ANEXO 1: Matriz de consistencia de investigacion.

MATRIZ DE CONSISTENCIA

	PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES
GENERAL	¿Cómo influye la adición de las virutas de eucalipto en el adobe en su comportamiento sísmico?	Evaluar la adición de las virutas de eucalipto en el adobe y comportamiento sísmico de un ambiente rural usando un modelo a escala reducida en el altiplano.	La adición de las virutas de eucalipto en el adobe mejorará el comportamiento sísmico de un ambiente rural típico del Altiplano.	VARIABLE INDEPENDIENTE Adición de virutas de eucalipto. VARIABLE DEPENDIENTE Comportamiento sisimico.
ESPECIFICO 1	¿Cómo influye la adición de virutas de eucalipto, con dosificaciones de 0%, 25.00%, 50.00% y 75.00% en el ensayo a resistencia de compresión simple del bloque de adobe?	Determinar la influencia de la adición de virutas de eucalipto, con dosificaciones de 0%, 25.00%, 50.00% y 75.00% en el ensayo a resistencia de compresión simple del bloque de adobe.	La adición de virutas de eucalipto mejora en la resistencia a la compresión simple del adobe.	
ESPECIFICO 2	¿Cómo influye la adición de virutas de eucalipto, con dosificaciones de 0%, 25.00%, 50.00% y 75.00% en el ensayo a flexión del bloque de adobe?	Determinar la influencia de la adición de virutas de eucalipto, con dosificaciones de 0%, 25.00%, 50.00% y 75.00% en el ensayo a la flexión del bloque de adobe.	La adición de virutas de eucalipto mejora en la resistencia a la flexión del adobe	
ESPECIFICO 3	¿Cómo influye la adición de las virutas de eucalipto en el adobe en su comportamiento sísmico de un ambiente rural construida con este adobe reforzado con respecto a los ambientes rurales construidas con adobe tradicional?	Evaluar el comportamiento sísmico entre un ambiente rural de la zona en estudio y el otro ambiente construido con adobe adicionado con virutas de eucalipto, usando modelos a escala.	El comportamiento sísmico de un ambiente rural construida con adobe adicionado con virutas de eucalipto mejora el desempeño del ambiente frente a un evento sísmico.	

ANEXO 2: Análisis granulométrico por tamizado

a) Cantera Chupa

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D421)

PROYECTO	:	EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO, 2022.
UBICACIÓN	:	Distrito de Chupa, Provincia de Azángaro, Departamento de Puno.

№ DE MALLAS	ABERT. DE MALL. (mm)	PESO RETENIDO	% RET. PARCIAL	% RET. ACUMUL	% QUE PASA	ESPECIFICACION	DESCRIPCION DE LA MUESTRA		
3"	76.200						Peso Inicial	:	134.5 gr
2 1/2"	63.500						CLASIFICACI	ON I	DEL SUELO
2"	50.800						Limite Liquido	:	27.16%
1 1/2"	38.100						Limite Plastico	:	18.55%
1"	25.400						Indice Plastico	:	8.61%
3/4"	19.050								
1/2"	12.700		0.00	0.00	100.00		CLASIFICACI	ON I	DEL SUELO
3/8"	9.525		0.00	0.00	100.00		AASHTO	:	A-2-4 (0)
1/4"	6.350		0.00	0.00	100.00		SUCS	:	SC
N° 4	4.760		0.00	0.00	100.00				
N° 6	3.360		0.00	0.00	100.00		% de Grava	:	0.00 %
N° 8	2.380	0.19	0.14	0.14	99.86		% de Arena	:	66.81 %
N° 10	2.000		0.00	0.14	99.86		% Pasa Nº 200	:	33.19 %
N°16	1.190	1.75	1.30	1.44	98.56				
N° 20	0.840		0.00	1.44	98.56				
N° 30	0.590	7.29	5.42	6.86	93.14				
N° 40	0.426		0.00	6.86	93.14				
N° 50	0.297	14.40	10.71	17.57	82.43				
N° 80	0.177		0.00	17.57	82.43				
N° 100	0.149	26.89	19.99	37.56	62.44				
N° 200	0.074	39.34	29.25	66.81	33.19				
-200		44.6	33.19	100.00	0.00				

b) Cantera Chucuito

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D421)

PROYECTO	:	EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO, 2022.
UBICACIÓN	:	Distrito de Chucuito, Provincia de Puno, Departamento de Puno.

Nº DE MALLAS	ABERT. DE MALL. (mm)	PESO RETENIDO	% RET. PARCIAL	% RET. ACUMUL	% QUE PASA	ESPECIFICACION	DESCRIPCION	DE L	A MUESTRA
3"	76.200						Peso Inicial	:	2000.0 gr
2 1/2"	63.500						CLASIFICACI	ON I	DEL SUELO
2"	50.800						Limite Liquido	:	29.93%
1 1/2"	38.100						Limite Plastico	:	18.58%
1"	25.400		0.00	0.00	100.00		Indice Plastico	:	11.34%
3/4"	19.050	25.14	1.26	1.26	98.74				
1/2"	12.700		0.00	1.26	98.74		CLASIFICACI	ON C	DEL SUELO
3/8"	9.525	176.19	8.81	10.07	89.93		AASHTO	:	A-6 (4)
1/4"	6.350		0.00	10.07	89.93		SUCS	:	CL
N° 4	4.760	228.56	11.43	21.49	78.51				
N° 6	3.360		0.00	21.49	78.51		% de Grava	:	21.49 %
N° 8	2.380	133.01	6.65	28.15	71.86		% de Arena	:	27.85 %
N° 10	2.000		0.00	28.15	71.86		% Pasa Nº 200	:	50.66 %
N°16	1.190	73.54	3.68	31.82	68.18				
N° 20	0.840		0.00	31.82	68.18				
N° 30	0.590	59.22	2.96	34.78	65.22				
N° 40	0.426		0.00	34.78	65.22				
N° 50	0.297	45.42	2.27	37.05	62.95				
N° 80	0.177		0.00	37.05	62.95				
N° 100	0.149	105.66	5.28	42.34	57.66				
N° 200	0.074	140.14	7.01	49.34	50.66				
-200		1013.1	50.66	100.00	0.00				

ANEXO 3: Contenido de humedad

a) Cantera Chupa

CONTENIDO DE HUMEDAD (ASTM D 2216)

PROYECTO	:	EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO, 2022
UBICACIÓN	:	Distrito de Chupa, Provincia de Azángaro, Departamento de Puno.

Nro De Tara	M-1	M-2	M-3
Peso de Tara	19.16	19.00	19.31
Peso de Tara + M. Humeda	39.77	39.17	39.99
Peso de Tara + M. Seca	39.57	38.96	39.78
Peso de Agua	0.20	0.21	0.21
Peso Muestra Seca	20.41	19.96	20.47
Contenido de humedad W%	0.98	1.05	1.03
Promedio cont. Humedad W%		1.02 %	-

b) Cantera Chucuito

CONTENIDO DE HUMEDAD (ASTM D 2216)

PROYECTO	:	EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO, 2022.
UBICACIÓN	:	Distrito de Chucuito, Provincia de Puno, Departamento de Puno.

Nro De Tara	M-4	M-5	M-6
Peso de Tara	37.39	35.97	36.24
Peso de Tara + M. Humeda	133.18	121.56	106.84
Peso de Tara + M. Seca	131.27	120.03	105.29
Peso de Agua	1.91	1.53	1.55
Peso Muestra Seca	93.88	84.06	69.05
Contenido de humedad W%	2.03	1.82	2.24
Promedio cont. Humedad W%		2.03 %	-

ANEXO 4: Limites de consistencia

a) Cantera Chupa

LIMITES DE CONSISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

		EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO
PROYECTO	:	SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO,
		2022.
URICACIÓN		Distrito de Chuna, Provincia de Azángaro, Departamento de Puno

	LIMI	LIMITE LIQUIDO					
# Tara	JH16	JH02	JH03	JH04			
Peso de la Tara gr.	18.57	18.65	19.74	18.97			
T. + Suelo Húmedo gr.	41.18	42.84	40.12	37.86			
T. + Suelo Seco gr.	36.45	37.73	35.57	33.84			
Peso del Agua gr.	4.73	5.11	4.55	4.02			
Suelo Seco gr.	17.88	19.08	15.83	14.87			
% de Humedad	26.45	26.78	28.74	27.03			
Nro. De Golpes	32	28	16	23			

LIMITE PLASTICO

# Tara	JH10	JH17	JH14	
Peso de la Tara gr.	19.25	19.01	19.81	
T. + Suelo Húmedo gr.	25.48	25.53	26.11	
T. + Suelo Seco gr.	24.52	24.53	25.09	
Peso del Agua gr.	0.96	1.00	1.02	
Suelo Seco gr.	5.27	5.52	5.28	
% de Humedad	18.2	18.1	19.3	

LIMITE LIQUIDO	
LIMITE PLASTICO	
INDICE DE PLASTICIDAD	

I

b) Cantera Chucuito

LIMITES DE CONSISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

		EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO
PROYECTO	:	SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO,
		2022.
URICACIÓN		Distrito de Chucuito, Provincia de Puno, Departamento de Puno

	LIMI			
# Tara	JH21	JH13	JH18	JH12
Peso de la Tara gr.	18.50	19.74	19.16	19.14
T. + Suelo Húmedo gr.	41.20	40.88	45.11	46.28
T. + Suelo Seco gr.	36.13	36.12	39.05	39.87
Peso del Agua gr.	5.07	4.76	6.06	6.41
Suelo Seco gr.	17.63	16.38	19.89	20.73
% de Humedad	28.76	29.06	30.47	30.92
Nro. De Golpes	35	30	22	19

LIMITE PLASTICO

# Tara	JH24	JH22	JH11
Peso de la Tara gr.	17.54	19.22	19.34
T. + Suelo Húmedo gr.	23.72	25.38	25.70
T. + Suelo Seco gr.	22.76	24.40	24.71
Peso del Agua gr.	0.96	0.98	0.99
Suelo Seco gr.	5.22	5.18	5.37
% de Humedad	18.4	18.9	18.4

LIMITE LIQUIDO	L.L. =
LIMITE PLASTICO	L.P. =
INDICE DE PLASTICIDAD	L.P. =

٦

ANEXO 5: Ensayo a compresión simple

a) Cantera Chupa

RESISTENCIA A LA COMPRESION

PROYECTO

:

EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO, 2022.

UBICACIÓN

Distrito de Chupa, Provincia de Azángaro, Departamento de Puno.

: Distrito de Chupa, Provincia de Azángaro, Departamento de Puno.									
Grupos de control	Edad (dias)	Área (cm²)	Resistencia minima según norma E-080 (kgf/cm ²)	Lectura del dial (kgf)	Resistencia obtenida (kgf/cm ²)	Resistencia promedio (kgf/cm ²)			
AP-1	30	100.00	10.20	1040	10.40				
AP-2	30	100.00	10.20	1057	10.57	10.55			
AP-3	30	100.00	10.20	1030	10.30	10.55			
AP-4	30	100.00	10.20	1092	10.92				
AP-1 + 25%VE	30	100.00	10.20	1053	10.53				
AP-2 + 25%VE	30	100.00	10.20	1070	10.70	11.21			
AP-3 + 25%VE	30	100.00	10.20	1249	12.49	11.51			
AP-4 + 25%VE	30	100.00	10.20	1153	11.53				
AP-1 + 50%VE	30	100.00	10.20	1620	16.20				
AP-2 + 50%VE	30	100.00	10.20	1545	15.45	15.66			
AP-3 + 50%VE	30	100.00	10.20	1489	14.89	15.00			
AP-4 + 50%VE	30	100.00	10.20	1611	16.11				
AP-1 + 75%VE	30	100.00	10.20	1828	18.28				
AP-2 + 75%VE	30	100.00	10.20	1703	17.03	17.00			
AP-3 + 75%VE	30	100.00	10.20	1690	16.90	17.09			
AP-4 + 75%VE	30	100.00	10.20	1615	16.15				

b) Cantera Chucuito

RESISTENCIA A LA COMPRESION

PROYECTO

:

:

EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO, 2022.

UBICACIÓN

Distrito de Chupa, Provincia de Azángaro, Departamento de Puno.

Grupos de control	Edad (dias)	Área (cm²)	Resistencia minima según norma E-080 (kgf/cm ²)	Lectura del dial (kgf)	Resistencia obtenida (kgf/cm ²)	Resistencia promedio (kgf/cm ²)
AP-1	30	100.00	10.20	1051	10.51	
AP-2	30	100.00	10.20	1141	11.41	10.00
AP-3	30	100.00	10.20	1146	11.46	10.90
AP-4	30	100.00	10.20	1021	10.21	
AP-1 + 25%VE	30	100.00	10.20	1248	12.48	
AP-2 + 25%VE	30	100.00	10.20	1165	11.65	11.04
AP-3 + 25%VE	30	100.00	10.20	1103	11.03	11.04
AP-4 + 25%VE	30	100.00	10.20	1221	12.21	
AP-1 + 50%VE	30	100.00	10.20	1307	13.07	
AP-2 + 50%VE	30	100.00	10.20	1271	12.71	12.24
AP-3 + 50%VE	30	100.00	10.20	1218	12.18	12.54
AP-4 + 50%VE	30	100.00	10.20	1140	11.40	
AP-1 + 75%VE	30	100.00	10.20	1729	17.29	
AP-2 + 75%VE	30	100.00	10.20	1633	16.33	16 75
AP-3 + 75%VE	30	100.00	10.20	1677	16.77	10.75
AP-4 + 75%VE	30	100.00	10.20	1662	16.62	

ANEXO 6: Ensayo de resistencia a la flexión

a) Cantera Chupa

RESISTENCIA A LA FLEXIÓN

PROYECTO :

EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO, 2022.

UBICACIÓN : Distrito de Chupa, Provincia de Azángaro, Departamento de Puno.

Grupos	Edad (días)	Dimensione s (cm)		Distancia entre apoyos (cm)	Lectura del dial (N)	Resistenci a a flexión R(Mpa)	Resistenci a a flexión fo(kgf/cm2)	Resistenci a promedio fo(kgf/cm2)
de control		Ancho	Altura					
AP-1	30	19	10	30	1670	0.3955	4.03	
AP-2	30	19	10	30	1840	0.6608	6.74	5.10
AP-3	30	19	10	30	1610	0.5424	5.53	5.19
AP-4	30	19	10	30	1500	0.4358	4.44]
-	-	-	-	-	-	-	-	
AP-1 + 25%VE	30	19	10	30	2430	0.6158	6.28	6.07
AP-2 + 25%VE	30	19	10	30	2650	0.6276	6.4	
AP-3 + 25%VE	30	19	10	30	2430	0.5945	6.06	0.57
AP-4 + 25%VE	30	19	10	30	2600	0.6608	6.74	1
-	-	-	-	-	-	-	-	
AP-1 + 50%VE	30	19	10	30	2880	0.63	6.42	
AP-2 + 50%VE	30	19	10	30	2860	0.6489	6.62	6.72
AP-3 + 50%VE	30	19	10	30	2740	0.6821	6.96	0.75
AP-4 + 50%VE	30	19	10	30	2660	0.6774	6.91]
-	-	-	-	-	-	-	-	
AP-1 + 75%VE	30	19	10	30	2190	0.5566	5.68	
AP-2 + 75%VE	30	19	10	30	2310	0.5187	5.29	
AP-3 + 75%VE	30	19	10	30	2350	0.495	5.05	5.4
AP-4 + 75%VE	30	19	10	30	2090	0.5471	5.58	

b) Cantera Chucuito

RESISTENCIA A LA FLEXIÓN

EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO, PROYECTO : 2022. UBICACIÓN Distrito de Chupa, Provincia de Azángaro, Departamento de Puno. :

Grupos	Edad (días)	Dimensio	ones (cm)	Distancia entre	Lectura del	Resistenci a a flexión	Resistenci a a flexión	Resistenci a promedio
de control	1	Ancho	Altura	apoyos (cm)	dial (N)	R(Mpa)	fo(kgf/cm2)	fo(kgf/cm2)
AP-1	30	19	10	30	2060	0.4879	4.98	
AP-2	30	19	10	30	2050	0.4855	4.95	
AP-3	30	19	10	30	2080	0.4926	5.02	5.01
AP-4	30	19	10	30	2100	0.4974	5.07]
-	-	-	-	-	-	-	-	
AP-1 + 25%VE	30	19	10	30	2130	0.5045	5.14	
AP-2 + 25%VE	30	19	10	30	2100	0.4974	5.07	
AP-3 + 25%VE	30	19	10	30	2270	0.5376	5.48	5.26
AP-4 + 25%VE	30	19	10	30	2220	0.5258	5.36	
-	-	-	-	-	-	-	-	
AP-1 + 50%VE	30	19	10	30	2570	0.6087	6.21	
AP-2 + 50%VE	30	19	10	30	2640	0.6253	6.38	
AP-3 + 50%VE	30	19	10	30	2750	0.6513	6.64	6.25
AP-4 + 50%VE	30	19	10	30	2390	0.5661	5.77	
-	-	-	-	-	-	-	-	
AP-1 + 75%VE	30	19	10	30	1820	0.4311	4.4	
AP-2 + 75%VE	30	19	10	30	2020	0.4784	4.88	1.68
AP-3 + 75%VE	30	19	10	30	1750	0.4145	4.23	4.00
AP-4 + 75%VE	30	19	10	30	2150	0.5092	5.19	

ANEXO 7: Planos de cobertura vegetal

a) Cantera Chupa

b) Cantera Chucuito

ANEXO 8: Modelos de un ambiente rural

a) MODELO 01

MEMORIA DE CALCULO

DESCRICION DEL MODELO 01

El ambiente descrito en el presente trabajo de investigacion se llamara MODELO 01, este modelo usa un aparejo de soga del muro de la estructura, con un ancho de 19cm el cual se muestra en la figura siguente:

APAREJO TIPICO DE HILADAS

ANALISIS DE CARGAS

La vivienda deberá ser capaz de soportar las cargas que se someta como consecuencia de su uso previsto, como se indica en la Norma E.020 del RNE

CARGA MUERTA

Para el análisis de carga muerta de la vivienda se toma en cuenta el peso de los distintos materiales que actúan sobre la vivienda y los cuales se indican como siguen:

Materiales	Modulo de e	elasticidad	Peso ur	nitario
	Е	Und	p.e.	Und
Adobe para muro longitudinal	200	MPa	1600	Kgf/m3
Adobe para muro transversal	200	MPa	1600	Kgf/m3
Techo Termoacústico Rojo 1.5mm 3.60x1.07m	-	PESO=	3.76	Kg/m2

Las cargas muertas que actúan sobre el techo inclinado de 7° respecto a la horizonal es el peso propio del cobertura termoacustico, los pesos propios de los muros de adobe se ingresaron directamente en el programa

CARGA VIVA DEL TECHO

La carga viva es la carga actuante de acuerdo al uso que posee la estructura, según la Norma Técnica E.020 para techos con coberturas livianas de plancha onduladas o plegadas, calaminas, fibrocemento, material plástico, etc., cualquiera sea su pendiente es 0.30 kPa (30 kgf/m2).

CARGA DE NIEVE

La estructura y todos los elementos de techo que están expuestos a la acción de carga de nieve tienen que ser diseñados para resistir las cargas producidas por la acumulación de la nieve en el techo, según la Norma Técnica E.020 para techos a una o dos aguas que tengas inclinaciones menores o iguales a 15° la carga de diseño (Qt), sobre la proyección horizontal, será:

Qt = 0.40kPa (40 kgf/m2).

CARGA DE VIENTO

Todas las estructuras de edificios, cierres y componentes externos afectados por el viento deben estar diseñados para soportar las cargas externas e internas (presión y succión) del viento y moverse en dos direcciones horizontales perpendiculares entre sí, según la Norma E.020 la velocidad de diseño (Vh) del viento hasta 10 m de altura será como mínimo 75km/h.

La zona de estudio según el mapa eolico del peru se encuentra en vientos de 70km/h y 80km/h (anexo 2 de la norma E020). Por lo que se tomara como velocidad de diseño

Vh: siendo esta la velocidad del viento, el mínimo establecido en la norma E020 que es de 75km/h

La carga externa (presión o succión) aplicada por el viento se considera estática y perpendicular a la superficie sobre la que actúa el viento

$$Ph = 0.005 CVh^{2}$$
.

Donde:

Ph: Presión o succión del viento a una altura h en Kgf/m2.

C: Factor de forma adimensional.

Vh: Velocidad de diseño a la altura h, en Km/h.

Factores de barlovento y sotavento.

-	CONSTRUCCIÓN	BARLOVENTO	SOTAVENTO
-	Superficies verticales de	+0.8	-0.6
	edificios	0.8	-0.0
	Superficies inclinadas a 15° o	+0.2 0.7	0.6
	menos	+0.3 -0.7	-0.0
Vh=	7	5 km	/h

Para nuetro modelo se tienen que las siguentes cargas:

Descripción	CARGA	С	PRESION (KG/M2)
	SOTAVIEN TO	-0.6	-16.88
PARED	BARLOVE NTO	0.8	22.5
Techo	BARLOVE NTO	0.3	8.44
		-0.7	-19.69

CARGA SISMICA

Las normas establecen requisitos mínimos para las edificaciones diseñadas para tener un comportamiento sísmico consistente con los principios señalados a fin de evitar la pérdida de vidas, asegurar la continuidad del servicio y minimizar los daños a la propiedad (Norma Técnica E-080, 2017).

A. Zonificación

.

El territorio nacional está dividido en cuatro zonas, la vivienda en análisis se encuentra departamento de Puno por lo que se encuentre en zona sísmica 3.

Se muestra la figura de Mapa de Zonificación Sísmica, según Norma E.030 Diseño Sismorresistente

Coeficiente sísmico por zona sísmica para edificaciones de tierra reforzada

Zona Sísmica	Coeficiente Sísmico (C)
4	0,25
3	0,20
2	0,15
1	0.10

según la tabla mostrada se tiene que el coeticiente sismico es de C=0.20.

C= 0.2

NORMA E.030 DISEÑO SISMORRESISTENTE

B. Categoría de edificación

Este es el factor básico de amplificación de la fuerza de corte y depende del nivel de importancia que se le dé al edificio. Según la norma E 080

Factor de uso (U) y densidad según tipo de edificación

		Tipo de Edificaciones	Factor de Uso (U)	Densidad
~=	0.2	NT A 030 Hospedaje NT A 040 Educación NT A 050 Salud NT A 090 Servicios comunales NT A 100 Recreación y deportes NT A 110 Transporte y Comunicaciones	1,4	15%
	0.2	NT A 060 Industria NT A 070 Comercio NT A 080 Oficinas	1.2	12%
		Vivienda: Unifamiliar y Multifamiliar Tipo Quinta	1,0	8%

Factor de uso (U) = 1

C. Condiciones geotécnicas

La zona en estudio corresponde a suelos medianamente rígidos, con perfil tipo II, donde se cimienta sobre suelos intermedios o blandos con capacidad portante mayores a 1.02 kgf/cm2. esto de acuerdo a la norma E 080.

Factor de suelo: S = 1.4

Factor de suelo (S)

Тіро	Descripción	Factor de suelo (\$)
I	Rocas o suelos muy resistentes con capacidad portante admisible > 0.3 MPa ó 3.06 kg.f/cm2	1,0
Ш	Suelos intermedios o blandos con capacidad portante admisible > 0.1 Mpa ó 1.02kg.f/cm2	1,4

Comportamiento sísmico del modelo de vivienda de adobe.

La fuerza sísmica horizontal en la base para las edificaciones de adobe se puede calcular con lo siguiente:

$\mathbf{H} = \mathbf{S}^* \mathbf{U}^* \mathbf{C}^* \mathbf{P}$	
Tenemos:	
Factor de suelo S =	1.4
Factor de uso U =	1
Coeficiente sísmico C =	0.2

El peso total de la vivienda, incluyendo cargas muertas y el 50% de carga viva. P = CM + 0.5*CV

Descrinción	Und	Veces	Largo (m)	Ancho (m)	Alto (m)	Volumen	Total	Peso u	initario	Peso total
Description	ond	Veces	Largo (III)	Ancho (m)	Alto (III)	Parcial	Total	Peso	Und	(kg)
Adobe para muro longitudinal							3.13	1600.00	Kg/m3	5008.00
Eje B, entre eje1 y eje2	m3	1.00	4.00	0.19	2.50	1.90				
Eje A, entre eje1 y eje2	m3	1.00	4.00	0.19	2.00	1.52				
Puerta	m3	-1.00	0.84	0.19	1.80	-0.29				
Adobe para muro transversal							2.98	1600.00	Kg/m3	4768.00
Eje 2, entre eje A y eje B	m3	1.00	3.80	0.19	2.00	1.44				
Eje 2, entre eje A y eje B sobre viga collar	m3	1.00	3.80	0.19	0.25	0.18				
Eje 1, entre eje A y eje B	m3	1.00	3.80	0.19	2.00	1.44				
Eje 1, entre eje A y eje B sobre viga collar	m3	1.00	3.80	0.19	0.25	0.18				
Ventanas	m3	-2.00	0.83	0.19	0.83	-0.26				
Descripción	Und	Veces	Largo (m)	Ancho (m)	Alto (m)	Area Parcial	Area Total	Peso u Peso	initario Und	Peso total (kg)
Techo Termoacústico PVC Rojo 2mm 3.60x1.07m	M2	1.00	4.00	4.00			16.00	3.76	Kg/m2	60.16
Peso muerto de la vivien	da								Kg	9,836.16
									Tn	9.84

Carga viva total del modelo de vivienda

Según la Norma Técnica E.020 la carga viva es 0.30 kPa (30 kgf/m2).

Artículo 7.- CARGA VIVA DEL TECHO

Se diseñarán los techos y las marquesinas tomando en cuenta las cargas vivas, las de sismo, viento y otras prescritas a continuación.

- 7.1 Carga Viva.- Las cargas vivas mínimas serán las siguientes:
- Para los techos con una inclinación hasta de 3° con respecto a al horizontal, 1,0 kPa (100 kof/m²).

b)	Para techos con inclinación mayor de 3°, con respecto a la horizontal 1,0 kPa (100 kgf/m²) reducida en 0,05 kPa (5 kgf/m²), por cada grado de pendiente por encima de 3°,
	hasta un mínimo de 0,50 kPa (59 kgf/m²).
c)	Para techos curvos, 0,50 kPa (50 kgf/m²).
d)	Para techos con coberturas livianas de planchas onduladas o plegadas, calaminas,

Para techos con coberturas livianas de planchas onduladas o plegadas, calaminas,
fibrocemento, material plástico, etc., cualquiera sea su pendiente, 0,30 kPa (30 kgf/m²),
excepto cuando en el techo pueda haber acumulación de nieve, en cuyo caso se
aplicará lo indicado en el Artículo 11.

11.2 CARGA BÁSICA DE NIEVE SOBRE EL SUELO (Qs)

Para determinar este valor, deberá tomarse en cuenta las condiciones geográficas y climáticas de la región donde se ubicará la estructura. La carga básica se establecerá de un análisis estadístico de la información disponible en la zona, para un período medio de retorno de 50 años (probabilidad anual del 2% de ser excedida).

El valor mínimo de la carga básica de nieve sobre el suelo (Q_s) será de 0,40 kPa (40kgf/m²) que equivalen a 0,40 m de nieve fresca (peso específico de 1 kN/m³ (100 kgf/m³)) o a 0,20 m de nieve compactada (peso específico de 2 kN/m³ (200 kgf/m³)).

11.3 CARGA DE NIEVE SOBRE LOS TECHOS (Qt)

a) Para techos a una o dos aguas con inclinaciones menores o iguales a 15° (pendiente ≤ 27%) y para techos curvos con una relación flecha/luz ≤ 0,1 o ángulo vertical menor o igual a 10° (calculado desde el borde hasta el centro) la carga de diseño (Q_T), sobre la proyección horizontal, será:

$Q_t = Q_S$

Carga viva total = (30 kg/m2 + 40 kg/m2) = 70 kg/m2

ahora bien el area de la cobertura es de 16 m2,por lo que la carga viva aplicada seria:

Area de cobertura = carga viva =		16 70	m2 kg/m2	
Cviva=	1120	kg		
P = CM + 0.5 * CV		P=	10.40	TN

CALCULO DE LA FUERZA SISMICA HORIZONTAL

H = S*U*C*P H= 2.91 TN

Modelado del modelo de vivienda en ETABS 21.

Según el análisis de cargas y de comportamiento sísmico se tiene el siguiente modelaje de la vivienda en ETABS 21

Calculo del perido natural del modelo desde ETBAS 21

E M	odal Periods And	Frequencies					
File	Edit Format	-Filter-Sort	Select	Options			
Units: Filter:	As Noted H None	Hidden Columns	s: No	Sort: No	one		Modal Period
	Case	Mode	F	Period	Frequency	CircFreq	Eigenvalue
				sec	cyc/sec	rad/sec	rad ² /sec ²
•	Modal	1		sec 0.245	cyc/sec 4.074	rad/sec 25.5982	rad ² /sec ² 655.2698
•	Modal Modal	1		sec 0.245 0.202	cyc/sec 4.074 4.958	rad/sec 25.5982 31.1521	rad ² /sec ² 655.2698 970.4511

De acuerdo al programa se tiene un periodo de 0.245 segundos

Calculo de factor K

según la norma E 030, k es un exponente relacionado con el período fundamental de vibración de la estructura (T)

- a) Para *T* menor o igual a 0,5 segundos: k = 1,0.
- b) Para *T* mayor que 0,5 segundos: $k = (0,75 + 0,5 \text{ T}) \le 2,0$.

Donde K= 1 ya que el perido es menor a 0.5 segundos.

Definición de conbinación de carga.

Las combinaciones de carga que afectan a una vivienda son afectadas por factores de mayoración en los distintos estados de cargas como: carga muerta (CM), carga viva (CV), carga viento (CVi) y carga de sismo (CS).

El cual es tomado en cuenta lo mencionado en el marco teórico del presente trabajo de investigación.

1 D	Donde:
2 - D + L	
3 - D + (W ó 0.70E)	D = Carga muerta, según Capítulo 2.
	L = Carga viva, Capitulo 3.
4 - D + 1	W = Carga de viento, según Artículo 12.
5 - α (D + L + (W ó 070 E))	E = Carga de sismo, según NTE E.030 Diseño de Sismorresistente.
6 - α (D + L + T)	T = Acciones por cambios de temperatura, contracciones y/o deformaciones diferidas
7 - α (D + (W $\circ 0.70$ E) + T)	en los materiales componentes, asentamientos de apoyos o combinaciones de
(D + L + (W + 0.70 F) + T)	todos ellos.
8 - α (D + L + (W o 0. / 0 E) + 1).	 α = Factor que tendrá un valor mínimo de 0.75 para las combinaciones (5), (6) y (7); y
	de 0.67 para la combinación (8). En estos casos no se permitirá un aumento de los esfuerzos admisibles.

Las combinaciones son ingresadas en el software ETABS 21, y se obtiene un valor de combinación máxima que también definimos una nueva combinación.

Definición de asignación de carga.

Las cargas asignadas a la vivienda, son: carga muerta, carga viva, carga nieve, carga de viento en cobertura y sismo. Asignación de Carga muerta (peso de cobertura termoacústico)

Carga de viento

kg/m

Ahora bien se tiene que realizar el analisis del muro de la estructura el cual tiene valores maximos en muros: Debibo a sismo en X Debibo a sismo en Y

Emaximo = 436.31 kg/m Emaximo = 508.89

2.45 3.26 4

Debibo a sismo en X

Emaximo =

Sino en A

8175.11 kg/m2

Debibo a sismo en Y	
Emaximo = 4865.45	

kg/m2

VALORES MAXIMO	OS SISMO SEVE	RO						
ESFUERZOS CORTENTES								
EN DIRECCION X-X								
ELEVACION FRONTAL	3616.76	KG/M2						
ESFUERZOS CORTENTES								
EN DIRECCION Y-Y								
ELEVACION FRONTAL	3502.95	KG/M2						
ESFUERZOS CORTENTES								
EN DIRECCION X-X								
ELEVACION LATERAL	8175.11	KG/M2						
ESFUERZOS CORTENTES								
EN DIRECCION Y-Y								
ELEVACION LATERAL	4865.45	KG/M2						
FUERZAS DE TRACION EN								
DIRECCION X-X	436.31	KG/M						
FUERZAS DE TRACION EN]							
DIRECCION Y-Y	508.89	KG/M						

b) MODELO 02

MEMORIA DE CALCULO

DESCRICION DEL MODELO 01

El ambiente descrito en el presente trabajo de investigacion se se llamara MODELO 02, este modelo usa un aparejo de soga del muro de la estructura, con un ancho de 19cm y refuerzos en el aparejo de amare vertical en las esquinas el cual se muestra en la figura siguente:

ANALISIS DE CARGAS

La vivienda deberá ser capaz de soportar las cargas que se someta como consecuencia de su uso previsto, como se indica en la Norma E.020 del RNE

CARGA MUERTA

Para el análisis de carga muerta de la vivienda se toma en cuenta el peso de los distintos materiales que actúan sobre la vivienda y los cuales se indican como siguen:

Materiales	Modulo de e	elasticidad	Peso unitario			
	Е	Und	p.e.	Und		
Adobe para muro longitudinal	200	MPa	1600	Kgf/m3		
Adobe para muro transversal	200	MPa	1600	Kgf/m3		
Techo Termoacústico Rojo 1.5mm 3.60x1.07m	-	Peso=	3.76	Kg/m2		

Las cargas muertas que actúan sobre el techo inclinado de 7º respecto a la horizonal es el peso propio del cobertura ternoacustico, los pesos propios de los muros de adobe se ingresaron directamente en el programa

CARGA VIVA DEL TECHO

La carga viva es la carga actuante de acuerdo al uso que posee la estructura, según la Norma Técnica E.020 para techos con coberturas livianas de plancha onduladas o plegadas, calaminas, fibrocemento, material plástico, etc., cualquiera sea su pendiente es 0.30 kPa (30 kgf/m2).

CARGA DE NIEVE

La estructura y todos los elementos de techo que están expuestos a la acción de carga de nieve tienen que ser diseñados para resistir las cargas producidas por la acumulación de la nieve en el techo, según la Norma Técnica E.020 para techos a una o dos aguas que tengas inclinaciones menores o iguales a 15° la carga de diseño (Qt), sobre la proyección horizontal, será:

Qt = 0.40kPa (40 kgf/m2).

CARGA DE VIENTO

Todas las estructuras de edificios, cierres y componentes externos afectados por el viento deben estar diseñados para soportar las cargas externas e internas (presión y succión) del viento y moverse en dos direcciones horizontales perpendiculares entre sí, según la Norma E.020 la velocidad de diseño (Vh) del viento hasta 10 m de altura será como mínimo 75km/h.

La zona de estudio según el mapa eolico del peru se encuentra en vientos de 70km/h y 80km/h (anexo 2 de la norma E020). Por lo que se tomara como velocidad de diseño

Vh: siendo esta la velocidad del viento, el mínimo establecido en la norma E020 que es de 75km/h

La carga externa (presión o succión) aplicada por el viento se considera estática y perpendicular a la superficie sobre la que actúa el viento

$$Ph = 0.005 CVh^2.$$

Donde:

Ph: Presión o succión del viento a una altura h en Kgf/m2.

C: Factor de forma adimensional.

Vh: Velocidad de diseño a la altura h, en Km/h.

Factores de barlovento y sotavento.

CONSTRU	CCIÓN	BARLOVENTO	SOTAVENTO	
Superficies ver edificie	rticales de os	+0.8	-0.6	
Superficies inclin meno	adas a 15° o s	+0.3 -0.7	-0.6	
Vh=	75	km	/h	

Para nuetro modelo se tien que las siguentes cargas:

Descripción	CARGA	С	PRESION (KG/M2)
	SOTAVIEN TO	-0.6	-16.88
PARED	BARLOVE NTO	0.8	22.5
Techo	BARLOVE NTO	0.3	8.44
		-0.7	-19.69

CARGA SISMICA

Las normas establecen requisitos mínimos para las edificaciones diseñadas para tener un comportamiento sísmico consistente con los principios señalados a fin de evitar la pérdida de vidas, asegurar la continuidad del servicio y minimizar los daños a la propiedad (Norma Técnica E-080, 2017).

A. Zonificación

El territorio nacional está dividido en cuatro zonas, la vivienda en análisis se encuentra departamento de Puno por lo que se encuentre en zona sísmica 3.

Se muestra la figura de Mapa de Zonificación Sísmica, según Norma E.030 Diseño Sismorresistente

Coeficiente sísmico por zona sísmica para edificaciones de tierra reforzada

	Zona Sísmica	Coeficiente Sísmico (C)
	4	0,25
	3	0,20
1	2	0,15
	1	0,10

según la tabla mostrada se tiene que el coeficiente sismico es de C=0.20.

C=	0.2		
		NORMA	E.030 DISEÑO SISMORRESISTENTE

B. Categoría de edificación

Este es el factor básico de amplificación de la fuerza de corte y depende del nivel de importancia que se le dé al edificio. Según la norma E 080

Factor de uso (U) y densidad según tipo de edificación

Tipo de Edificaciones	Factor de Uso (U)	Densidad
NT A 030 Hospedaje NT A 040 Educación NT A 050 Salud NT A 090 Servicios comunales NT A 100 Recreación y deportes NT A 110 Transporte y Comunicaciones	1,4	15%
NT A 060 Industria NT A 070 Comercio NT A 080 Oficinas	1.2	12%
Vivienda: Unifamiliar y Multifamiliar Tipo Quinta	1,0	8%

Factor de uso (U) = 1

C . Condiciones geotécnicas

La zona en estudio corresponde a suelos medianamente rígidos, con perfil tipo II, donde se cimienta sobre suelos intermedios o blandos con capacidad portante mayores a 1.02 kgf/cm2. esto de acuerdo a la norma E 080.

Factor de suelo: S = 1.4

Factor de suelo (S)

Тіро	Descripción	Factor de suelo (S)
I	Rocas o suelos muy resistentes con capacidad portante admisible > 0.3 MPa ó 3.06 kg.f/cm2	1,0
Ш	Suelos intermedios o blandos con capacidad portante admisible > 0.1 Mpa ó 1.02kg.f/cm2	1,4

Comportamiento sísmico del modelo de vivienda de adobe.

La fuerza sísmica horizontal en la base para las edificaciones de adobe se puede calcular con lo siguiente

$\mathbf{H} = \mathbf{S}^* \mathbf{U}^* \mathbf{C}^* \mathbf{P}$	
Tenemos:	
Factor de suelo S =	1.4
Factor de uso U =	1
Coeficiente sísmico C =	0.2

El peso total de la vivienda, incluyendo cargas muertas y el 50% de carga viva. P = CM + 0.5*CV

Descrinción	Und	Veces	Largo (m)	Ancho (m)	Alto (m)	Volumen	Total	Peso u	nitario	Peso total
Description	onu	Veces	Luigo (iii)	Ancho (m)		Parcial	Total	Peso	Und	(kg)
Adobe para muro longitudinal							3.89	1600.00	Kg/m3	6224.00
Eje B, eje 1	m3	1.00	0.40	0.40	2.50	0.40				
Eje B, eje 2	m3	1.00	0.40	0.40	2.50	0.40				
Eje A, eje 2	m3	1.00	0.40	0.40	2.00	0.32				
Eje A, eje 1	m3	1.00	0.40	0.40	2.00	0.32				
Eje B, entre eje 1 y eje 2	m3	1.00	3.20	0.19	2.50	1.52				
Eje A, entre eje 1 y eje 2	m3	1.00	3.20	0.19	2.00	1.22				
Puerta	m3	-1.00	0.84	0.19	1.80	-0.29				
Adobe para muro transversal							2.48	1600.00	Kg/m3	3968.00
Eje 1, entre eje A y eje B	m3	1.00	3.20	0.19	2.00	1.22				
Eje 1, entre eje A y eje B sobre viga collar -	m3	1.00	3.20	0.19	0.25	0.15				
Eje 2, entre eje A y eje B	m3	1.00	3.20	0.19	2.00	1.22				
Eje 2, entre eje A y eje B sobre viga collar -	m3	1.00	3.20	0.19	0.25	0.15				
Ventanas	m3	-2.00	0.83	0.19	0.83	-0.26				
Descripción	Und	Veces	Largo (m)	Ancho (m)	Alto (m)	Area Parcial	Area Total	Peso u Peso	nitario Und	Peso total (kg)
Techo Termoacústico PVC Rojo 2mm 3.60x1.07m	M2	1.00	4.00	4.00			16.00	3.76	Kg/m2	60.16
Peso muerto de la vivien	da								Kg	10,252.16
Т									Tn	10.25

Carga viva total del modelo de vivienda

Según la Norma Técnica E.020 la carga viva es 0.30 kPa (30 kgf/m2).

Artículo 7.- CARGA VIVA DEL TECHO

Se diseñarán los techos y las marquesinas tomando en cuenta las cargas vivas, las de sismo, viento y otras prescritas a continuación.

- 7.1 Carga Viva.- Las cargas vivas mínimas serán las siguientes:
- Para los techos con una inclinación hasta de 3° con respecto a al horizontal, 1,0 kPa (100 kqf/m²).
- b) Para techos con inclinación mayor de 3°, con respecto a la horizontal 1,0 kPa (100 kgf/m²) reducida en 0,05 kPa (5 kgf/m²), por cada grado de pendiente por encima de 3°, hasta un mínimo de 0,50 kPa (59 kgf/m²).
- c) Para techos curvos, 0,50 kPa (50 kgf/m²).

d) Para techos con coberturas livianas de planchas onduladas o plegadas, calaminas, fibrocemento, material plástico, etc., cualquiera sea su pendiente, 0,30 kPa (30 kgf/m²), excepto cuando en el techo pueda haber acumulación de nieve, en cuyo caso se aplicará lo indicado en el Artículo 11.

11.2 CARGA BÁSICA DE NIEVE SOBRE EL SUELO (Qs)

Para determinar este valor, deberá tomarse en cuenta las condiciones geográficas y climáticas de la región donde se ubicará la estructura. La carga básica se establecerá de un análisis estadístico de la información disponible en la zona, para un período medio de retorno de 50 años (probabilidad anual del 2% de ser excedida). El valor mínimo de la carga básica de nieve sobre el suelo (Q_S) será de 0,40 kPa

(40kgf/m²) que equivalen a 0,40 m de nieve fresca (peso específico de 1 kN/m³ (100 kgf/m³)) o a 0,20 m de nieve compactada (peso específico de 2 kN/m³ (200 kgf/m³)).

11.3 CARGA DE NIEVE SOBRE LOS TECHOS (Qt)

Para techos a una o dos aguas con inclinaciones menores o iguales a 15° (pendiente ≤ 27%) y para techos curvos con una relación flecha/luz ≤ 0,1 o ángulo vertical menor o igual a 10° (calculado desde el borde hasta el centro) la carga de diseño (Q_T), sobre la proyección horizontal, será:

 $Q_t = Q_S$

Carga viva total = (30 kg/m2 + 40 kg/m2) = 70 kg/m2

ahora bien el area de la cobertura es de 16 m2, por lo que la carga viva aplicada seria:

Area de cobertura = carga viva =		16 70	m2 kg/m2	
Cviva=	1120	kg		
P = CM + 0.5 * CV		P=	10.81	TN

CALCULO DE LA FUERZA SISMICA HORIZONTAL

$H = S^*U^*C^*P$	H=	3.03	TN
		0.00	

Modelado del modelo de vivienda en ETABS 21.

Según el análisis de cargas y de comportamiento sísmico se tiene el siguiente modelaje de la vivienda en ETABS 21

Calculo del perido natural del modelo desde ETBAS 21

	E Mo	dal Periods And F	requencies					
	File	Edit Format-	Filter-Sort Se	elect Options				
	Units:	As Noted H	idden Columns:	No Sort: No	one		Modal Perio	ds And Frequencies
	Filter:	None						
		Case	Mode	Period sec	Frequency cyc/sec	CircFreq rad/sec	Eigenvalue rad²/sec²	
≍i ti	•	Modal	1	0.235	4.252	26.7186	713.8862	
ti		Modal	2	0.199	5.035	31.6352	1000.7872	
		Modal	3	0.172	5.804	36.465	1329.6942	

De acuerdo al programa se tiene un periodo de 0.235 segundos

Calculo de factor K

según la norma E 030, k es un exponente relacionado con el período fundamental de vibración de la estructura (T)

- a) Para T menor o igual a 0,5 segundos: k = 1,0.
- b) Para T mayor que 0,5 segundos: $k = (0,75 + 0,5 \text{ T}) \le 2,0$.

Donde K= 1 ya que el perido es menor a 0.5 segundos.

Modelado del modelo de vivienda en ETABS 21.

Según el análisis de cargas y de comportamiento sísmico se tiene el siguiente modelaje de la vivienda en ETABS 21

Definición de conbinación de carga.

Las combinaciones de carga que afectan a una vivienda son afectadas por factores de mayoración en los distintos estados de cargas como: carga muerta (CM), carga viva (CV), carga viento (CVi) y carga de sismo (CS).

El cual es tomado en cuenta lo mencionado en el marco teórico del presente trabajo de investigación.

1 D 2 - D + L $3 - D + (W \circ 0.70E)$ 4 - D + T 5 - α (D + L + (W \circ 070 E)) $6 - \alpha (D + L + T)$ 7 - α (D + (W $\circ 0.70$ E) + T) 8 - α (D + L + (W $\circ 0.70 \text{ E}$) + T).

- D = Carga muerta, según Capítulo 2.
- w =
- Carga viva, Capítulo 3. Carga de viento, según Artículo 12. Carga de viento, según Artículo 12. Carga de sismo, según NTE E.030 Diseño de Sismorresistente. Acciones por cambios de temperatura, contracciones y/o deformaciones diferidas en los materiales componentes, asentamientos de apoyos o combinaciones de Т= todos ellos.
- Factor que tendrá un valor mínimo de 0.75 para las combinaciones (5), (6) y (7); y de 0.67 para la combinación (8). En estos casos no se permitirá un aumento de los esfuerzos admisibles. α

Las combinaciones son ingresadas en el software ETABS 21, y se obtiene un valor de combinación máxima que también definimos una nueva combinación.

Definición de asignación de carga.

Las cargas asignadas a la vivienda, son: carga muerta, carga viva, carga nieve, carga de viento en cobertura y sismo. Asignación de Carga muerta (peso de cobertura termoacústico)

Emaximo = 503.02

• ×

Ahora bien se tiene que realizar el analisis del muro de la estructura el cual tiene valores maximos en muros: Debibo a sismo en X Debibo a sismo en Y kg/m

Emaximo = 463.64 kg/m

ESFUERZOS CORTANTES EN KG/M2

Debibo a sismo en X Emaximo =	3404.44	kg/m2	Debibo a sismo en Y Emaximo = 2921.75	kg/m2	
		ESFUERZOS CORTANTES EN	KG/M2		×
Bevation View - B St	ress SMAX Diagram Visib	le Face (se_x) [kgf/m ¹]	Elevator View - B Stress SMA	UX Diagram Visible Face (se.y) [kgt/m*]	2
			24		Stary1

1.51 0.00 0.51 1.02 1.53 2.<mark>04 2.</mark>55 3.06 3.57 4.08 4.59

Debibo a sismo en X Del					sismo en Y	
Emaximo =	7994.19	kg/m2		Emaximo	= 4387.76	kg/m2
	VAR	ABLE		VALORE	S MAXIMOS	
ESFUERZOS C	ORTENTES EN DIRE	CCION X-X ELEVACIO	N FRONTAL	3404.44	KG/M2	
ESFUERZOS C	ORTENTES EN DIRE	ECCION Y-Y ELEVACIO	N FRONTAL	2921.75	KG/M2	
ESFUERZOS (CORTENTES EN DIR	ECCION X-X ELEVACIO	N LATERAL	7994.19	KG/M2	
ESFUERZOS (CORTENTES EN DIR	ECCION Y-Y ELEVACIO	N LATERAL	4387.76	KG/M2	
F	UERZAS DE TRACIC	N EN DIRECCION X-X		463.64	KG/M	
F	UERZAS DE TRACIC	N EN DIRECCION Y-Y		503.02	KG/M	

000 0.82 1.63 2.45 3.26 4.08 4.89 5.71 6.53 7.34 8 175+3

c) MODELO 03

MEMORIA DE CALCULO

DESCRICION DEL MODELO 03

El ambiente descrito en el presente trabajo de investigacion se se llamara MODELO 03, este modelo usa un aparejo americano del muro de la estructura, con un ancho de 40cm el cual se muestra en la figura siguente:

ANALISIS DE CARGAS

La vivienda deberá ser capaz de soportar las cargas que se someta como consecuencia de su uso previsto, como se indica en la Norma E.020 del RNE

CARGA MUERTA

Para el análisis de carga muerta de la vivienda se toma en cuenta el peso de los distintos materiales que actúan sobre la vivienda y los cuales se indican como siguen:

Materiales	Modulo de elasticidad		ad Peso unitario	
	E	Und	p.e.	Und
Adobe para muro longitudinal	200	MPa	1600	Kgf/m3
Adobe para muro transversal	200	MPa	1600	Kgf/m3
Techo Termoacústico Rojo 1.5mm 3.60x1.07m	-	-	3.76	Kg/m2

Las cargas muertas que actúan sobre el techo inclinado de 7º respecto a la horizonal es el peso propio del cobertura ternoacustico, los pesos propios de los muros de adobe se ingresaron directamente en el programa

CARGA VIVA DEL TECHO

La carga viva es la carga actuante de acuerdo al uso que posee la estructura, según la Norma Técnica E.020 para techos con coberturas livianas de plancha onduladas o plegadas, calaminas, fibrocemento, material plástico, etc., cualquiera sea su pendiente es 0.30 kPa (30 kgf/m2).

CARGA DE NIEVE

La estructura y todos los elementos de techo que están expuestos a la acción de carga de nieve tienen que ser diseñados para resistir las cargas producidas por la acumulación de la nieve en el techo, según la Norma Técnica E.020 para techos a una o dos aguas que tengas inclinaciones menores o iguales a 15° la carga de diseño (Qt), sobre la proyección horizontal, será:

Qt = 0.40kPa (40 kgf/m2).

CARGA DE VIENTO

Todas las estructuras de edificios, cierres y componentes externos afectados por el viento deben estar diseñados para soportar las cargas externas e internas (presión y succión) del viento y moverse en dos direcciones horizontales perpendiculares entre sí, según la Norma E.020 la velocidad de diseño (Vh) del viento hasta 10 m de altura será como mínimo 75km/h.

La zona de estudio según el mapa eolico del peru se encuentra en vientos de 70km/h y 80km/h (anexo 2 de la norma E020). Por lo que se tomara como velocidad de diseño

Vh: siendo esta la velocidad del viento, el mínimo establecido en la norma E020 que es de 75km/h

La carga externa (presión o succión) aplicada por el viento se considera estática y perpendicular a la superficie sobre la que actúa el viento

$$Ph = 0.005 CVh^2.$$

Donde:

Ph: Presión o succión del viento a una altura h en Kgf/m2.

C: Factor de forma adimensional.

Vh: Velocidad de diseño a la altura h, en Km/h.

Factores de barlovento y sotavento.

CONSTRUCCIÓN	BARLOVENTO	SOTAVENTO
Superficies verticales de	+0.8	-0.6
edificios	+0.8	-0.0
Superfícies inclinadas a 15° o	+0.2.0.7	0.6
menos	+0.3 -0.7	-0.0
/h= 5	75 km	/h

Para nuetro modelo se tien que las siguentes cargas:

Descripción	CARGA	С	PRESION (KG/M2)
	SOTAVIEN TO	-0.6	-16.88
PARED	BARLOVE NTO	0.8	22.5
Techo	BARLOVE NTO	0.3	8.44
		-0.7	-19.69

CARGA SISMICA

Las normas establecen requisitos mínimos para las edificaciones diseñadas para tener un comportamiento sísmico consistente con los principios señalados a fin de evitar la pérdida de vidas, asegurar la continuidad del servicio y minimizar los daños a la propiedad (Norma Técnica E-080, 2017).

A. Zonificación

El territorio nacional está dividido en cuatro zonas, la vivienda en análisis se encuentra departamento de Puno por lo que se encuentre en zona sísmica 3.

Se muestra la figura de Mapa de Zonificación Sísmica, según Norma E.030 Diseño Sismorresistente

Coeficiente sísmico por zona sísmica para edificaciones de tierra reforzada

Zona Sísmica	Coeficiente Sísmico (C)
4	0,25
3	0,20
2	0,15
1	0,10

según la tabla mostrada se tiene que el coeticiente sismico es de C=0.20.

C=	0.2	NORMA E.030 DISEÑO SISMORRESISTENTE
		ZONAS SÍSMICAS
		tonus, tonus, tonus, tonus, tonus,
		2 0.25 1 0.10

B. Categoría de edificación

Este es el factor básico de amplificación de la fuerza de corte y depende del nivel de importancia que se le dé al edificio. Según la norma E 080

Factor de uso (U) y densidad según tipo de edificación

Tipo de Edificaciones	Factor de Uso (U)	Densidad
NT A 030 Hospedaje NT A 040 Educación NT A 050 Salud NT A 090 Servicios comunales NT A 100 Recreación y deportes NT A 110 Transporte y Comunicaciones	1,4	15%
NT A.060 Industria NT A.070 Comercio NT A.080 Oficinas	1.2	12%
Vivienda: Unifamiliar y Multifamiliar T	ipo Quinta 1,0	8%

Factor de uso (U) = 1

C . Condiciones geotécnicas

La zona en estudio corresponde a suelos medianamente rígidos, con perfil tipo II, donde se cimienta sobre suelos intermedios o blandos con capacidad portante mayores a 1.02 kgf/cm2. esto de acuerdo a la norma E 080.

Factor de suelo: S = 1.4

Factor de suelo (S)

Тіро	Descripción	Factor de suelo (S)
I	Rocas o suelos muy resistentes con capacidad portante admisible > 0.3 MPa ó 3.06 kg.f/cm2	1,0
Ш	Suelos intermedios o blandos con capacidad portante admisible > 0.1 Mpa ó 1.02kg.f/cm2	1,4

Comportamiento sísmico del modelo de vivienda de adobe.

La fuerza sísmica horizontal en la base para las edificaciones de adobe se puede calcular con lo siguiente $\mathbf{H} = \mathbf{S}^* \mathbf{U}^* \mathbf{C}^* \mathbf{P}$

Tenemos:	
Factor de suelo S =	1.4
Factor de uso U =	1
Coeficiente sísmico C =	0.2

El peso total de la vivienda, incluyendo cargas muertas y el 50% de carga viva. P = CM + 0.5 * CV

Descripción	Und	Veces	Largo (m)	Ancho (m)	Alto (m)	Volumen	Total	Peso unitario		Peso total
					/	Parcial		Peso	Und	(kg)
Adobe para muro longitudinal							3.89	1600.00	Kg/m3	6224.00
Eje B, eje 1	m3	1.00	0.40	0.40	2.50	0.40				
Eje B, eje 2	m3	1.00	0.40	0.40	2.50	0.40				
Eje A, eje 2	m3	1.00	0.40	0.40	2.00	0.32				
Eje A, eje 1	m3	1.00	0.40	0.40	2.00	0.32				
Eje B, entre eje 1 y eje 2	m3	1.00	3.20	0.19	2.50	1.52				
Eje A, entre eje 1 y eje 2	m3	1.00	3.20	0.19	2.00	1.22				
Puerta	m3	-1.00	0.84	0.19	1.80	-0.29				
Adobe para muro transversal							2.48	1600.00	Kg/m3	3968.00
Eje 1, entre eje A y eje B	m3	1.00	3.20	0.19	2.00	1.22				
Eje 1, entre eje A y eje B sobre viga collar -	m3	1.00	3.20	0.19	0.25	0.15				
Eje 2, entre eje A y eje B	m3	1.00	3.20	0.19	2.00	1.22				
Eje 2, entre eje A y eje B sobre viga collar -	m3	1.00	3.20	0.19	0.25	0.15				
Ventanas	m3	-2.00	0.83	0.19	0.83	-0.26				
Descrinsión	1 mail	Manag		Ancho (m)	Alt = ()	Area Darsial	Anna Tatal	Peso unitario		Peso total
Descripcion	onu	veces	Largo (III)	Ancho (III)	Alto (III)	Alea Palcial	Alea Iotai	Peso	Und	(kg)
Techo Termoacústico PVC Rojo 2mm 3.60x1.07m	M2	1.00	4.00	4.00			16.00	3.76	Kg/m2	60.16
Peso muerto de la vivien	da								Kg	10,252.16
									Tn	10.25

Carga viva total del modelo de vivienda

Según la Norma Técnica E.020 la carga viva es 0.30 kPa (30 kgf/m2).

Artículo 7.- CARGA VIVA DEL TECHO

Se diseñarán los techos y las marquesinas tomando en cuenta las cargas vivas, las de sismo, viento y otras prescritas a continuación.

- 7.1 Carga Viva.- Las cargas vivas mínimas serán las siguientes:
- Para los techos con una inclinación hasta de 3° con respecto a al horizontal, 1,0 kPa (100 kqf/m²).
- b) Para techos con inclinación mayor de 3°, con respecto a la horizontal 1,0 kPa (100 kgf/m²) reducida en 0,05 kPa (5 kgf/m²), por cada grado de pendiente por encima de 3°, hasta un mínimo de 0,50 kPa (59 kgf/m²).
- c) Para techos curvos, 0,50 kPa (50 kgf/m²).
 d) Para techos con coberturas livianas de para techos con cobe

Para techos con coberturas livianas de planchas onduladas o plegadas, calaminas, fibrocemento, material plástico, etc., cualquiera sea su pendiente, 0,30 kPa (30 kgf/m²), excepto cuando en el techo pueda haber acumulación de nieve, en cuyo caso se aplicará lo indicado en el Artículo 11.

11.2 CARGA BÁSICA DE NIEVE SOBRE EL SUELO (Qs)

Para determinar este valor, deberá tomarse en cuenta las condiciones geográficas y climáticas de la región donde se ubicará la estructura. La carga básica se establecerá de un análisis estadístico de la información disponible en la zona, para un período medio de retorno de 50 años (probabilidad anual del 2% de ser excedida).

El valor mínimo de la carga básica de nieve sobre el suelo (Q_s) será de 0,40 kPa (40kgf/m²) que equivalen a 0,40 m de nieve fresca (peso específico de 1 kN/m³ (100 kgf/m³)) o a 0,20 m de nieve compactada (peso específico de 2 kN/m³ (200 kgf/m³)).

11.3 CARGA DE NIEVE SOBRE LOS TECHOS (Qt)

a) Para techos a una o dos aguas con inclinaciones menores o iguales a 15° (pendiente ≤ 27%) y para techos curvos con una relación flecha/luz ≤ 0,1 o ángulo vertical menor o igual a 10° (calculado desde el borde hasta el centro) la carga de diseño (Q_T), sobre la provección horizontal, será:

 $Q_t = Q_S$

Carga viva total = (30kg/m2 + 40kg/m2) =70kg/m2

ahora bien el area de la cobertura es de 16 m2, por lo que la carga viva aplicada seria:

Area de cobertura = carga viva =		16 70	m2 kg/m2			
Cviva=	1120	kg				
P = CM + 0.5 * CV		P=	10.81	TN		

CALCULO DE LA FUERZA SISMICA HORIZONTAL

H = S*U*C*P H= 3.03 TN

Calculo del perido natural del modelo desde ETBAS 21

EM	lodal Periods And	Frequencies							
File	Edit Format	-Filter-Sort	Select Options						
Units:	As Noted	Hidden Columns:	No Sort: No	one		Modal Perio			
Filter: None									
	Case	Mode	Period sec	Frequency cyc/sec	CircFreq rad/sec	Eigenvalue rad ² /sec ²			
•	Modal	1	0.13	7.718	48.4965	2351.9145			
	Modal	2	0.1	10.001	62.8404	3948.9151			
	Modal	3	0.096	10.366	65.1306	4241.9939			

De acuerdo al programa se tiene un periodo de 0.235 segundos

Calculo de factor K

según la norma E 030, k es un exponente relacionado con el período fundamental de vibración de la estructura (T)

a) Para T menor o igual a 0,5 segundos: k = 1,0.

b) Para *T* mayor que 0,5 segundos: $k = (0,75 + 0,5 \text{ T}) \le 2,0$.

Donde K= 1 ya que el perido es menor a 0.5 segundos.

Modelado del modelo de vivienda en ETABS 21.

Según el análisis de cargas y de comportamiento sísmico se tiene el siguiente modelaje de la vivienda en ETABS 21

Definición de conbinación de carga.

Las combinaciones de carga que afectan a una vivienda son afectadas por factores de mayoración en los distintos estados de cargas como: carga El cual es tomado en cuenta lo mencionado en el marco teórico del presente trabajo de investigación.

1 D
2 - D + L
3 - D + (W
$$\circ$$
 0.70E)
4 - D + T
5 - α (D + L + (W \circ 070 E))
6 - α (D + L + T)
7 - α (D + (W \circ 0.70 E) + T)
8 - α (D + L + (W \circ 0.70 E) + T).

- D
- D = L = W = E = T =
- Carga muerta, según Capítulo 2. Carga viva, Capítulo 3. Carga de viento, según Artículo 12. Carga de sismo, según NTE E.030 Diseño de Sismorresistente. Acciones por cambios de temperatura, contracciones y/o deformaciones diferidas en los materiales componentes, asentamientos de apoyos o combinaciones de todos ellos
- todos ellos. Factor que tendrá un valor mínimo de 0.75 para las combinaciones (5), (6) y (7); y de 0.67 para la combinación (8). En estos casos no se permitirá un aumento de los esfuerzos admisibles. α =

Las combinaciones son ingresadas en el software ETABS 21, y se obtiene un valor de combinación máxima que también definimos una nueva combinación.

Definición de asignación de carga.

Las cargas asignadas a la vivienda, son: carga muerta, carga viva, carga nieve, carga de viento en cobertura y sismo. Asignación de Carga muerta (pesc

Carga de viento

ANEXO 9: Constacia de ensayos

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL **LABORATORIO DE MECANICA DE SUELOS Y MATERIALES**

Nº 016-2024-LMSM-EPIC-FICA/UNAP.

<u>CONSTANCIA DE USO DE EQUIPOS DE</u> <u>LABORATORIO</u>

EL QUE SUSCRIBE JEFE DE LABORATORIO DE MECÁNICA DE SUELOS Y MATERIALES DE LA FICA.

Hace constar:

Que los tesistas, Bach. ALEXIS VLADIMIR VILCA QUISPE y Bach. ELMER ROBINSON MACHACA HUMPIRI, hicieron uso de los equipos del Laboratorio de Mecánica de Suelos y Materiales de la FICA, para realizar los ensayos requeridos de su proyecto de Tesis: "EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO, 2022", Conducentes a la obtención del Título profesional de Ingeniero Civil.

Los ensayos que realizaron son los siguientes:

ÍTEM	ENSAYOS	NORMA	CANTI DAD	U.M.
01	Contenido de Humedad	ASTM D-2216	02	Und.
02	Análisis Granulométrico por Lavado.	ASTM D-6913	02	Und.
03	Límites de consistencia (L.L.; L.P.).	ASTM D-4318	02	Und.
04	Resistencia a la compresión de unidades Albañilería.	NTP 331.604	48	Und
05	Resistencia a la Flexión de unidades Albañilería.	ASTM C-78	48	Und

ENSAYOS DE LABORATORIO REALIZADOS

Los resultados obtenidos, de los ensayos, no son responsabilidad del Laboratorio de Mecánica de Suelos y Materiales.

Se le expide la presente constancia a solicitud escrita del interesado, para adjuntar en su proyecto de Tesis.

C.c. Arch./LMSyM. Adj solicitud(12folios) Puno, C. U. 02 de diciembre del 2024.

ANEXO 10: Encuestas realizadas

EVALUACIÓN DE LA ADICIÓN DE LAS VIRUTAS DE EUCALIPTO EN EL ADOBE Y COMPORTAMIENTO SÍSMICO DE UN AMBIENTE RURAL USANDO UN MODELO A ESCALA REDUCIDA EN EL ALTIPLANO, 2022

Determinar la adición empírica de Stipa Ichu en la elaboración de adobes

Público objetivo: Fabricante de adobe

A. Género

- Masculino
- Femenino

B. Edad

- 25 40 años
- 41 50 años
- 50 años a más

C. Prácticas de adición empírica de Stipa Ichu:

- 1. ¿Ha utilizado fibras de Stipa ichu en la elaboración de adobe?
 - 🗌 Si
 - 🗌 No
- 2. Si respondió "Si" en la pregunta anterior, ¿Cómo decide la cantidad de fibras se Stipa ichu que agrega a la mezcla de adobe?
 - Experiencia personal
 - □ Recomendaciones de otros artesanos
 - □ Prueba y error
 - 🗌 Intuición
 - □ Otro (especificar)

- 3. ¿la cantidad de 1 kg de muestra de Stipa ichu para cuantos adobes abastecería aproximadamente según a su experiencia para las siguientes dimensiones 40 x 19 x 10 cm?
 - □ 70 80 adobes
 - 🗌 81 90 adobes
 - □ 91 100 adobes
 - □ 100 a más adobes
- 4. ¿En su experiencia usted verifica la calidad de suelo a utilizar?
 - 🗌 Si
 - 🗌 No
- 5. ¿Cómo se adquiere el Stipa ichu para la elaboración de adobe?
 - 🗌 Comprado
 - 🗌 De la zona
 - 0tros
- 6. ¿Cree usted que la adición de Stipa Ichu es beneficiosa para la calidad de

los adobes en términos de propiedades físico-mecánicas?

- 🗌 Si
- 🗌 No
- 🗌 No estoy seguro

a) Cantera Chupa

POBLACION DE ESTUDIO ZONA NORTE - CHUPA

N°	Género	Edad	¿Ha utilizado fibras de Stipa ichu en la elaboración de adobe?	Si respondió "Si" en la pregunta anterior, ¿Cómo decide la cantidad de fibras se Stipa ichu que agrega a la mezcla de adobe?	¿la cantidad de 1 kg de muestra de Stipa ichu para cuantos adobes abastecería aproximadamente según a su experiencia para las siguientes dimensiones 40 x 19 x 10 cm?	¿En su experiencia usted verifica la calidad de suelo a utilizar?	¿Cómo se adquiere el Stipa ichu para la elaboración de adobe?	¿Cree usted que la adición de Stipa Ichu es beneficiosa para la calidad de los adobes en términos de propiedades físico-mecánicas?
1	Masculino	48	Si	Experiencia personal	81 – 90 adobes	Si	De la zona	Si
2	Masculino	42	Si	Intuición	91 – 100 adobes	Si	De la zona	Si
3	Masculino	46	Si	Experiencia personal	81 – 90 adobes	Si	De la zona	Si
4	Masculino	55	Si	Prueba y error	100 a más adobes	Si	De la zona	Si
5	Masculino	29	Si	Experiencia personal	91 – 100 adobes	Si	De la zona	Si
6	Masculino	38	Si	Recomendaciones de otros artesanos	100 a más adobes	Si	De la zona	Si
7	Masculino	44	Si	Intuición	91 – 100 adobes	Si	De la zona	Si
8	Masculino	58	Si	Recomendaciones de otros artesanos	70 - 80 adobes	No	De la zona	Si
9	Masculino	52	Si	Experiencia personal	91 – 100 adobes	Si	De la zona	Si
10	Masculino	45	Si	Experiencia personal	91 – 100 adobes	Si	De la zona	Si
11	Masculino	65	Si	Experiencia personal	70 - 80 adobes	No	De la zona	Si
12	Masculino	32	Si	Recomendaciones de otros artesanos	100 a más adobes	Si	De la zona	Si
13	Masculino	47	Si	Recomendaciones de otros artesanos	81 – 90 adobes	No	De la zona	Si
14	Masculino	51	Si	Prueba y error	91 – 100 adobes	Si	De la zona	Si
15	Masculino	49	Si	Experiencia personal	91 – 100 adobes	Si	De la zona	Si
b) Cantera Chucuito

POBLACION DE ESTUDIO ZONA SUR - CHUCUITO

N°	Género	Edad	¿Ha utilizado fibras de Stipa ichu en la elaboración de adobe?	Si respondió "Si" en la pregunta anterior, ¿Cómo decide la cantidad de fibras se Stipa ichu que agrega a la mezcla de adobe?	¿la cantidad de 1 kg de muestra de Stipa ichu para cuantos adobes abastecería aproximadamente según a su experiencia para las siguientes dimensiones 40 x 19 x 10 cm?	¿En su experiencia usted verifica la calidad de suelo a utilizar?	¿Cómo se adquiere el Stipa ichu para la elaboración de adobe?	¿Cree usted que la adición de Stipa Ichu es beneficiosa para la calidad de los adobes en términos de propiedades físico-mecánicas?
1	Masculino	66	Si	Recomendaciones de otros artesanos	100 a más adobes	Si	De la zona	Si
2	Masculino	35	Si	Experiencia personal	100 a más adobes	Si	De la zona	Si
3	Masculino	38	Si	Experiencia personal	70 - 80 adobes	No	De la zona	Si
4	Masculino	29	Si	Recomendaciones de otros artesanos	81 – 90 adobes	Si	De la zona	Si
5	Masculino	47	Si	Intuición	91 – 100 adobes	Si	De la zona	Si
6	Masculino	44	Si	Experiencia personal	81 – 90 adobes	Si	De la zona	Si
7	Masculino	42	Si	Experiencia personal	70 - 80 adobes	Si	De la zona	Si
8	Masculino	51	Si	Intuición	91 – 100 adobes	No	De la zona	Si
9	Masculino	41	Si	Experiencia personal	91 – 100 adobes	Si	De la zona	Si
10	Masculino	63	Si	Prueba y error	100 a más adobes	Si	De la zona	Si
11	Masculino	59	Si	Intuición	91 – 100 adobes	Si	De la zona	Si
12	Masculino	46	Si	Experiencia personal	70 - 80 adobes	Si	De la zona	Si
13	Masculino	30	Si	Prueba y error	91 – 100 adobes	No	De la zona	Si
14	Masculino	52	Si	Experiencia personal	81 – 90 adobes	Si	De la zona	Si
15	Masculino	62	Si	Intuición	91 – 100 adobes	Si	De la zona	Si

ANEXO 11: Panel fotográfico

EXTRACCION DE MATERIAL DE CANTERA

ENSAYO DE CONTENIDO DE HUMEDAD

ENSAYO DE LIMITES DE LIQUIDO Y PLASTICO

ENSAYO DE GRANULOMETRÍA

EXTRACCIÓN DE LAS VIRUTAS DE EUCALIPTO

EXTRACCIÓN DE ICHU

PREPARACIÓN DE MATERIAL DE CANTERA

HOMOGENIZACION DE MEZCLA PARA ESTE HOMOGENIA

PESADO DE ICHU PROGRESIVAMENTE PARA OBTENER EL OPTIMO

MEZCLA DE MATERIAL SATURADO E ICHU

ELABORACION DE ADOBE PATRON

ELABORACIÓN DE ADOBE PATRÓN + 25% VIRUTAS DE EUCALIPTO

ELABORACIÓN DE ADOBE PATRÓN + 50% VIRUTAS DE EUCALIPTO

ELABORACIÓN DE ADOBE PATRÓN + 75% VIRUTAS DE EUCALIPTO

ELABORACIÓN DE ADOBE PATRÓN

ELABORACIÓN DE ADOBE PATRÓN + 25% VIRUTAS DE EUCALIPTO

ELABORACIÓN DE ADOBE PATRÓN + 50% VIRUTAS DE EUCALIPTO

SECADO DE LOS ADOBES

MEDICION DEL ALAVEO

ENSAYO DE RESISTENCIA A LA COMPRESION

ENSAYO DE RESISTENCIA A LA FLEXION.

PESADO DE MODELOS A ESCALA

ENSAYO DINAMICO DE MODELOS A ESCALA

ANEXO 12: Manual de mesa vibratoria

MANUAL DE USUARIO Shake Table II

Configuracion

© 2017 Quanser Inc., All rights reserved.

Quanser Inc. 119 Spy Court Markham, Ontario L3R 5H6 Canada info@quanser.co m Phone: +1-905-940-3575 Fax: +1-905-940-3576

Printed in Markham, Ontario.

Para obtener más información sobre las soluciones que ofrece Quanser Inc., visite el sitio web en: http://www.quanser.com

CAPTIVATE. MOTIVATE. GRADUATE.

Este documento y el software descrito en él se proporcionan sujetos a un acuerdo de licencia. Ni el software ni este documento pueden ser utilizados o copiados, excepto según lo especificado en los términos de ese acuerdo de licencia. Todos los derechos están reservados y ninguna parte puede ser reproducida, almacenada en un sistema de recuperación o transmitida en cualquier forma o por cualquier medio, electrónico, mecánico, fotocopiado, grabado o de otra manera, sin el permiso previo por escrito de Quanser Inc.

CONTENIDO

1 presentación

4

2 Componentes

6

2.1 Nomenclatura

6

2.2 Descripción

6

3 especificaciones

9

- 4 Configuración del sistema 10
- 4.1 Nomenclatura del cable

10

4.2 Conexiones

11

4.3 Montaje de la mesa de batidos II 13

5 Mantenimiento 16

6 X-Y Shake Tabla II Configuración 17

6.1 Montaje de las mesas de batido 17

6.2 Conexiones de cable 19

7 Solución de problemas 21

8 Soporte Técnico 22

1 PRESENTATION

La Tabla II de Quanser Shake (STII) que se muestra en la Figura 1.1 es un dispositivo de tabla de batido instructivo que se desarrolló originalmente para el Consorcio Universitario de Tablas de Batido Instructivo (UCIST). Puede usarse para enseñar dinámica estructural, aislamiento de vibraciones, control de retroalimentación y varios otros temas para ingenieros mecánicos, aeroespaciales y civiles.

La mesa de agitación está clasificada para conducir una carga de 7,5 kg a 2,5 g. El escenario se desplaza sobre dos ejes de metal endurecido por tierra utilizando rodamientos lineales que permiten movimientos lineales suaves con una desviación de trayectoria baja. Al comenzar desde el centro, el escenario puede moverse \pm 7,62 cm, o \pm 3 pulgadas (es decir, el recorrido total de 15,24 cm). El actuador de CC sin escobillas trifásico de 400 vatios está conectado a un robusto conjunto de tornillo de bola. El motor tiene un codificador de alta resolución incorporado que se usa para medir la posición del escenario con una resolución de 3.10 µm. Se monta un acelerómetro analógico para medir la aceleración del escenario directamente.

Figure 1.1: Quanser Shake Table II

Los principales dispositivos utilizados para ejecutar la tabla de agitación se muestran en la Figura 1.2. Todo el sistema se compone de:

- 1. Quanser Shake Table II
- 2. Amplificador de potencia: Quanser AMPAQ-PWM
- 3. Dispositivo de adquisición de datos (DAQ): Quanser Q2-USB, Q8-USB o QPIDe.
- 4. PC que ejecuta el software QUARCr (opcional: software de control STII basado en LabVIEW TM)

La interacción entre los diferentes componentes del sistema se muestra en la Figura 1.2. Al usar QUARCr o el software de control basado en LabVIEW TM opcional en la PC / computadora portátil, el usuario especifica una señal de comando a la mesa de sacudidas (por ejemplo, onda sinusoidal, terremoto). La corriente necesaria para mover la plataforma a la posición deseada se calcula en QUARC y se envía a través del canal de salida analógica del dispositivo DAQ al amplificador de potencia. El amplificador aplica la corriente y acciona el motor en la Shake Table II. La tabla que sigue la señal ordenada y el desplazamiento y la aceleración resultantes del escenario se miden mediante el codificador incorporado y los sensores del acelerómetro. El codificador y el acelerómetro están conectados al DAQ y sus señales pueden mostrarse y procesarse aún más en QUARC el software de control opcional basado en LabVIEW TM. Los datos trazados también se pueden guardar para su posterior análisis.

Precaución: Este equipo está diseñado para ser utilizado con fines educativos y de investigación y no está destinado al público en general. El usuario es responsable de garantizar que el equipo sea utilizado únicamente por personal técnicamente calificado.

Precaución: El Shake Table II es muy ruidoso cuando está en funcionamiento. Use protección para los oídos cuando trabaje cerca de la mesa de batido, o aísle la mesa de batido en un gabinete a prueba de sonido donde esté disponible.

2 COMPONENTS

Los componentes de Shake Table II se identifican en la Sección 2. Algunos de esos componentes se describen a continuación en la Sección 2.2.

Precaución: tenga cuidado con las piezas móviles que forman el sistema mecánico Shake Table II.

2.1 Nomenclatura

Los componentes enumerados en la Tabla 2.1 están etiquetados en la Figura 2.1.

ID	COMPONENTE	ID	COMPONENTE	
1	Escenario	9	Placa de circuito del sensor	
2	Plato base	10	Sensor de límite derecho	
3	motor de corriente continua	11	Sensor de posición de casa	
4	Tornillo de plomo	12	Sensor de límite izquierdo	
5	Tuerca de bola	13	Conector de cables de motor	
6	Perilla de ajuste manual	14	Encoder del motor y conector de sensores de la sala (es decir, potenciómetro)	
7	Guia lineal	15	Acelerómetro	
8	Bloque de rodamiento lineal	16	Conectores de acelerómetro	

Tabla 2.1: Componentes

2.2 Descripcion

2.2.1 Escenario

La etapa superior en la Shake Table II se muestra como ID # 1 en la Figura 2.1. Tiene 18×18 pulgadas2, o 45.7×45.7 cm2, y 9.7 mm de espesor. El escenario tiene muchos orificios para tornillos que se pueden usar para montar estructuras y otros objetos, por ejemplo, Quanser Active Mass Damper

2.2.2 Placa Inferior

La placa de soporte inferior, que se muestra en ID # 2 en la Figura 2.1, tiene 24 × 18 pulgadas2, o 60.9 × 45.7 cm2, y un espesor de 1.24 mm. Las guías lineales de acero y el tornillo de bola están instalados en esta placa. La placa inferior tiene 4 orificios para tornillos grandes en cada esquina y orificios para tornillos más pequeños a lo largo de los lados de la placa. Se pueden usar para sujetar la mesa de agitación en un soporte de planta baja para evitar que el sistema de la mesa de agitación se mueva, o al menos reducir la cantidad de vibración. Aunque esto no es necesario, se recomienda para obtener resultados más precisos cuando, por ejemplo, se mide la aceleración.

2.2.3 Motor DC

El Shake Table II incorpora un motor de CC trifásico sin escobillas Kollmorgen AKM24, mostrado por ID # 3 en la Figura 2.1. El motor tiene una potencia de 400 W. Se conecta a un tornillo de bola que acciona el conjunto de tuerca de bola sujetado a la parte inferior de la plataforma de la mesa de agitación. La conmutación sin escobillas se garantiza a través de tres sensores de sala con una eliminación de 120 grados. Algunas de las especificaciones del motor se incluyen en la Tabla 3.1. Las especificaciones más detalladas del motor están disponibles en la hoja de especificaciones del motor [2] bajo AKM24F.

Precaución: Entrada 15 A pico, 3.75 A continuo.

2.2.4 Tornillo de Avance

El tornillo de avance, que se muestra con ID # 4 en la Figura 2.1, circula a través de una tuerca de bola, componente # 5 en la Figura 2.1, que se adjunta a la parte inferior de la plataforma de la mesa de agitación y el motor la gira. El tornillo de avance tiene un paso de 0,50 pulgadas. Así, el escenario de la mesa de agitación se mueve 0,50 pulgadas, o 1,24 cm, por cada revolución de husillo de bolas.

Precaución: piezas móviles expuestas.

2.2.5 Codificador

El codificador está incrustado dentro del motor de CC y se utiliza para medir la posición lineal de la plataforma. No puede ser identificado externamente. El codificador del motor tiene una resolución de 2048 líneas por revolución. En el modo de cuadratura, esto da 8192 conteos por rotación completa del eje del motor. La resolución efectiva, es decir, la posición lineal mínima que se puede detectar, del desplazamiento de la etapa es de 3.10 µm.

2.2.6 Bloque de rodamiento lineal

Para un movimiento suave, el escenario está equipado con bloques de rodamientos lineales de bolas de baja fricción, mostrados por ID # 8 en la Figura 2.1, que se deslizan en dos ejes endurecidos por tierra, identificados por el componente # 7 en la Figura 2.1.

2.2.7 Interruptores de Limite

Estos sensores de proximidad de derecha, hogar e izquierda se muestran en la Figura 2.1 con ID # 10, 11 y 12, respectivamente. Los interruptores de límite izquierdo o derecho se activan cuando la etapa superior se mueve cerca del rango mecánico izquierdo o derecho. Del mismo modo, el sensor de inicio se establece en alto cuando la etapa superior se encuentra en la posición central o en el centro. Estos sensores se usan para desactivar el amplificador de potencia por seguridad, así como para calibrar el escenario a su posición central.

2.2.8 Acelerometro

Un acelerómetro ADXL325 de doble eje está montado debajo de la plataforma Shake Table II para medir la aceleración de la etapa en las direcciones x e y. Se muestra con la etiqueta ID # 15 en la Figura 2.1. El sensor tiene un rango de \pm 10 gy su ruido, en el rango de operación de la mesa de agitación, es de aproximadamente \pm 5.0 mV, es decir, \pm 5.0 mg. El sensor analógico está calibrado de manera que 1 V es igual a 1 g, o 9.81 m/s2. Consulte la hoja de especificaciones del acelerómetro ADXL325 [1] para obtener más detalles.

Precaución: Las lecturas del acelerómetro pueden ser engañosas y dar lugar a resultados inesperados. Tenga cuidado al usarlos, ya que generalmente se usan como indicadores.

(a) Vista Superior

(b) Vista de la Esuina Superior

Figura 2.1: Componentes de Shake Table II

3 SPECIFICATIONS

Symbol	Description	Value
R_m	Resistencia de la armadura del motor	2.94Ω
Lm	Inductancia del inducido del motor.	6.16 mH
<i>k</i> _t	Constante de par motor de corriente	0.36 N-m/A
km	Constante de retroceso del motor	0.224 V/(rad/s)
P_b	Paso de tornillo de bola	0.0127 m/rev [0.5 in/rev]
Ml,max	Masa máxima de carga total	15.0 kg [33.0 lb]
Ms	Sistema Mass Of Shake Table II	27.2 kg [60.0 lb]
	Dimensión del escenario superior.	0.46×0.46 m ² [18×18 in ²]
	Dimensión de la etapa inferior.	$0.61 \times 0.46 \text{ m}^2$ [24 ×18 in ²]
	Altura desde la parte inferior hasta la etapa superior.	12.4 cm [4.875 in]

La Tabla 3.1 enumera y caracteriza los principales parámetros asociados con el Shake Table II

xmax	Posición de carrera máxima desde el punto medio.	76.2 mm [3.0 in]
vmax	Velocidad máxima de la etapa.	664.9 mm/s [26.18 in/s]
Fmax	Fuerza máxima de la etapa.	708.7 N [159.3 lb]
amax	Aceleración máxima de la etapa para 0 kg de carga.	24.5 m/s ²
gmax	Aceleración máxima nominal de la etapa para 0 kg de carga.	2.50 g
K_ENC	Ganancia de la sensibilidad del codificador	3.1006 μm/count 1.22×10 ⁻⁴ in/count
K_ACC	Ganancia de sensibilidad del acelerómetro	-1 g/V
	Capacidad de carga dinámica de la tuerca de bola.	12000 N [2697.6 lb]
	Esperanza de vida de la tuerca de bola a plena carga.	6.35×10 ⁸ m [2.50×10 ¹⁰ in]
	Esperanza de vida del rodamiento lineal.	6.35×10 ⁶ m [2.5×10 ⁸ in]
	Capacidad de carga de los rodamientos lineales.	131.5 kg [290 lb]

Table 3.1: Especificaciones

4 CONFIGURACION DEL SISTEMA

La siguiente es una lista de los componentes de hardware utilizados en este experimento:

- 1. Amplificador de potencia: Quanser AMPAQ-PWM.
- 2. Dispositivo de adquisición de datos: Quanser Q2-USB, Q8-USB o QPIDe.
- 3. Batido de la planta de la mesa: Quanser Shake Table II

Consulte la documentación correspondiente para obtener más información sobre estos componentes. Los cables suministrados con el Shake Table II se describen en la Sección 4.1 y el procedimiento para conectar los componentes anteriores se describe en la Sección 4.2.

Precaución: si el equipo se utiliza de una manera no especificada por el fabricante, la protección provista por el equipo puede verse afectada.

4.1 Nomencletura del Cable

Los cables utilizados para conectar Shake Table II, AMPAQ-PWM y DAQ se muestran en 4.1. Dependiendo de su configuración, no todos estos cables son necesarios.

Cable No.	Cable	Туре	Description
1	RCA Cable	2xRCA to 2xRCA	Los cables RCA a RCA conectan los conectores AMPAQ-PWM Amplifier Command, Current Sense, S1, S2, S3 y S4 a un DAQ.
2	Shake Table II Motor Cable	4-pin-Amphenol to 4-socket- Amphenol	El cable del motor trifásico conecta la salida del amplificador AMPAQ-PWM al motor en el sistema Shake Table II.
3	E-Stop and Calibration Switch	Interruptor E- Stop y Calibración	El interruptor de parada de emergencia y calibración debe estar conectado a la AMPAQ-PWM para que funcione correctamente. El interruptor E-Stop se bloquea en la posición deshabilitada cuando se presiona y el interruptor de calibración se debe presionar durante la calibración de la mesa. Para liberar el E- Stop, gire el botón rojo en el sentido de las agujas del reloj.
Cable No.	Cable	Туре	Description
4	From Device Cable	DB15 a DB15	Este cable conecta el conector AMPAQ- PWM From Device a la placa de circuito Shake Table II. Transporta las tres señales de fin de carrera, las señales de efecto Hall del motor y las señales del encoder del motor. También suministra la potencia de CC requerida por los sensores.

5	Encoder Cable	5-pin-stereo- DIN para	Este cable transporta las señales del codificador entre el conector del codificador AMPAQ-PWM y el DAQ. Estas señales son: fuente de alimentación de +5 VCC, tierra, canal A y canal B. (El canal Z es opcional).
6	Analog Cable	5-pin-stereo- DIN	Este cable conecta un sensor analógico externo al conector AMPAQ-PWM S1, S2, S3 o S4. El cable también suministra ± 12 VDC desde la AMPAQ-PWM para alimentar el sensor.
7	Digital I/O Cable	6-pin-mini-DIN para	Este cable conecta el conector de E / S digital en el AMPAQ-PWM a un Q2-USB o QPIDe DAQ.
8	Split Digital I/O Cabla	6-pin-mini-DIN	Este cable conecta el conector de E / S digital de la AMPAQ-PWM a un Q8-USB.

Tabla 4.1: Cables utilizados para conectar el AMPAQ-PWM a un DAQ Quanser y experimentar.

4.2 Conexiones

Esta sección describe cómo conectar la Shake Table II, AMPAQ-PWM y DAQ. Las conexiones se ilustran en la Figura 4.1. Los números de cable mostrados en la Figura 4.1 corresponden a los números de cable listados en la Tabla 4.1.

Figura 4.1: Conexión del Shake Table II, el amplificador de potencia AMPAQ-PWM y el DAQ

1. Asegúrese de que su dispositivo de adquisición de datos (DAQ) esté instalado y esté operativo.

2. Asegúrese de que todos los equipos estén apagados antes de realizar cualquiera de estas conexiones. Esto incluye apagar su PC y el AMPAQ-PWM.

3. Usando los conectores blancos de un cable 2xRCA a 2xRCA (número de cable 1), conecte el conector de Comando del Amplificador en el AMPAQ-PWM al Canal de Salida Analógica # 0 en el DAQ. Esto lleva la señal de comando que controla la salida al motor.

4. Usando los conectores rojos de un cable 2xRCA a 2xRCA (número de cable 1), conecte el conector de detección de corriente en el AMPAQ-PWM al canal de entrada analógica # 4 en el DAQ. Esto lleva una señal proporcional a la corriente de salida real. Usuarios de Q2-USB: el sentido actual no se usa; No conecte y continúe con el siguiente paso.

5. Usando los conectores rojos de otro cable 2xRCA a 2xRCA (número de cable 1), conecte el conector S1 en el AMPAQ-PWM al canal de entrada analógica # 0 en el DAQ. Esto lleva la señal del codificador desde la Shake Table II hasta el DAQ.

6. Conecte el cable de motor Amphenol de 4 pines al Amphenol de 4 enchufes (número de cable 2) del conector Para cargar en el AMPAQ-PWM al conector del motor Shake Table II. Este cable conecta la salida del AMPAQPWM al motor Shake Table II.

7. Conecte el interruptor E-Stop y Calibración (número de cable 3) al conector E-Stop en el AMPAQ-PWM.

8. Conecte el cable DB15 a DB15 (número de cable 4) desde el conector del dispositivo en el AMPAQ-PWM al conector del módulo de alimentación en la mesa de sacudidas II, asegurándose de que los tornillos se sujeten en ambos extremos. Este cable transporta las tres señales de fin de carrera, las señales de efecto Hall del motor y las señales del encoder del motor.

Precaución: Los tornillos de bloqueo de los conectores DB15 deben estar sujetos en ambos extremos del cable. Si no se aprietan los seguros de los tornillos, el cable podría aflojarse, lo que podría dañar el equipo y / o causar lesiones al personal cercano.

9. Conecte el cable DIN estéreo de 5 pines al cable DIN estéreo de 5 pines (número de cable 5) del conector del codificador en el AMPAQ-PWM al canal de entrada del codificador n. ° 0 en el DAQ. Esto lleva las señales del codificador del motor entre el AMPAQ-PWM y el DAQ.

10. Conecte el cable mini-DIN de 6 pines al mini-DIN de 6 pines (cable número 6) del conector S1 en el AMPAQPWM al conector del acelerómetro en el lado de la Shake Table II.

11. Conecte el cable plano de 16 pines (número de cable 7) del conector de E / S digital en la AMPAQ-PWM al terminal DIO 0: 7 en el DAQ. Usuarios de Q8-USB: conecte el cable plano dividido de 16 pines (número de cable 8) del conector de E / S digital en el AMPAQ-PWM a los conectores de salida digital y entrada digital en el Q8-USB. Tenga en cuenta que el cable plano dividido de 16 pines no está codificado. Asegúrese de que las conexiones se realicen de acuerdo con las etiquetas del cable.

4.3 Montaje de Shake Table II

El Shake Table II debe montarse y sujetarse a una plataforma o piso estable (por ejemplo, atornillado al piso de concreto). Las dimensiones de la placa base y del orificio del tornillo se indican en la Figura 4.2. Puede usar los cuatro orificios de los tornillos de las esquinas, por ejemplo, para atornillar la placa base a la plataforma o al piso

Precaución: Shake Table II debe montarse en una plataforma o piso estable antes de la operación.

La placa superior de Shake Table II se puede usar para montar las estructuras Quanser AMD-1 y AMD-2, así como las personalizadas. Las dimensiones de la placa superior se muestran en la Figura 4.3. Utilice los orificios de los tornillos para montar de forma segura la estructura en el sistema de la mesa de agitación.

Figure 4.2: Dimensions of Shake Table II base plate

Figure 4.3: Dimensions of Shake Table II top plate

5 MANTENIMIENTO

El Shake Table II debe usarse siempre en un entorno limpio y sin polvo. Además, para mantener el rendimiento y garantizar la longevidad, se recomienda lubricar periódicamente las guías lineales y el tornillo de avance de la Shake Table II. Las guías lineales están hechas de acero de aleación 1060 endurecido que puede desarrollar óxido superficial. La frecuencia de la lubricación, depende del uso y las condiciones ambientales.

Guías lineales: Recomendamos utilizar el aceite lubricante para rodamientos Nook LBL01, que estádisponibleparasucompraenNookIndustriesen:http://www.nookindustries.com/Product/ProductName/100000/LBL-1

Si este aceite no está disponible, cualquier aceite de base sintética con PTFE proporcionará una protección similar. Si se observa óxido en las guías lineales, se puede eliminar con una almohadilla poco abrasiva (por ejemplo, almohadilla Scotch-Brite).

Tornillo guía: El tornillo guía Shake Table II se puede lubricar con el lubricante para husillos de bolas E-900. Este aceite está disponible para su compra por Nook Industries en: <u>http://www.nookindustries.com/Product/ProductName/105818/E-900</u> Si este aceite no está disponible, cualquier aceite de base sintética con PTFE en forma de rociador puede proporcionar beneficios.

Precaución: asegúrese de que el amplificador esté desconectado de Shake Table II antes de aplicar lubricante a las guías lineales o al tornillo de avance de Shake Table II.

Precaución: NO aplique ningún aceite lubricante directamente sobre los sensores de límite.

6 CONFIGURACION EN X-Y DE SHAKE TABLE II

Se pueden ejecutar dos dispositivos Shake Table II simultáneamente. Se pueden montar perpendiculares juntos, como se muestra en la Figura 6.1, para tener desplazamientos en las direcciones x e y.

Figura 6.1: Sistemas Shake Table II en configuración X-Y

Los siguientes componentes de hardware son necesarios para el sistema X-Y Shake Table II:

1. Amplificador de potencia: 2x Quanser AMPAQ-PWM (uno para cada mesa de batido)

2. Dispositivo de adquisición de datos:

- (a) Opción 1: 1 dispositivo de adquisición de datos Quanser Q8-USB (DAQ) y 1x Quanser Q2-USB DAQ.
- (b) Opción 2: 2x dispositivos Quanser Q8-USB DAQ.
- 3. Hardware de la mesa Shake: 2x dispositivos Quanser Shake Table II Siga estos pasos para

configurar el sistema X-Y Shake Table II:

- 1. Consulte la Sección 4.2 para obtener instrucciones sobre cómo configurar un sistema Shake Table II de un solo eje y asegúrese de que cada Shake Table II se haya probado correctamente.
- 2. Consulte la Sección 6.1 para obtener algunas instrucciones sobre el montaje de la tabla del eje y en la tabla del eje x.
- 3. Conecte los dos dispositivos Quanser AMPAQ-PWM a la placa de terminales extendida Q8 y los dos dispositivos Shake Table II, como se detalla en la Sección 6.2.

6.1 Montaje de las mesas de Batido

La tabla inferior controla los movimientos del eje x y los desplazamientos del eje y se generan mediante una mesa vibratoria montada en la parte superior. Los ejes se ilustran en la figura 6.2.

Figura 6.2: Ejes en los sistemas Shake Table II en configuración X-Y

Figura 6.3: Vista lateral de los orificios de los tornillos en los sistemas Shake Table II en configuración X-Y

Siga estos pasos para montar la tabla superior del eje y en la tabla inferior de agitación del eje x::

- 1. Hay un total de 8 orificios para tornillos que se utilizarán para sujetar las dos mesas de agitación. La figura 6.2 muestra los orificios de los tornillos 4x en un lado.
- 2. Coloque los 8 topes de goma en los 8 orificios de los tornillos en la mesa de sacudida inferior designada. Los topes de goma evitan que se raye la parte superior de la Shake Table II del eje x y también ayuda a minimizar las vibraciones entre las dos tablas.

- 3. Como se muestra en la Figura 6.2, coloque la mesa de agitación del eje y en el escenario de la Tabla de agitación II inferior (es decir, la que tiene topes de goma).
- 4. Inserte los 8 tornillos en los 8 orificios de los tornillos que se muestran en la Figura 6.2 y la Figura 6.3. Los topes de goma pueden haberse desplazado cuando se montó la mesa superior. Se recomienda tener dos personas para esta tarea. Una persona levanta el sistema superior mientras que la otra puede alinear el tornillo con el orificio del tornillo y el tope de goma. No apriete los tornillos completamente hasta que estén todos colocados correctamente.
- 5. Apriete los 8 tornillos para fijar la tabla superior del eje y a la tabla inferior del eje x .

6.2 Conexiones de Cable

Esta sección describe las conexiones utilizadas para conectar dos dispositivos DAQ Quanser a los amplificadores de potencia 2x AMPAQ-PWM y los sistemas 2x Shake Table II para el movimiento X-Y. Las conexiones se resumen en la Tabla 6.1 y se muestran en la Figura 6.4. El dispositivo de adquisición de datos (DAQ) para el amplificador X y la tabla X se denota como DAQ # 0 y el dispositivo DAQ para el amplificador y y la tabla y se denota como DAQ # 1

Cable	From	To	Signal
1a	DAQ # 0: Salida analógica # 0	AMPAQ-PWM X: Conector de comando del amplificador	Señal de comando que controla la salida al motor para la tabla.
2a	AMPAQ-PWM X: Cargar	Shake Table II X: conector del motor	Conecta el amplificador al motor Shake Table II.
3a	conector	AMPAQ-PWM X: E- Stop	Parada de emergencia y habilitar la calibración.
4a	Interruptor de parada de emergencia	conector	Las señales de interruptor de límite, las señales de efecto Hall del motor y las señales del encoder del motor, así como la potencia de estos sensores.
5a	Agitar la mesa II X: Al poder	AMPAQ-PWM X: De De-	Señales de encoder del motor.
6a	Conector de módulo	vice conector	Señal del acelerómetro, y potencia para el acelerómetro.
7a	AMPAQ-PWM X: Codificador	DAQ # 0: Entrada de codificador # 0	Conecta las señales del sensor analógico S1 a los canales de entrada analógica # 0 en DAQ # 0.

8a	conector	AMPAQ-PWM X: conector S1	Habilite los comandos de modo y modo de calibración desde el DAQ. Limite la retroalimentación del interruptor, la retroalimentación del interruptor de calibración y la retroalimentación de la condición de falla al DAQ.
1b	Shake Table II X: Conector del acelerómetro	DAQ # 0: Entrada analógica # 0	Señal de comando que controla la salida al motor para la tabla.
2b	AMPAQ-PWM X: S1 RCA	DAQ # 0: E / S digital # 0: 7	Conecta el amplificador al motor Shake Table II.
3b	conector	Usuarios de Q8-USB: siga las etiquetas del cable de cinta dividida suministrado.	Parada de emergencia y habilitar la calibración.
4b	AMPAQ-PWM X: conector de E / S digital	AMPAQ-PWM Y: Conector de comando del amplificador	Las señales de interruptor de límite, las señales de efecto Hall del motor y las señales del encoder del motor, así como la potencia de estos sensores.
5b	DAQ # 1: Salida analógica # 0	Shake Table II Y: conector del motor	Señales de encoder del motor.
6b	AMPAQ-PWM Y: Para cargar	AMPAQ-PWM Y: E- Stop	Señal del acelerómetro, y potencia para el acelerómetro.
7b	conector	conector	Conecta las señales del sensor analógico S1 a los canales de entrada analógica # 0 en DAQ # 1.
8b	Interruptor de parada de emergencia	AMPAQ-PWM Y: De De-	Habilite los comandos de modo y modo de calibración desde el DAQ. La realimentación del interruptor de límite, la realimentación del conmutador de calibración y la realimentación de la condición de falla al DAQ.

Tabla 6.1: Configuración X-Y Shake Table II Cableado

Precaución: Los tornillos de bloqueo de los conectores DB15 deben estar sujetos en ambos extremos del cable.

(b) Tabla Y Conexiones

Figura 6.4: Conexión del sistema X-Y Shake Table II

21

7 SOLUCION DE PROBLEMAS

El escenario no se mueve cuando se ejecutan los controladores.

- Asegúrese de que el amplificador de potencia esté encendido y en funcionamiento, por ejemplo, cuando utilice el AMPAQ-PWM, verifique que el LED de estado verde esté encendido.
- Verifique que el dispositivo de adquisición de datos sea funcional.
- Asegúrese de que el interruptor E-Stop y Calibración esté conectado y que el interruptor E-Stop esté en la posición superior, liberada.

El codificador no está midiendo.

- Revise las conexiones del codificador en la Sección 4.2.
- Verificar que el dispositivo de adquisición de datos sea funcional.

El acelerómetro no está midiendo

- Revise las conexiones del acelerómetro en la Sección 4.2. Asegúrese de que el cable analógico esté firmemente conectado al conector del acelerómetro y al conector S1 en la AMPAQ-PWM. Además, el cable RCA va desde el conector S1 en la AMPAQ-PWM a la entrada analógica # 0.
- Asegúrese de que el amplificador de potencia esté encendido y en funcionamiento, por ejemplo, cuando utilice el AMPAQ-PWM, verifique que el LED de estado verde esté encendido.
- Verifique que el dispositivo de adquisición de datos sea funcional.

8 SOPORTE TECNICO

Para obtener soporte de Quanser, vaya a http://www.quanser.com/ y haga clic en el enlace de soporte técnico. Rellene el formulario con toda la información de hardware y software solicitada, así como una descripción del problema encontrado. Además, asegúrese de incluir su dirección de correo electrónico y número de teléfono. Envíe el formulario y una persona de soporte técnico se pondrá en contacto con usted.

REFERENCIA

- [1] Dispositivos analógicos. Adx1325. 2009.
- [2] Danaher Motion. AKM Series Motors, 2005

Sistemas para la dinámica estructural y el análisis docente e investigativo.

Precisos, robustos y flexibles, las plataformas de estructura inteligente y la mesa de batido Quanser satisfacen las necesidades de los educadores e investigadores en cuanto a dispositivos confiables, de bajo mantenimiento y rentables. Con estos sistemas, puede estudiar diversas técnicas de control utilizadas para manipular y amortiguar las vibraciones estructurales e introducir un análisis multidinámico más avanzado. Las mesas de agitación Quanser y las estructuras inteligentes también son ideales para investigadores en campos de ingeniería que se centran en el análisis y aislamiento de vibraciones avanzadas, el estudio de la respuesta y los límites elásticos de estructuras y geomateriales sometidos a cargas dinámicas.

Para más información, póngase en contacto con info@quanser.com

©2016 Quanser Inc. All rights reserved.

INFO@QUANSER.COM +1-905-940-3575 QUANSER.COM

Solutions for teaching and research. Made in Canada.