticas y legales involucradas.

En caso de incumplimiento de esta declaración, me someto a las disposiciones legales vigentes y a las sanciones correspondientes de igual forma me someto a las sanciones establecidas en las Directivas y otras normas internas, así como las que me alcancen del Código Civil y Normas Legales conexas por el incumplimiento del presente compromiso

Puno IP de DICIENBRE del 2024

FIRMA (obligatoria)

Huella

ANEXO 10. Autorización para el depósito de tesis en el Repositorio Institucional

AUTORIZACIÓN PARA EL DEPÓSITO DE TESIS O TRABAJO DE INVESTIGACIÓN EN EL REPOSITORIO INSTITUCIONAL

Por el presente documento, Yo JOEL ABRAHAM MAMANI CARRILLO identificado con DNI 7793 1037 _____en mi condición de egresado de:

🕱 Escuela Profesional, 🗆 Programa de Segunda Especialidad, 🗆 Programa de Maestría o Doctorado

INI	ENIE	FRIA	TOPD	6RA FICA	Y A61	RIMEN	SURA	,	
inform	mo que	he el	aborado e	l/la 🗆 Tesis d	🗆 🗆 Trabaj	jo de Inv	estigación denomin	nada:	
" (D	npar	ACI	ON DE L	LA PRE	eisión a	DE CON	OFDENADAS	(x, Y, Z)	DE
UN	LEV	ANTI	AMIENT	D FOTOG	RANETR	ICO A	DIFERENTES	TRASLAPE	s y
ALT	URAS	DE	VUELO	CONTRAC	STADD I	COP LA	TOPOGRAFÍA	CONVENCIO	NAL

para la obtención de 🗆 Grado, 🛛 Título Profesional o 🗆 Segunda Especialidad.

Por medio del presente documento, afirmo y garantizo ser el legítimo, único y exclusivo titular de todos los derechos de propiedad intelectual sobre los documentos arriba mencionados, las obras, los contenidos, los productos y/o las creaciones en general (en adelante, los "Contenidos") que serán incluidos en el repositorio institucional de la Universidad Nacional del Altiplano de Puno.

También, doy seguridad de que los contenidos entregados se encuentran libres de toda contraseña, restricción o medida tecnológica de protección, con la finalidad de permitir que se puedan leer, descargar, reproducir, distribuir, imprimir, buscar y enlazar los textos completos, sin limitación alguna.

Autorizo a la Universidad Nacional del Altiplano de Puno a publicar los Contenidos en el Repositorio Institucional y, en consecuencia, en el Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto, sobre la base de lo establecido en la Ley N° 30035, sus normas reglamentarias, modificatorias, sustitutorias y conexas, y de acuerdo con las políticas de acceso abierto que la Universidad aplique en relación con sus Repositorios Institucionales. Autorizo expresamente toda consulta y uso de los Contenidos, por parte de cualquier persona, por el tiempo de duración de los derechos patrimoniales de autor y derechos conexos, a título gratuito y a nivel mundial.

En consecuencia, la Universidad tendrá la posibilidad de divulgar y difundir los Contenidos, de manera total o parcial, sin limitación alguna y sin derecho a pago de contraprestación, remuneración ni regalía alguna a favor mio; en los medios, canales y plataformas que la Universidad y/o el Estado de la República del Perú determinen, a nivel mundial, sin restricción geográfica alguna y de manera indefinida, pudiendo crear y/o extraer los metadatos sobre los Contenidos, e incluir los Contenidos en los índices y buscadores que estimen necesarios para promover su difusión.

Autorizo que los Contenidos sean puestos a disposición del público a través de la siguiente licencia:

Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. Para ver una copia de esta licencia, visita: https://creativecommons.org/licenses/by-nc-sa/4.0/

En señal de conformidad, suscribo el presente documento.

Puno 18 de DICIEMBRE del 2024

repositorio.unap.edu.pe No olvide citar adecuadamente esta tesis