

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

EVALUACIÓN DE LAS PROPIEDADES MECÁNICAS Y FÍSICAS DEL CONCRETO F'C=210KG/ CM2 CON LA INCORPORACIÓN DE DESMONTE MINERO COMO SUSTITUTO PARCIAL DEL AGREGADO GRUESO – PUNO 2022

TESIS

PRESENTADA POR:

Bach. EDGAR RAÚL MACHACA MAYTA

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO CIVIL

PUNO – PERÚ

2024

Identificador de la entrega pricoid: 8254.412972345

EDGAR RAÚL MACHACA MAYTA

EVALUACIÓN DE LAS PROPIEDADES MECÁNICAS Y FÍSICAS DEL CONCRETO F'C=210KG/ CM2 CON LA INCORPORACIÓN ...

Tesis de pregrado

My Files

Universidad Nacional del Altiplano

Detalles del documento

Edentificador de la entrega trn:nid::8254:412972345

Fecha de entrega-

5 die 2024, 1:01 p.m. GMT-5

Fecha de descarga 5 dic 2024, 1:06 p.m. GMT-5

Nombre de archivo

BORRADOR - Edgar Raul Machaca - ULTIMO 5.5.pdf

Tamaño de archivo

152 Páginas

28,488 Palabras

148,805 Caracteres

Turnitin Pagne 1 of 180 - Persada

Identificación de la entrega smost : 8254-412972345

turnitin Págna 2 of 160 - Descripción general de integridad

Identificador de la entrega timordi::8254:412972345

15% Similitud general

El total combinado de todos las comodencias, incluides las fuentes superpuestas, para ca-

Filtrado desde el informe

- + Bibliografía
- . Texto citado
- Coincidencias menores (menos de 10 palabras)

Fuentes principales

10% Bruentes de Internet

2% Publicaciones

12% 🙏 Trabajos entregados (trabajos del estudiante)

Marcas de integridad

N.º de alertas de integridad para revisión

No se han detectado manipulaçiones de texto sospechosas.

Los alguntimos de numeiro sistema analizan un documento en profundidad para buscar incensistencias que permitirian distinguirlo de una antrega murmel. Si adventimos aligo exicaño, lo marcamos como una alteria para que pueda neviserlo.

Una marca de alerta no es necesariamente un indicador de problemes. Sin embergo, recommissamos que preste atención y la revise

ng Samuri Marating Cacerco DOCENTE UNIVERSITATIO COO. LINA Nº 2007637 ASESOR: Ing. SAMEEL HUAGUISTO

NOBO:

052ic 2024

SABDIMANDE IN - BPK

Turnitin Pagesu 2 of 1001 - Descripción general de integralad.

Irlantification de la entrega tritoid : 8254:412922845

repositorio.unap.edu.pe No olvide <u>citar adecuadamente esta te</u>

DEDICATORIA

Dedico este trabajo principalmente a Dios, por haberme dado la fuerza y el valor para seguir adelante con mi proyecto de tesis y mi formación profesional.

A mi madre Dominga Mayta Itusaca, que siempre me apoya en buenos y malos momentos y por su amor incondicional, enseñándome a no rendirme ante nada y siempre seguir para adelante.

A mi padre Faustino Machaca Quispe, por apoyarme siempre en mis estudios dándome la educación y los valores que me inculcan en mi casa.

A mis hermanas María, Mari luz y Gladis por sus consejos, dándome apoyo en mis estudios y por qué ellas se sienten orgullosas de mí persona y mi formación profesional.

Edgar Raúl Machaca Mayta

UNIVERSIDAD
NACIONAL DEL ALTIPLANO
Repositorio Institucional

AGRADECIMIENTOS

En primer lugar, agradezco a Dios, por cuidarme y protegerme siempre en los buenos y

malos momentos y darme fuerzas para superar las adversidades y dificultades a lo largo

de toda mi vida.

A la Universidad Nacional del Altiplano y en especial a la escuela profesional de

Ingeniería Civil, por formarme profesionalmente y adquirir valiosos conocimientos en

sus aulas.

Al ingeniero Samuel Huaquisto Cáceres que con sus conocimientos y experiencias me ha

asesorado en mi proyecto de tesis y por sus enseñanzas durante toda mi formación

profesional en la universidad.

A los miembros del jurado: Ing. Carlos Alberto Gonzales Gutiérrez, Ing. Diana Elizabeth

Quinto Gastiaburu, Ing. Gilmer Maguin Sardón Sánchez. Por sus exigencias y el apoyo a

lo largo de mi proyecto de investigación.

De igual forma agradezco también a los docentes de la Escuela Profesional de Ingeniería

Civil por las enseñanzas y sus conocimientos que me brindaron en mi etapa universitaria.

Finalmente, agradezco también a mis amigos y compañeros de la universidad que me

apoyaron siempre, compartiendo momentos inolvidables, apoyándonos en los estudios y

trabajos, compartiendo nuestros conocimientos, anécdotas y experiencias.

Edgar Raúl Machaca Mayta

ÍNDICE GENERAL

	Pág.
DEDICATORIA	
AGRADECIMIENTOS	
ÍNDICE GENERAL	
ÍNDICE DE TABLAS	
ÍNDICE DE FIGURAS	
ACRÓNIMOS	
RESUMEN	18
ABSTRACT	19
CAPÍTULO I	
INTRODUCCIÓN	
1.1. PLANTEAMIENTO DEL PROBLEMA	21
1.1.1.Problema General	24
1.1.2. Problemas específicos	24
1.2. HIPÓTESIS DE LA INVESTIGACION	24
1.2.1. Hipótesis general	24
1.2.2. Hipótesis específicas	25
1.3. JUSTIFICACIÓN DE LA INVESTIGACIÓN .	25
1.4. OBJETIVOS	26
1.4.1. Objetivo general	26
1 4 2 Objetivos específicos	26

CAPÍTULO II

REVISIÓN DE LITERATURA

2.1.	ANTECEDENTES DE LA INVESTIGACIÓN	27
	2.1.1. Antecedentes Internacionales	27
	2.1.2. Antecedentes nacionales	29
	2.1.3. Antecedentes locales	31
2.2.	MARCO TEÓRICO	32
	2.2.1.Concreto	32
	2.2.2. Agregados	34
	2.2.3. Desmonte	36
	2.2.4. Agua	39
	2.2.5. Diseño de mezcla	39
	2.2.6. Propiedades físicas y mecánicas de los agregados	40
	2.2.7. Resistencia del concreto	43
	CAPÍTULO III	
	MATERIALES Y MÉTODOS	
3.1.	ASPECTOS GENERALES	50
	3.1.1. Ubicación política	50
	3.1.2. Ubicación geográfica	55
	3.1.3. Ubicación politica y geografica donde se empleará el diseño de mo	ezclas de
	concreto	56
	3.1.4. Accesibilidad	57
	3.1.5.Clima	58
	3.1.6. Geología	58

3.2.	MATERIALES Y METODOLOGÍA EXPERIMENTAL	62
	3.2.1. Etapa preliminar	62
	3.2.2. Etapa de campo	62
	3.2.3. Etapa de gabinete	63
3.3.	METODOLOGÍA DE LA INVESTIGACIÓN	63
	3.3.1. Nivel de Investigación	64
	3.3.2. Tipo de Investigación	64
	3.3.3. Diseño de Investigación	64
	3.3.4. Enfoque de investigación	65
	3.3.5. Variables de la Investigación	65
	3.3.6. Población	68
	3.3.7. Muestra	68
	3.3.8. Prueba Estadística	69
3.4.	PROCEDIMIENTO EXPERIMENTAL	69
	3.4.1. Etapa de pre campo.	69
	3.4.2. Etapa de campo	70
	3.4.3. Etapa de laboratorio	71
	3.4.4. Caracterización de los agregados	71
	3.4.5. Procesos de mezclado de los materiales	85
	3.4.6. Proceso de curado de las briquetas	88
	3.4.7. Resistencia a la compresión, tracción y flexión del concreto	88
	3.4.8 Etapa de gabinete	91

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1.	PROPIEDADES FISICAS Y MECANICAS DEL DESMONTE M	IINERO.92
	4.1.1. Análisis granulométrico por tamizado	92
	4.1.2. Peso específico y absorción del agregado grueso	94
	4.1.3. Contenido de humedad del agregado	94
	4.1.4. Peso unitario suelto y compactado	95
	4.1.5. Abrasión de los ángeles	96
4.2.	PROPIEDADES DE LOS MATERIALES Y DISEÑO DE MEZO	LA 97
	4.2.1. Características físicas de los agregados finos y gruesos	97
	4.2.2. Diseño de mezcla para un concreto f'c=210kg/cm²	99
	4.2.3. Propiedades físicas del concreto fresco	100
4.3.	PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO	
	ENDURECIDO	102
	4.3.1. Absorción del concreto	102
	4.3.2. Densidad del concreto endurecido	104
	4.3.3. Volumen de vacíos	108
	4.3.4. Resistencia a la compresión	109
	4.3.5. Resistencia a la tracción indirecta	114
	4.3.6. Resistencia a la flexión	115
	4.3.7. Cuadro de resumen de resultados de los ensayos compresión, t	raición y
	flexión a los 28 días de curado	116
4.4.	CONTRASTACIÓN DE HIPÓTESIS	116
4.4.		
4.4.	4.4.1. Prueba de normalidad	

4.5. DISCUSIÓN DE RESULTADOS	
V. CONCLUSIONES	138
VI. RECOMENDACIONES	142
VII. REFERENCIAS BIBLIOGRAFICAS	143
ANEXOS	150

ÁREA: Construcciones.

TEMA: La tecnología de los materiales en la construcción.

LÍNEA DE INVESTIGACIÓN: Construcciones y Gerencia.

FECHA DE SUSTENTACION: 18 de diciembre del 2024

ÍNDICE DE TABLAS

	Pág.
Tabla 1	Medidas de tamices para el análisis granulométrico
Tabla 2	Características de los agregados finos y gruesos (río Cutimbo)
Tabla 3	Acceso al área de estudio
Tabla 4	Tabla de operacionalización de variables
Tabla 5	Ensayos realizados de resistencias
Tabla 6	Análisis granulométrico por tamizado
Tabla 7	Peso específico y absorción de agregado (desmonte minero)
Tabla 8	Contenido de humedad del agregado (desmonte minero)
Tabla 9	Peso unitario suelto y compactado del agregado (desmonte minero) 95
Tabla 10	Pérdida de desgaste del agregado (desmonte minero)
Tabla 11	Resumen de las características del desmonte minero (agregado grueso) 97
Tabla 12	Características de los agregados finos y gruesos (río Cutimbo)
Tabla 13	Características de los agregados finos y gruesos (río Cutimbo)
Tabla 14	Dosificación por metro cúbico (peso húmedo) corrección por humedad 99
Tabla 15	Peso unitario suelto del concreto en estado fresco
Tabla 16	Peso unitario compactado del concreto en estado fresco
Tabla 17	Absorción después de la inmersión del concreto en estado endurecido 102
Tabla 18	Absorción después de la inmersión y ebullición del concreto
Tabla 19	Densidad seca global del concreto
Tabla 20	Densidad global después de la inmersión del concreto
Tabla 21	Densidad global después de la inmersión y ebullición del concreto 106
Tabla 22	Densidad aparente después de la inmersión y ebullición del concreto 106
Tabla 23	Volumen de vacíos después de la inmersión y ebullición del concreto 108

Tabla 24	Resistencia a compresión del concreto a 7 días	.09
Tabla 25	Resistencia a la compresión a 14 días de su curado	.11
Tabla 26	Resistencia a la compresión a 28 días de su curado	.12
Tabla 27	Resistencia a la tracción a 28 días de su curado	.14
Tabla 28	Resistencia a la flexión a los 28 días de su curado	.15
Tabla 29	Cuadro resumen de resultados de los ensayos a compresión, tracción 1	.16
Tabla 30	Prueba de normalidad para los datos de peso unitario suelto del concreto 1	.17
Tabla 31	Prueba de normalidad para los datos de peso unitario compactado 1	.17
Tabla 32	Prueba de normalidad para los datos de absorción 1	.18
Tabla 33	Prueba de normalidad para los datos de densidad seca	.18
Tabla 34	Prueba de normalidad para los datos de densidad aparente	.18
Tabla 35	Prueba de normalidad para los datos de volumen de vacíos	.19
Tabla 36	Prueba de normalidad para los datos de resistencia a la compresión 1	.19
Tabla 37	Prueba de normalidad para los datos de resistencia a la tracción	.20
Tabla 38	Prueba de normalidad para los datos de resistencia a la flexión 1	.20
Tabla 39	Análisis de varianza ANOVA de un factor para los datos de peso unitario	
		.21
Tabla 40	Prueba post hoc de Tukey para los datos de peso unitario suelto 1	.21
Tabla 41	Análisis de varianza ANOVA de un factor para los datos de peso unitario	
		.22
Tabla 42	Prueba post hoc de Tukey para los datos de peso unitario compactado 1	.23
Tabla 43	Análisis de varianza ANOVA de un factor para los datos de absorción 1	.24
Tabla 44	Prueba post hoc de Tukey para los datos de absorción	.24
Tabla 45	Análisis de varianza ANOVA de un factor para los datos de densidad seca	l
		25

Tabla 46	Prueba post hoc de Tukey para los datos de densidad seca
Tabla 47	Análisis de varianza ANOVA de un factor para los datos de densidad 127
Tabla 48	Prueba post hoc de Tukey para los datos de densidad aparente
Tabla 49	Análisis de varianza ANOVA de un factor para los datos de volumen 128
Tabla 50	Prueba post hoc de Tukey para los datos de volumen de vacíos
Tabla 51	Análisis de varianza ANOVA de un factor para los datos de resistencia 129
Tabla 52	Prueba post hoc de Tukey para los datos de resistencia a la compresión 130
Tabla 53	Análisis de varianza ANOVA de un factor para los datos de resistencia 131
Tabla 54	Prueba post hoc de Tukey para los datos de resistencia a la tracción 131
Tabla 55	Análisis de varianza ANOVA de un factor para los datos de resistencia 132
Tabla 56	Prueba post hoc de Tukey para los datos de resistencia a la flexión 133

ÍNDICE DE FIGURAS

	Pág.
Figura 1	Desmonte minero
Figura 2	Desmonte minero graduado
Figura 3	Diagrama de cuerpo libre resistencia a compresión
Figura 4	Tipos de fisuras en resistencia a compresión
Figura 5	Diagrama de cuerpo libre resistencia a flexión
Figura 6	Pruebas de resistencia a flexión
Figura 7	Diagrama de cuerpo libre de la resistencia a tracción
Figura 8	Ubicación del material DM
Figura 9	Ubicación del botadero DM
Figura 10	Ubicación del árido natural
Figura 11	Cantera del agregado natural (AN)
Figura 12	Ubicación de la fuente de Agua empleada para el diseño de mezcla 55
Figura 13	Ubicación del área de estudio donde se emplearán los concretos con DM.57
Figura 14	Roca Pizarra – Mina Rinconada
Figura 15	Recojo de muestra roca pizarra
Figura 16	Recojo de muestra del agregado natural de la localidad Pichacani - puno. 71
Figura 17	Se muestra los agregados naturales y desmonte minero
Figura 18	Cuarteo de las muestras natrales y desmonte minero
Figura 19	Ensayo de contenido de humedad
Figura 20	Tamizado de los agregados natural y desmonte minero
Figura 21	Muestras de los agregados gruesos y finos
Figura 22	Muestra del agregado grueso del desmonte minero
Figura 23	Saturación de la muestra

Figura 24	Ensayo con el instrumento picnómetro
Figura 25	Se muestra el recipiente metálico con la placa de vidrio
Figura 26	Ensayo peso unitario compactado y suelto del agregado grueso natural 81
Figura 27	Ebullición de la muestra de concreto con dosificación de desmonte minero
Figura 28	Muestras para determinar la densidad, absorción y vacíos del concreto 83
Figura 29	Ensayo de Abrasión del agregado del desmonte minero y agregado natural
Figura 30	Procedimiento de vaciado de concreto en los moldes de probetas
Figura 31	Briquetas de concreto según diseño con dosificaciones de agregado 86
Figura 32	Viguetas prismáticas de concreto según diseño con dosificaciones 87
Figura 33	Ensayo de la densidad, la absorción de agua y vacíos en el concreto 87
Figura 34	Curado de las muestras testigos y viguetas
Figura 35	Rotura de briqueta con distintas dosificaciones
Figura 36	Rotura de la briqueta – ensayo a tracción
Figura 37	Rotura de las vigas– ensayo a flexión
Figura 38	Ensayo de densidad y absorción y los vacíos en el concreto
Figura 39	Distribución de partículas del desmonte minero
Figura 40	Variación de los pesos unitarios del concreto en estado fresco
Figura 41	Variación de la absorción del concreto en estado endurecido 103
Figura 42	Variación de la densidad seca del concreto en estado endurecido 105
Figura 43	Variación de la densidad aparente del concreto en estado endurecido 107
Figura 44	Variación del volumen de vacíos del concreto en estado endurecido 109
Figura 45	Variación de la resistencia a compresión del concreto curado a 7 días 110
Figura 46	Variación de la resistencia a compresión del concreto curado a 14 días 111

Figura 47	Variación de la resistencia a compresión del concreto curado a 28 días 112
Figura 48	Resistencia a la compresión a diferentes días de su curado
Figura 49	Variación de la resistencia a tracción del concreto curado a 28 días 114
Figura 50	Variación de la resistencia a flexión del concreto curado a 28 días 115

ACRÓNIMOS

AA: Agregado artificial

ACI: American Concrete Institute.

a/c: agua/cemento

AF: Agregado fino

AG: Agregado grueso

AGR: Agregado grueso reciclado

AGR-D: Agregado grueso reciclado de desmonte

AGN: Agregado Grueso Natural

AN: Agregado natural.

DM: Desmonte minero

f'c: Resistencia a la compresión axial

NTP: Norma Técnica Peruana

M'r: Resistencia a la flexión.

MTC: Ministerio de transportes y comunicaciones

T: Resistencia a la tracción.

TM: Tamaño Máximo.

TMN: Tamaño máximo nominal.

RESUMEN

La creciente generación de desmonte minero representa un problema ambiental, en este contexto, al sustituir agregado natural por desmonte minero para la producción de concreto con la finalidad de encontrar una solución sostenible para la gestión de estos residuos y reducir el impacto ambiental de la actividad minera, él **objetivo** principal es evaluar las propiedades mecánicas y físicas del concreto de f'c=210 kg/cm2 con la incorporación del **desmonte minero** (DM) actuando como sustituto parcial del agregado grueso. La metodología empleada es de nivel aplicado – correlacional, y un diseño experimental con enfoque cuantitativo. Se evaluó el concreto 210 kg/cm², sustituyendo el agregado grueso por desmonte minero (DM) en proporciones de 25%, 50%, 75% y 100%. Los **resultados** al incorporar un 25% de DM, la resistencia a compresión aumentó un 6.01%, mientras que la resistencia a tracción y flexión disminuyeron un 7.35% y 10.08% Por otro lado, la absorción aumentó un 6.53%. Con un 50% de DM, la resistencia a compresión aumentó un 9.09%, la tracción disminuyó un 2.22% y la flexión un 18.39%, pero la absorción disminuyó un 8.96% y el diseño con 100% de DM mostró una disminución del 0.31% en la resistencia a compresión, un aumento del 4.03% en la resistencia a tracción y una disminución del 22.99% en la resistencia a flexión. La absorción también disminuyó en un 17.91%. Por otro lado, el diseño con 75% de DM presentó resultados óptimos, superando a la muestra patrón en resistencia a compresión (22.50%), tracción (10.07%) y flexión (0.27%) a los 28 días, con una disminución del 23.13% en la absorción. Se **concluye** que los resultados demuestran que el desmonte minero mejora la resistencia del concreto y reduce su absorción, convirtiéndolo en un material viable y sostenible para su producción.

Palabras Clave: Agregado, concreto, desmonte, minería, propiedades.

ABSTRACT

The increasing generation of mining waste represents an environmental problem, in this

context, by replacing natural aggregate with mining waste for the production of concrete

in order to find a sustainable solution for the management of this waste and reduce the

environmental impact of mining activity, the main objective is to evaluate the mechanical

and physical properties of concrete of f'c=210 kg/cm2 with the incorporation of mining

waste acting as a partial substitute for coarse aggregate. The methodology used is applied-

correlational, and an experimental design with a quantitative approach. The 210 kg/cm²

concrete was evaluated, substituting the coarse aggregate with mining waste (DM) in

proportions of 25%, 50%, 75% and 100%. The results when incorporating 25% DM, the

compressive strength increased by 6.01%, while the tensile and flexural strength

decreased by 7.35% and 10.08%. On the other hand, the absorption increased by 6.53%.

With 50% DM, compressive strength increased by 9.09%, tensile strength decreased by

2.22% and flexural strength by 18.39%, but absorption decreased by 8.96% and the design

with 100% DM showed a 0.31% decrease in compressive strength, a 4.03% increase in

tensile strength and a 22.99% decrease in flexural strength. Absorption also decreased by

17.91%. On the other hand, the design with 75% DM presented optimal results,

surpassing the standard sample in compressive strength (22.50%), tensile strength

(10.07%) and flexural strength (0.27%) at 28 days, with a 23.13% decrease in absorption.

It is concluded that the results show that the mining waste improves the strength of

concrete and reduces its absorption, making it a viable and sustainable material for its

production.

Keywords: Aggregate, concrete, waste, mining, properties.

19

CAPÍTULO I

INTRODUCCIÓN

En el ámbito de la ingeniería civil, el concreto es un material compuesto cuyas propiedades mecánicas, especialmente la resistencia, dependen en gran medida de la dosificación de sus componentes principales: áridos, cemento y agua. El diseño de mezclas permite obtener concretos con características específicas para cada aplicación (Jeonghyun, Donwoo, & Andrzej, 2024). La prevalencia del hormigón armado en la construcción contemporánea ha llevado a una creciente demanda de métodos de evaluación estructural. La capacidad de carga de estas estructuras es un parámetro crítico que debe ser determinado para garantizar la seguridad y funcionalidad de los edificios a lo largo de su vida útil (Park, Kwan, Hong, Lee, & Park, 2024). Sin embargo, es un desafío realizar este trabajo, la caracterización de la resistencia a la compresión de concretos que incluyen desmontes mineros (DM) constituye una tarea compleja debido a la variabilidad de las propiedades de estos materiales y a la falta de estándares normalizados. Los procesos asociados a la minería del oro son identificados como la principal causa de contaminación ambiental a nivel global, generando impactos negativos en ecosistemas y comunidades (Velásquez, Vega, & Corvera, 2021).

La presente investigación se compone de seis capítulos, los cuales se detallan a continuación:

Capitulo I. Se llevó a cabo una exhaustiva revisión bibliográfica, tanto a nivel internacional como nacional y local, para construir un sólido marco teórico que sustente la investigación. Este proceso permitió una profunda comprensión de las nociones esenciales y las actuales tendencias en el campo de estudio.

Capitulo II. Este apartado presenta la problemática a investigar, los objetivos que se persiguen, las hipótesis planteadas y la justificación que fundamenta el estudio.

Capitulo III. Se expone la metodología empleada en la investigación, detallando la zona en la que se estudió, la población a la que se dirigió, la muestra seleccionada y los procedimientos utilizados para la recolección y análisis de los datos.

Capitulo IV. En esta sección se exhiben los hallazgos de la investigación y se procede a su interpretación, contrastándolos con las hipótesis formuladas y los objetivos establecidos.

Capitulo V. En esta sección se exponen las conclusiones derivadas de los resultados obtenidos, así como recomendaciones específicas para profundizar en el tema y abordar nuevas interrogantes.

Capítulo VI. Este apartado presenta la lista de referencias bibliográficas utilizadas a lo largo del trabajo y los anexos que complementan la información presentada.

1.1. PLANTEAMIENTO DEL PROBLEMA

El hormigón ocupa el segundo lugar como material de construcción más manejado en toda la naturaleza, debido a su abundancia de materias primas, facilidad de procesamiento y manipulación y capacidad para compactarse y soportar cargas. Cada año se consumen más de 30 mil millones de toneladas de concreto, lo que lo convierte en el material de construcción más utilizado a nivel mundial (Rahman, Rahman, & Mehedi, 2023). El diseño de mezclas de hormigón es un proceso complejo, influenciado por múltiples variables que pueden comprometer el logro de las resistencias deseadas. La selección adecuada de materiales y el control del proceso de curado son fundamentales,

pero factores como la calidad de los componentes y las condiciones ambientales introducen incertidumbre en los resultados finales, especialmente en términos de resistencia a compresión, flexión y tracción (Raman, y otros, 2024). Se necesita más investigación sobre bloques de hormigón en masa de diferentes tamaños en el siguiente paso (Jianguang, y otros, 2024).

A nivel mundial el agotamiento sin precedentes de los recursos naturales y la reproducción de desechos redundantes de los procesos de minería industrial han creado importantes problemas globales. Durante la minería y el procesamiento de minerales, se generan enormes cantidades de desechos robustos, que no solo contaminan el medio ambiente sino que también requieren técnicas de remediación costosas (Narayan, y otros, 2024). El sector de la minería de oro artesanal y en pequeña escala MAPE emplea directamente a más de 20 millones de mineros que son responsables de aproximadamente el 15-20% de la producción anual total de oro a pesar de los numerosos problemas sociales y ambientales asociados con el sector, los gobiernos (Martinez, Smith, & Morale, 2023), El aumento de la explotación de minerales de baja ley en Australia Occidental ha provocado un incremento significativo en la generación de relaves mineros, los cuales representan un riesgo para el medio ambiente (Suarez, 2022).

El uso de materiales de desecho en la ingeniería civil ofrece una alternativa de bajo consumo energético al reciclaje, a menos que la industria de la construcción pueda resolver los problemas ambientales actuales causados por su continua exploración y agotamiento de los recursos naturales (Varhen, Carrillo, & Ruiz, 2017). así como las acumulaciones sólidas de desmonte minero de Excélsior, ubicadas en Cerro de Pasco Perú, son producto de la extracción a cielo abierto de mineral, generando volúmenes considerables de material de desecho que han sido depositados en pilas durante más de 6 décadas, los relaves mineros están causando muchos problemas a los pueblos de la región

Pasco donde la intervención por el estado peruano respecto a la protección del medio ambiente es deficiente o casi inexistente, por lo que hay que buscar alternativas que sean prácticas y de bajo costo (Castro, 2022).

A nivel de la región de Puno la minería en Rinconada se caracteriza por prácticas irresponsables, como la extracción excesiva de desmonte y el procesamiento inadecuado de minerales auríferos con alto contenido de sulfuros. Estas actividades generan drenajes ácidos y ponen en riesgo la sostenibilidad de la operación minera (Morales, 2022).

El problema es referido a las construcciones de viviendas en la ciudad de Puno cada vez es mayor por alto el crecimiento poblacional, además la demanda de agregados pétreos de las canteras hace que carezca por lo que ya no abastece para las construcciones, se busca el reemplazo de los agregados pétreos por materiales que puedan tener propiedades resistentes para elaborar el concreto y construir nuevas edificaciones como viviendas urbanos y rurales. Así mismo, según Benahsina et al. 36 (2022) indica que el manejo de los desmontes, generados por la industria minera, se ha transformado en una preocupación universal por su gran cantidad, impacto ambiental, riesgos para la salud humana y altos costos de disposición. Por ello, se hace necesario desarrollar soluciones eficaces y sostenibles para gestionar adecuadamente estos residuos. La actividad minera que generan los residuos son materiales compuestas de mucho peligro y densos tanto que podría alterar el ecosistema, influir en salud humana, contaminar el agua y causar destrozos en el paisaje natural, por la disposición inadecuada del desmonte o material estéril que existe en las minas son inapropiados en uso de métodos en su tratamiento.

1.1.1. Problema General

¿Cuál es el comportamiento de las propiedades mecánicas y físicas del concreto de f'c=210 kg/cm2 con la incorporación del desmonte minero actuando como sustituto parcial del agregado grueso?

1.1.2. Problemas específicos

- a. ¿Será adecuada las características físicas del desmonte minero y la selección para sustituir parcialmente al agregado grueso y en la elaboración del concreto?
- b. ¿Las propiedades de los materiales para el diseño de mezcla de concreto cumplen según la metodología ACI-211 incorporado parcialmente con desmonte minero?
- c. ¿Cómo se comporta la resistencia a compresión, flexión, tracción, la densidad, porcentaje de vacíos y absorción del concreto adicionado parcialmente el desmonte minero?

1.2. HIPÓTESIS DE LA INVESTIGACION

1.2.1. Hipótesis general

Las propiedades mecánicas y físicas del concreto de f'c=210 kg/cm2 con la incorporación del desmonte minero actuando como sustituto parcial del agregado grueso, mejora significativamente.

1.2.2. Hipótesis específicas

- a. Las características físicas del desmonte minero y la selección para sustituir parcialmente al agregado grueso, son adecuados para la elaboración del concreto.
- b. Las propiedades de los materiales para el diseño de mezcla de concreto incorporado parcialmente con desmonte minero, están en cumplimiento con los parámetros del método ACI-211.
- c. El comportamiento de la resistencia a compresión, flexión, tracción, la densidad, porcentaje de vacíos y absorción del concreto adicionado parcialmente del desmonte minero, mejora la resistencia y obtiene mayor durabilidad.

1.3. JUSTIFICACIÓN DE LA INVESTIGACIÓN

El estudio se justifica para crear el concreto con materiales de desmonte minero ya que podrá remplazar a los agregados naturales además reducirá la explotación de canteras, ya que no se da el uso al desmonte minero podrá contribuir positivamente para elaborar el concreto reduciendo los problemas ambientales causadas por la minería así mismo ayudar a la erradicar las dificultades con el propósito de contribuir a la población para que cuenten con el reemplazamiento de los materiales de agregado incrementando la eficiencia de resistencia del concreto. El concreto diseñado de una resistencia f'c=210 kg/cm² mayormente es usado en diversas estructuras de edificaciones como losas aligeradas o macizas, en vigas y columnas, incluso en cimentaciones, no se puede usar para estructuras viales ya que en el manual de carreteras: geología, suelos, pavimentos y geotecnia recomienda una resistencia mínima de f'c 280 kg/cm² para bajo flujo vehicular,

en ese sentido la resistencia que se diseñará en la presente investigación es para estructuras de viviendas en losas, vigas y columnas.

Con el uso del desmonte minero se pretende generar una economía circular y por ende darle un valor agregado al material que usualmente es desechado en la misma mina, como se compone de diversos tipos de rocas conforme a la geología de la zona puede que un mineral sea utilizado por sus características físicas y mecánicas en un diseño de mezcla de un concreto que ayude a mejorar las propiedades del concreto en su estado endurecido y fresco, con esto poder disminuir la sobreexplotación de bancos naturales de agregados que actualmente son muy demandados en la industria de la construcción.

1.4. OBJETIVOS

1.4.1. Objetivo general

Evaluar el comportamiento de las propiedades mecánicas y físicas del concreto de f'c=210 kg/cm2 con la incorporación del desmonte minero actuando como sustituto parcial del agregado grueso.

1.4.2. Objetivos específicos

- a. Analizar las características físicas del desmonte minero y seleccionar para sustituir parcialmente al agregado grueso.
- b. Analizar las propiedades de los materiales para el diseño de mezcla de concreto según la metodología ACI-211 incorporado parcialmente con desmonte minero.
- c. Determinar la resistencia a compresión, flexión, tracción, la densidad, porcentaje de vacíos y absorción del concreto adicionado parcialmente del desmonte minero.

CAPÍTULO II

REVISIÓN DE LITERATURA

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

2.1.1. Antecedentes Internacionales

Según Eljufout y Alhomaidat (2024) en su artículo presenta como objetivo investigar el potencial de reemplazar los agregados naturales en el hormigón con agregados obtenidos de rocas de desechos de minas de fosfato (PMW) en Jordania. El método aplicado fue de un diseño experimental con un alcance explicativo en donde se obtuvo 100 kg de roca las cuales fueron tamizados con un tamaño máximo de 20 mm y fueron lavados para realizar el diseño de mezcla. Los resultados para el árido minero en peso específico fue de 2.46 gr/cm³, la densidad aparente de 1.36 gr/cm³, el valor de abrasión fue de 31% y la absorción de 1.73%, la resistencia compresiva a 28 días con agregado natural fue de 30.18 MPa y con árido minero fue de 28.72 MPa, la resistencia a tracción con árido natural fue de 5.49 MPa y con árido minero de 5.36 MPa, se concluye que las características físicas y mecánicas del árido minero cumple con los requisitos para elaborar hormigón G30, dando como resultado resistencias elevadas.

Asimismo, Cuenca et al. (2024) en su artículo que tiene como objetivo evaluar el uso de residuos de minería de carbón (CMWG) como agregados finos y gruesos reciclados en morteros y hormigones de cemento como reemplazo de agregados naturales en diferentes porcentajes. El método empleado consiste en un programa experimental en donde se elaboraron especímenes de concreto con un porcentaje de árido natural y árido de minería, teniendo como resultado para la

resistencia compresiva a 28 días con agregado natural fue de 44.6 MPa adicionando 10% de árido natural y 30% de árido minero fue de 36.3 MPa, en cuanto al módulo elástico a 28 días se tiene para el hormigón con árido natural 46600 MPa y con árido minero 33000 MPa, para la resistencia a tracción se tiene 3.76 MPa y 1.7 MPa respectivamente. En conclusión, la sustitución de agregados naturales por CMWG ha resultado una opción interesante para aplicaciones reales que aportan un valor añadido a la implementación de conceptos de economía circular en la gestión y el reciclaje de relaves de minas de carbón y CMWG.

Finalmente, Benahsina et al. (2022) el objetivo en su estudio es la viabilidad de utilizar la mina de cobre y evaluar la roca estéril como sustituto de arena natural en categoría de concreto 64 C25 (25 MPa a 28 días). En la primera etapa se realizaron las caracterizaciones físicas, químicas, mineralógicas, geotécnicas y ambientales de la mina de cobre roca estéril. Luego, se diseñaron y prepararon tres mezclas de concretos incluyendo, concreto de referencia (CM-0), concreto base de la mina de cobre la roca estéril con 50% (CM-50) 68 y 100% (CM-100) de sustitución de arena natural por arena de la mina de cobre roca estéril. Las muestras de concreto fueron ensayadas para evaluar el comportamiento mecánico y la predicción de durabilidad de cada mezcla. Los resultados mostraron que las propiedades físico-mecánicas y geotécnicas de la arena de la mina de cobre roca estéril son muy parecidas a las de la arena natural utilizada en la fabricación de hormigón. Además, el hallazgo ambiental confirmó que de la mina de cobre la roca estéril está clasificado como material no peligroso. Es más, Los concretos basados en la mina de cobre roca estéril cumplieron con los requisitos del estándar de grado de concreto C25 en todos los niveles de reemplazo. En cuanto a la resistencia mecánica, los valores fueron superiores a

los exigidos por la norma (25 MPa). Para la tasa de absorción de agua, que influye en la durabilidad del hormigón, fue inferior al límite exigido por la norma (6%). A través de la reutilización de la mina de cobre la roca estéril en hormigón como reemplazo de los agregados naturales, se pueden minimizar los problemas ambientales, los costos y el agotamiento de los recursos naturales.

2.1.2. Antecedentes nacionales

Según Ramiro y Gerardo (2024) en su tesis que presenta como objetivo evaluar la incidencia del desmonte de mina y del cemento con una relación agua cemento y la incorporación de un aditivo plastificante en la absorción y capacidad de carga del concreto para estructuras en Trujillo 2023. El método empleado fue cuantitativo, aplicada, con diseño cuasi experimental y de un nivel explicativo, en el que lo hallado para los residuos de mina se presenta una humedad de 1%, peso unitario compactado y suelto de 2040 kg/m³ y 1814 kg/m³, una absorción de 2.13%, gravedad específica de 2530 kg/m³, en cuanto a la resistencia compresiva a 28 días en relación de cemento: desmonte de mina de 1:5, 1:6, 1:7, 1:8 y 1:9 fue de 231 kg/cm², 214 kg/cm², 187 kg/cm², 169 kg/cm² y 122 kg/cm² sin la adición de aditivo y 291 kg/cm², 249 kg/cm², 221 kg/cm², 190 kg/cm² y 144 kg/cm² con aditivo, se concluye que el incremento en la proporción agua-cemento, consecuencia del aumento de residuos de mina en la mezcla de concreto, resulta en una disminución progresiva de la resistencia a la compresión. Esta relación se evidencia en las reducciones observadas, siendo la más pronunciada del 24% para la proporción 1:9. La explicación a este fenómeno radica en que una mayor cantidad de agua es requerida para la hidratación del cemento en mezclas con mayor contenido de residuos, lo que compromete la formación de una matriz cementada más densa y resistente.

En la investigación de Gonzales (2023) se describe como objetivo de investigación la de analizar la adición del silicato de sodio en un concreto F'c = 210 kg/cm2 para mejorar el comportamiento físico y mecánico. La metodología que se emplea es de diseño experimental, tipo aplicado, nivel descriptivo y enfoque cuantitativo. La población está compuesta por los concretos de diseño f'c=210 kg/cm² con adiciones de silicato de sodio, la muestra está definida por 90 briquetas de concreto distribuidas en 45 para la prueba de compresión y 45 para la prueba de tracción, las cuales estarán sujetas a incorporaciones de silicato de sodio en proporciones de 2 por ciento, 5 por ciento, 7 por ciento y 10 %. Los resultados que se hallaron fueron los siguientes: los valores en cuanto a resistencia a compresión son de 221.8 kg/cm² para la muestra patrón, 242.2 kg/cm² para la muestra con 5% de SS, y 218.6 kg/cm² para la muestra con 10% de SS; mientras que los valores de resistencia a tracción que se obtuvo a la edad de 28 días son de 19.6 kg/cm² para la muestra patrón, 21.9 kg/cm² para las muestras con 2% de SS, 23.8 kg/cm² para las muestras con 5% de SS, 25.7 kg/cm² para las muestras con 7% de SS y 21.7 para las muestras con 10% de SS. En conclusión, la incorporación de silicato de sodio impacta positivamente en la mejora de sus características mecánicas y físicas, adquiriendo una resistencia característica a fuerzas compresivas (F'c) de 210 kg/cm², denotando que en los ensayos del concreto en estado endurecido, se observó que la resistencia compresiva tuvo un aumento considerable al igual que en la tracción para adiciones del 2%, 5%, y 7% de silicato de sodio.

Finalmente, Mayta y Sucari (2022) en su investigación que tiene como finalidad estimar el efecto del árido fino siendo reemplazado por desechos mineros de ignimbrita (I) y cuarzo (Q) machacados con Ball Mill para conocer su

impacto en el desempeño de un concreto para estructuras. La metodología empleada es de tipo aplicada, con un diseño experimental, en donde los valores resultantes para la resistencia compresiva a 28 días del CP, Q35 – I25, Q45 – I25, Q55 – I25 y Q65 – I25 fueron 218.72 kg/cm², 239.75 kg/cm², 236.09 kg/cm², 233.96 kg/cm² y 233.84 kg/cm², para la resistencia a tracción fueron de 19.46 kg/cm², 22.24 kg/cm², 21.09 kg/cm², 20.14 kg/cm² y 21.36 kg/cm², para la resistencia a flexión fueron 25.31 kg/cm², 31.94 kg/cm², 29.26 kg/cm², 26.53 kg/cm² y 27.21 kg/cm². Concluyendo que al reemplazar el agregado fino convencional por residuos minerales de cuarzo e ignimbrita, triturados y molidos en un molino de bolas, tiene un impacto considerable en las características del concreto estructural. Los datos obtenidos muestran cambios relevantes en las propiedades del material.

2.1.3. Antecedentes locales

Según Arias y Espinoza (2022) el cual presenta como objetivo calcular con la implementación del relave minero las mejoras en las características mecánicas y físicas para pavimentos del tipo rígido con una resistencia de diseño de f°c=280 kg/cm², la Rinconada – 2022. El método empleado es de tipo aplicado cuantitativo de un diseño experimental y de nivel explicativo, en donde los resultados para la compresión a 28 días sin adición y con adición de 1% RM, 3% RM y 5% RM fueron 321.65 kg/cm², 337.98 kg/cm², 343.41 kg/cm² y 316.81 kg/cm², para el ensayo a tracción indirecta los resultados son de 30.47 kg/cm², 33.06 kg/cm², 33.39 kg/cm² y 30.73 kg/cm² y para la flexión fue de 37.20 kg/cm², 39.82 kg/cm², 40.76 kg/cm² y 33.76 kg/cm². Concluyendo que al sustituir hasta un 5% del agregado fino del hormigón patrón con residuo minero y mantener una resistencia característica de 280 kg/cm², se observa un incremento en la resistencia del

material. Esto sugiere que la incorporación de este tipo de residuo puede ser una alternativa viable para mejorar las propiedades mecánicas del hormigón

Hancco (2016) investigó los efectos de la roca minera en la resistencia del concreto en el centro poblado de La Rinconada – Ananea, utilizando un diseño experimental factorial cuantitativo. La muestra consistió en 60 briquetas para el ensayo de resistencia a la compresión. Los resultados mostraron las propiedades de la roca minera como agregado grueso, con un contenido de humedad promedio de 1.58%, un peso específico aparente de 2.64 y una absorción del 3.57%. El concreto con desmonte de roca minera presentó resistencias de 119.63 kg/cm² a los 21 días y 145.66 kg/cm² a los 28 días para un diseño de mezcla de 140 kg/cm², con aumentos notables en la resistencia conforme aumentaba el diseño de la mezcla. Se concluye que el uso de desmonte de roca minera mejora la resistencia del concreto, mostrando diferencias significativas entre los tratamientos.

2.2. MARCO TEÓRICO

2.2.1. Concreto

El concreto es la mezcla de agregados de finos y gruesos, aire, cemento y aditivos, para utilizar en las edificaciones, algunas ocasiones se pueden incorporar aditivos que perfeccionan las propiedades de un concreto (Abanto, 2009, pág. 65).

2.2.1.1. Cemento portland

El cemento Portland, al mezclarse con agua sola o con arena, piedra u otros agregados, el cemento como producto comercial de fácil acceso, tiene la propiedad de endurecer como una roca, ya que se hidrata y se fija con el agua gradualmente (Abanto, 2009).

El Clinker de cemento Portland se obtiene sinterizando la mezcla, materias primas homogéneas: piedra caliza, arcilla, arena, compuestos de hierro y otros componentes en determinadas proporciones (petróleo bruto, pasta o harina). Contiene elementos generalmente expresados como óxidos, CaO, SiO2, Al2O3, Fe2O3 y una pequeña cantidad de otros materiales. Esta mezcla se calienta hasta alcanzar el rango de temperatura de sinterización y se forman nuevos compuestos (San juan & Chinchon, 2000).

2.2.1.2. Clasificación del cemento portland

El cemento portland se clasifica en cinco tipos, las propiedades se han normalizado con especificaciones de acuerdo a la norma ASTM son los siguientes según (Abanto, 2009).

TIPO I: Es el cemento utilizado en concreto normal.

TIPO II: Es el cemento utilizado en concreto normal y proyectos que presentan elementos expuestos a sulfatos o lugares con calor moderado para su hidratación.

TIPO III: Considerada como el cemento con elevada resistencia, desarrollada a sus 3 días de colocación.

TIPO IV: Se requiere escaso calor de hidratación reduce la liberación de calor durante el fraguado, evitando fisuras térmicas y mejorando la durabilidad del concreto.

TIPO V: Resistencia elevada a la acción de sulfatos, para obras expuestas a aguas con alto contenido de alcalisis o aguas del mar, evita la degradación del material por la reacción con los sulfatos.

2.2.2. Agregados

Denominados materiales inertes las cuales son combinadas con agua y aglomerantes para formar hormigón y mortero. Es importante que la masilla tenga buena resistencia, solidez, resistencia a los elementos de la superficie y no contenga impurezas que puedan dañar el hormigón (Abanto, 2009).

2.2.2.1. Clasificación de los agregados

Se basa en diversas características, entre las que se encuentran el tamaño y distribución de sus partículas, su densidad y peso por unidad de volumen, así como su origen y composición mineralógica.

2.2.2.2. Clasificación granulometría

Clasificado por tamaño de partícula, el árido grueso es el que queda en el tamiz no. 4, y el árido fino es el que pasa la malla de 3/8 de pulgada y queda retenido en la malla 200., se detallan 13 tamaños que están relacionados con su respectivo tamiz uniforme para análisis granulométrico de acuerdo a NTP 400.037 (Medina, 2022).

Tabla 1Medidas de tamices para el análisis granulométrico

Agnogada	Tamiz	
Agregado –	Pulg.	mm.
	1 1/2"	38.000
	1"	25.000
Compage	3/4"	19.000
Grueso	1/2"	12.700
	3/8"	9.500
	N° 04	4.750
	N° 08	2.360
	N° 16	1.180
E'	N° 30	0.600
Fino	N° 50	0.300
	N° 100	0.150
	N° 200	0.074

Nota: Tomado de NTP (400.011, 2008).

2.2.2.3. Según la clasificación por peso y unidad de volumen o densidad:

Normales: Son áridos mayormente utilizados el 90% en construcciones, rango de peso unitario 1000-1800 kg/m3.

Livianos: A menudo se utilizan para producir hormigón ligero.Peso unitario < 1000 kg/m3, rango = 700-800 kg/m3.

Pesados: utilizados para construcciones de gran envergadura donde se requieren materiales densos. Peso unitario <2000 kg/m3 provenientes de rocas.

2.2.2.4. Según su naturaleza

Agregado calizo: es la trituración es un proceso fundamental en diversos sectores industriales gracias a su capacidad de generar superficies

lisas y su afinidad con aglomerantes asfálticos, lo que optimiza su uso en aplicaciones comerciales y reduce costos en la producción.

Agregados silíceos: aquellos que proceden de gravas naturales.

Agregado ígneos y metamórficos: Caracterizado por ser utilizado como agregado grueso (Medina, 2022).

2.2.3. Desmonte

Los materiales retirados de la mina como desechos son grumos o minerales de baja ley. Esto lo exige la ley, por lo que es necesario encontrar el lugar adecuado. Cuando se explota durante el funcionamiento, se acumula, llamados como materiales reciclados sobre minerales. (Sacachipana & Yerva Condori, 2021).

2.2.3.1. Desmonte minero graduado

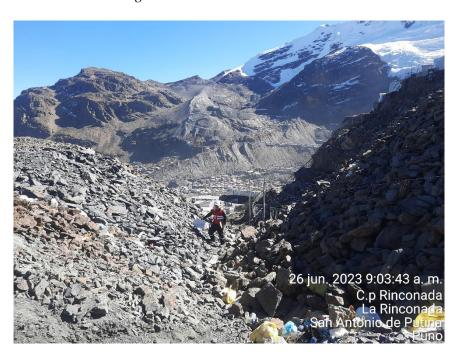
Es el material excedente provenientes del proceso. El fin de la minería a cielo abierto y la minería aluvial, Depositados en montículos de partículas de varios tamaños, hecho principalmente de materiales granulares, nadie necesita obtener este material gratis como está en el área alrededor de la carretera inspeccionada y nuevamente Cabe mencionar que se trata de contaminación ambiental, por lo que Recomendar el reciclaje para reducir el impacto ambiental. Empresas mineras existentes que hacen más sostenible nuestra investigación. (Cahuana & Gutierrez Mamani, 2022).

Figura 1

Desmonte minero

Nota: Imagen propia (fotografía tomada desde el botadero de desmonte minero).

Las zonas de Puno y otras partes del Perú presentan actividad minera, especialmente la minería de oro aluvial, cabe destacar que, en el país de Perú un buen número de prácticas mineras se realiza. Según la (Dirección General de Formalización Minera-MIMEM 2017), la obtención de 'Desmonte Minero Graduado', involucra extracción, transporte, clasificación y lavado del material aurífero. (MTC, 2018)


La minería de oro aluvial es una actividad ampliamente extendida en diversas regiones del Perú, especialmente en aquellas áreas con altos recursos minerales. Este tipo de minería se lleva a cabo principalmente en zonas como el departamento de Puno, conocido por su gran potencial en la extracción de oro, así como en otras regiones del país que cuentan con ríos y terrenos favorables para la actividad minera. En general, es una actividad realizada por un gran número de personas en estas regiones.

Proceso para la obtención del Desmonte Minero Graduado, según la (Dirección General de Formalización Minera-MIMEM 2017) nos da a conocer el proceso de extracción, trasporte, clasificado y lavado del material aurífero. (MTC, 2018).

Figura 2

Desmonte minero graduado.

Nota: Imagen propia (botadero mina rinconada, sector 20 de enero).

2.2.3.2. Tipos de botaderos de desmonte

• Por su dimensionamiento

Un vertedero se define como material recogido en una superficie superior a 25.000 metros. Cúbico, dividido en: pequeño (15-20 metros cúbicos de altura); Mediano (20-30 m3 de altura) y grande (excediendo la longitud 30 metros cúbicos) (Sacachipana & Yerva, 2021)

• Por el riesgo

IACIONAL DEL ALTIPLANO Repositorio Institucional

Estos se clasifican según el riesgo son los siguientes;

Carácter AIII: Alto.

Carácter AII: Moderado.

Carácter Al: Cero (Sacachipana & Yerva, 2021).

2.2.4. Agua

Elemento indispensable para hidratar el cemento, por lo tanto, Se

recomienda limpiar a fondo para no afectar la calidad y trabajabilidad del

hormigón. Además, para elaborar hormigón es necesario que esté en óptimas

condiciones la situación tampoco debe contener productos químicos corrosivos ni

estar contaminado con residuos orgánicos para evitar la pérdida de propiedades

de resistencia y fallas a largo plazo (Cabrera & Cubas Resurreccion, 2019).

2.2.4.1. El agua para el curado

Es importante el agua para el proceso de curado para que puede

tener una alta resistencia un concreto. Según (Cabrera & Cubas

Resurreccion, 2019) Deben observarse los requisitos mínimos para el agua

para realizar el curado, es decir es utilizado en obras la misma fuente de

agua para preparación y endurecimiento del hormigón.

2.2.5. Diseño de mezcla

La preparación de la mezcla de concreto se logra combinando de

agregados, agua, cemento, y en algunos casos también puede haber aditivos

asociados con para lograr un nivel de mezcla manejable requerido se diseñan

diferentes tipos de mezclas, para lograr proporciones correspondientes, los

39

calculadas a partir del desempeño de los materiales disponibles. Los resultados de las propiedades obtenidas en la mezcla de prueba te mostrarán cómo ajustar la dosis en las dosificaciones (Galvan, 2018).

2.2.6. Propiedades físicas y mecánicas de los agregados

Los áridos se encuentran muy asociados a sus características mecánicas y físicas, donde se determinan los parámetros y propiedades más resaltantes de la producción de hormigón.

2.2.6.1. Densidad del concreto endurecido.

Es la masa del concreto por unidad de volumen una vez que el material ha alcanzado su proceso de fraguado y endurecimiento completo. Esta propiedad es importante para determinar tanto las características mecánicas como las de durabilidad del concreto en uso, ya que influye directamente en su comportamiento frente a cargas y condiciones ambientales.

La densidad del concreto endurecido es la relación entre la masa del concreto después del fraguado y el volumen ocupado por el mismo, comúnmente expresada en (kg/m³). Esta propiedad varía en función de los materiales constituyentes del concreto, como el tipo de agregados, el contenido de aire y la cantidad de agua utilizada en la mezcla. (Neville, 2011).

2.2.6.2. Absorción del concreto endurecido.

El endurecimiento del concreto puede llevar a un fenómeno conocido como adsorción, que es donde las moléculas de agua u otras

sustancias se adhieren a las superficies poreadas de la estructura del concreto, sin que estas penetren completamente en el material. Este fenómeno es importante para entender cómo el concreto interactúa con su ambiente, particularmente en términos de la absorción de agua y su comportamiento frente a factores externos como la humedad.

La adsorción es el proceso en el que las moléculas de agua se adhieren a las superficies internas del concreto sin ser absorbidas en el interior del material. Esto ocurre principalmente en los poros capilares del concreto, y puede tener implicaciones en la permeabilidad y durabilidad del material. (Neville, Adam M.;, 2011)

2.2.6.3. Porcentaje de vacíos (%).

El porcentaje de vacíos en el concreto endurecido se refiere a la asociación del volumen de los poros en el concreto y el volumen total del material. Dichos vacíos pueden haber sido generados durante la mezcla de los ingredientes del concreto (cemento, agregados y agua) e interfieren con la densidad del concreto, así como con su durabilidad y resistencia. Por lo general, un mayor porcentaje de vacíos implica una mayor permeabilidad y una menor resistencia.

El porcentaje de vacíos del concreto endurecido es la fracción del volumen total del concreto que está ocupada por poros o vacíos, tiene gran incidencia en sus propiedades mecánicas y de durabilidad. (Neville, Adam M.;, 2011).

2.2.6.4. Análisis granulométrico del agregado fino y grueso

A través del análisis se determina la proporción de partículas de diferentes tamaños presentes en los agregados. Esta información es crucial para asegurar que el material utilizado cumpla con las especificaciones técnicas exigidas en la obra. Además, los datos obtenidos sirven como base para calcular las cantidades exactas de cada fracción de agregado necesarias para obtener la mezcla deseada (Ministerio de Transportes y Comunicaciones, 2016).

2.2.6.5. Métodos de ensayo para determinar pesos unitarios

La gravedad específica es un parámetro fundamental en el diseño y control de calidad del concreto. Sirve como base para calcular los pesos unitarios en diferentes métodos de diseño de mezclas, lo cual es esencial para garantizar la resistencia y durabilidad de la estructura. Además, este valor resulta indispensable en la gestión de materiales, especialmente en contratos donde se necesitan convertir las relaciones masa-volumen, ya que permite ajustar los cálculos considerando el grado de compactación de los agregados durante el transporte y almacenamiento.

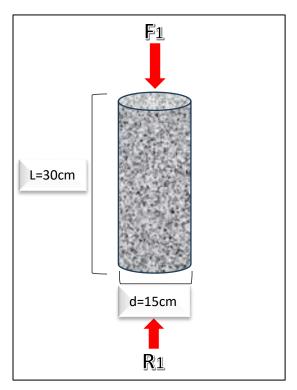
2.2.6.6. Ensayo del peso específico y absorción del agregado

(NTP 400.021, 2020), Se estableció un procedimiento para determinar la densidad seca del agregado grueso, la densidad seca de la superficie saturada, la densidad aparente y la absorción de agua (después de 24 horas). La densidad seca y la absorción de agua de la superficie saturada consiste en áridos remojados en agua durante un día entero. Este método de ensayo no es adecuado para agregados livianos y se destina a:

- La absorción de los agregados fino y grueso
- Aparente peso especifico
- El peso específico saturado
- El peso específico seca

2.2.6.7. Ensayo en la máquina de Los Ángeles

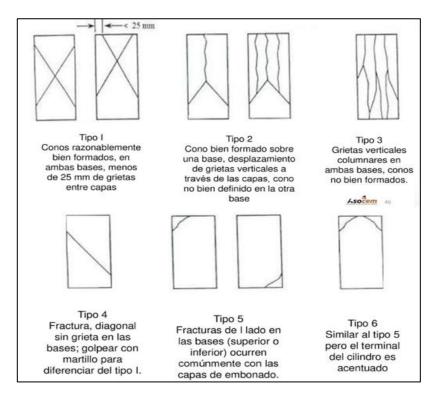
Esta condición de operación mide la descomposición de áridos minerales. Un gradiente normalizado producido por varias operaciones que incluyen desgaste, impactos y roturas en ensayo se realiza con el equipo máquina de los ángeles, con 12 esferas de acero en un tiempo determinado de giros, después del número de revoluciones establecido, la máquina funcionará Purificación y cribado para determinar el porcentaje perdido por descomposición (Ministerio de Transportes y Comunicaciones, 2016).


2.2.7. Resistencia del concreto

2.2.7.1. Resistencia a la compresión axial

Define los procedimientos para la preparación de muestras de concreto en forma cilíndrica, conforme a lo estipulado por la normativa (NTP:339.034, 2015), en donde la máquina de ensayo tendrá una capacidad cómoda y debería poder proporcionar la velocidad de carga requerida. Él Debe calibrarse anualmente. La carga debe tener un margen. El error no supera el ±1,0% de la carga especificada. tubo de ensayo Se probará en condiciones húmedas (NTP:339.034, 2015).

Figura 3Diagrama de cuerpo libre resistencia a compresión


Nota: Figura propia

Se utiliza la siguiente fórmula para sacar la resistencia compresiva de una muestra de probeta hecho de concreto, estas rupturas de muestras se realizan en: 7, 14 y 28 días después del curado del concreto. En la formula influye la carga que se transmite a la probeta como también influye el área de la probeta.

$$f'c = \frac{p}{A}$$

Figura 4Tipos de fisuras en resistencia a compresión

Nota: Imagen tomado de la Norma ASTM C-39

Procedimiento: Los especímenes se analizan a los 28 días. De los especímenes se miden los parámetros, luego se verifica que el equipo esté en cero antes de empezar, la inspección inicial mostró que ambos paneles están Impecable y el patrón está perfectamente centrado entre ellos antes del inicio de la prueba, se evitan colisiones aplicando carga continuamente, alcanzado el P máximo esfuerzo, se acopian los datos, para establecer la resistencia a la compresión del espécimen, se utiliza la siguiente fórmula:

$$f'c = \frac{4p}{\pi D^2}$$

Donde:

f'c: "Resistencia a ruptura por compresión" (kg/cm2)

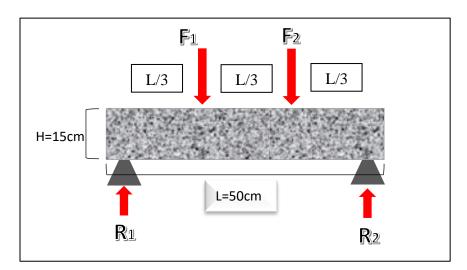
P: "Esfuerzo máximo de rotura aplicado" (kg)

D: "Diámetro del testigo cilíndrico" (cm)

bla 2. Tiempos programados para la rotura.

Tabla 2Características de los agregados finos y gruesos (río Cutimbo)

Edad de ensayo	Tolerancia permisible
24 h	±0.5 h o 2.1 %
3 d	\pm 2 h o 2.8 %
7 d	\pm 6 h o 3.6 %
28 d	$\pm~20~h$ o $3.0~\%$
90 d	\pm 48 h o 2.2 %


Nota: Elaboración propia.

2.2.7.2. Resistencia a la flexión

Para determinar la resistencia a fuerzas flexionantes se realizó con especímenes de tipo viga moldeadas de concreto según la normativa NTP 339.078, en donde la prueba incluye una aplicación de carga en una viga hasta un tercio de la muestra de forma de viga hasta que ocurra un error. Se calculará el módulo de ruptura, conforme a la ubicación de la grieta, dentro de un tercio Media o poca distancia de él, no más de 5 % luz libre.

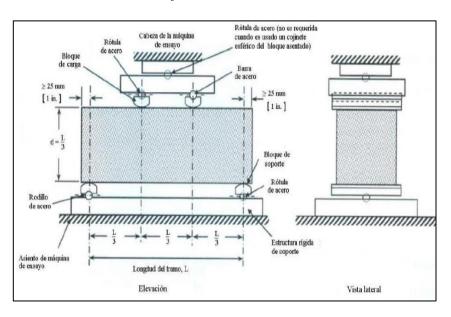


Figura 5Diagrama de cuerpo libre resistencia a flexión

Nota: Figura propia

Figura 6Pruebas de resistencia a flexión

Nota: Imagen tomado de la Norma 339.078, (2012).

Procedimiento: Emplear líneas delgadas para mostrar las divisiones de soporte en las cuatro caras principales, primero se verifica y registra el dimensión del segmento en centímetros, se limpia el equipo donde soportaran la carga y el área del contacto de la muestra, colocamos

la muestra en la prensa de prueba y forme la línea de componentes de apoyo y carga, luego se aplica la carga a una velocidad en donde la resistencia de la fibra exterior incremente continuamente hasta que falle, para luego estimar el valor de la carga máxima P, para establecer la resistencia a la flexión del espécimen, se utiliza la siguiente fórmula:

$$M'r = \frac{PL}{Bh^2}$$

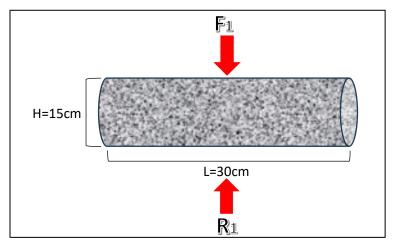
Donde:

 $M\mbox{'r:}$ Considerada como el módulo de rotura, en unidades de $Kg/cm^2.$

P: Considerada como la máxima carga de rotura, el cual se mide en unidades de kilogramos.

L: Es la luz libre entre los soportes o apoyos, el cual se mide en unidades de centímetros.

b: Se considera al ancho media del espécimen en donde ocurre la falla el cual se mide en unidades de centímetros.


h: Se considera la altura promedio del espécimen donde ocurre la falla el cual se mide en unidades de centímetros.

2.2.7.3. Resistencia a la tracción

El ensayo define el procedimiento para determinar la resistencia a la tracción por compresión diametral en cilindros de mortero (NTP 339.084, 2012).

Figura 7Diagrama de cuerpo libre de la resistencia a tracción

Nota: Figura propia

Para determinar la resistencia a las fuerzas de tracción del espécimen, se hace uso de la fórmula mostrada a continuación:

$$T = \frac{2P}{\pi LD}$$

Donde:

T: "Resistencia a la tracción por compresión diametral en MPa (lb/pulg2)"

P: "Máxima carga aplicada indicada por la máquina en N (lb)"

L: "Longitud en mm (pulg)"

D: "Diámetro en mm (pulg)"

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1. ASPECTOS GENERALES

3.1.1. Ubicación política

3.1.1.1. Ubicación política del desmonte minero (DM).

Con la finalidad de la investigación presente que trata de evaluar las características mecánicas y físicas del concreto con una resistencia de diseño de F'c=210kg/cm2 agregando a su composición desmonte minero como parte de árido grueso, para lo cual el material fue extraído de la ubicación siguiente:

Ubicación del desmonte minero (DM):

Departamento : Puno

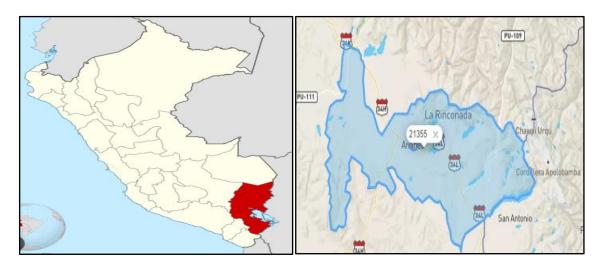
Provincia : San Antonio de Putina

Distrito : Ananea

Centro poblado : Rinconada

Urbanización : Urb. 20 de Enero

Coordenada Este : 451713.00m


Coordenada Norte : 8382696.00m

Elevación : 4979 msnm.

Figura 8

Ubicación del material DM.

Nota: Tomado de Google Maps.

Figura 9

Ubicación del Botadero DM

Nota: Tomado de Google Earth.

3.1.1.2. Ubicación política del agregado natural (AN).

Con la finalidad de la investigación presente que trata de evaluar las características mecánicas y físicas del concreto con una resistencia de diseño de F'c=210kg/cm2 agregando a su composición desmonte minero

como parte de árido grueso, para lo cual el material fue extraído de la ubicación siguiente:

Ubicación del agregado natural (AN):

Departamento : Puno

Provincia : Puno

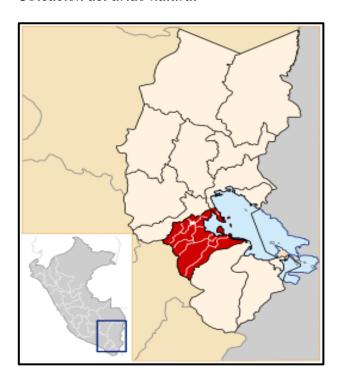
Distrito : Pichacani

Lugar específico : Puente Cutimbo

Coordenada Este : 391508.00m

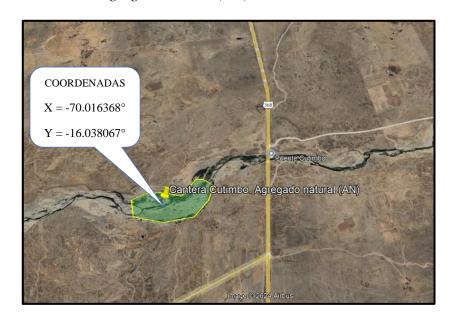
Coordenada Norte : 8226557.00m

Elevación : 3922 msnm.


Latitud : -16.038067°

Longitud : -70.016368°

Figura 10


Ubicación del árido natural

Nota: Tomado de Google Maps.

Figura 11

Cantera del agregado natural (AN)

Nota: Tomado de Google Earth.

3.1.1.3. Ubicación política del agua a utilizar en el diseño de mezcla.

La ubicación política del agua que se emplea para el diseño de mezcla del concreto diseñado se detalla de la siguiente manera:

Ubicación del Agua a utilizar en el diseño de mezcla:

Departamento : Puno

Provincia : Puno

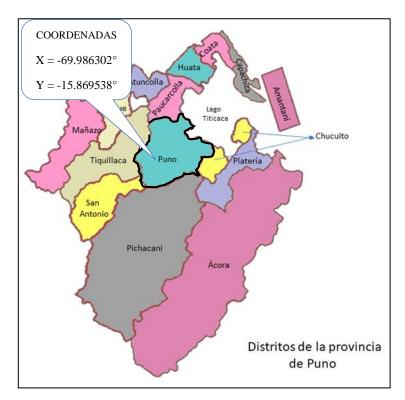
Distrito : Puno

Centro poblado : Jayllihuaya

Coordenada Este : 394428.00m

Coordenada Norte : 8245178.00m

Latitud : -15.869538°


Longitud : -69.986302°

Elevación : 3830 msnm.

Figura 12

Ubicación de la fuente de Agua empleada para el diseño de mezcla.

Nota: Tomado de Google Maps.

3.1.2. Ubicación geográfica

3.1.2.1. Ubicación geográfica del desmonte minero (DM).

El desmonte minero se encuentra geográficamente localizado en las "coordenadas UTM del sistema WGS 84, zona 19L", específicamente en el este 451725.26 metros y el norte 8382682.60 metros. Estas coordenadas precisas permiten ubicar el proyecto con exactitud en cualquier sistema de información geográfica.

3.1.2.2. Ubicación geográfica del agregado natural (AN).

El agregado natural se encuentra geográficamente localizado en las "coordenadas UTM del sistema WGS 84, zona 19K", específicamente en el este 391508.00 metros y el norte 8226557.00 metros. Estas coordenadas

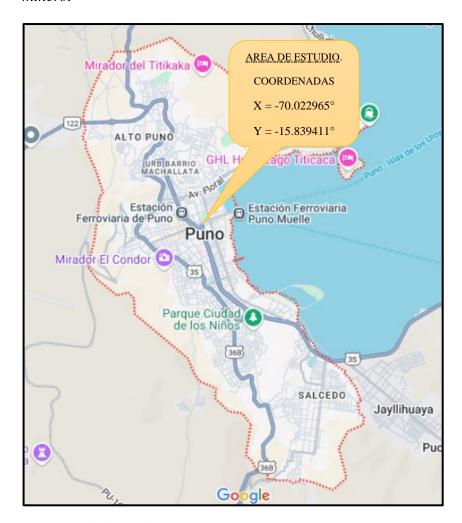
precisas permiten ubicar el proyecto con exactitud en cualquier sistema de información geográfica.

3.1.2.3. Ubicación geográfica del agua a utilizar en el diseño de mezcla.

La fuente de agua a utilizar en el diseño de mezcla se encuentra geográficamente localizado en las "coordenadas UTM del sistema WGS 84, zona 19L", específicamente en el este 394428.00 metros y el norte 8245178.00 metros. Estas coordenadas precisas permiten ubicar el proyecto con exactitud en cualquier sistema de información geográfica.

3.1.3. Ubicación política y geográfica donde se empleará el diseño de mezclas de concreto.

Se realizó en la región de Puno. Donde se empleará el diseño de mezclas incorporando el desmonte minero, para realizar el concreto armado que son columnas, vigas, losas y cimentaciones en edificaciones con una resistencia compresiva de f´c=210kg/cm2.


Las obras donde se realizará con esta investigación se encuentran geográficamente localizado en las "coordenadas UTM del sistema WGS 84", zona 19L, específicamente en el este 389933.95 metros y el norte 8248427.98 metros.

Estas coordenadas precisas son la ubicación del distrito provincia y región de Puno. No obstante, esta investigación se podrá aplicar en toda la región de puno.

Figura 13

Ubicación del área de estudio donde se emplearán los concretos con desmonte minero.

Nota: Tomado de Google Maps.

3.1.4. Accesibilidad

El libre acceso mediante la vía cerca de la zona estudiada se detalla en el cuadro siguiente.

Tabla 3

Acceso al área de estudio

Vías de acceso	Tramos	Tipo de vía	Distancia (km)	Medio de transporte	
	Puno – Juliaca	Asfaltado	45 km	Camioneta	
	Juliaca – Taraco	Asfaltado	32.9 km	Camioneta	
	Taraco – Putina	Asfaltado	58.9 km	Camioneta	
Vía terrestre	Putina – Quilcapunco	Afirmado	15.2 km	Camioneta	
	Quilcapunco – Toco Toco	Afirmado	23 km	Camioneta	
	Toco Toco – Pampilla	Afirmado	16.1 km	Camioneta	
	Pampilla – Ananea	Trocha	10.9 km	Camioneta	
	Ananea – Rinconada	Trocha	10.9 km	Camioneta	
	Rinconada – Lugar Desmonte	Trocha	50 m	Camioneta	
	km" ras"				

Nota: Elaboración propia.

3.1.5. Clima

La Rinconada, ubicada en las altas montañas de los Andes, es conocida por su extrema altitud de 5100 metros, lo que la convierte en la ciudad más alta del mundo. Su clima, característico de la región andina del Perú, presenta inviernos cortos y nevados, con temperaturas frías y cielos nublados durante todo el año. Las temperaturas generalmente oscilan entre -11 °C y 6 °C, aunque en ocasiones pueden descender por debajo de -13 °C o superar los 9 °C..

3.1.6. Geología

Geología histórica: Esto se puede ver en la fase continental en algunas zonas se produjo una intrusión marina a pequeña escala. Entonces sus respectivos océanos regresan se produjeron una serie de fenómenos que indicaron la

formación de montañas. Andes del sur. Entonces sucedieron pequeños fenómenos.; ni en regiones ni lugares han trascendido el tiempo Geológicamente, estos fenómenos van acompañados de enormes glaciares. Esto se refleja en los montes nevados de Ananea y a lo largo de los últimos tiempos. Nada ha cambiado, salvo el fenómeno del derretimiento del hielo. Con el paso de los años los glaciares retroceden (Liberato, 2019).

Geología regional: Las rocas más antiguas de las zonas más septentrional y oriental de la provincia La mayoría de las provincias de Azángaro y Sandia, que consisten en secuencias de lutitas y lutitas del "cretácico, areniscas y calizas; y Cubriendo las formaciones anteriores, formando una formación amplia. Ignimbritas terciarias, depósitos aluviales y glaciares cuaternarios".

"Las rocas paleozoicas se encuentran en todas las montañas de Carabaya, Se extiende hasta la cuenca del río Inambari hacia el este y cubre el pie de la meseta las rocas mesozoicas se encuentran en la cuenca del Titicaca" (Liberato, 2019).

Geología natural: El área contiene sedimentos de las formaciones Sandia del Paleozoico y del Ordovícico Superior, así como una serie de flujos de lecho rocoso compuestos de rocas volcánicas.

Encontramos las famosas "lutitas negras, limonitas, lutitas", que son formaciones plegadas, dañadas y completamente envejecidas, y por otro lado también encontramos la formación Ananea, que es del periodo Silúrico-Devónico, zona en la que hay mineralización de oro y el área consta de sistemas paralelos entre sí, separados entre 40 y 60 metros e inclinados 35° hacia el sur (Velasco, 2021).

La morfología, se caracteriza por ubicarse en glaciares fluviales, donde el área minera contiene la formación Cuaternaria Arco Aja de la serie Pleistoceno-Holoceno, representada por morrenas y depósitos aluviales, que también se ubican en morrenas y depósitos aluviales, representación. Poco a poco van surgiendo los lagos C° Lunar, Ananea, Rinconada, y otros. La mayoría de las morrenas provienen de la Cordillera Oriental, orientada aproximadamente perpendicular al Gran Valle de Carabaya y considerada el sistema de morrenas más grande y notorio, incluida la morrena de Vizcachani al suroeste de la ciudad de Rinconada, un área donde la morrena es curva. Su extremo está diseñado para mirar al oeste. La cadena de picos nevados incluye unidades morfológicas con grandes glaciares que alcanzan alturas de hasta 6.000 msnm y se extienden desde la ciudad de Markus, en el norte, hasta el lago Suche. Esto corresponde al Paleozoico Inferior y Superior, cuando grandes rocas intrusivas, principalmente fallas del Pérmico como la Falla de San Francisco de Ananea, crearon fallas normales y otras fallas longitudinales paralelas a la gran vaguada central de la Cuenca del Titicaca, provocando hundimientos de rocas (Velasco, 2021).

Roca pizarra: El origen de la pizarra es producto de la fase de lutita verde de formaciones rocosas sedimentarias de grano fino. La cuarcita es una roca de color gris oscuro, de grano fino y compuesta enteramente de cuarzo. La erosión glaciar provocó la migración de material granular de los sedimentos existentes a través de los flancos norte del valle de Carabaya. "La cuarcita, la contraparte de formación del cuarzo, es un mineral metagénico importante que es más común que el feldespato, los cuales se encuentran en rocas ígneas, así como rocas sedimentarias y metamórficas, especialmente granito" (Velasco, 2021).

La pizarra se caracteriza por un color negro y capas y escamas muy finas paralelas a la ropa de cama. Por lo tanto, en el examen microscópico, en cuanto a la mineralización de la roca, su composición es 40% cuarzo, biotita, 20% moscovita y 10% clorita componentes esenciales con accesorios la plagioclasa, pirita, turmalina y circonio (Velasco, 2021).

Figura 14

Roca Pizarra – Mina Rinconada

Nota: Imagen propia.

3.2. MATERIALES Y METODOLOGÍA EXPERIMENTAL

3.2.1. Etapa preliminar

En esta fase de la investigación se revisaron las referencias a los estudios realizados por diversos autores sobre "concreto f'c=210kg/cm2" con el objetivo de desarrollar e investigar la firmeza a la compresión, tensión y flexión. Para este fin se utilizaron equipos especializados mencionados en diversas referencias bibliografías.

3.2.2. Etapa de campo

Se llevó una exploración en campo seleccionando muestras de desmonte, las cuales fueron colocados en sacos de muestreo para trasladarlas al laboratorio en donde se realizarán las pruebas necesarias.

Los materiales utilizados fueron los siguientes:

- Herramientas manuales
- Sacos de muestreo

Los equipos utilizados en las pruebas de laboratorio fueron las siguientes:

- Densidad (gr/cm3)
- Absorción (%)
- Porcentaje de Vacíos (%)
- Resistencia compresiva (kr/cm2)
- Resistencia a la tracción (kr/cm2)
- Resistencia a flexión (kr/cm2)

3.2.3. Etapa de gabinete

En esta fase se analizaron y procesaron los valores obtenidos en las pruebas de laboratorio, para los cálculos se utilizaron programas Excel, para las pruebas de hipótesis se utilizaron los programas estadísticos SPSS.

3.3. METODOLOGÍA DE LA INVESTIGACIÓN

Vásquez (2017), refiere que el método de investigación es la ruta que seguimos para comprobar nuestras ideas, resolver problemas o alcanzar nuestras metas. Este camino puede iniciarse desde lo particular hacia lo general (método inductivo), es decir, observamos casos específicos para luego construir una teoría más amplia. O bien, podemos comenzar desde lo general hacia lo particular (método deductivo), partiendo de una teoría existente y aplicándola a un caso concreto. El método a elegir depende de lo que queremos descubrir y cómo planteamos nuestra pregunta de investigación. Es

esencial tener claro cuál es nuestro punto de partida y a dónde queremos llegar para seleccionar la mejor estrategia y así obtener resultados confiables y significativos.

3.3.1. Nivel de Investigación

El metodólogo Hernández (2018) señala que el nivel **explicativo** se asocia a las respuestas que están dirigido los acontecimientos y fenómenos ya sean aspectos sociales, naturales, de salud, psicológicos, entre otros, también se orientan en comprobar las hipótesis causales para aquellas investigaciones con las que podrían fijar la causa de acontecimientos, hechos o fenómenos sociales o físicos que se investigan. Son empleados para aquellas investigaciones comparativas experimentales de expos facto.

Este estudio está asociado a los niveles de estudio **explicativo** debido a que podrá responder a las causas de los acontecimientos y fenómenos del desmonte minero en el concreto.

3.3.2. Tipo de Investigación

Según Álvarez (2020) la indagación de nivel aplicada ocurre cuando el estudio es orientado a adquirir nuevos conocimientos con la finalidad de dar soluciones a problemas que es planteada la investigación. Es así que nuestro estudio busca dar soluciones con la utilización del desmonte minero en el concreto.

3.3.3. Diseño de Investigación

Según Alvarez (2020) indica que la investigación de diseño **experimental** observa los hechos establecidos por el investigador los datos necesarios son

obtenidos, donde es manipulada una sola variable y debe esperarse como responde la otra variable.

La presente investigación es denominada de diseño **experimental** por la variable del desmonte minero que causara efecto en el concreto para obtener una buena resistencia.

3.3.4. Enfoque de investigación

Según Sánchez (2019) menciona que el enfoque **cuantitativo** trata con aquellas circunstancias medibles (esto quiere decir que, es posible asignarles un número, como: cantidad de hijos, edades, estaturas, niveles de hemoglobina, entre otros) mediante el uso de técnicas estadísticas con el fin de analizas aquellos resultados obtenidos, la finalidad de gran importancia ya que radica en "describir, explicar, predecir y controlar las causas" y posibles eventos futuros a partir de su comprensión, este fundamenta cada conclusión acerca del uso riguroso de la medición y cuantificación, tanto de los resultados obtenidos como de su proceso, análisis e interpretación, empleando el método hipotético-deductivo para fundamentar las conclusiones.

Este estudio adopta un enfoque **cuantitativo** riguroso, basado en el análisis estadístico de la información obtenida, desde los ensayos de laboratorio. A través de técnicas estadísticas avanzadas, se busca cuantificar y modelar las variables de interés, permitiendo así establecer relaciones causales y generalizar los resultados.

3.3.5. Variables de la Investigación

Variable independiente

Desmonte minero:

- a) Definición. El desmonte son materiales minerales que son resultado de la desintegración de rocas adquiridos a través de procesos mineros para la extracción de minerales valiosos.
- b) Dimensiones. Dosificación parcial de desmonte minero DM y agregado natural AN
- c) Indicadores. "0% DM + 100% AN, 25% DM + 75% AN, 50% DM + 50% AN, 75% DM + 25% AN, 100% DM + 0% AN".
- d) Escala de medición. Razón.

Variable dependiente:

Propiedades del concreto f'c=210 kg/cm2

- a) Definición. Las propiedades físicas y mecánicas que tiene el concreto dependen de los agregados y adiciones utilizadas en la elaboración de un concreto.
- b) Dimensiones. Propiedades físicas y propiedades mecánicas.
- c) Indicadores. "Densidad (gr/cm3), Absorción (%), Porcentaje de Vacíos (%), Trabajabilidad (cm), Resistencia a la compresión (gr/cm2), Resistencia a la tracción (gr/cm2), Resistencia a flexión (gr/cm2)".
- **d) Instrumentos.** Formatos de ensayos de laboratorio.

Operacionalización de variables

Tabla 4

Tabla de operacionalización de variables

Definición conceptual	Definición operacional	Dimensiones	Indicadores	Escala
Los desmontes son materiales minerales resultantes de la desintegración de rocas adquiridos mediante procesos mineros, el proceso trata de triturar dichos materiales.	El desmonte minero adquirido de una minera activa será triturado en laboratorio para ser sustituido parcialmente el agregado grueso de un diseño de mezcla.	Dosificación parcial de desmonte minero DM y agregado natural AN	"0%DM + 100%AN 25% DM + 75% AN 50% DM + 50% AN 75% DM + 25% AN 100% DM + 0% AN"	Razón
•4	"Se determinarán las propiedades físicas de los agregados de desmonte minero y natural mediante ensayos de laboratorio, al igual que el diseño de	Propiedades físicas	"Densidad (gr/cm3), Absorción (%) Porcentaje de Vacíos (%)	
concreto dependen de los agregados y adiciones utilizadas en la elaboración de un concreto".	mezcla, el curado y finalmente las propiedades físicas y mecánicas del concreto endurecido las cuales son calculadas por equipos especializados en laboratorio".	Propiedades mecánicas	"Resistencia a la compresión (gr/cm2), Resistencia a la tracción (gr/cm2), Resistencia a flexión (gr/cm2),	Razón

Nota: Elaboración propia

3.3.6. Población

Según Tamayo (2018), es el conjunto de individuos u objetos que serán analizados en una investigación constituye la población. Esta se delimita dentro de un contexto espacial específico, que es el escenario donde se llevarán a cabo las actividades de estudio.

La población del estudio son todas las probetas elaboradas con agregados del desmonte de la mina Rinconada - Puno.

3.3.7. Muestra

Según Hernández (2014) la muestra es un subconjunto de la población, De hecho, es casi imposible medir a toda la población, obtenemos, seleccionamos una muestra, por supuesto que es para este subconjunto refleja verdaderamente la condición de todas las personas.

la investigación está representada por 90 unidades de probetas de concreto con la finalidad de evaluar el comportamiento mecánico mediante las pruebas de resistencia mecánica y características físicas. La muestra del desmonte minero se obtendrá en puntos localizados en la mina la Rinconada donde se seleccionará el material para luego trasladarlo al laboratorio de tecnología de concreto y realizar los ensayos que muestran la tabla 1. la investigación está representada por 90 unidades de probetas de concreto con la finalidad de evaluar el comportamiento mecánico mediante las pruebas de resistencia mecánica y características físicas. La muestra del desmonte minero se obtendrá de en puntos localizados en la mina la Rinconada donde se seleccionará el material para luego trasladarlo al laboratorio de tecnología de concreto y realizar los ensayos que muestran la tabla

Tabla 5 *Ensayos realizados de resistencias.*

Ensayos del concreto endurecido		istenci npresi		Resistencia a tracción	Resistencia a flexión	Densidad, absorción y vacíos	Sub
Dosificaciones	7	14	2 8	28 días	28 días	28 días	
Muestra Patrón	3	3	3	3	3	3	18
25% desmonte minero	3	3	3	3	3	3	18
50% desmonte minero	3	3	3	3	3	3	18
75% desmonte minero	3	3	3	3	3	3	18
100% desmonte minero	3	3	3	3	3	3	18
Total de muestras a elab	orar						90

Nota: Elaboración propia.

3.3.8. Prueba Estadística

Para el análisis estadístico se empleará la prueba de normalidad usando la prueba de Shapiro-Wilk que son para valores inferiores a 50, luego se analizará mediante la prueba Anova con el fin de contrastar cada una de las hipótesis.

3.4. PROCEDIMIENTO EXPERIMENTAL

3.4.1. Etapa de pre campo

Esta etapa del proceso implica la importante tarea de identificar la cantera seleccionada para extraer el agregado grueso requerido. Este proceso implica una cuidadosa evaluación y selección de canteras, teniendo en cuenta factores como la calidad y la disponibilidad de la piedra. La recolección de la muestra se realizó del botadero sector 20 de enero de la Mina Rinconada.

Figura 15

Recojo de muestra roca pizarra

Nota: Imagen propia.

3.4.2. Etapa de campo

En la primera etapa del proceso, se lleva a cabo una extracción minuciosa de áridos naturales en la cantera 'Cutimbo - río Pichacani', situada en Pichacani, Puno. Estos materiales son seleccionados rigurosamente para cumplir con los requisitos exigentes de la producción de concreto.

Figura 16

Recojo de muestra del agregado natural de la localidad Pichacani - puno.

Nota: Imagen propia (fotografía de la cantera cutimbo).

3.4.3. Etapa de laboratorio

En esta etapa se realizan ensayos en laboratorio correspondiente a cada objetivo específico, empezando de la caracterización física del material hasta las propiedades de ensayo mecánico del hormigón.

3.4.4. Caracterización de los agregados

Los Agregados son materiales granulares que son utilizados en la construcción, También son fundamentales para dar resistencia y durabilidad al concreto, para la evolución de los agregados se idéntico aspectos como la textura, tamaño, forma y resistencia para optimizar las propiedades del concreto.

Figura 17

Se muestra los agregados naturales y desmonte minero

Nota: Imagen propia.

a) Contenido de humedad total de los agregados por secado

El presente ensayo de acuerdo al porcentaje de humedad total de los áridos por secado a la "norma N.T.P.339,185/ ASTM C-566".

Equipos utilizados:

- Balanza
- Taras
- Cucharon
- Horno a 105+/- 5°C.

Proceso:

- se procede a cuarteo del material luego tomar una cantidad reducida de material representativa aproximadamente unos 250g, el cual es colocado en recipientes etiquetados.
- Se pesa la tara juntamente con el material húmedo y se traslada a un horno durante un día completo a 105 +/- 5°C; luego se deja enfriar y se vuelve a pesar el material con el recipiente.
- Se realizaron 3 muestras para adquirir una media.

Figura 18

Cuarteo de las muestras natrales y desmonte minero

Figura 19

Ensayo de contenido de humedad

b) Análisis granulométrico de agregados gruesos y finos

El ensayo se efectuó con el análisis granulométrico conforme a la "norma N.T.P. 400,12/ ASTM C-136".

Equipos utilizados:

- Balanza con aproximaciones a 0.10% del peso del material ensayado.
- Tamices normalizados (11/2", 1", 3/4", 1/2", 3/8", 1/4", N°4, N°8, N°16,
 N°30, N°50, N°100, N°200, base)
- Horno a 105 +/- 5°C

Proceso:

- La muestra utilizada en el tamizado fue limpiados y lavados y secada en un periodo de 24 horas.
- Se divide el material por la malla N°4, siendo el retenido árido grueso y
 el pasante como árido fino.
- De acuerdo con lo establecido en el MTC E 204, la cantidad mínima de material fino será de 300 g, mientras que, para el material grueso, según la tabla, se requiere un TMN de 3/4, que corresponde a 5 kg. Para este ensayo, se utilizaron aproximadamente 2 kg de agregado fino, 6 kg de agregado grueso y 6 kg de material reciclado, con el fin de resultados adecuados

Figura 20

Tamizado de los agregados natural y desmonte minero

- La suma de los pesos retenidos en los tamices debe compararse con el peso inicial; si la diferencia es superior al 0.3% en peso, la prueba no será aceptada.
- Se coloca el material en estado limpio y seco dejando las impurezas de lado para colocarlas sobre los tamices normados. El proceso inicia girando y golpeando hasta obtener un peso de cada malla.

Figura 21 *Muestras de los agregados gruesos y finos*

 Para el agregado grueso desmonte minero, se realizó el mismo procedimiento hasta obtener pesos de cada tamiz.

Figura 22Muestra del agregado grueso del desmonte minero

c) Peso específico y absorción del agregado fino

El presente ensayo realizo el peso específico y la absorción del árido fino de acuerdo a la "norma N.T.P. 400.021/ ASTM C-127".

Equipo

- "Bandejas"
- "Balanza"
- "Molde cónico (cono de absorción)"
- "Picnómetro"
- "Varilla para apisonado metálica"
- "Equipo que proporcione calor a una intensidad moderada"

Proceso:

- Se selecciona un segmento de 1kg. aprox. el material tiene que pasar de la malla Nº4, a luego se sumerge o remojan durante 24 horas en el agua para su saturación.
- Cuando la muestra está saturada en el agua, se vierte con cuidado e inicia el proceso de secado, donde el material fino se coloca en recipientes metálicos y se calienta a través de una estufa eléctrica regulable.
- Luego sacar el material, llenar con cuidado el cono truncado y sellarlo sin hacer mucha fuerza, golpear la superficie 25 veces, sacar el cono y verificar el primer desmoronamiento, que indica el valor del material en su estado saturado superficialmente seca (S.S.S.). Este es el propósito de este ensayo.
- Se procedió llevar la muestra al horno que se encuentra a una temperatura de 110 ± 5 °C

Figura 23Saturación de la muestra

Figura 24Ensayo con el instrumento picnómetro

d) Peso unitario y vacíos en agregados

El presente ensayo realizo el peso unitario y vacíos de acuerdo a la norma N.T.P. 400.017/ ASTM C-29.

Equipos utilizados:

- Balanza
- Recipiente de medida metálico
- Cilindro preferible con agarraderas
- Regla metálica
- Recipiente

Proceso:

- Para la determinación del peso unitario suelto se procedió llenar con una cuchara al recipiente metálico con altura de 50 mm (2") hasta llegar al ras del recipiente.
- Se anoto el peso del recipiente metálico con contenido y también sin contenido, la variación según norma es no menos de 0.05kg. (0.1 lb).
- Para calcular el peso unitario compactado se procedió a llenar a tamizar los agregados de tamiz de 11/2".
- Se procedió a llenar al recipiente metálico hasta el ras con la regla metálica, luego se procedió a dar golpes alrededor de 25 emparejando con la varilla uniformemente.

Figura 25
Se muestra el recipiente metálico con la placa de vidrio

Figura 26

Ensayo peso unitario compactado y suelto del agregado grueso natural y desmonte minero

Nota: Imagen propia.

e) Método de ensayo determinación de la densidad, la absorción de agua y los vacíos en el concreto.

El presente ensayo calcula la densidad, la absorción de agua y los vacíos en el concreto, conforme a la "norma (NTG 41017 h21)".

Equipos utilizados:

- Balanza
- Recipiente

Proceso:

Masa seca ala horno:

- Se inicio con las probetas de 100mm x 200mm lo fue cortada con una amoladora la parte central, luego 5 cm hacia los lados opuestos y se consideró la parte central por ser más homogénea y se descartó los extremos.
- Luego se colocó al horno durante 24 horas, posterior de enfriar las muestras se pesan y se obtuvo el peso seco, el cual nos dio el parámetro A
- En un recipiente se sumergen las muestras durante 48 horas las muestras consideradas, luego se retiran del agua sumergido y procede a pesar las muestras estas serán menores a 5 % y se obtuvo el parámetro B
- Se procedió en una olla a colocar las muestras y sumergir con agua hasta cubrir toda su superficie de la muestra y luego se dejó ebullir por un periodo de 5 horas
- Luego de dejo a enfriar por un tiempo de 14 horas se procede a obtener el peso saturado y embullido y se obtiene el parámetro C
- Finalmente se procede a obtener el peso suspendido, el cual será el parámetro D.

Figura 27

Ebullición de la muestra de concreto con dosificación de desmonte minero

Figura 28

Muestras para determinar la densidad, absorción y vacíos del concreto endurecido

Nota: Imagen propia.

f) Ensayo de abrasión – máquina de los ángeles

El presente ensayo se realizó utilizando el ensayo de abrasión en la máquina de los Ángeles, de acuerdo con lo establecido en la normativa MTC E-207, AASHTO T.96.

Equipos utilizados:

- Horno 105 +/- 5 °C
- Tamices 3/8", 1/2", 3/4" y N°12
- Bandejas
- Cucharon
- Balanza
- Máquina de los Ángeles

Proceso:

- Se seleccionó el método y el material conforme a la tabla N° 02 según MTC E-207 2000, eligiendo el método B. El material del agregado grueso consistió en 5000 g, 2500 g pasante de la malla ¾" y retenido en la malla. ½", y 2500 g de material pasante de la malla ½" y retenido en la malla 3/8", habiéndose lavado adecuadamente el material para el ensayo.
- Se establece para el método B, se usaron 12 esferas estas junto a los materiales se colocan dentro de la máquina de los ángeles, se programa para llegar a 500 revoluciones a una velocidad de 30 a 33 rpm.
- Luego se procedió a retirar el material tamizándola con la malla N°12,
 el material retenido es lavada y secada en un horno para finalmente
 pesarla.

Figura 29

Ensayo de Abrasión del agregado del desmonte minero y agregado natural

3.4.5. Procesos de mezclado de los materiales

Se procedió a fabricar briquetas cilíndricas y viguetas prismáticas utilizando un patrón concreto y un concreto con adiciones de porcentajes en el peso del agregado grueso de desmonte minero. Posteriormente, se realizaron diversos ensayos en el concreto, tales como: asentamiento, resistencia a la compresión, flexión, tracción, así como el cálculo de la densidad, la absorción de agua y los vacíos en el concreto endurecido.

Figura 30

Procedimiento de vaciado de concreto en los moldes de probetas cilíndricas

Nota: Imagen propia.

Figura 31

Briquetas de concreto según diseño con dosificaciones de agregado natural y desmonte minero.

Figura 32

Viguetas prismáticas de concreto según diseño con dosificaciones de agregado natural y desmonte minero.

Nota: Imagen propia.

Figura 33

Ensayo de la densidad, la absorción de agua y porcentaje de vacíos en el concreto endurecido.

3.4.6. Proceso de curado de las briquetas

Se realizo el curado sometiendo a las muestras de concreto para así mantener hidratado al cemento así fortalecer el desarrollo las propiedades del concreto, por un tiempo de 28 días para que el concreto alcance el 100% de su resistencia para realizar los ensayos de resistencias (rotura), según la norma nos indica los primeros 7 días el concreto debe llegar como mínimo a los 70% de su resistencia.

Figura 34

Curado de las muestras testigos y viguetas

Nota: Imagen propia.

3.4.7. Resistencia a la compresión, tracción y flexión del concreto (f'c=210 kg/cm^2)

Una vez finalizado con el moldeado de los testigos se procedió a realizar los ensayos de resistencias del concreto en su estado endurecido a los 7,14,28 días de curado siguiendo la normativa MTC E-704, MTC E-708 y MTC E-709.

Figura 35Rotura de briqueta con distintas dosificaciones

Figura 36

Rotura de la briqueta – ensayo a tracción

Figura 37Rotura de las vigas— ensayo a flexión

En cuanto al ensayo de determino la densidad en porcentajes de absorción de agua y el porcentaje de vacíos en el concreto endurecido se realizaron muestras concreto patrón, 25% de desmonte minero, 50% de desmonte minero, 75% de desmonte minero, 100% de desmonte minero.

Figura 38

Ensayo de densidad, absorción y porcentaje de vacíos en el concreto

3.4.8. Etapa de gabinete

En la fase de consultorio se realizó una exhaustiva revisión de los valores adquiridos en la fase de laboratorio. Se realizó un procesamiento y análisis en profundidad de las pruebas con las que se estimó las características físicas y mecánicas, la evaluación de los áridos gruesos y el análisis de los resultados de las pruebas del concreto y resistencias a la compresión, tracción y flexión. Este paso incluye una explicación concisa de los valores resultantes en pruebas para finalmente redactar un informe detallado sobre la investigación realizada.

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

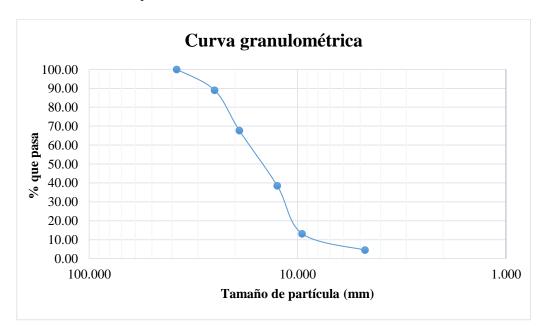
4.1. PROPIEDADES FISICAS Y MECANICAS DEL DESMONTE MINERO

OE1: Analizar las características físicas del desmonte minero y seleccionar para sustituir parcialmente el agregado grueso.

4.1.1. Análisis granulométrico por tamizado

Tabla 6Análisis granulométrico por tamizado

Tar	Tamiz % que		especificación	Resultados
pulg.	mm	pasa	especificación	Resultatios
2"	50.000			
1 1/2"	38.000	100.00	100	
1"	25.000	89.00	90 - 100	
3/4"	19.000	67.60	40 - 85	
1/2"	12.500	38.40	10 - 40	Tamaño máximo:
3/8"	9.500	13.10	0 - 15	38.00mm (1 1/2")
N° 04	4.750	4.50	0 - 5	TMN: 25.00 (1")
N° 08	2.360			Módulo de fineza:
N° 16	1.180			2.873
N° 30	0.600			
N° 50	0.300			
N° 100	0.150			
N° 200	0.074			


Nota: Efectuado por el autor de la indagación

En la Tabla 6 se presenta el análisis granulométrico por tamizado del material de desmonte minero extraído de la mina Rinconada como material que sustituirá parcial y totalmente al agregado grueso, en donde se observa un "tamaño

máximo de 38.00mm o 1 1/2", el tamaño máximo nominal es de 25.00mm" o 1" y el módulo de fineza del material es de 2.873.

Figura 39Distribución de partículas del desmonte minero

Nota: Efectuado por el autor de la indagación.

En la Figura 39 se presenta la curva granulométrica en donde se observa la distribución de las partículas del material grueso de desmonte minero, las cual se encuentra dentro de la especificación mencionada en la Tabla 12.

4.1.2. Peso específico y absorción del agregado grueso

Tabla 7Peso específico y absorción de agregado (desmonte minero)

Datos del peso específico y absorción	Muestra 01	Muestra 02	
A "Peso de la muestra seca al horno"	1661.5 gr.	2022.0 gr.	
B "Peso de la muestra superficial seca al aire"	1668.0 gr.	2031.5 gr.	
C "Peso de la muestra sumergida"	1050.5 gr.	1279.0 gr.	
Temperatura del ensayo	25.3 °C	25.3 °C	
Factor de corrección	0.9988	0.9988	
1. "Peso específico de la masa"	2.69 gr/cm ³	2.68 gr/cm ³	
Promedio	2686 kg/m^3		
2. "Peso específico de masa saturada"	2.70 gr/cm ³	2.70 gr/cm ³	
Promedio	2697 kg	g/m^3	
3. "Peso específico aparente"	2.72 gr/cm ³	2.72 gr/cm ³	
Promedio	2717 kg	g/m^3	
4. "Absorción de agua"	0.40%	0.50%	
Promedio	0.40%		

Nota: Efectuado por el autor de la indagación.

La Tabla 7 presenta las características de peso específico seco, saturado, aparente y la absorción de agua, realizados mediante diferentes ensayos en laboratorio con la normativa ASTM, se observa que el material de desmonte minero presenta un peso específico seco de 2686 kg/m³, un peso específico saturado de 2697 kg/m³, un peso específico aparente de 2717 kg/m³ y una absorción de agua de 0.4%.

4.1.3. Contenido de humedad del agregado

 Tabla 8

 Contenido de humedad del agregado (desmonte minero)

Datos de humedad	Contenido de humedad			
"Peso de la muestra húmeda"	1035 gr.	1018 gr.		
"Peso de la muestra seca"	1025 gr.	1009 gr.		
"Peso del recipiente"	0	0		
"Contenido de humedad"	0.98%	0.89%		
"Promedio"	0.	93%		

Nota: Efectuado por el autor de la indagación.

En la Tabla 8 se presenta el resultado de contenido de agua que presenta el material de desmonte minero mediante el ensayo establecido en la normativa ASTM C 566, se observa un resultado de 0.93% de agua en el agregado grueso.

4.1.4. Peso unitario suelto y compactado

Tabla 9Peso unitario suelto y compactado del agregado (desmonte minero)

Datos del peso unitario	Suc	elto	Compactado		
Datos dei peso dintario	Muestra 01	Muestra 02	Muestra 01	Muestra 02	
"Peso de la muestra + recipiente"	27603 gr.	27709 gr.	29679 gr.	29985 gr.	
"Peso del recipiente"	8252 gr.	8252 gr.	8252 gr.	8252 gr.	
"Peso del agregado"	19351 gr.	19457 gr.	21427 gr.	21733 gr.	
"Constante o volumen"	0.01408 m ³	0.01408 m^3	0.01408 m ³	0.01408 m ³	
"Peso unitario suelto húmedo"	1374 kg/m^3	$1382\;kg/m^3$	$1522\ kg/m^3$	$1543 \; kg/m^3$	
"Peso unitario"	1365	kg/m³	1518	kg/m³	

Nota: Efectuado por el autor de la indagación.

En la Tabla 9 se muestran los valores de pesos unitarios hallados mediante ensayos en laboratorio tomando como referencia la normativa ASTM C29, de la cual se estima un peso unitario suelto promedio de 1365 kg/m³ y un peso unitario compactado de 1518 kg/cm³.

4.1.5. Abrasión de los ángeles

Tabla 10

Pérdida de desgaste del agregado (desmonte minero)

Gradación	В
Pérdida	13%

Nota: Efectuado por el autor de la indagación.

En la Tabla 10 se presenta el resultado de desgaste de material realizado mediante el ensayo de abrasión de los ángeles con una gradación tipo B, teniendo una pérdida del 13%, dicho ensayo fue realizado mediante la normativa AASHTO T96.

Tabla 11

Resumen de las características del desmonte minero (agregado grueso)

PROPIEDADI DESMONTE M		ESPECIFICACIONES TÉCNICAS Y NORMATIVAS		OBSERVACIÓN	
Característica	Resultados de laboratorio	Requisito según normas	Normas	Si Cumple No Cumple	
"Tamaño máximo"	1 1/2"	-	-	-	
"Tamaño máximo nominal"	1"	-	-	-	
Módulo de fineza	2.87	> 2.3 - < 3.1	ASTM C33 NTP 400.003	Cumple	
Peso específico	2686 kg/m³	2500 a 3000 2500 a 2700	ASTM C127 NTP 400.003	Cumple	
Absorción	0.40%	0.5% a 2.0% 0.5% a 2.5%	ASTM C127 NTP 400.003	-	
Contenido de humedad	0.93%	0% a 5%	ASTM C70 NTP 400.003	Cumple	
Peso unitario suelto	1365 kg/m³	1440 a 1680 1400 a 1700	ASTM C29 NTP 400.003	-	
Peso unitario compactado	1518 kg/m³	1500 a 2000 1600 a 2000	ASTM C29 NTP 400.003	Cumple	
Abrasión	13%	< 40%	ASTM C131 NTP 400.003	Cumple	

Nota: Efectuado por el autor de la indagación (resultados de laboratorio, comparativo con normas).

OE2: Analizar las propiedades de los materiales para el diseño de mezcla de concreto según la metodología ACI-211 incorporando parcialmente con desmonte minero y medir la consistencia mediante el cono de Abrams.

4.2. PROPIEDADES DE LOS MATERIALES Y DISEÑO DE MEZCLA

4.2.1. Características físicas de los agregados finos y gruesos

Tabla 12Características de los agregados finos y gruesos (río Cutimbo)

Propiedades físicas de los agregados	Agregado grueso	Agregado fino
"Análisis granulométrico"		
"Tamaño máximo nominal"	1" (25.00mm)	N° 4 (4.75mm)
"Módulo de fineza"	2.776	4.014
"Partícula pasante la malla $N^{\circ}200$ "	4.60%	5.90%
"Peso unitario suelto seco"	$1530~kg/m^3$	1183 kg/m^3
"Peso unitario compactado seco"	$1586~kg/m^3$	1318 kg/m^3
"Peso específico de masa seco"	$2411~kg/m^3$	2464 kg/m^3
"Peso específico de masa saturado"	$2469~kg/m^3$	2523 kg/m^3
"Peso específico aparente"	$2559~kg/m^3$	2618 kg/m^3
"Absorción de agua"	2.40%	2.40%
"Contenido de humedad"	1.10%	1.50%

Nota: Efectuado por el autor de la indagación.

En la Tabla 12 se presentan las características físicas del árido grueso y fino extraídos del río Cutimbo para el diseño de mezcla de un concreto f'c=210kg/cm², realizados mediante una serie de ensayos en laboratorio, de las cuales tanto el agregado grueso como fino presentaron un contenido de humedad de 1.10% y 1.50%, absorción de agua del 2.4% y 2.40%, TMN de 25mm y 4.75mm, MF de 2.776 y 4.014, peso unitario suelto de 1530 kg/m³ y 1183 kg/m³, peso unitario compactado de 1586 kg/m³ y 1318 kg/m³, un peso específico seco de 2411 kg/m³ y 2464 kg/m³ y un peso específico aparente de 2559 kg/m³ y 2618 kg/m³.

4.2.2. Diseño de mezcla para un concreto f'c=210kg/cm²

Tabla 13Características de los agregados finos y gruesos (río Cutimbo)

Proporción en volumen por un metro cúbico de concreto						
Dosificación	Peso	Volumen				
Cemento Rumi tipo I	376.795 kg/m³	0.121 m³				
Agua: potable	188.247 ltr/m³	0.188 m^3				
Aire	$1.500~kg/m^3$	0.015 m^3				
Arena: Río Cutimbo	765.594 kg/m^3	0.311 m ³				
Piedra: Río Cutimbo	879.414 kg/m^3	0.365 m^3				
Total	2211.549 kg/m^3	1.000 m ³				

Nota: Efectuado por el autor de la indagación.

Tabla 14

Dosificación por metro cúbico (peso húmedo) corrección por humedad

Proporción en volumen por un metro cúbico de concreto						
Dosificación	Peso	Peso untario suelto	Volumen			
Cemento Rumi tipo I	376.795 kg/m³	3110 kg/m³	0.121 m³			
Agua: potable	206.246 ltr/m³	$1000\ ltr/m^3$	0.206 m^3			
Arena: Río Cutimbo	777.368 kg/m^3	1183 kg/m^3	0.657 m^3			
Piedra: Río Cutimbo	889.088 kg/m^3	$1530~kg/m^3$	0.581 m^3			
Total	2249.497 kg/m³					

Nota: Efectuado por el autor de la indagación.

En la Tabla 13 se observa la dosificación por metro cúbico de los materiales para un diseño de mezcla con un diseño inicial de f'c=210 kg/cm² en estado seco, al realizar la corrección por humedad las cantidades en peso fueron aumentando tal como se muestra en la Tabla 14, para el cemento Rumi tipo I 376.795 kg/m³, agua potable de 206.246 ltr/m³, arena de 777.368 kg/m³ y piedra de 889.088 kg/m³, teniendo un total de 2249.497 kg/m³ para un diseño por metro cúbico.

4.2.3. Propiedades físicas del concreto fresco

Tabla 15Peso unitario suelto del concreto en estado fresco

Dosificación		Muestra		Promedio	Variación
Dosmcacion	M-01	M-02	M-03	(kg)	(%)
Muestra patrón	1755.70	1729.00	1759.00	1747.90	0.00
25% desmonte minero	1753.10	1782.80	1711.40	1749.10	0.07
50% desmonte minero	1776.90	1730.90	1740.70	1749.50	0.09
75% desmonte minero	1765.80	1753.80	1772.00	1763.87	0.91
100% desmonte minero	1775.60	1761.60	1785.10	1774.10	1.50

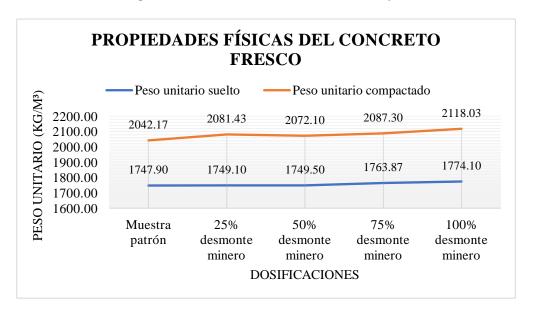
Nota: Efectuado por el autor de la indagación.

En la Tabla 15 se presentan los datos resultantes de peso unitario suelto (PUS) del concreto en estado fresco con diferentes sustituciones de desmonte minero (DM), la muestra patrón presenta un PUS de 1747 kg/m³, al adicionar 25%DM el peso aumentó en un 0.07%, con 50%DM aumentó en un 0.09%, con 75%DM el peso aumentó en un 0.91% y con la sustitución del 100% DM el peso aumentó en un 1.50% respecto al peso de la muestra patrón.

Tabla 16Peso unitario compactado del concreto en estado fresco

Dosificación		Muestra		Promedio	Variación
Dosilicacion	M-01	M-02	M-03	(kg)	(%)
Muestra patrón	2026.40	2066.20	2033.90	2042.17	0.00
25% desmonte minero	2074.70	2089.40	2080.20	2081.43	1.92
50% desmonte minero	2049.90	2085.80	2080.60	2072.10	1.47
75% desmonte minero	2078.90	2083.80	2099.20	2087.30	2.21
100% desmonte minero	2109.90	2119.00	2125.20	2118.03	3.72

Nota: Efectuado por el autor de la indagación.


En la Tabla 16 se presentan los datos resultantes de peso unitario compactado (PUC) del concreto en estado fresco con diferentes sustituciones de desmonte minero (DM), la muestra patrón presenta un PUS de 2042.17 kg/m³, al

adicionar 25%DM el peso aumentó en un 1.92%, con 50%DM aumentó en un 1.47%, con 75%DM el peso aumentó en un 2.21% y con la sustitución del 100% DM el peso aumentó en un 3.72% respecto al peso de la muestra patrón.

Figura 40

Variación de los pesos unitarios del concreto en estado fresco

Nota: Efectuado por el autor de la indagación.

En la Figura 40 se observa mediante el gráfico de línea de tendencia el comportamiento de las diferentes dosificaciones en cuanto a peso específico suelto y compactado, del gráfico deducimos que, a medida se sustituye más porcentaje de desmonte minero el PUS aumenta al igual que el PUC.

OE3: Determinar la resistencia a compresión, tracción, la densidad, volumen de poros y absorción del concreto adicionado parcialmente del desmonte minero.

4.3. PROPIEDADES FÍSICAS Y MECÁNICAS DEL CONCRETO ENDURECIDO

4.3.1. Absorción del concreto

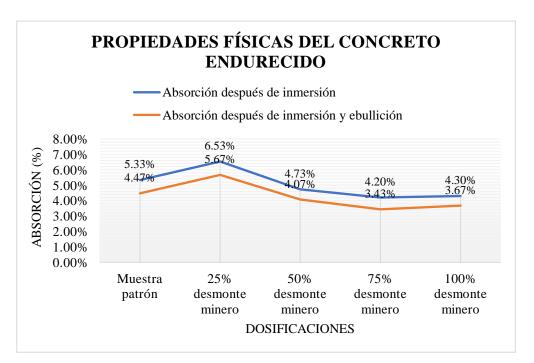
Tabla 17Absorción después de la inmersión del concreto en estado endurecido

Dosificación		Muestra		Promedio	Variación
Dosilicación	M-01	M-02	M-03	(%)	(%)
Muestra patrón	5.20%	5.80%	5.00%	5.33%	0.00
25% desmonte minero	7.60%	4.90%	7.10%	6.53%	22.50
50% desmonte minero	4.30%	4.80%	5.10%	4.73%	-11.25
75% desmonte minero	4.30%	4.30%	4.00%	4.20%	-21.25
100% desmonte minero	4.80%	4.40%	3.70%	4.30%	-19.38

Nota: Efectuado por el autor de la indagación.

En la Tabla 17 se muestran los datos resultantes de absorción después de la inmersión del concreto en estado endurecido con diferentes sustituciones de desmonte minero (DM), la muestra patrón presenta una absorción de 5.33% en promedio, al adicionar 25%DM el porcentaje de absorción aumentó en un 22.50%, sin embargo, con la dosificación de 50% DM la absorción del concreto disminuyó en un 11.25%, con la dosificación de 75%DM la absorción disminuyó en un 21.25% y con la dosificación de 100% DM la absorción disminuyó en un 19.38% respecto a la muestra patrón.

Tabla 18Absorción después de la inmersión y ebullición del concreto en estado endurecido


Dosificación		Muestra	Promedio	Variación	
	M-01	M-02	M-03	(%)	(%)
Muestra patrón	4.20%	5.00%	4.20%	4.47%	0.00
25% desmonte minero	6.60%	4.20%	6.20%	5.67%	26.87
50% desmonte minero	3.80%	4.00%	4.40%	4.07%	-8.96
75% desmonte minero	3.60%	3.50%	3.20%	3.43%	-23.13
100% desmonte minero	4.00%	3.80%	3.20%	3.67%	-17.91

Nota: Efectuado por el autor de la indagación.

En la Tabla 18 se evidencian los datos resultantes de absorción después de la inmersión y ebullición del concreto en estado endurecido con diferentes sustituciones de desmonte minero (DM), la muestra patrón presenta una absorción de 4.47% en promedio, al adicionar 25%DM el porcentaje de absorción aumentó en un 26.87%, sin embargo, con la dosificación de 50% DM la absorción del concreto disminuyó en un 8.96%, con la dosificación de 75%DM la absorción disminuyó en un 23.13% y con la dosificación de 100% DM la absorción disminuyó en un 17.91% respecto a la muestra patrón.

Figura 41Variación de la absorción del concreto en estado endurecido

Nota: Efectuado por el autor de la indagación.

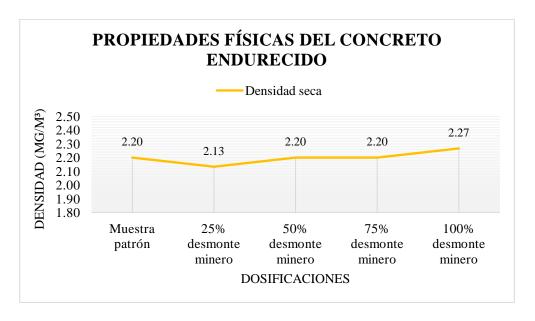
En la Figura 41 se evidencia mediante un gráfico de tendencia el comportamiento de absorción del concreto, indicándonos una mayor absorción con la dosificación del 25% DM, al sustituir desmonte minero sobre los 50% la

absorción disminuye situándose por debajo de la capacidad de absorción del concreto patrón sin incorporación de desmonte minero.

4.3.2. Densidad del concreto endurecido

Tabla 19Densidad seca global del concreto

Dosificación	Muestra			Promedio	Variación
	M-01	M-02	M-03	(mg/m^3)	(%)
Muestra patrón	2.20	2.20	2.20	2.20	0.00
25% desmonte minero	2.10	2.20	2.10	2.13	-3.03
50% desmonte minero	2.20	2.20	2.20	2.20	0.00
75% desmonte minero	2.20	2.20	2.20	2.20	0.00
100% desmonte minero	2.20	2.30	2.30	2.27	3.03


Nota: Efectuado por el autor de la indagación.

En la Tabla 19 se evidencia los valores adquiridos de la densidad seca del concreto en estado endurecido con diversas sustituciones de desmonte minero (DM), la muestra patrón presenta una densidad de 2.20 mg/m³ en promedio, al adicionar 25%DM la densidad disminuyó en un 3.03%, sin embargo, con la dosificación de 50% DM y 75%DM la densidad se mantuvo y con la dosificación de 100% DM la densidad aumentó en un 3.03% respecto a la muestra patrón.

Figura 42

Variación de la densidad seca del concreto en estado endurecido

Nota: Efectuado por el autor de la indagación.

En la Figura 42 se presenta mediante un gráfico de tendencia el comportamiento de la densidad seca del concreto con diferentes dosificaciones, indicándonos una reducción de densidad con la dosificación del 25% DM, sin embargó con el resto de dosificaciones se mantiene la densidad y se supera a la muestra patrón.

Tabla 20Densidad global después de la inmersión del concreto

Dosificación	Muestra			Promedio	Variación
	M-01	M-02	M-03	(mg/m^3)	(%)
Muestra patrón	2.30	2.30	2.30	2.30	0.00
25% desmonte minero	2.30	2.30	2.30	2.30	0.00
50% desmonte minero	2.30	2.30	2.30	2.30	0.00
75% desmonte minero	2.30	2.30	2.30	2.30	0.00
100% desmonte minero	2.40	2.40	2.40	2.40	4.35

Nota: Efectuado por el autor de la indagación.

En la Tabla 20 se muestran los datos resultantes de la densidad después de la inmersión del concreto en estado endurecido con diferentes sustituciones de

desmonte minero (DM), la muestra patrón presenta una densidad de 2.30 mg/m³ en promedio, al adicionar 25%DM, 50% DM y 75%DM la densidad se mantuvo y con la dosificación de 100% DM la densidad aumentó en un 4.35% respecto al patron.

Tabla 21Densidad global después de la inmersión y ebullición del concreto

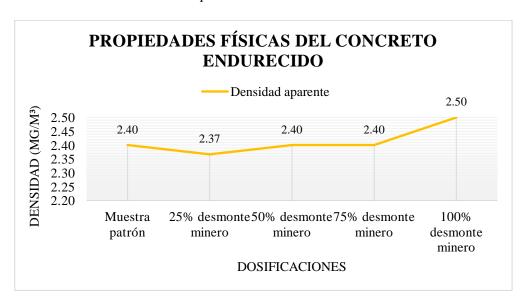
Dosificación	Muestra			Promedio	Variación
	M-01	M-02	M-03	(mg/m^3)	(%)
Muestra patrón	2.30	2.30	2.30	2.30	0.00
25% desmonte minero	2.20	2.30	2.30	2.27	-1.45
50% desmonte minero	2.30	2.30	2.30	2.30	0.00
75% desmonte minero	2.30	2.30	2.30	2.30	0.00
100% desmonte minero	2.30	2.30	2.40	2.33	1.45

Nota: Efectuado por el autor de la indagación.

En la Tabla 21 se evidencia los datos resultantes de la densidad después de la inmersión y ebullición del concreto en estado endurecido con diferentes sustituciones de desmonte minero (DM), la muestra patrón presenta una densidad de 2.30 mg/m³ en promedio, al adicionar 25%DM la densidad disminuyó en un 1.45%, sin embargo, con la dosificación de 50% DM y 75%DM la densidad se mantuvo y con la dosificación de 100% DM la densidad aumentó en un 1.45% respecto a la muestra patrón.

Tabla 22Densidad aparente después de la inmersión y ebullición del concreto

Dosificación		Muestra	Promedio	Variación	
	M-01	M-02	M-03	(mg/m^3)	(%)
Muestra patrón	2.40	2.40	2.40	2.40	0.00
25% desmonte minero	2.30	2.40	2.40	2.37	-1.39
50% desmonte minero	2.30	2.40	2.50	2.40	0.00
75% desmonte minero	2.40	2.40	2.40	2.40	0.00
100% desmonte minero	2.50	2.50	2.50	2.50	4.17


Nota: Efectuado por el autor de la indagación.

En la Tabla 22 se evidencia los datos resultantes de la densidad aparente del concreto en estado endurecido con diferentes sustituciones de desmonte minero (DM), la muestra patrón presenta una densidad de 2.40 mg/m³ en promedio, al adicionar 25%DM la densidad disminuyó en un 1.39%, sin embargo, con la dosificación de 50% DM y 75%DM la densidad se mantuvo y con la dosificación de 100% DM la densidad aumentó en un 4.17% respecto a la muestra patrón.

Figura 43

Variación de la densidad aparente del concreto en estado endurecido

Nota: Efectuado por el autor de la indagación.

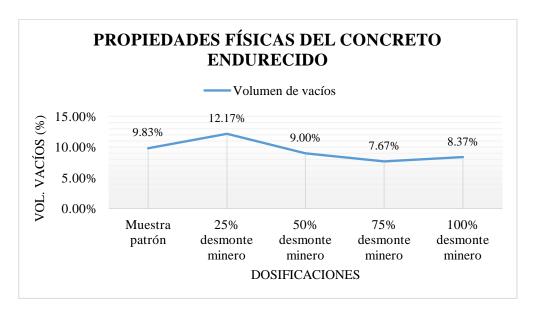
En la Figura 43 se evidencia mediante un gráfico de tendencia el comportamiento de la densidad aparente del concreto con diferentes dosificaciones, indicándonos una reducción de densidad con la dosificación del

25% DM, sin embargo, con el resto de dosificaciones se mantiene la densidad y se supera a la muestra patrón.

4.3.3. Volumen de vacíos

Tabla 23Volumen de vacíos después de la inmersión y ebullición del concreto

Dosificación	Muestra			Promedio	Variación
	M-01	M-02	M-03	(mg/m^3)	(%)
Muestra patrón	9.20%	10.90%	9.40%	9.83%	0.00
25% desmonte minero	14.20%	9.20%	13.10%	12.17%	23.73
50% desmonte minero	8.50%	8.80%	9.70%	9.00%	-8.47
75% desmonte minero	8.10%	7.70%	7.20%	7.67%	-22.03
100% desmonte minero	9.10%	8.60%	7.40%	8.37%	-14.92


Nota: Efectuado por el autor de la indagación.

En la Tabla 23 se evidencia los datos resultantes del volumen de vacíos del concreto en estado endurecido con diferentes sustituciones de desmonte minero (DM), la muestra patrón presenta un volumen de vacíos de 9.83% en promedio, al adicionar 25%DM el volumen de vacíos aumentó en un 23.73%, sin embargo, con la dosificación de 50% DM el volumen de vacíos disminuyó en un 8.47%, con 75%DM el volumen de vacíos disminuyó en un 22.03% y con la dosificación de 100% DM el volumen de vacíos disminuyó en un 14.92% respecto a la muestra patrón.

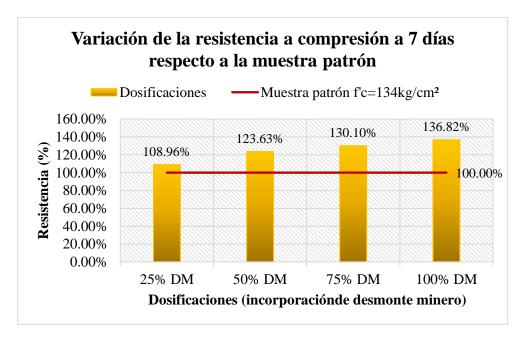
Figura 44

Variación del volumen de vacíos del concreto en estado endurecido

Nota: Efectuado por el autor de la indagación.

En la Figura 44 se evidencia mediante un gráfico de tendencia el comportamiento del volumen de vacíos del concreto con diferentes dosificaciones, indicándonos un aumento de volumen de vacíos con la dosificación del 25% DM, sin embargo, con el resto de dosificaciones el volumen de vacíos disminuye estando por debajo de la muestra patrón.

4.3.4. Resistencia a la compresión


Tabla 24Resistencia a compresión del concreto a 7 días

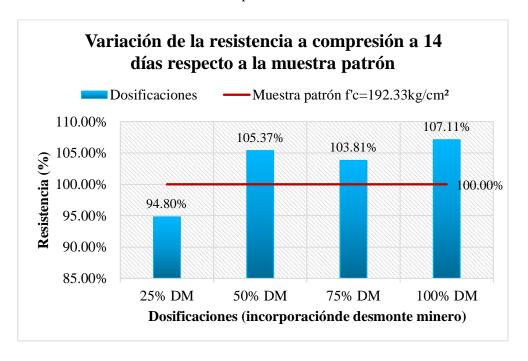
Dogificación		Muestra		Promedio	Variación
Dosificación	M-01	M-02	M-03	(kg/cm ²)	(%)
Muestra patrón	128.00	131.00	143.00	134.00	100.00%
25% desmonte minero	157.00	148.00	133.00	146.00	108.96%
50% desmonte minero	161.00	169.00	167.00	165.67	123.63%
75% desmonte minero	168.00	178.00	177.00	174.33	130.10%
100% desmonte minero	182.00	177.00	191.00	183.33	136.82%

Nota: Efectuado por el autor de la indagación.

Figura 45Variación de la resistencia a compresión del concreto curado a 7 días

Nota: Efectuado por el autor de la indagación.

En la Tabla 24 se muestran hallazgos adquiridos mediante pruebas en laboratorio de la resistencia a la compresión del concreto a 7 días de su curado y en la Figura 45 se presenta la variación de resistencia con las diferentes incorporaciones de desmonte minero, la muestra patrón presenta una resistencia de 130 kg/cm², con la dosificación del 25% DM la resistencia aumenta en un 8.96%, con 50%DM aumenta en un 23.63%, con 75%DM aumenta en un 30.10% y con 100%DM la resistencia aumenta en un 36.82% respecto a la muestra patrón, indicándonos un incremento en la resistencia compresiva a medida se sustituye con porcentajes ascendentes de desmonte minero por el agregado grueso.


Tabla 25Resistencia a la compresión a 14 días de su curado

Dogificación		Muestra			Variación
Dosificación	M-01	M-02	M-03	(kg/cm ²)	(%)
Muestra patrón	186.00	199.00	192.00	192.33	100.00%
25% desmonte minero	204.00	178.00	165.00	182.33	94.80%
50% desmonte minero	200.00	204.00	204.00	202.67	105.37%
75% desmonte minero	203.00	195.00	201.00	199.67	103.81%
100% desmonte minero	208.00	204.00	206.00	206.00	107.11%

Nota: Efectuado por el autor de la indagación.

Figura 46

Variación de la resistencia a compresión del concreto curado a 14 días

Nota: Efectuado por el autor de la indagación.

En la Tabla 25 se evidencia los resultados adquiridos mediante pruebas en laboratorio de la resistencia a la compresión del concreto a 14 días de su curado y en la Figura 46 se presenta la variación de resistencia con las diferentes incorporaciones de desmonte minero, la muestra patrón presenta una resistencia de 192.33 kg/cm², con la dosificación del 25% DM la resistencia disminuye en un 5.2%, con 50%DM la resistencia aumenta en un 5.37%, con 75%DM aumenta en un 3.81% y con 100%DM la resistencia aumenta en un 7.11% respecto a la

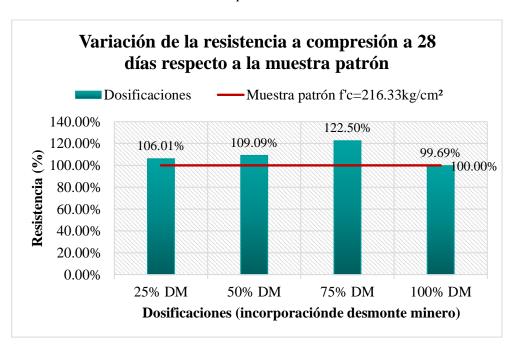
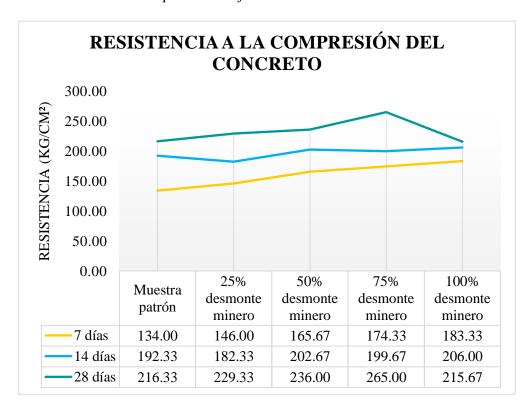

muestra patrón, indicándonos un incremento en la resistencia compresiva a medida se sustituye con porcentajes ascendentes de desmonte minero por el agregado grueso exceptuando la sustitución del 25%DM.

Tabla 26Resistencia a la compresión a 28 días de su curado

Dosificación		Muestra		Promedio	Variación
Dosmicación	M-01	M-02	M-03	(kg/cm²)	(%)
Muestra patrón	221.00	210.00	218.00	216.33	100.00%
25% desmonte minero	233.00	228.00	227.00	229.33	106.01%
50% desmonte minero	248.00	224.00	236.00	236.00	109.09%
75% desmonte minero	265.00	267.00	263.00	265.00	122.50%
100% desmonte minero	217.00	215.00	215.00	215.67	99.69%

Nota: Efectuado por el autor de la indagación.

Figura 47Variación de la resistencia a compresión del concreto curado a 28 días


Nota: Efectuado por el autor de la indagación.

En la Tabla 26 se evidencia los hallazgos adquiridos mediante pruebas en laboratorio de la resistencia a la compresión del concreto a 28 días de su curado y

en la Figura 47 se presenta la variación de resistencia con las diferentes incorporaciones de desmonte minero, la muestra patrón presenta una resistencia de 216.33 kg/cm², con la dosificación del 25% DM la resistencia aumenta en un 6.01%, con 50%DM la resistencia aumenta en un 9.09%, con 75%DM aumenta en un 22.50%, sin embargo, con 100%DM la resistencia se redujo en un 0.31% respecto a la muestra patrón, indicándonos un incremento en la resistencia compresiva a medida se sustituye con porcentajes ascendentes de desmonte minero por el agregado grueso exceptuando la sustitución completa del 100%DM.

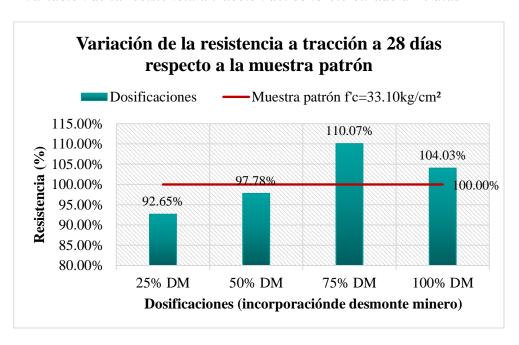
Figura 48Resistencia a la compresión a diferentes días de su curado

Nota: Efectuado por el autor de la indagación.

En la Figura 48 se evidencia mediante una gráfica de tendencia el comportamiento de la resistencia compresiva del concreto curado a 7, 14 y 28 días, se observa que la resistencia varía conforme a los días de curado, ya que a

los 28 días el comportamiento es ascendente, sin embargo, con la sustitución completa de 100% la resistencia se sitúa por debajo de la muestra patrón.

4.3.5. Resistencia a la tracción indirecta


Tabla 27Resistencia a la tracción a 28 días de su curado

Dosificación		Muestra		Promedio	Variación
Dosificación	M-01	M-02	M-03	(kg/cm ²)	(%)
Muestra patrón	41.80	31.20	26.30	33.10	100.00%
25% desmonte minero	29.20	25.50	37.30	30.67	92.65%
50% desmonte minero	29.90	32.10	35.10	32.37	97.78%
75% desmonte minero	38.50	35.20	35.60	36.43	110.07%
100% desmonte minero	37.20	32.90	33.20	34.43	104.03%

Nota: Efectuado por el autor de la indagación.

Figura 49

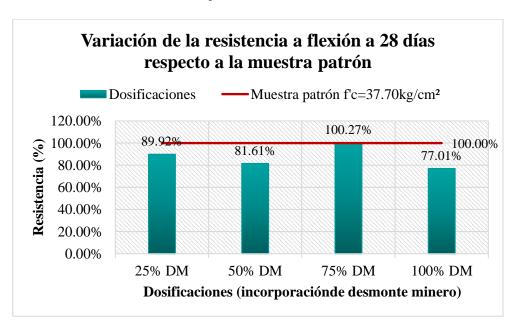
Variación de la resistencia a tracción del concreto curado a 28 días

Nota: Efectuado por el autor de la indagación.

En la Tabla 27 se evidencian los hallazgos adquiridos mediante pruebas en laboratorio de la resistencia a fuerzas traccionantes del concreto a 28 días de su curado y en la Figura 49 se presenta la variación de resistencia con las diferentes

incorporaciones de desmonte minero, la muestra patrón presenta una resistencia de 33.10 kg/cm², con la dosificación del 25% DM la resistencia disminuye en un 7.35%, con 50%DM la resistencia disminuye en un 2.22%, con 75%DM aumenta en un 10.07%, con 100%DM la resistencia aumenta en un 4.03% respecto a la muestra patrón, indicándonos un incremento en la resistencia a tracción con la dosificación del 75%DM considerándose una dosificación óptima.

4.3.6. Resistencia a la flexión


Tabla 28Resistencia a la flexión a los 28 días de su curado

Docificación	Muestra			Promedio	Variación	
Dosificación	M-01	M-02	M-03	(kg/cm ²)	(%)	
Muestra patrón	44.60	35.50	33.00	37.70	100.00%	
25% desmonte minero	36.10	31.20	34.40	33.90	89.92%	
50% desmonte minero	35.80	28.80	27.70	30.77	81.61%	
75% desmonte minero	35.00	37.60	40.80	37.80	100.27%	
100% desmonte minero	25.00	30.30	31.80	29.03	77.01%	

Nota: Efectuado por el autor de la indagación.

Figura 50

Variación de la resistencia a flexión del concreto curado a 28 días

Nota: Efectuado por el autor de la indagación.

En la Tabla 28 se muestran los resultados adquiridos mediante pruebas en laboratorio de la resistencia a la flexión del concreto a 28 días de su curado y en la Figura 50 se presenta la variación de resistencia con las diferentes incorporaciones de desmonte minero, la muestra patrón presenta una resistencia de 37.70 kg/cm², con la dosificación del 25% DM la resistencia disminuye en un 10.08%, con 50%DM la resistencia disminuye en un 18.39%, con 75%DM aumenta en un 0.27% y con 100%DM la resistencia disminuye en un 22.99% respecto a la muestra patrón, indicándonos un incremento mínimo en la resistencia a flexión con la dosificación del 75%DM considerándose una dosificación óptima.

4.3.7. Cuadro de resumen de resultados de los ensayos compresión, traición y flexión a los 28 días de curado.

Tabla 29Cuadro resumen de resultados de los ensayos a compresión, tracción y flexión a 28 días de su curado.

		Ensayos	
Dosificación	Compresión	Tracción	Flexión
	(Kg/cm2)	(Kg/cm2)	(Kg/cm2)
Muestra patrón	216.33 kg/cm2	33.10 kg/cm2	37.70 kg/cm2
25% desmonte minero	229.33 kg/cm2	30.67 kg/cm2	33.90 kg/cm2
50% desmonte minero	236.00 kg/cm2	32.37 kg/cm2	30.77 kg/cm2
75% desmonte minero	265.00 kg/cm2	36.43 kg/cm2	37.80 kg/cm2
100% desmonte minero	215.67 kg/cm2	34.43 kg/cm2	29.03 kg/cm2

Nota: Efectuado por el autor de la indagación.

4.4. CONTRASTACIÓN DE HIPÓTESIS

4.4.1. Prueba de normalidad

Ho: Los datos presentan una distribución normal

Ha: Los datos no presentan una distribución normal

Tabla 30

Prueba de normalidad para los datos de Peso Unitario suelto del concreto fresco

	Adición de desmonte	Shapiro-Wilk		
	minero	Estadístico	gl	Sig.
	Muestra patrón	.831	3	.192
D	25% desmonte minero	.991	3	.815
Peso unitario suelto	50% desmonte minero	.901	3	.389
del concreto fresco	75% desmonte minero	.967	3	.652
	100% desmonte minero	.988	3	.790

Nota: Valores tomado de SPSS.

En la Tabla 30 se evidencia la prueba de normalidad para los datos de peso unitario suelto del concreto fresco, en el que se observa unos p-valores superiores al 0.05 que es la significancia establecida, por lo que aceptaremos la Ho que nos menciona que los datos poseen una distribución normal, por tanto, se establece una estadística paramétrica.

Tabla 31Prueba de normalidad para los datos de PU compactado del concreto fresco.

	Adición de desmonte	Shapiro-Wilk		
	minero	Estadístico	gl	Sig.
	Muestra patrón	.885	3	.340
Peso unitario	25% desmonte minero	.979	3	.724
compactado del	50% desmonte minero	.856	3	.257
concreto fresco	75% desmonte minero	.918	3	.446
	100% desmonte minero	.988	3	.792

Nota: Valores tomado de SPSS.

En la Tabla 31 se presenta la prueba de normalidad para los valores de peso unitario compactado del concreto en su estado fresco. Se observa que los p-valores son superiores a 0.05, que es el nivel de significancia establecido. Por lo tanto, se acepta la hipótesis nula, que indica que los valores siguen una distribución normal, lo que permite utilizar una estadística paramétrica.

Tabla 32Prueba de normalidad para los datos de absorción

	Adición de desmonte	Shapiro-Wilk		
	minero	Estadístico	gl	Sig.
	Muestra patrón	.923	3	.463
Absorción del	25% desmonte minero	.883	3	.334
concreto	50% desmonte minero	.980	3	.726
endurecido	75% desmonte minero	.750	3	.000
	100% desmonte minero	.976	3	.702

En la Tabla 32 se presenta la prueba de normalidad para los valores de absorción del concreto en su estado endurecido. Se observa que la mayoría de los p-valores son superiores a 0,05, que es el nivel de significancia establecido. Es así que, se acepta la Ho, que refiere que los valores siguen una distribución normal, lo que permite aplicar una estadística paramétrica.

Tabla 33Prueba de normalidad para los datos de densidad seca

•	Adición de desmonte	Shapiro-Wilk		
	minero	Estadístico	gl	Sig.
Densidad seca del	25% desmonte minero	.750	3	.000
concreto endurecido	100% desmonte minero	.750	3	.000

Nota: Valores tomado de SPSS.

En la Tabla 33 se contempla la prueba de normalidad para los valores de densidad seca del concreto endurecido, en el que se observa unos p-valores menores al 0.05 que es la significancia establecida, por lo que validaremos la Ha que nos refiere que los valores no poseen una normal distribución.

Tabla 34Prueba de normalidad para los datos de densidad aparente

Shapiro-Wilk

	Adición de desmonte minero	Estadístico	gl	C: ~
		Estadístico		Sig.
Densidad aparente del	25% desmonte minero	.750	3	.000
concreto endurecido	50% desmonte minero	1.000	3	1.000

En la Tabla 34 se contempla la prueba de normalidad para los valores de densidad aparente del concreto endurecido, en el que se observa unos p-valores menores al 0.05 que es la significancia establecida, por lo que validaremos la Ha que nos menciona que los valores no poseen una normal distribución.

Tabla 35Prueba de normalidad para los datos de volumen de vacíos

	Adición de desmonte	Shapiro-Wilk		
	minero	Estadístico	gl	Sig.
	Muestra patrón	.837	3	.206
Volumen de vacíos	25% desmonte minero	.905	3	.403
del concreto	50% desmonte minero	.923	3	.463
endurecido	75% desmonte minero	.996	3	.878
	100% desmonte minero	.947	3	.554

Nota: Valores tomado de SPSS.

En la Tabla 35 se contempla la prueba de normalidad para los valores de volumen de vacíos del concreto endurecido, en el que se observa unos p-valores superiores al 0.05 en su mayoría, que es la significancia establecida, por lo que aceptaremos la Ho que nos menciona que los datos poseen una normal distribución, por tanto, se establece una estadística paramétrica.

Tabla 36Prueba de normalidad para los datos de resistencia a la compresión

Adición de desmonte	Sha	piro-Will	ζ
minero	Estadístico	gl	Sig.
Muestra patrón	.936	3	.510

	25% desmonte minero	.871	3	.298
Resistencia a la	50% desmonte minero	1.000	3	1.000
compresión	75% desmonte minero	1.000	3	1.000
	100% desmonte minero	.750	3	.000

En la Tabla 36 se contempla la prueba de normalidad para los valores de resistencia compresiva del concreto endurecido, en el que se observa unos p-valores superiores al 0.05 en su mayoría, que es la significancia establecida, por lo que aceptaremos la Ho que nos menciona que los valores poseen una normal distribución, por tanto, se establece una estadística paramétrica.

Tabla 37Prueba de normalidad para los datos de resistencia a la tracción

	Adición de desmonte	Shapiro-Wilk		
	minero Estadístico gl		gl	Sig.
	Muestra patrón	.957	3	.600
D : 1	25% desmonte minero	.956	3	.595
Resistencia a la	50% desmonte minero	.992	3	.831
tracción	75% desmonte minero	.839	3	.213
	100% desmonte minero	.802	3	.119

Nota: Valores tomado de SPSS.

En la Tabla 37 se contempla la prueba de normalidad para los valores de resistencia a la tracción del concreto endurecido, en el que se observa unos p-valores superiores al 0.05 en su mayoría, que es la significancia establecida, por lo que aceptaremos la Ho que nos refiere que los datos poseen una normal distribución, por tanto, se establece una estadística paramétrica.

Tabla 38Prueba de normalidad para los datos de resistencia a la flexión

	Adición de desmonte		Shapiro-V	Vilk
	minero	Estadístico	gl	Sig.
Resistencia a la	Muestra patrón	.903	3	.394
flexión	25% desmonte minero	.970	3	.666

50% desmonte minero	.850	3	.240
75% desmonte minero	.996	3	.886
100% desmonte minero	.906	3	.404

Nota: Valores tomado de SPSS.

En la Tabla 38 se contempla la prueba de normalidad para los valores de resistencia a la flexión del concreto endurecido, en el que se observa unos p-valores superiores al 0.05 en su mayoría, que es la significancia establecida, por lo que validaremos la Ho que nos indica que los datos poseen una normal distribución, por tanto, se establece una estadística paramétrica.

4.4.2. Análisis de varianza ANOVA de un factor

Ho: Las medias son iguales, por lo que no existe influencia

Ha: Las medias son diferentes, por lo que existe influencia

Tabla 39Análisis de varianza ANOVA de un factor para los datos de peso unitario suelto

ANOVA					
	Peso unitar	io suelto	del concreto fresco		
Suma de gl Media cuadrática F cuadrados					Sig.
Entre grupos	1622.923	4	405.731	.856	.522
Dentro de grupos	4739.127	10	473.913		
Total	6362.049	14			

Tabla 40Prueba post hoc de Tukey para los datos de peso unitario suelto

(I) Adición de desmonte minero	(J) Adición de desmonte minero	Diferencia de medias (I-J)	Sig.
	25% desmonte minero	-1.20000	1.000
M	50% desmonte minero	-1.60000	1.000
Muestra patrón	75% desmonte minero	-15.96667	.891
	100% desmonte minero	-26.20000	.599

•	Muestra patrón	1.20000	1.000
250/ 1	50% desmonte minero	40000	1.000
25% desmonte minero	75% desmonte minero	-14.76667	.915
	100% desmonte minero	-25.00000	.637
	Muestra patrón	1.60000	1.000
500/ 1	25% desmonte minero	.40000	1.000
50% desmonte minero	75% desmonte minero	-14.36667	.922
	100% desmonte minero	-24.60000	.650
	Muestra patrón	15.96667	.891
750/ 1	25% desmonte minero	14.76667	.915
75% desmonte minero	50% desmonte minero	14.36667	.922
	100% desmonte minero	-10.23333	.976
	Muestra patrón	26.20000	.599
1000/ dogmanta minara	25% desmonte minero	25.00000	.637
100% desmonte minero	50% desmonte minero	24.60000	.650
	75% desmonte minero	10.23333	.976

En la Tabla 39 se muestra la prueba de ANOVA de un factor en la que el p-valor es de 0.522 el cual se encuentra por encima de la significancia establecida de 0.05, por lo que validaremos la Ho que nos refiere una igualdad en sus datos por tanto, que no existe influencia, sin embargo, la diferencia es mínima la cual el software SPSS no considera, ya que en la Tabla 40 nos muestra esa diferencia mínima existente de 26.20 con la dosificación del 100% DM, considerándose una dosificación óptima la que más influye en cuanto al peso unitario suelto del concreto fresco.

Tabla 41Análisis de varianza ANOVA de un factor para los datos de peso unitario compactado

ANOVA					
Peso unitario compactado del concreto fresco					
	Suma de	- 1	Media		g:
	cuadrados	gl	cuadrática	F	Sig.
Entre grupos	8986.309	4	2246.577	10.695	.001

Dentro de grupos	2100.500	10	210.050	
Total	11086.809	14		

Tabla 42Prueba post hoc de Tukey para los datos de peso unitario compactado

(I) Adición de desmonte minero	(J) Adición de desmonte minero	Diferencia de medias (I-J)	Sig.
	25% desmonte minero	-39.26667*	.048
Muestra patrón 25% desmonte minero	50% desmonte minero	-29.93333	.159
	75% desmonte minero	-45.13333*	.022
	100% desmonte minero	-75.86667*	.001
	Muestra patrón	39.26667*	.048
	50% desmonte minero	9.33333	.928
	75% desmonte minero	-5.86667	.986
	100% desmonte minero	-36.60000	.068
500/ 1	Muestra patrón	29.93333	.159
	25% desmonte minero	-9.33333	.928
50% desmonte minero	75% desmonte minero	-15.20000	.706
	100% desmonte minero	-45.93333*	.020
	Muestra patrón	45.13333*	.022
750/ 1	25% desmonte minero	5.86667	.986
75% desmonte minero	50% desmonte minero	15.20000	.706
	100% desmonte minero	-30.73333	.144
	Muestra patrón	75.86667*	.001
1000/ 1	25% desmonte minero	36.60000	.068
100% desmonte minero	50% desmonte minero	45.93333*	.020
	75% desmonte minero	30.73333	.144

Nota: Valores tomado de SPSS.

En la Tabla 41 se muestra la prueba de ANOVA de un factor en la que el p-valor es de 0.001 el cual se encuentra por debajo de la significancia establecida de 0.05, por lo que damos por válido la Ha que nos refiere que las medias son diferentes por tanto, si existe influencia al adicionar desmonte minero y en la Tabla 42 nos muestra esa diferencia de medias mencionada en la tabla anterior, existe una diferencia de 75.87 respecto al concreto patrón con la dosificación del

100% DM, considerándose una dosificación óptima la que más influye en cuanto al peso unitario compactado del concreto fresco.

Tabla 43Análisis de varianza ANOVA de un factor para los datos de absorción

ANOVA					
	Absorción del concreto endurecido				
Suma de Media F					Sig.
	cuadrados	51	cuadrática		515.
Entre grupos	10.984	4	2.746	5.011	.018
Dentro de grupos	5.480	10	.548		
Total	16.464	14			

Nota: Valores tomado de SPSS.

Tabla 44Prueba post hoc de Tukey para los datos de absorción

(I) Adición de desmonte	(J) Adición de desmonte	Diferencia de	Sig.
minero	minero	medias (I-J)	oig.
	25% desmonte minero	-1.20000	.338
Muestra patrón	50% desmonte minero	.60000	.853
	75% desmonte minero	1.13333	.388
	100% desmonte minero	1.03333	.470
25% desmonte minero	Muestra patrón	1.20000	.338
	50% desmonte minero	1.80000	.081
	75% desmonte minero	2.33333*	.021
	100% desmonte minero	2.23333*	.027
	Muestra patrón	60000	.853
50% desmonte minero	25% desmonte minero	-1.80000	.081
30% desmonte inmero	75% desmonte minero	.53333	.897
	100% desmonte minero	.43333	.948
	Muestra patrón	-1.13333	.388
75% desmonte minero	25% desmonte minero	-2.33333*	.021
75% desmonte inmero	50% desmonte minero	53333	.897
	100% desmonte minero	10000	1.000
	Muestra patrón	-1.03333	.470
100% desmonte minero	25% desmonte minero	-2.23333*	.027
	50% desmonte minero	43333	.948
	75% desmonte minero	.10000	1.000

Nota: Valores tomado de SPSS.

En la Tabla 43 se muestra la prueba de ANOVA de un factor en la que el p-valor es de 0.018 el cual se encuentra por debajo de la significancia establecida de 0.05, dando por validada la Ha que nos menciona que las medias son diferentes por tanto, si existe influencia al adicionar desmonte minero y en la Tabla 44 nos muestra esa diferencia de medias mencionada en la tabla anterior, existe una diferencia de 1.2 respecto al concreto patrón con la dosificación del 25% DM, considerándose una dosificación óptima la que más influye en cuanto a la absorción del concreto endurecido.

Tabla 45

Análisis de varianza ANOVA de un factor para los datos de densidad seca

	ANOVA				
	Densidad seca del concreto endurecido				
	Suma de	αl	Media	F	Sig.
	cuadrados	gl cuadrática		1'	Sig.
Entre grupos	.027	4	.007	5.000	.018
Dentro de grupos	.013	10	.001		
Total	.040	14			

Nota: Valores tomado de SPSS.

Tabla 46Prueba post hoc de Tukey para los datos de densidad seca

(I) Adición de desmonte minero	(J) Adición de desmonte minero	Diferencia de medias (I-J)	Sig.
	25% desmonte minero	.06667	.242
3.	50% desmonte minero	.00000	1.000
Muestra patrón	75% desmonte minero	.00000	1.000
	100% desmonte minero	06667	.242
	Muestra patrón	06667	.242
25% desmonte minero	50% desmonte minero	06667	.242
	75% desmonte minero	06667	.242
	100% desmonte minero	13333*	.008
	Muestra patrón	.00000	1.000
500/ 1	25% desmonte minero	.06667	.242
50% desmonte minero	75% desmonte minero	.00000	1.000
	100% desmonte minero	06667	.242
	Muestra patrón	.00000	1.000
750/ 1	25% desmonte minero	.06667	.242
75% desmonte minero	50% desmonte minero	.00000	1.000
	100% desmonte minero	06667	.242
	Muestra patrón	.06667	.242
1000/ 1	25% desmonte minero	.13333*	.008
100% desmonte minero	50% desmonte minero	.06667	.242
	75% desmonte minero	.06667	.242

En la **Tabla 45** se muestra la prueba de ANOVA de un factor teniendo un p-valor es de 0.018 el cual se encuentra por debajo de la significancia establecida de 0.05, dando por validada la Ha que nos menciona que las medias son diferentes por tanto, si existe influencia al adicionar desmonte minero y en la **Tabla 46** nos muestra esa diferencia de medias mencionada en la tabla anterior, existe una diferencia de 0.67 respecto al concreto patrón con la dosificación del 25% DM y 100% DM, considerándose una dosificación óptima la que más influye en cuanto a la densidad seca del concreto endurecido.

Tabla 47

Análisis de varianza ANOVA de un factor para los datos de densidad aparente

ANOVA					
	Densidad apare	ente del co	ncreto endurecido)	
	Suma de	α1	Media	F	Sia
	cuadrados	gl	cuadrática	I.	Sig.
Entre grupos	.031	4	.008	2.875	.080
Dentro de grupos	.027	10	.003		
Total	.057	14			

Tabla 48

Prueba post hoc de Tukey para los datos de densidad aparente

(I) Adición de desmonte minero	(J) Adición de desmonte minero	Diferencia de medias (I-J)	Sig.
	25% desmonte minero	.03333	.928
Muestra patrón	50% desmonte minero	.00000	1.000
	75% desmonte minero	.00000	1.000
	100% desmonte minero	10000	.200
	Muestra patrón	03333	.928
25% desmonte minero	50% desmonte minero	03333	.928
25% desmonte minero	75% desmonte minero	03333	.928
	100% desmonte minero	13333	.061
	Muestra patrón	.00000	1.000
50% desmonte minero	25% desmonte minero	.03333	.928
50% desinonte inniero	75% desmonte minero	.00000	1.000
	100% desmonte minero	10000	.200
	Muestra patrón	.00000	1.000
75% desmonte minero	25% desmonte minero	.03333	.928
75% desinonte inmero	50% desmonte minero	.00000	1.000
	100% desmonte minero	10000	.200
	Muestra patrón	.10000	.200
100% desmonte	25% desmonte minero	.13333	.061
minero	50% desmonte minero	.10000	.200
	75% desmonte minero	.10000	.200

Nota: Valores tomado de SPSS.

En la **Tabla 47** se evidencia la prueba de ANOVA de un factor teniendo un p-valor es de 0.080 el cual se encuentra por encima de la significancia de 0.05, por lo damos por válida la Ho que nos refiere que las medias son iguales por tanto, no existe influencia al adicionar desmonte minero, sin embargo la diferencia es mínima por lo que el software SPSS no lo considera y en la **Tabla 48** nos muestra esa diferencia de medias mencionada en la tabla anterior, existe una diferencia de

0.1 respecto al concreto patrón con la dosificación del 100% DM, considerándose una dosificación óptima la que más influye en cuanto a la densidad aparente del concreto endurecido.

Tabla 49Análisis de varianza ANOVA de un factor para los datos de volumen de vacíos

ANOVA					
	Volumen de vacíos del concreto endurecido				
Suma de gl Media F S					Sig.
Entre grupos	36.223	4	9.056	4.963	.018
Dentro de grupos	18.247	10	1.825		
Total	54.469	14			

Nota: Valores tomado de SPSS.

Tabla 50

Prueba post hoc de Tukey para los datos de volumen de vacíos

(I) Adición de desmonte minero	(J) Adición de desmonte minero	Diferencia de medias (I-J)	Sig.
	25% desmonte minero	-2.33333	.285
Managhar mahala	50% desmonte minero	.83333	.938
Muestra patrón	75% desmonte minero	2.16667	.347
	100% desmonte minero	1.46667	.681
25% desmonte minero	Muestra patrón	2.33333	.285
	50% desmonte minero	3.16667	.096
	75% desmonte minero	4.50000^*	.015
	100% desmonte minero	3.80000^*	.039
	Muestra patrón	83333	.938
50% desmonte minero	25% desmonte minero	-3.16667	.096
50% desmonte inmero	75% desmonte minero	1.33333	.747
	100% desmonte minero	.63333	.976
	Muestra patrón	-2.16667	.347
75% desmonte minero	25% desmonte minero	-4.50000*	.015
75% desmonte minero	50% desmonte minero	-1.33333	.747
	100% desmonte minero	70000	.966
100% desmonte minero	Muestra patrón	-1.46667	.681
	25% desmonte minero	-3.80000*	.039
	50% desmonte minero	63333	.976
	75% desmonte minero	.70000	.966

Nota: Valores tomado de SPSS.

En la **Tabla 49** se evidencia la prueba de ANOVA de un factor teniendo un p-valor es de 0.018 el cual se encuentra por debajo de la significancia de 0.05, por lo validaremos la Ha que nos menciona que las medias son diferentes por tanto, si existe influencia al adicionar desmonte minero y en la **Tabla 50** nos muestra esa diferencia de medias mencionada en la tabla anterior, existe una diferencia de 2.33 respecto al concreto patrón con la dosificación del 25% DM, considerándose una dosificación óptima la que más influye en cuanto al volumen de vacíos del concreto endurecido.

Tabla 51

Análisis de varianza ANOVA de un factor para los datos de resistencia a la compresión

	ANOVA				
	Resiste	ncia a la co	ompresión		
Suma de Media F				Sia	
	cuadrados	gl	cuadrática	Г	Sig.
Entre grupos	4869.733	4	1217.433	31.704	.000
Dentro de grupos	384.000	10	38.400		
Total	5253.733	14			

Nota: Valores tomado de SPSS.

Tabla 52Prueba post hoc de Tukey para los datos de resistencia a la compresión

		·	
(I) Adición de desmonte minero	(J) Adición de desmonte minero	Diferencia de medias (I-J)	Sig.
	25% desmonte minero	-13.00000	.150
Muestra patrón	50% desmonte minero	-19.66667*	.020
	75% desmonte minero	-48.66667*	.000
	100% desmonte minero	.66667	1.000
	Muestra patrón	13.00000	.150
250/ 1	50% desmonte minero	-6.66667	.687
25% desmonte minero	75% desmonte minero	-35.66667*	.000
	100% desmonte minero	13.66667	.124
	Muestra patrón	19.66667*	.020
500/ 1	25% desmonte minero	6.66667	.687
50% desmonte minero	75% desmonte minero	-29.00000*	.001
	100% desmonte minero	20.33333*	.016
	Muestra patrón	48.66667*	.000
750/ 1	25% desmonte minero	35.66667*	.000
75% desmonte minero	50% desmonte minero	29.00000^*	.001
	100% desmonte minero	49.33333*	.000
	Muestra patrón	66667	1.000
100% desmonte	25% desmonte minero	-13.66667	.124
minero	50% desmonte minero	-20.33333*	.016
Nata Valana tamada d	75% desmonte minero	-49.33333*	.000

En la **Tabla 51** se evidencia la prueba de ANOVA de un factor adquiriendo un p-valor es de 0.000 el cual se encuentra por debajo de la significancia de 0.05, dando por validada la Ha que nos menciona que las medias son diferentes por tanto, si existe influencia al adicionar desmonte minero y en la **Tabla 52** nos muestra esa diferencia de medias mencionada en la tabla anterior, existe una diferencia de 48.67 respecto al concreto patrón con la dosificación del 75% DM, considerándose una dosificación óptima la que más influye en cuanto a la resistencia a la compresión del concreto endurecido.

Tabla 53

Análisis de varianza ANOVA de un factor para los datos de resistencia a la tracción

ANOVA					
Resistencia a la tracción					
	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	56.693	4	14.173	.616	.661
Dentro de grupos	230.027	10	23.003		
Total	286.720	14			

Tabla 54

Prueba post hoc de Tukey para los datos de resistencia a la tracción

(I) Adición de desmonte minero	(J) Adición de desmonte minero	Diferencia de medias (I-J)	Sig.
	25% desmonte minero	2.43333	.968
Muestra patrón	50% desmonte minero	.73333	1.000
	75% desmonte minero	-3.33333	.908
	100% desmonte minero	-1.33333	.997
25% desmonte minero	Muestra patrón	-2.43333	.968
	50% desmonte minero	-1.70000	.991
	75% desmonte minero	-5.76667	.600
	100% desmonte minero	-3.76667	.866
	Muestra patrón	73333	1.000
500/ 1	25% desmonte minero	1.70000	.991
50% desmonte minero	75% desmonte minero	-4.06667	.832
	100% desmonte minero	-2.06667	.982
	Muestra patrón	3.33333	.908
750/ 1	25% desmonte minero	5.76667	.600
75% desmonte minero	50% desmonte minero	4.06667	.832
	100% desmonte minero	2.00000	.984
	Muestra patrón	1.33333	.997
1000/ dogmanta missass	25% desmonte minero	3.76667	.866
100% desmonte minero	50% desmonte minero	2.06667	.982
	75% desmonte minero	-2.00000	.984

Nota: Valores tomado de SPSS.

En la **Tabla 53** se evidencia la prueba de ANOVA de un factor teniendo un p-valor es de 0.661 el cual se encuentra por encima de la significancia de 0.05, dando por validada la Ho que nos menciona que las medias son iguales por tanto, no existe influencia al adicionar desmonte minero, sin embargo la diferencia es mínima por lo que el software SPSS no lo considera y en la **Tabla 54** nos muestra esa diferencia existente de 3.33 respecto al concreto patrón con la dosificación del 75% DM, considerándose una dosificación óptima la que más influye en cuanto a la resistencia a tracción del concreto endurecido.

Tabla 55

Análisis de varianza ANOVA de un factor para los datos de resistencia a la flexión

	ANOVA				
Resistencia a la flexión					
	Resi	stencia a la	tlexión		
	Suma de			F	C:a
	cuadrados	gl	cuadrática		Sig.
Entre grupos	189.403	4	47.351	2.820	.084
Dentro de grupos	167.933	10	16.793		
Total	357.336	14			

Nota: Valores tomado de SPSS.

En la Tabla 55 se evidencia la prueba de ANOVA de un factor teniendo un p-valor es de 0.084 el cual se encuentra por encima de la significancia establecida de 0.05, por lo damos por válida la Ho que nos refiere que las medias son iguales, por tanto, no existe influencia al adicionar desmonte minero, sin embargo, la diferencia es mínima por lo que el software SPSS no lo considera

Tabla 56Prueba post hoc de Tukey para los datos de resistencia a la flexión

(I) Adición de desmonte minero	(J) Adición de desmonte minero	Diferencia de medias (I-J)	Sig.
Muestra patrón	25% desmonte minero	3.80000	.785
	50% desmonte minero	6.93333	.302
	75% desmonte minero	10000	1.000
	100% desmonte minero	8.66667	.146
25% desmonte minero	Muestra patrón	-3.80000	.785
	50% desmonte minero	3.13333	.876
	75% desmonte minero	-3.90000	.770
	100% desmonte minero	4.86667	.610
50% desmonte minero	Muestra patrón	-6.93333	.302
	25% desmonte minero	-3.13333	.876
	75% desmonte minero	-7.03333	.290
	100% desmonte minero	1.73333	.983
75% desmonte minero	Muestra patrón	.10000	1.000
	25% desmonte minero	3.90000	.770
	50% desmonte minero	7.03333	.290
	100% desmonte minero	8.76667	.139
100% desmonte minero	Muestra patrón	-8.66667	.146
	25% desmonte minero	-4.86667	.610
	50% desmonte minero	-1.73333	.983
	75% desmonte minero	-8.76667	.139

En la Tabla 56 nos muestra esa diferencia existente de 8.67 respecto al concreto patrón con la dosificación del 100% DM, considerándose una óptima dosificación la que más influye en cuanto a la resistencia a flexión del concreto endurecido.

4.5. DISCUSIÓN DE RESULTADOS

D1. Analizar las características físicas del desmonte minero y seleccionar para sustituir parcialmente al agregado grueso.

Según Eljufout y Alhomaidat (2024) en su artículo se detallan las características del árido minero, destacando un peso específico de 2,46 gr/cm³, una densidad aparente de 1,36 gr/cm³, un valor de abrasión del 31% y una absorción de 1,73. %. Estos valores ofrecen una perspectiva sobre la calidad y la capacidad de respuesta del material minero frente a ciertos factores, como la abrasividad y la absorción de agua Por otro lado, Ramiro y Gerardo (2024), en su tesis sobre los residuos de mina, reportan un contenido de humedad de 1%, con pesos unitarios sueltos y compactados de 1814 kg/m³ y 2040 kg/m³ respectivamente, y una absorción 2,13 %. Además, la gravedad específica se determina en 2530 kg/m³, proporcionando información crucial para evaluar el comportamiento de los residuos en las mezclas de concreto. De manera similar, Hancco (2016) en su tesis sobre la roca minera de Rinconada señala que el material tiene un contenido de humedad de 1.58%, un peso unitario seco de 1.384 gr/cm³, un peso unitario compactado de 1.485 gr/cm³, y un peso específico aparente de 2.64. Además, su absorción es de 3.57%, con un tamaño nominal máximo de 3/4" y un módulo de finura de 6.91, lo que refleja su idoneidad como agregado en mezclas de concreto.

En contraste en nuestra investigación el desmonte minero reveló un contenido de humedad del 0.93 %, con peso unitario suelto de 1365 gr/cm³ y peso unitario compactado de 1518 gr/cm³, con peso específico aparente de 2717 kg/cm³, una absorción de 0.40%, en el análisis granulométrico se obtuvo el tamaño máximo nominal de 1" y un módulo de fineza de 2.873. Estas divergencias en las propiedades entre nuestra investigación y las

investigaciones mencionadas anteriormente, debido al tipo de material minero extraído en cada una de las zonas de estudio por la variante geología que existe.

D2: Analizar las propiedades de los materiales para el diseño de mezcla de concreto según la metodología ACI-211 incorporado parcialmente con desmonte minero y medir la consistencia mediante el cono de Abrams.

En la investigación de Hancco (2016) se describe las características de los materiales utilizados para el diseño de mezcla, las cuales el agregado fino contienen un tamaño máximo nominal de N° 4, peso específico de 2.18 gr/cc, peso unitario suelto de 1350 kg/m3, peso unitario compacto de 1477 kg/m3, contenido de humedad de 4.32%, absorción de 6.07% y módulo de fineza de 2.71. En cuanto a las características del agregado grueso son: un tamaño máximo de 1", peso específico de 2.69 gr/cc, peso unitario suelto de 1384 kg/m³, peso unitario compacto de 1485 kg/m³, contenido de humedad de 1.58%, absorción de 3.57% y módulo de fineza de 6.91.

En contraste, en la presente investigación, los agregados finos y gruesos obtenidos del río Cutimbo exhiben características distintas, el agregado fino presenta un tamaño máximo nominal N° 4, peso específico de 2618 kg/m³, peso unitario suelto de 1183 kg/m³, peso unitario compacto de 1318 kg/m³, contenido de humedad de 1.50%, absorción de 2.40% y módulo de fineza de 4.014. Del mismo modo en las características del agregado grueso se obtuvo un tamaño máximo de 1", peso específico de 2559 kg/m³, peso unitario suelto de 1530 kg/m³, peso unitario compacto de 1586 kg/m³, contenido de humedad de 1.10%, absorción de 2.40% y módulo de fineza de 2.776. Estas variaciones en las propiedades de los agregados entre ambas investigaciones resaltan la diversidad en las características de los materiales utilizados en el diseño de mezcla, lo que podría influir en el rendimiento y comportamiento del concreto resultante.

D3: Determinar la resistencia a compresión, tracción, la densidad, volumen de poros y absorción del concreto adicionado parcialmente del desmonte minero.

Según Eljufout y Alhomaidat (2024) en su artículo los resultados para la resistencia compresiva a 28 días con agregado natural fueron de 30.18 MPa y con árido minero fue de 28.72 MPa, la resistencia a tracción con árido natural fue de 5.49 MPa y con árido minero de 5.36 MPa. Asimismo Cuenca et al. (2024) en su artículo los resultados para la resistencia a compresión a 28 días con agregado natural fue de 44.6 MPa adicionando 10% de árido natural y 30% de árido minero fue de 36.3 MPa, en cuanto al módulo elástico a 28 días se tiene para el hormigón con árido natural 46600 MPa y con árido minero 33000 MPa, para la resistencia a tracción se tiene 3.76 MPa y 1.7 MPa respectivamente. También Ramiro y Gerardo (2024) en su tesis los resultados para la resistencia a compresión a 28 días en proporción de cemento: desmonte de mina de 1:5, 1:6, 1:7, 1:8 y 1:9 fue de 231 kg/cm², 214 kg/cm², 187 kg/cm², 169 kg/cm² y 122 kg/cm² sin la adición de aditivo y 291 kg/cm², 249 kg/cm², 221 kg/cm², 190 kg/cm² y 144 kg/cm² con aditivo. Mayta y Sucari (2022) en su investigación los resultados para la resistencia a compresión a 28 días del CP, Q35 – I25, Q45 – I25, Q55 – I25 y Q65 – I25 fueron 218.72 kg/cm², 239.75 kg/cm², 236.09 kg/cm², 233.96 kg/cm² y 233.84 kg/cm², para la resistencia a tracción fueron de 19.46 kg/cm², 22.24 kg/cm², 21.09 kg/cm², 20.14 kg/cm² y 21.36 kg/cm², para la resistencia a flexión fueron 25.31 kg/cm², 31.94 kg/cm², 29.26 kg/cm², 26.53 kg/cm² y 27.21 kg/cm². Finalmente Gonzales (2023), en su investigación la resistencia a compresión y tracción del concreto a la edad de 28 días, obteniendo valores en cuanto a resistencia a compresión de 221.8 kg/cm² para la muestra patrón, 242.2 kg/cm² para la muestra con 5% de SS, y 218.6 kg/cm² para la muestra con 10% de SS; mientras que los valores de resistencia a tracción que se obtuvo a la edad de 28 días fue de 19.6 kg/cm² para la muestra patrón, 21.9 kg/cm² para las muestras con 2% de SS,

23.8 kg/cm² para las muestras con 5% de SS, 25.7 kg/cm² para las muestras con 7% de SS y 21.7 para las muestras con 10% de SS.

En la presente investigación, a la edad de 28 días los valores de resistencia a compresión alcanzaron los 216.33 kg/cm² para la muestra patrón, 229.33 kg/cm² para las muestras con 25% de desmonte minero, 236.00 kg/cm² para las muestras con 50% de desmonte minero, 265.00 kg/cm² para las muestras con 75% de desmonte minero y 215.67 kg/cm² para las muestras con 100% de desmonte minero. En cuanto a los esfuerzos de tracción a la edad de 28 días se obtuvo 33.10 kg/cm² para la muestra patrón, 30.67 kg/cm² para las muestras con 25% de desmonte minero, 32.37 kg/cm² para las muestras con 50% de desmonte minero, 36.43 kg/cm² para las muestras con 75% de desmonte minero y 34.43 kg/cm² para las muestras con 100% de desmonte minero.

Al realizar una comparación entre ambas investigaciones se puede apreciar que en la investigación de Gonzales se obtuvo un aumento de hasta un 9.2% en los esfuerzos de compresión cuando se agrega 5% de SS y disminuye hasta un 1.44% en los esfuerzos de compresión cuando se agrega 10% de SS; , mientras que en nuestra investigación se obtuvo un incremento de hasta un 22.50 % en los esfuerzos de compresión cuando se agrega 75% de desmonte minero y disminuye hasta un 0.31% en su compresión cuando se agrega el 100% de desmonte minero; por su parte en los resultados del ensayo de tracción se obtuvo un incremento máximo de 31.12% cuando se agrega 7% de SS y un incremento mínimo de 10.71 % cuando se agrega 10% de SS; mientras que en la presente investigación hubo un incremento de hasta los 10.06% cuando se agrega 75% de desmonte minero y disminuye hasta 7.34% cuando se agrega un 25% de desmonte minero. Esto indica que el concreto elaborado con desmonte minero muestra mejores resultados en compresión a comparación del silicato de sodio mientras que en tracción muestra valores aceptables cercanos a los resultados obtenidos de la muestra patrón.

V. CONCLUSIONES

Primero: las características físicas y resistentes del agregado desmonte minero y seleccionar para sustituir parcialmente al agregado grueso.

En la granulometría del agregado grueso del desmonte minero mostro eficiente los usos granulométricos, ya que los porcentajes que pasa están dentro de rangos de los límites de las especificaciones AG-56. Con respecto al contenido de humedad de los agregados gruesos provenientes del desmonte minero, se observa un resultado de 0.93% de agua en comparación al agregado grueso natural disminuye el porcentaje de contenido de humedad, se puede concertar que, cuanto mayor sea el contenido de humedad del agregado, menor será la resistencia a la compresión grueso. Por lo tanto, la relación agua/cemento en la mezcla también se verá afectada.

En relación al peso específico y absorción del agregado gruesos provenientes del desmonte minero mostro los resultados peso específico seco de 2686 kg/m³, un peso específico saturado de 2697 kg/m³, un peso específico aparente de 2717 kg/m³ y una absorción de agua de 0.4%, el cual disminuye el porcentaje en comparación al agregado natural. Por otro lado, el peso específico varía entre 2.50 a 2.75 kg/cm³; por lo tanto, el agregado grueso proveniente del desmonte minero está dentro de dichos parámetros teniendo un mejor comportamiento en la resistencia a compresión. Con respecto al ensayo determinación del peso unitario y vacíos de los agregados provenientes del desmonte minero mostro resultados de un peso unitario suelto promedio 1365 kg/m³ y un peso unitario compactado de 1518 kg/cm³, el cual disminuye los resultados en comparación al agregado natural. Por otro lado, cuanto mayor sea el peso unitario la resistencia a compresión aumenta, esto se debe a que la forma angulosa del agregado permite la adherencia entre agregado y la mezcla.

Con respecto al ensayo de resistencias de desgaste del agregado grueso provenientes del desmonte minero mostro un 13% de desgaste (menor al 50%), por lo tanto, cumple con los requisitos de la norma técnica por lo que se considera útil en la producción del concreto.

Segundo: En el diseño de mezcla para un concreto f'c=210kg/cm², se determinó dosificaciones para 1 m3 de concreto en estado humedad las cantidades en peso fueron aumentando tal como se muestra, para el cemento Rumi tipo I con un 376.795 kg/m³, agua potable de 206.246 lt/m³, arena de 777.368 kg/m³ y piedra de 889.088 kg/m³, teniendo un total de 2249.497 kg/m³ para un diseño por metro cúbico. Con respecto al peso unitario suelto del concreto en estado fresco del concreto con proporciones de desmonte minero en comparación al a la muestra patrón que resulto 1747.90 kg/m³, al adicionar 25%DM el peso aumentó en un 0.07%, con 50%DM aumentó en un 0.09%, con 75%DM el peso aumentó en un 0.91% y con la proporción del 100% DM el peso aumentó en un 1.50% respecto al peso de la muestra patrón. Así mismo en el ensayo del peso unitario compactado del concreto en estado fresco con proporciones de desmonte minero, donde la muestra patrón es 2042.17 kg/m³, al adicionar 25%DM el peso aumentó en un 1.92%, con 50%DM aumentó en un 1.47%, con 75%DM el peso aumentó en un 2.21% y con la sustitución del 100% DM el peso aumentó en un 3.72% respecto al peso de la muestra patrón.

Tercero: En la resistencia a compresión incorporado parcialmente con desmonte minero según los datos, mostro resultados óptimos en los porcentajes de resistencias alcanzadas respecto al concreto patrón para 7,14,28 resulto 134.00 kg/cm2, 192.33kg/cm2, 216kg/cm2, según para los días de curado, para 7 días con proporciones de 25%DM, 50%DM, 75%DM, 100% DM resulto 8.96%, 23.63%, 30.10%, 36.82%. Para los 14 días con proporciones de 25%DM, 50%DM, 75%DM, 100% DM resulto 4.80%,

5.37%, 3.81%, 7.11%. Para los 28 días con proporciones 25%DM, 50%DM, 75%DM, 100% DM resulto 6.01%, 9.09%, 22.50%, 9.69%, donde se observa el comportamiento es ascendente, sin embargo, con la proporción completa del 100%, la resistencia se muestra por debajo de la muestra patrón. Esta disminución es mínima respecto a la muestra patrón con una disminución de -0.31%, esto es debido a que los agregados del desmonte minero no tienen las mismas propiedades físicas mecánicas y químicas de un agregado natural.

Con respecto a la resistencia a tracción con proporciones de desmonte minero según los datos mostraron variación en los resultados llegando la muestra patrón 33.10 kg/cm2, con la dosificación del 25% DM la resistencia disminuye en un 7.35%, con 50%DM la resistencia disminuye en un 2.22%, con 75%DM aumenta en un 10.07%, con 100%DM la resistencia aumenta en un 4.03% respecto a la muestra patrón, indicándonos un incremento en la resistencia a tracción con la dosificación del 75%DM considerándose una dosificación óptima.

Con respecto a la resistencia a flexión con proporciones de desmonte minero según los datos mostraron variación en los resultados llegando la muestra patrón de 37.70 kg/cm2, según para los 28 días de curado con las proporciones con la dosificación del 25% DM la resistencia disminuye en un 10.08%, con 50% DM la resistencia disminuye en un 18.39%, con 75% DM aumenta en un 0.27% y con 100% DM, la resistencia disminuye en un 22.99% respecto a la muestra patrón.

Con respecto a la densidad endurecida del concreto con diferentes sustituciones de desmonte minero (DM), la muestra patrón presenta una densidad de 2.40 mg/m³ en promedio, al adicionar 25%DM la densidad disminuyó en un 1.39%, sin embargo, con la dosificación de 50% DM y 75%DM la densidad se mantuvo y con la dosificación de

100% DM la densidad aumentó en un 4.17% respecto a la muestra patrón, así mismo nos indica una reducción de densidad con la dosificación del 25% DM, sin embargo, con el resto de dosificaciones se mantiene la densidad y se supera a la muestra patrón.

Con respecto a la absorción del concreto después de la inmersión del concreto en estado endurecido mostraron variaciones con diferentes sustituciones de desmonte minero (DM), la muestra patrón presenta una absorción de 5.33% en promedio, al adicionar 25%DM el porcentaje de absorción aumentó en un 22.50%, sin embargo, con la dosificación de 50% DM la absorción del concreto disminuyó en un 11.25%, con la dosificación de 75%DM la absorción disminuyó en un 21.25% y con la dosificación de 100% DM la absorción disminuyó en un 19.38% respecto a la muestra patrón,

Con respecto al volumen de vacíos del concreto endurecido del concreto patron fue 9.38%, al adicionar 25%DM el volumen de vacíos aumentó en un 23.73%, sin embargo, con la dosificación de 50% DM el volumen de vacíos disminuyó en un 8.47%, con 75%DM el volumen de vacíos disminuyó en un 22.03% y con la dosificación de 100% DM el volumen de vacíos disminuyó en un 14.92% respecto a la muestra patrón.

VI. RECOMENDACIONES

PRIMERO: de las características físicas de los agregados que nos dieron los resultados

en el laboratorio y que son parámetros óptimos según normativas, se

recomienda hacer el ensayo de resistencia de desgaste del agregado natural

(grueso) para tener mayor información sobre el comportamiento del

agregado natural y su resistencia a compresión, flexión y tracción.

SEGUNDO: En futuras investigaciones se recomienda usar otro tipo de cemento para

ver los comportamientos físicos y mecánicos para un diseño de mezcla en

un concreto de f'c=210kg/cm2, ya que en esta presente investigación se

tomó el cemento Rumi Tipo I. Y también realizar con la misma

dosificación al sustituir el agregado grueso natural con el desmonte minero

en proporciones de 25%,50%,75% y 100%.

TERCERO: Se recomienda en posteriores estudios de investigación realizar un diseño

de mezcla con dosificaciones de un agregado grueso natural con una

proporción de 25% de agregado grueso natural y un 75% de agregado

grueso de desmonte minero. Ya que en los resultados de esta dosificación

da mejores resistencias en ensayos de compresión, tracción y flexión.

CUARTO: Se recomiendan dichos estudios para reducir el impacto sobre el medio

ambiente y promover el desarrollo sostenible para construcciones.

VII. REFERENCIAS BIBLIOGRAFICAS

- Ministerio de Transportes y Comunicaciones. (2016). *Manual de ensayo de materiales*. Lima.
- NTP 339.084. (2012). Metodo de ensayo normalizado para la determinacion de la resistencia a tracion simple del concreto, por compresion diametral de una probeta cilindrica. Lima: Direccion de normalizacion -INACAL.
- 400.011, N. (2008). Norma Tecnica Peruana. Lima Perú.
- Abanto, F. (2009). Tecnologia de Concreto. En I. F. Castillo, *Tecnologia de Concreto* (pág. 65). Lima.
- Alvarez, A. (2020). Clasificación de las Investigaciones. *Universidad de Lima*, 1(1), 1-5.
- Arias, M., & Espinoza, O. (2022). Evaluación del pavimento rígido f'c = 280 kg/cm2 adicionando relave minero, la Rinconada 2022. Lima perú: Universidad César Vallejo.
- Cabrera, J., & Cubas Resurreccion, H. A. (2019). Influencia de la adición de agregado grueso reciclado en la resistencia a compresión de un concreto convenciona.

 Lima: Universidad Peruana Union.
- Cahuana, A., & Gutierrez Mamani, M. Y. (2022). Mejoramiento de las propiedades de la sub razante en la carretera pampa blanca rinconada, adicionando el desmonte minero graduado, Puno 2022. Huaraz.
- Castro, L. (2022). Análisis de estabilidad de talud por el Método Bishop en depósitos de desmonte Minero Excélsior, Cerro de Pasco 2021. Cerro de Pasco: Universidad

- Nacional Daniel Alcides Carrión. Obtenido de http://repositorio.undac.edu.pe/handle/undac/3280
- Crosta, G., Picarelli, L., & Urciuoli, G. (2021). Problemas de estabilidad de taludes en arcillas rígidas y formaciones de flysch, prefacio de un número especial. *italiano Geotecnología*, 4, 5-6.
- Cuenca, E., Del Galdo, M., Aboutaybi, O., Ramos, V., Nash, W., Rollinson, G., . . .

 Ferrara, L. (2024). Mechanical characterization of cement mortars and concrete with recycled aggregates from Coal Mining Wastes Geomaterials (CMWGs).

 Construction and Building Materials, 1-19.

 doi:https://doi.org/10.1016/j.conbuildmat.2024.136640
- Eljufout, T., & Alhomaidat, F. (2024). Utilizing waste rocks from phosphate mining in Jordan as concrete aggregates. *Results in Engineering*, 1-7. doi:https://doi.org/10.1016/j.rineng.2024.102350
- Galvan, E. (2018). Uso del concreto reciclado en la construccion de viviendas basicas en la provincia de huancayo -2018. Huancayo: Universidad peruana los andes .
- Hernández, R. (2018). *Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta*. Ciudad de México: McGRAW-HILL.
- Hernández, R., Fernández, C., & Baptista, P. (2014). "Metodología de la investigación" (Sexta ed.). México: McGRAW-HILL, INTERAMERICANA EDITORES, S.A. DE C.V.
- Jeonghyun, K., Donwoo, L., & Andrzej, U. (2024). Comparative analysis of cement grade and cement strength as input features for machine learning-based concrete

- strength prediction. *Case Studies in Construction Materials*, 1-18. doi:https://doi.org/10.1016/j.cscm.2024.e03557
- Jianguang, X., Casa, D., Yongsheng, L., Penggang, W., Jiuwen, B., Shaolong, Z., . . . Qixuan, L. (2024). Analysis on the characteristics of spatiotemporal distribution and their causes of temperature and strength in three-graded mass concrete.

 Journal of Building Engineering, 1-26.

 doi:https://doi.org/10.1016/j.jobe.2024.110702
- Liberato, R. (2019). *Proyecto desarrollo preparación del manto urbiola Minera Ananea*S.A. Región Puno Peru. Cerro de Pasco: Universidad Nacional Alcides Carrion.
- Martinez, G., Smith, N., & Morale, A. (2023). I am formal, what comes next?": A proposed framework for achieving sustainable artisanal and small-scale mining formalization in Peru. *The Extractive Industries and Society*, 1-11. doi:https://doi.org/10.1016/j.exis.2023.101227
- Mayta, S., & Sucari, A. (2022). Efecto del agregado fino reemplazado por residuos mineros (Cuarzo Ignimbrita) triturados con Ball Mill en las propiedades del concreto, Puno 2022. Lima Perú: Universidad César Vallejo.
- Medina, A. (2022). Influencia de la incorporación de agregado grueso de concreto reciclado, en las propiedades mecánicas a compresión y flexión del concreto $f'c=210 \ kg/cm2$. Abancay: Universidad Tecnologica de los Andes.
- Morales, E. (2022). Aplicación de herramientas computacionales para la optimización económica en las operaciones del asiento minero La Rinconada del departamento de Puno. Arequipa: UTP.
- MTC. (2018). Manual de Puentes. Ministerio de transportes y comunicaciones. Lima.

- Narayan, R., Swain, R., Routray, S., Prasad, K., Mohanta, S., Kumar, P., & Ajani, R. (2024). Recovery of filler material from mining waste: Techno-economic, and kinetic study. *Process Safety and Environmental Protection*, 918-930. doi:https://doi.org/10.1016/j.psep.2024.03.044
- Neville, A. M. (2011). *Properties of Concrete*. Harlow: Pearson Education.
- Neville, Adam M.;. (2011). *Properties of Concrete*. Harlow: Pearson Education.
- Neyra, A. (2019). Estudio geologico geotecnico y mecanica de suelos para la construccion del puente Malvas Malvitas Distrito de Suyo Provincia de Ayabaca Departamento de Piura. Piura: UNP.
- NTP 339.078. (2012). Método de ensayo para determinar la resistencia a la flexión del concreto en vigas simplemente apoyadas con cargas a los tercios del tramo. Lima.
- NTP 400.021. (2020). Agregados. Método de ensayo normalizado para peso específico y absorción del agregado grueso. Lima: INDECOPI. Obtenido de https://acortar.link/l0c0nR
- NTP:339.034. (2015). Método de ensayo normalizado para la determinación. Lima: INDECOPI.
- Oluwatuyi, R., Rajapakshage, R., Wulffc, S., & Ngd, K. (2023). Propuesta de enfoque híbrido para la simulación tridimensional del subsuelo para mejorar la determinación de límites y el diseño de un plan de investigación de sitio óptimo para cimentaciones de pilotes. *Suelos y Fundaciones*, 63(1).
- Park, J., Kwan, B., Hong, T., Lee, D., & Park, H. (2024). Estimation of concrete compressive strength from non-destructive tests using a customized neural

- network and genetic algorithm. *Applied Soft Computing*, 1-20. doi:https://doi.org/10.1016/j.asoc.2024.111941
- Rahman, M., Rahman, M., & Mehedi, M. (2023). Estimation of concrete materials uniaxial compressive strength using soft computing techniques. *Heliyon*, 1-18. doi:https://doi.org/10.1016/j.heliyon.2023.e22502
- Raman, K., Essam, A., Gopal, P., Vladimir, S., Atul, B., Dragan, P., . . . Amit, V. (2024).

 Machine and deep learning methods for concrete strength Prediction: A bibliometric and content analysis review of research trends and future directions.

 Applied Soft Computing, 1-28. doi:https://doi.org/10.1016/j.asoc.2024.111956
- Ramiro, G., & Gerardo, V. (2024). Proporción desmonte de mina y porcentaje de aditivo sobre la compresión, asentamiento y absorción de un concreto estructural Trujillo 2023. Trujillo Perú: Universidad Nacional de Trujillo.
- Sacachipana, D., & Yerva Condori, P. R. (2021). Estudio geotécnico para el diseño y estabilidad del botadero de desmonte en el distrito de Chala provincia. Arequipa: Universidad Tecnologica del Peru.
- Sánchez, F. A. (2019). Fundamentos epistémicos de la investigación cualitativa y cuantitativa: consensos y disensos. *Revista digital de investigación en docencia universitaria*, 13(1), 103-122.
- Sanchez, I. (2019). Estudio geotécnico para el diseño de cimentaciones superficiales en viviendas unifamiliares en el Centro Poblado de Huamanmarca. Huancayo: UNCP.

- Scarpelli, G., Fruzzetti, V., & Ruggeri, P. (2022). El diseño de infraestructuras en formaciones arcillosas rígidas: un paso hacia un enfoque geológico-geotécnico integrado. *Ingeniería Geológica*, 304.
- Silva, Y. (2023). Generalidades del oro en el Perú. Perú: slideshare.
- Suarez, A. (2022). El relave minero como agregado del concreto en el diseño de mezcla en f'c= 350 kg/cm2 al 5%, 15%, 25 % en el centro poblado de Chicrin 2021. Huámuco: UDH. Obtenido de http://repositorio.udh.edu.pe/123456789/3432
- Tamayo, M. (2018). "El proceso de la investigación científica" (4ta ed.). México: Editorial limusa.
- Tran, T., Han, S., & Kim, D. (2018). Efecto de la variación probabilística en las propiedades del suelo y perfil de respuesta del sitio. *suelos encontrados*, *58*, 1339-1349.
- Varhen, C., Carrillo, S., & Ruiz, G. (2017). Experimental investigation of Peruvian scallop used as fine aggregate in concrete. *Construction and Building Materials*, 533-540. doi:https://doi.org/10.1016/j.conbuildmat.2017.01.067
- Velasco, H. (2021). Caracterización geo mecánica de las cámaras y pilares en la explotación del depósito de Au tipo mantopara medir el dimensionamiento de sus labores en una mina artesanal del sector de Ananea Puno. Caso de estudio. Arequipa: Universidad Tecnologica del Peru.
- Velásquez, M., Vega, C., & Corvera, R. (2021). Mercury in soils impacted by alluvial gold mining in the Peruvian Amazon. *Journal of Environmental Management*, 1-11.

Velezmoro, L., & Cabrejos, G. (2020). Análisis de la probabilidad de falla de las cimentaciones superficiales de los puentes de la carretera Huánuco - Conococha. Lima: UPC.

ANEXOS

- ANEXO 01: Matriz de consistencia.
- ANEXO 02: Certificados de laboratorio de diseño de mezcla de concreto muestra patrón F'c=210 kg/cm2.
- ANEXO 03: Certificado de laboratorio de análisis físico-químico del agua para el diseño de mezcla.
- ANEXO 04: Certificados de laboratorio de ensayos de las propiedades fisicas del agregado grueso naturales.
- ANEXO 05: Certificados de laboratorio de ensayos de las propiedades físicas de los agregados gruesos del Desmonte Minero.
- ANEXO 06: Certificados de laboratorio de ensayos de resistencia a compresión de testigos cilíndricos.
- ANEXO 07: Certificados de laboratorio de ensayo de tracción indirecta de testigos cilíndricos estándares de concreto.
- ANEXO 08: Certificados de laboratorio de ensayo de resistencia a la flexión del concreto (usando una viga simple con carga en el tercer puno).
- ANEXO 09: Certificados de laboratorio de los ensayos: densidad, adsorción y porcentaje de vacíos en el concreto endurecido.
- ANEXO 10: Certificado de calibración de los instrumentos.
- ANEXO 11: Panel fotográfico.

	DNI 76490137					
	sional, 🗆 Programa d		Mary Control and Mary 17		estría o Docto	orado
INGER	VIERIA CIVIL					
" EVALUAC	elaborado el/la X Tesi	PROPIEDADES	MECANICAS	YFIS	ICAS DEL	CONCRET
E'C=210 KE	/cm2 CON LA I	NEORPORACIO	N DE DES	HONTE	HINERO	COMO
<u>SUSTITUTO</u>	PARCIAL DEL	AGREGADO	GRUESD,	PUND	2022.	**
Es un tema origin	sal.					
presentado por investigación o s Dejo constancia investigación, po	special de otro docum persona natural o ju- imilares, en el país o e que las citas de otro r lo que no asumiré o edios escritos, digitales	rídica alguna ante n el extranjero. s autores han sido omo suyas las opin	instituciones a debidamente is	cadémicas, dentificadas	profesionales en el trabaj	s, de
	co que soy plename e cualquier error u omis				The second secon	
anciones corresp ormas internas,	implimiento de esta dec condientes de igual forn así como las que me el presente compromiso	na me someto a las alcancen del Cód	sanciones estable	cidas en las	Directivas y	otras
		Puno 29	de_NGV	EMBRE	del 20	24
		A	1/8			

FIRMA (obligatoria)

Huella

AUTORIZACIÓN PARA EL DEPÓSITO DE TESIS O TRABAJO DE INVESTIGACIÓN EN EL REPOSITORIO INSTITUCIONAL

Por el presente documento, Yo Edgar Raul Machaca Mayla , identificado con DNI 76190137 en mi condición de egresado de:
INGERIERIA CIVIL
informo que he elaborado el/la X Tesis o □ Trabajo de Investigación denominada: " EVALUACION DE LAS PRIPIEDADES MECANICAS Y FÍSICAS DEL CONCRET
F'C = 210 KB/cm2 CON LA INCORPORATION DE DESHONTE HINERO COM
SUSTITUTO PARCIAL DEL AGREGADO GRUESO, PUNO 2022 "
nara la obtención de GGrado N'Título Profesional o G Segundo Especialidad

Por medio del presente documento, afirmo y garantizo ser el legítimo, único y exclusivo titular de todos los derechos de propiedad intelectual sobre los documentos arriba mencionados, las obras, los contenidos, los productos y/o las creaciones en general (en adelante, los "Contenidos") que serán incluidos en el repositorio institucional de la Universidad Nacional del Altiplano de Puno.

También, doy seguridad de que los contenidos entregados se encuentran libres de toda contraseña, restricción o medida tecnológica de protección, con la finalidad de permitir que se puedan leer, descargar, reproducir, distribuir, imprimir, buscar y enlazar los textos completos, sin limitación alguna.

Autorizo a la Universidad Nacional del Altiplano de Puno a publicar los Contenidos en el Repositorio Institucional y, en consecuencia, en el Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto, sobre la base de lo establecido en la Ley Nº 30035, sus normas reglamentarias, modificatorias, sustitutorias y conexas, y de acuerdo con las políticas de acceso abierto que la Universidad aplique en relación con sus Repositorios Institucionales. Autorizo expresamente toda consulta y uso de los Contenidos, por parte de cualquier persona, por el tiempo de duración de los derechos patrimoniales de autor y derechos conexos, a título gratuito y a nivel mundial.

En consecuencia, la Universidad tendrá la posibilidad de divulgar y difundir los Contenidos, de manera total o parcial, sin limitación alguna y sin derecho a pago de contraprestación, remuneración ni regalía alguna a favor mio; en los medios, canales y plataformas que la Universidad y/o el Estado de la República del Perú determinen, a nivel mundial, sin restricción geográfica alguna y de manera indefinida, pudiendo crear y/o extraer los metadatos sobre los Contenidos, e incluir los Contenidos en los índices y buscadores que estimen necesarios para promover su difusión.

Autorizo que los Contenidos sean puestos a disposición del público a través de la siguiente licencia:

Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. Para ver una copia de esta licencia, visita: https://creativecommons.org/licenses/by-nc-sa/4.0/

En señal de conformidad, suscribo el presente documento.

Puno 29 de NOVIEMBRE del 2024

Huella

FIRMA (obligatoria)