

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERÍA AGRÍCOLA ESCUELA PROFESIONAL DE INGENIERÍA AGRÍCOLA

VARIABILIDAD TEMPORAL DE LA VEGETACIÓN EN LA RESERVA NACIONAL TAMBOPATA MEDIANTE LOS ÍNDICES NDVI Y EVI USANDO LA PLATAFORMA GOOGLE EARTH ENGINE PERIODO 2000-2022

TESIS

PRESENTADA POR:

BACH. MELISSA JULEISY ZAPANA LOPE

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO AGRÍCOLA

PUNO – PERÚ

2024

Reporte de similitud

NOMBRE DEL TRABAJO VARIABILIDAD TEMPORAL DE LA VEGET ACIÓN EN LA RESERVA NACIONAL TAM BOPATA MEDIANTE LOS ÍNDICES NDVI Y EVI USANDO LA PLATAFORMA GOOGL E EARTH ENGINE PERIODO 2000-2022	AUTOR Melissa Juleisy Zapana Lope
RECUENTO DE PALABRAS 28574 Words	RECUENTO DE CARACTERES 153661 Characters
RECUENTO DE PÁGINAS	TAMAÑO DEL ARCHIVO
193 Pages	20.0MB
FECHA DE ENTREGA	FECHA DEL INFORME
Jun 24, 2024 7:30 PM GMT-5	Jun 24, 2024 7:33 PM GMT-5

16% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base de datos.

- 15% Base de datos de Internet
- Base de datos de Crossref
- 3% Base de datos de publicaciones
- Base de datos de contenido publicado de Crossref
- 10% Base de datos de trabajos entregados
- Excluir del Reporte de Similitud
- Material bibliográfico

- Material citado
- · Coincidencia baja (menos de 10 palabras)

Dr. Roberto Alfaro Alejo DOCENTE UNA PUND

VO - PEBBSE EDILBERTO VELARDE COADUIRA Director Unidad de Investigación Facultad de Ingeniería Agricola - UNA - Puno

Resumen

DEDICATORIA

A mis amados padres, Feliciano T. Zapana Catarí y Oswaldina Lope Chaiña y a mis dos hermanos Guido y Jerson, quienes han sido un pilar inquebrantable en mi vida, brindándome su amor, apoyo incondicional y motivación constante a lo largo de este desafiante pero gratificante camino. Gracias por creer en mí y alentarme a seguir.

A mis estimados profesores y mentores, quienes han sido guías invaluables en mi formación académica y profesional. Gracias por compartir sus conocimientos, experiencias y por motivarme a amar la carrera como Ingeniero Agrícola

A mis amigas desde el colegio Karla, Claudia, Vanessa y Katy que han sido un refugio de apoyo y comprensión en este viaje académico. Su presencia en mi vida ha sido un regalo inapreciable, y su amor y amistad han sido un motor para mi crecimiento y motivación.

A la biodiversidad y la conservación, que son fundamentales para el equilibrio ecológico y el bienestar de nuestra sociedad. Gracias por ser un tema que me ha inspirado y motivado a trabajar hacia la protección y conservación del medio ambiente.

A la minería y la tala de árboles, que han sido un desafío para la conservación del medio ambiente asimismo a todos aquellos que han sido afectados por la misma en la Reserva Nacional de Tambopata.

Que esta tesis sea un reflejo de la dedicación, pasión y compromiso con la protección y conservación de este valioso ecosistema y hacia un futuro más sostenible que inspire a futuras generaciones a seguir explorando y avanzando acorde a los nuevos avances metodológicos.

Melissa Juleisy Zapana Lope.

AGRADECIMIENTOS

Quiero expresar mi gratitud a la Universidad Nacional del Altiplano por proporcionarme un espacio en sus salones de clase durante mi etapa como estudiante y a los profesores de la Escuela Profesional de Ingeniería Agrícola por su contribución a mi formación profesional.

También quiero agradecer a mi director y asesor de tesis, Dr. Roberto Alfaro Alejo, por dedicar su tiempo y paciencia para ayudarme a desarrollar esta investigación, su guía y orientación han sido fundamentales para el éxito de este proyecto.

Finalmente, agradezco a mis jurados de tesis, Ph.D. Lorenzo Gabriel Cieza Coronel, M.Sc. Miguel Ángel Flores Barriga y M.Sc. Alcides Héctor Calderón Montalico, por el tiempo que se tomaron para realizar las correcciones necesarias y contribuir al desarrollo de esta investigación, su retroalimentación constructiva y expertos comentarios han sido de gran valor para mejorar la calidad y rigor de mi trabajo.

Este agradecimiento también se extiende a todos aquellos que, de una u otra manera, han contribuido a mi formación a lo largo de estos años.

Melissa Juleisy Zapana Lope.

ÍNDICE GENERAL

	Pág.
DED	ICATORIA
AGR	ADECIMIENTOS
ÍNDI	CE GENERAL
ÍNDI	CE DE TABLAS
ÍNDI	CE DE FIGURAS
ÍNDI	CE DE ANEXOS
ACR	ÓNIMOS
RESU	JMEN 19
ABST	TRACT
	CAPÍTULO I
	INTRODUCCIÓN
1.1.	FORMULACIÓN DEL PROBLEMA 23
	1.1.1. Problema general
	1.1.2. Problemas específicos
1.2.	JUSTIFICACIÓN PARA LA INVESTIGACIÓN23
1.3.	ANTECEDENTES
1.4.	OBJETIVOS
	1.4.1. Objetivo general
	1.4.2. Objetivos específicos
1.5.	HIPÓTESIS
	1.5.1. Hipótesis General
	1.5.2. Hipótesis específicas

CAPÍTULO II

REVISIÓN DE LITERATURA

2.1.	TELEDETECCIÓN
2.2.	ELEMENTOS QUE COMPONEN UN PROCEDIMIENTO DE
	TELEDETECCIÓN35
2.3.	LA ESTRUCTURA FÍSICA DE LA TELEDETECCIÓN
	2.3.1. Electromagnetic Energy Or Electromagnetic Radiation (EEM)
	2.3.2. Electromagnetic Spectrum (EEM)
	2.3.3. La relación entre la superficie terrestre y la radiación solar
	2.3.4. La reflexión respecto a la superficie de la Tierra
	2.3.5. La respuesta espectral de la vegetación se ve afectada por factores
	externos
2.4.	SISTEMAS DE DATOS GEOGRÁFICOS 46
2.5.	TELEDETECCIÓN47
2.6.	INTERPRETACIÓN DE IMÁGENES SATELITALES
2.7.	SATÉLITE LANDSAT 48
	2.7.1. Requisitos técnicos para las imágenes Landsat
2.8.	LA RESOLUCIÓN DEL SENSOR
	2.8.1. La Resolución - espacial
	2.8.2. La Resolución-radiométrica
	2.8.3. La Resolución - espectral
	2.8.4. Resolución de problemas temporales
	2.8.5. Resolución angular
2.9.	MEJORA VISUAL DE IMÁGENES SATELITAL
2.10.	PRE PROCESAMIENTO DE IMÁGENES SATELITALES53

	2.10.1. Correcciones geométricas y/o georreferenciación	53
	2.10.2. Correcciones-radiométricas	54
	2.10.3. Correcciones- atmosféricas.	54
2.11.	ANÁLISIS DE IMÁGENES	55
2.12.	COMBINACIÓN EN BANDAS	55
2.13.	ÍNDICE DE VEGETACIÓN NORMALIZADO DE DIFERENCIA (NO	VI)
	••••••	56
	2.13.1. Modelo no lambertiano para efecto topográfico	57
	2.13.2. Análisis teórico de los efectos topográficos sobre EVI y NDVI	59
2.14.	GOOGLE EARTH ENGINE	65
0.15	COFFICIENTE DE CODDEL A CIÓN LINEAL DE DEADSON	=0
2.15.	CUEFICIENTE DE CURRELACIÓN LINEAL DE PEARSON	70
2.13.	COEFICIENTE DE CORRELACIÓN LINEAL DE PEARSON	70
2.15.	COEFICIENTE DE CORRELACIÓN LINEAL DE PEARSON CAPÍTULO III MATERIALES Y MÉTODOS	70
3.1.	COEFICIENTE DE CORRELACIÓN LINEAL DE PEARSON CAPÍTULO III MATERIALES Y MÉTODOS ÁREA DE INVESTIGACIÓN	70
 3.1. 3.2. 	COEFICIENTE DE CORRELACIÓN LINEAL DE PEARSON CAPÍTULO III MATERIALES Y MÉTODOS ÁREA DE INVESTIGACIÓN MATERIALES Y EQUIPOS DE GABINETE	70 71 73
 3.1. 3.2. 	COEFICIENTE DE CORRELACION LINEAL DE PEARSON CAPÍTULO III MATERIALES Y MÉTODOS ÁREA DE INVESTIGACIÓN MATERIALES Y EQUIPOS DE GABINETE	70 71 73 73
 3.1. 3.2. 	COEFICIENTE DE CORRELACION LINEAL DE PEARSON CAPÍTULO III MATERIALES Y MÉTODOS ÁREA DE INVESTIGACIÓN	70 71 73 73 73
 3.1. 3.2. 	COEFICIENTE DE CORRELACION LINEAL DE FEARSON CAPÍTULO III MATERIALES Y MÉTODOS ÁREA DE INVESTIGACIÓN	70 71 73 73 73
 3.1. 3.2. 	COEFICIENTE DE CORRELACION LINEAL DE FEARSON CAPÍTULO III MATERIALES Y MÉTODOS ÁREA DE INVESTIGACIÓN MATERIALES Y EQUIPOS DE GABINETE	70 71 73 73 73 73
 3.1. 3.2. 3.3. 	COEFICIENTE DE CORRELACION LINEAL DE PEARSON CAPÍTULO III MATERIALES Y MÉTODOS ÁREA DE INVESTIGACIÓN	70 71 73 73 73 73 73 73

3.3.2.	Explicación paso a	a paso del código	para calcular	el NDVI con	Landsat

3.3.3.	Recopilación de la información.	. 84

5......77

	3.3.4.	Explicación paso a paso del código para calcular el NDVI con l	Landsat
		8	
	3.3.5.	Explicación paso a paso del código para calcular el EVI con	Landsat
		5:	
	3.3.6.	Recopilación de la información	
	3.3.7.	Explicación paso a paso del código para calcular el EVI con	Landsat
		8	97
	3.3.8.	Explicación paso a paso del código para calcular el NDVI con R	
		Studio	101
	3.3.9.	Explicación paso a paso del código para calcular el EVI con R S	tudio 106
	3.3.10). Reclasificación para el NDVI por cada año analizado con Landsa	at: 108
		CAPÍTULO IV	
		RESULTADOS Y DISCUSIÓN	
4.1.	RESU	JLTADOS DEL ÍNDICE DE VEGETACIÓN MEJORADO (E	EVI) E
	ÍNDI	CE DE VEGETACIÓN DE DIFERENCIA NORMALIZADA	(NDVI).
	•••••		119
4.2.	RESU	JLTADOS RESPECTO AL COEFICIENTE DE CORRELAC	IÓN
	LINE	AL DE PEARSON PARA LOS VALORES DE NDVI Y EVI .	121
4.3.	TENI	DENCIA MULTITEMPORAL MANN KENDALL CON DAT	OS DEL
	NDVI	I Y EVI EN LA RESERVA NACIONAL DE TAMBOPATA	126
4.4.	VARI	IACIÓN AREAL MULTITEMPORAL POR CATEGORÍAS	DEL
	ÍNDIO	CE NDVI Y EVI	129
4.5.	DISC	USION	131
V.	CON	CLUSIONES	136
VI.	RECO	OMENDACIONES	138

VII.	REFERENCIAS BIBLIOGRÁFICAS	139
ANEX	XOS	144

Área : Ordenamiento territorial y medio ambiente

Tema : Teledetección

FECHA DE SUSTENTACIÓN: 28 de junio del 2024

ÍNDICE DE TABLAS

Pág.

Tabla 1	Especificaciones de Landsat 5
Tabla 2	Características del Satélite Landsat 8 50
Tabla 3	Clasificación de los valores NDVI-EVI
Tabla 4	Catálogo de bases de datos públicas de Google Earth Engine
Tabla 5	Datos de las imágenes procesadas y descargadas de NDVI con Landsat 5.85
Tabla 6	Data de imágenes NDVI procesadas y descargadas con Landsat 891
Tabla 7	Datos de imágenes procesadas y descargadas de EVI con Landsat 595
Tabla 8	Datos de las imágenes procesadas y descargadas de EVI con Landsat 8 99
Tabla 9	Áreas en hectáreas por categorías del índice NDVI y EVI para el periodo
	2000-2022
Tabla 10	Cuadros resumen de la correlación lineal de Pearson para las 5 categorías
	evaluadas en los índices NDVI y EVI 123
Tabla 11	Porcentaje de la tendencia multitemporal periodo 2000-2022 del normalized
	difference vegetation index (NDVI) en función a su clasificación126
Tabla 12	Porcentaje de la tendencia multitemporal periodo 2000-2022 del Enhanced
	vegetation index (EVI) en función a su clasificación
Tabla 13	Variación del análisis de tendencia multitemporal con Mann Kendall a nivel
	de área por cada categoría entre los índices NDVI y EVI

ÍNDICE DE FIGURAS

Pág.

Figura 1	Elementos de un sistema de teledetección
Figura 2	Components of Electromagnetic Radiation
Figura 3	El espectro de electromagnética
Figura 4	Proceso de transformación para el flujo incidente
Figura 5	Rangos visible e infrarrojo reflejado del espectro electromagnético y las
	firmas espectrales típicas de la vegetación, el suelo y el agua43
Figura 6	La curva de reflectancia estándar en la vegetación sana (adaptada de
	Hoffer,1978)
Figura 7	Las variables que dan forma a la firma espectral: elevación solar, dirección,
	inclinación, atmósfera, fenología y sustrato son factores importantes 46
Figura 8	Cobertura de satélite Landsat histórica
Figura 9	"Catalog of Public Data on Google Earth Engine"
Figura 10	API de Google Earth Engine
Figura 11	Diagrama de arquitectura del sistema simplificado
Figura 12	Valores para el coeficiente de correlación lineal de Pearson70
Figura 13	Mapa Georreferenciación de la Reserva Nacional de Tambopata72
Figura 14	Diagrama de flujo de la metodología usada76
Figura 15	Datos preliminares a importar en lenguaje java script
Figura 16	Shapefile importado al código de java script de GEE de la reserva Nacional
	de Tambopata77
Figura 17	Descripción del satélite usado para el análisis del NDVI con Landsat 5 78
Figura 18	Detalle de las bandas del satélite Landsat 5
Figura 19	Cálculo del índice NDVI utilizando Landsat 5 para el año 2000-RNT 82

Figura 20	Cálculo del índice NDVI utilizando Landsat 5 para el año 2006-RNT 83
Figura 21	Cálculo del índice NDVI utilizando Landsat 5 para el año 2009-RNT 84
Figura 22	Datos ingresados de la colección de imágenes Landsat 8 y el shapefile de la
	reserva nacional de Tambopata85
Figura 23	Descripción de la colección 2 Nivel 1de Landsat 8
Figura 24	Detallado de las bandas de Landsat 8
Figura 25	Descarga de datos del NDVI en imágenes tiff con Landsat 891
Figura 26	Muestra del resultado del cálculo del índice EVI para el año 2011 problemas
	de bandeado (año incluido para el análisis)96
Figura 27	Resultado del cálculo del índice EVI para el año 2009 cubierto de nubes
	(año excluido para el análisis)96
Figura 28	Resultado erróneo del cálculo de índice EVI con Landsat 8 para el año 2022
Figura 29	Resultado con porcentaje mínimo de nubes del 40% en el cálculo del índice
	EVI con Landsat 5 (Año 2008 excluido del análisis) 100
Figura 30	Plot del NDVI periodo 2000-2022 103
Figura 31	Visualización del código para calcular el NDVI de la Reserva Nacional
	Tambopata utilizando Google Earth Engine
Figura 32	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2000 108
Figura 33	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2001 109
Figura 34	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2003

Figura 35	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2004110
Figura 36	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2006110
Figura 37	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2007111
Figura 38	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2008111
Figura 39	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2009112
Figura 40	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2010112
Figura 41	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2011113
Figura 42	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2013113
Figura 43	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2014114
Figura 44	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2015114
Figura 45	Reclasificación dl índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2016115
Figura 46	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2017115

Figura 47	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2018116
Figura 48	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2019116
Figura 49	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2020117
Figura 50	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2021117
Figura 51	Reclasificación del índice de cobertura vegetal normalizado de la Reserva
	Natural Nacional Tambopata para el año 2022118
Figura 52	Correlación positiva débil entre los valores multianuales en área del índice
	NDVI y EVI, para la categoría Nubes y Agua123
Figura 53	Correlación positiva débil entre los valores multianuales en área del índice
	NDVI y EVI, para la categoría Suelo sin vegetación 124
Figura 54	Correlación positiva débil entre los valores multianuales en área del índice
	NDVI y EVI, para la categoría Vegetación Mediana 124
Figura 55	Correlación positiva débil entre los valores multianuales en área del índice
	NDVI y EVI, para la categoría Vegetación Ligera125
Figura 56	Correlación positiva débil entre los valores multianuales en área del índice
	NDVI y EVI, para la categoría Vegetación Alta125
Figura 57	Área de la tendencia multitemporal del normalized difference vegetation
	index (NDVI) en función a su clasificación
Figura 58	Área de la tendencia multitemporal del Enhanced vegetation index (EVI) en
	función a su clasificación

ÍNDICE DE ANEXOS

ANEXO 1	Mapa NDVI de Landsat 5 para el año 2000145
ANEXO 2	Mapa NDVI de Landsat 5 para el año 2001 146
ANEXO 3	Mapa NDVI de Landsat 5 para el año 2003 147
ANEXO 4	Mapa NDVI de Landsat 5 para el año 2004 148
ANEXO 5	Mapa NDVI de Landsat 5 para el año 2005 149
ANEXO 6	Mapa NDVI de Landsat 5 para el año 2006150
ANEXO 7	Mapa NDVI de Landsat 5 para el año 2007 151
ANEXO 8	Mapa NDVI de Landsat 5 para el año 2008 152
ANEXO 9	Mapa NDVI de Landsat 5 para el año 2009153
ANEXO 10	Mapa NDVI de Landsat 5 para el año 2010154
ANEXO 11	Mapa NDVI de Landsat 5 para el año 2011155
ANEXO 12	Mapa NDVI de Landsat 8 para el año 2013 156
ANEXO 13	Mapa NDVI de Landsat 8 para el año 2014 157
ANEXO 14	Mapa NDVI de Landsat 8 para el año 2015 158
ANEXO 15	Mapa NDVI de Landsat 8 para el año 2016159
ANEXO 16	Mapa NDVI de Landsat 8 para el año 2017 160
ANEXO 17	Mapa NDVI de Landsat 8 para el año 2018 161
ANEXO 18	Mapa NDVI de Landsat 8 para el año 2019162
ANEXO 19	Mapa NDVI de Landsat 8 para el año 2020163
ANEXO 20	Mapa NDVI de Landsat 8 para el año 2021 164
ANEXO 21	Mapa NDVI de Landsat 8 para el año 2022 165
ANEXO 22	Mapa de EVI Año 2000-Landsat 5166
ANEXO 23	Mapa de EVI Año 2001-Landsat 5 167

ANEXO 24	Mapa de EVI Año 2003-Landsat 5 168
ANEXO 25	Mapa de EVI Año 2004-Landsat 5169
ANEXO 26	Mapa de EVI Año 2005-Landsat 5170
ANEXO 27	Mapa de EVI Año 2006-Landsat 5171
ANEXO 28	Mapa de EVI Año 2007-Landsat 5 172
ANEXO 29	Mapa de EVI Año 2010-Landsat 5 173
ANEXO 30	Mapa de EVI Año 2011-Landsat 5 174
ANEXO 31	Mapa de EVI Año 2013-Landsat 8 175
ANEXO 32	Mapa de EVI Año 2014-Landsat 8176
ANEXO 33	Mapa de EVI Año 2015-Landsat 5 177
ANEXO 34	Mapa de EVI Año 2016-Landsat 8178
ANEXO 35	Mapa de EVI Año 2017-Landsat 8179
ANEXO 36	Mapa de EVI Año 2018-Landsat 8180
ANEXO 37	Mapa de EVI Año 2019-Landsat 8 181
ANEXO 38	Mapa de EVI Año 2020-Landsat 8 182
ANEXO 39	Mapa de EVI Año 2021-Landsat 8 183
ANEXO 40	Mapa general del índice EVI periodo 2000-2021
ANEXO 41	Mapa general del índice NDVI periodo 2000-2022
ANEXO 42	Resultado del cálculo del NDVI para el año 2002 con Landsat 5(no data).
ANEXO 43	Resultado del cálculo del NDVI para el año 2012 con Landsat 5 (no data).
ANEXO 44	Resultado del cálculo del NDVI para el año 2000 con Landsat 5(problema
	de nubosidad)

ANEXO 45	Resultado del cálculo del NDVI para el año 2012 con Landsat 7 (problema
	de bandeado-excluido del análisis)189
ANEXO 46	Resultado de la Tendencia NDVI para la reserva Nacional de Tambopata
	periodo 2000-2022
ANEXO 47	Resultado de la Tendencia EVI para la reserva Nacional de Tambopata
	periodo 2000-2021

ACRÓNIMOS

EVI	: "Índice de vegetación mejorado"
NDVI	: "Índice de vegetación diferencial normalizado"
DEM	: Modelos digitales de elevación
NIR	: Infrarrojo cercano
SIG	: Sistema de información geográfica
OLI	: Imagen operacional terrestre
TIRS	: Sensor térmico infrarrojo
SERNANP	: Servicio Nacional de Áreas Naturales Protegidas por el Estado
RNT	: Reserva Nacional de Tambopata

RESUMEN

El tamaño del píxel, la heterogeneidad de la superficie y la escala influyen en los valores del NDVI y EVI y las imágenes satelitales son cruciales para controlar la vegetación y mapear la Tierra, por ello esta investigación evalúa la variabilidad temporal de la vegetación en Tambopata usando el EVI y el NDVI de 2000 a 2022 con Google Earth Engine, para ello se utilizaron Índices Espectrales de Vegetación utilizando imágenes anuales de los satélites LANDSAT 5-7-8 (resolución espacial de 30 m \times 30 m) durante el periodo 2000-2022. Los resultados revelaron un comportamiento fractal del NDVI y EVI, indicando homogeneidad en las áreas de vegetación evaluadas. Utilizando el Índice de Vegetación Mejorado (EVI) y el Índice de Vegetación de Diferencia Normalizada (NDVI) durante el período 2000 a 2022, Los resultados dieron a conocer que usando imágenes del catálogo Landsat 5 y 8 permiten calcular los índices NDVI Y EVI ,al categorizarlo en 5categorias, al hacer las hacer las comparaciones a nivel de tendencia areal nos dio a conocer que para el periodo 2000-2022 el Índice EVI presenta mejor distribución en sus 5 categorías, realzando la categoría 2 sin vegetación con 1737.2 ha que representa el 0.63% del área total respecto al índice NDVI que tiene un área de 1222.21 ha que representa el 0.44% en la misma categoría, entonces para una biomasa boscosa como la que se cuenta en la Reserva Nacional de Tambopata el índice que mejor lo representa es el EVI.

Palabras clave: EVI, NDVI, Google Earth Engine, teledetección, vegetación.

ABSTRACT

Pixel size, surface heterogeneity and scale influence NDVI and EVI values and satellite images are crucial to control vegetation and map the Earth, therefore this research evaluates the temporal variability of vegetation in Tambopata using the EVI and the NDVI from 2000 to 2022 with Google Earth Engine, for this, Spectral Vegetation Indices were used using annual images from the LANDSAT 5-7-8 satellites (spatial resolution of $30 \text{ m} \times 30 \text{ m}$) during the period 2000-2022. The results revealed a fractal behavior of the NDVI and EVI, indicating homogeneity in the vegetation areas evaluated. Using the Improved Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) during the period 2000 to 2022, the results revealed that using images from the Landsat 5 and 8 catalog allow the calculation of the NDVI and EVI indices, by categorizing it into 5 categories, when making comparisons at the level of areal trend, it revealed to us that for the period 2000-2022 the EVI Index presents a better distribution in its 5 categories, highlighting category 2 without vegetation with 1737.2 ha, which represents 0.63% of the total area with respect to the NDVI index, which has an area of 1222.21 ha, which represents 0.44% in the same category, so for a forest biomass such as the one counted in the Tambopata National Reserve, the index that best represents it is the EVI.

Keywords: EVI, NDVI, Google Earth Engine, remote sensing, vegetation.

CAPÍTULO I

INTRODUCCIÓN

La deforestación, que implica la conversión directa de áreas forestales a no forestales causada por la actividad humana, ha experimentado un aumento global, según (Butler, 2021). En 2020, la pérdida de cobertura arbórea a nivel mundial superó el tamaño del Reino Unido, incluyendo la desaparición de más de 4.2 millones de hectáreas de bosques tropicales primarios. Países amazónicos como Bolivia, Perú y Colombia también enfrentaron notables pérdidas. Botero advierte que el mercado informal de tierras a gran escala sigue expandiéndose, con grandes conglomerados industriales ingresando a áreas legalmente restringidas. Ernesto Ráez del Instituto de Bien Común señala que los eventos en Perú en 2021 han intensificado los delitos ambientales, reflejándose en un aumento de la deforestación, atribuyendo la creciente tasa a la negligencia estatal en la Amazonía. Según (Dougojeanni ,2023), la pérdida de 114,463 hectáreas en áreas protegidas (2001-2019) se considera insignificante, representando el 0.64% de las áreas protegidas y el 0.16% de la Amazonía peruana. A pesar de esto, las proyecciones de deforestación deben considerar amenazas como la construcción de nuevas carreteras, legal o ilegalmente, incluso dentro de áreas protegidas.

La Reserva Nacional de Tambopata se encuentra en la región del sureste de Perú conocida como Madre de Dios se destaca como uno de los departamentos más diversos de la nación y es famosa por su excepcional diversidad biológica. Sin embargo, los altos niveles de minería artesanal (ilegal) según el SERNANP en el 2021 informo que después de tres años (2019-2021) reforestaron 641 ha dentro de la RNT, a su vez la migración de extractores y el aumento de la actividad minera son problemas importantes que afectan a la Reserva Nacional de Tambopata.

Un estudio realizado por Moreno, (2013) señala que entre 2007 y 2011, la deforestación en la provincia de Tambopata aumentó rápidamente, con una tasa anual de 970 hectáreas. Además, las investigaciones realizadas por Gonzales en 2018 muestran que se deforestaron 339.79 km2 en la provincia de Manu entre 2000 y 2016, según el análisis del "Índice de Diferencia de Vegetación Normalizada" (NDVI).

Se han realizado investigaciones que sugieren la implementación de índices espectrales de vegetación. Se recomienda la implementación de índices espectrales de vegetación (IVs), como el EVI y el NDVI, obtenidos de imágenes de satélite, para evaluar la cobertura vegetal a lo largo del tiempo. Sin embargo, aún no se ha llevado a cabo un control de calidad adecuado para estos índices (Salas et al., 2010). En este contexto, el objetivo de la investigación es obtener información precisa sobre los cambios en los años 2000-2022 con base en dos IV (NDVI, EVI) a través de un análisis de vegetación multitemporal. Plataforma Google Earth Engine (GEE) proporciona datos de imágenes de satélite utilizables para llevar a cabo este análisis y se evaluarán mediante pruebas estadísticas no paramétricas.

Esta investigación no solo proporcionará una visión detallada de las pérdidas de cobertura vegetal causadas por actividades antrópicas, sino que también servirán como base para la gestión y restauración de los ecosistemas forestales. Ayuda en la toma de decisiones en los procesos de planificación regional y proporciona información útil para pronosticar posibles escenarios de cambio de cultivos en el futuro. Finalmente, el manejo sostenible de los recursos naturales en el Parque Nacional Tambopata requiere una evaluación efectiva de la cobertura terrestre y la capacidad para monitorear sus cambios.

1.1. FORMULACIÓN DEL PROBLEMA

Las siguientes son las preguntas planteadas en esta investigación:

1.1.1. Problema general

¿Cuáles son los cambios en la cobertura en función de Índices espectrales de vegetación como el NDVI Y EVI que se pueden perciben en la Reserva Nacional de Tambopata durante el periodo 2000-2022?

1.1.2. Problemas específicos

¿Cómo determinar los valores de Índice de Vegetación Mejorado (EVI) e Índice de Vegetación de Diferencia Normalizada (NDVI) para el período de investigación, con el fin de caracterizar y monitorear la dinámica de la vegetación en el área de estudio?

¿Cuáles han sido los cambios en la cobertura en la Reserva Nacional de Tambopata entre 2000 y 2022 según los índices espectrales de vegetación NDVI y EVI?

¿Cuáles serán las tendencias estacionales de los dos Índices Espectrales de Vegetación (NDVI, EVI) entre 2000 y 2022?

1.2. JUSTIFICACIÓN PARA LA INVESTIGACIÓN

Esta investigación en la Reserva Nacional de Tambopata se justifica por la imperativa necesidad de evaluar el impacto de las actividades humanas en este ecosistema, considerando su potencial efecto sobre la cobertura vegetal y los recursos naturales. La investigación se enfoca en determinar el Índice de Vegetación Mejorado (EVI) y la Índice de Vegetación de Diferencia Normalizada (NDVI), así como en analizar

la correlación entre estos índices y clasificar la dinámica de la vegetación mediante series temporales. El uso de estos índices espectrales es esencial para monitorear la salud vegetal y comprender los cambios a lo largo del tiempo. La relevancia del estudio radica en su capacidad para proporcionar datos científicos sólidos y herramientas de análisis que respalden la toma de decisiones en la gestión de la reserva, permitiendo estrategias de conservación adaptativas frente a los desafíos ambientales presentes y futuros, contribuyendo así a la conservación y sostenibilidad a largo plazo del ecosistema.

1.3. ANTECEDENTES

-Internacional

Guzmán (2021), en los años 2019 y 2020, realizó un estudio sobre-utilizando la plataforma Google Earth Engine para calcular el Índice de Diferencia Normalizada de Vegetación - NDVI para la vereda La Florida del municipio de Puerto Asís. El primer método presentado es el siguiente: utilizando el "Google Earth Engine" como plataforma, implementan filtros de nubes según su área de interés, calculan NDVI para el período 2019-2020, exportan las imágenes a Google Conducir y luego reclasifican las imágenes en el software. Calcular la pérdida de bosques en el corregimiento de La Florida en el municipio de Puerto Asís para el año 2019 utilizando SIG y el NDVI (Índice de Vegetación de Diferencia Normalizada). El NDVI (Índice de Vegetación de Diferencia Normalizada) de la banqueta de La Florida en la bailía de Puerto Asís para 2019 y 2020 se calculó utilizando la fuerza del GEE. y luego se restó del NDVI para 2020 y 2019, lo que permitió la cuantificación. y localización de la deforestación. La diferencia entre el NDVI de 2020 y 2019 nos permitió identificar y cuantificar dónde ocurrió la deforestación durante este período. Esto se logra reclasificando las imágenes obtenidas restando el ráster de cada año. Valores similares o ausencia de cambio de vegetación son automáticamente descartados, valores negativos indican deforestación. Al reclasificar la imagen se destacaron y agruparon los valores negativos, permitiéndonos determinar que la deforestación fue de aproximadamente 131 hectáreas entre 2019 y 2020.

Li et al.(2019), realizaron un estudio titulado "Combinación de trayectorias fenológicas de plantas con imágenes Sentinel-2 de series temporales densas y un mapa de especies de manglares de Google Earth, donde se creó una serie temporal indexada.Sentinel-2 (del 01-01-2017 al 31-12-2018) mapeó las trayectorias fenológicas

de las especies de manglares y luego usó representación algorítmica de bosque aleatorio para demostrar la posibilidad de clasificar las especies de manglares en función de la fenología utilizando la plataforma Google Earth Engine". Los resultados mostraron que: (i) las trayectorias fenológicas (series temporales de NDVI) de diferentes especies de manglares en el estuario de Zhangjiang eran bastante diferentes; (ii) la precisión general y la confiabilidad Kappa del mapa de clasificación fueron 84% y 0.84, respectivamente; (iii) Los meses finales de invierno y principios de primavera son cruciales para la clasificación de las especies de manglares.

Lasaponara et al. (2022), llevaron a cabo un estudio utilizando la serie temporal Sentinel-2 NDVI y Google Earth Engine para identificar cambios en el uso de la tierra y la cobertura terrestre en áreas afectadas por incendios" y se llevó a cabo para evaluar el potencial de la serie temporal Sentinel-2. 2. Usando el NDVI y Google Earth Engine, se pueden detectar pequeños cambios en el cultivo o la cobertura del suelo en entornos inducidos por incendios (nivel de píxeles). El enfoque principal del estudio fue un análisis de tendencias de series temporales de NDVI para capturar cambios lentos como los rápidos. Debido a que se utilizan ampliamente para evaluar la dinámica posterior a un incendio, esto se hizo, principalmente en lo que respecta a la regeneración de la vegetación y el monitoreo de la resiliencia al fuego. En este estudio, se analiza el centrosur de la península italiana, particularmente las áreas de Campania, Basilicata, Calabria, Toscana, Bria y el Estrecho, para cada incendio considerado, el estudio abarcó el período desde un año después del incidente hasta el presente. El análisis multitemporal se realizó utilizando dos pasos principales de procesamiento de datos (i) regresión lineal para obtener tendencias de NDVI y especificar cambios a lo largo del tiempo, y (ii) clasificación aleatoria de bosques para capturar y clasificar diferentes cambios. A través del análisis, pudieron comprender y evaluar los indicadores de tendencias de los cambios

y cambios de uso y cobertura del suelo en el área de estudio de caso seleccionada. En particular, identificaron diferentes tipos de cambios: (i) deforestación, (ii) conversión de caminos y veredas, y (ii) transición de áreas forestales a áreas cultivadas. La alta resolución multitemporal proporcionada por Google Earth evaluó y confirmó la confiabilidad de los cambios identificados. Los resultados de esta comparación destacan que la precisión de la clasificación general es superior a 0,86. Esta técnica tiene varias ventajas: (i) es fácil de usar y aplicar, así como reproducible a diferentes escalas temporales y espaciales; (ii) puede ser administrado fácilmente por GEE utilizando subconjuntos temporales, evitando problemas de demora computacional; (iii) capacidad de procesar docenas de eventos seguidos. El uso de ML/LR aplicado al valor máximo de NDVI evita problemas relacionados con la presencia de nubes o cambios estacionales en la imagen. Mientras tanto, se demostró que el uso de RF tiene una precisión de más del 75% en la clasificación de los cambios en los valores de pendiente y compensación obtenidos de LR. Además, este método produce resultados igualmente confiables en regiones de diferentes escalas, demostrando reproducibilidad y escalabilidad.

Alatorre et al. (2010), usando dos series temporales de NDVI, evaluaron cómo cambió la dinámica de la vegetación de la cobertura del suelo en los Pirineos centrales españoles tanto en el tiempo como en el espacio. La primera serie correspondió al mes de abril (inicio de la primavera) y la segunda serie correspondió al mes de agosto (finales de la primavera). de verano), la serie consta de fotografías. Los resultados de marzo de Landsat TM y ETM para el periodo de tiempo de 1984 a 2007 muestran un aumento del NDVI en las áreas con vegetación, pero una tendencia negativa del NDVI en las áreas degradadas. Además, se destaca que el aumento del NDVI se debe al aumento de la temperatura mínima.

(Alcaraz et al., s. f.), señalaron que las series temporales de imágenes satelitales son una excelente herramienta para analizar los cambios en varios aspectos de la vegetación y para comprender y administrar áreas protegidas. Cada análisis del Índice de Vegetación de Diferencia Normalizada (NDVI), un índice espectral utilizado para calcular la fracción de radiación fotosintéticamente activa que recibe la vegetación en áreas protegidas de América del Norte, se realizó con dos bases de datos diferentes. Este estudio presenta tres métodos para calcular los cambios promedio, la estacionalidad y la inestabilidad de tres dinámicas temporales (mutaciones) de la capacidad fotosintética de las plantas y parques nacionales en España, y muestra una tendencia. La dinámica de los cambios del NDVI depende de sus condiciones geopolíticas y biogeográficas en magnitud y dirección. El Parque Natural de Andalucía ilustra cómo diversas administraciones históricas, la estabilidad dinámica temporal del NDVI puede disminuir en ciertos ecosistemas. En general, estas evaluaciones muestran que las políticas de conservación de la biodiversidad en áreas protegidas no pueden depender de condiciones estáticas o típicas porque sus ecosistemas funcionan de manera diferente. Además, estas técnicas brindan información útil para la priorización de la conservación al poder responder preguntas: ¿Cuáles son los biomas, naciones o parques que están experimentando los cambios más importantes? ¿Cuáles son las estrategias de gestión que pueden mejorar la estabilidad del ecosistema?

Gonzaga (2014) examinó los cambios en la vegetación del suelo a lo largo de períodos de tiempo y demostraron que la teledetección se utilizaba como una herramienta clave para identificar indicadores de degradación y conservación de los recursos naturales. Abordó específicamente el uso de la tierra y los cambios en la vegetación. En particular, evaluó cómo cambia el uso del suelo y la cobertura vegetal. Se puede inferir que la teledetección se ha empleado como una herramienta útil para localizar signos de

conservación y degradación de los recursos naturales. Este estudio se realizó en la provincia de Loya, al sur de Ecuador, utilizando tres indicadores de vegetación para analizar los cambios en varios tipos de vegetación. El índice de estrés hídrico MSI, el índice de cobertura vegetal por suelo y el índice de cobertura vegetal diferencial normalizado NDVI se utilizaron en las imágenes de Landsat 7 ETM y ASTER de doble es razonable suponer que la teledetección se ha utilizado como una herramienta útil para identificar signos de degradación y conservación de los recursos naturales. Este estudio se lleva a cabo en la provincia de Loya, en el sur de Ecuador, y analiza los cambios en varios tipos de vegetación utilizando tres indicadores de vegetación. Las imágenes de Landsat 7 ETM y ASTER de doble sensor utilizaron el índice de estrés hídrico MSI, el índice de cobertura vegetal por suelo y el índice de cobertura vegetal diferencial normalizado NDVI. El índice MSI fue el que mejor se desempeñó en términos de su capacidad para evaluar la condición de la cobertura. Sus valores corresponden a los estados de cobertura vegetal de ambas imágenes. Los datos climáticos del área de estudio son insuficientes y vacíos, lo que indica que no se tiene acceso a una superficie suficiente de precipitación y temperatura. Como resultado, no se encontraron correlaciones significativas entre estos indicadores de vegetación y variables climáticas. Los resultados demostraron que, aunque los tres índices de vegetación no mostraron diferencias significativas, podían distinguir entre los diferentes tipos de cubierta vegetales examinados. El índice MSI fue el más efectivo cuando se trataba de evaluar la condición de la cobertura. Sus valores se ajustan a los estados de cobertura vegetal de las dos imágenes. Debido a la falta de datos climáticos suficientes y vacíos en el área de estudio, no se tiene acceso a una superficie suficiente de precipitación y temperatura. Como resultado, no se encontraron correlaciones significativas entre estos indicadores de vegetación y variables climáticas.

Nacional

En el Perú, se encontraron estudios previos sobre los índices espectrales de vegetación estudiado tal como la tesis redactada por Mamani (2021), Evaluó la relación entre los índices de vegetación y el cambio climático, realizó una revisión multiperíodo de imágenes Landsat de la Laguna Pucarani en Tacna de 1972 a 2018. Los datos utilizados son de imágenes satelitales Landsat 5 y Landsat 8 Nivel 1 T, corregidos según niveles de albedo de superficie seleccionados por Google Earth Engine. En 1986, 1995, 2010 y 2018, esta plataforma produjo los índices de diferencia normalizada de vegetación "NDVI" y los índices de diferencia normalizada de agua "NDWI". Los hallazgos indican que los valores medios de NDVI más altos se produjeron entre diciembre y mayo, con valores iguales o superiores a 0,1. Por otro lado, los valores medios de NDVI disminuyeron en julio y agosto, asumiendo valores de 0,078 en 1986 y 0,065 en 2018. A partir de la cantidad de precipitación, se puede confirmar que hay una frecuencia periódica de años secos y húmedos en estos años. En cuanto a la frecuencia de lluvias se ha encontrado que en 1986 la frecuencia de lluvias es de diciembre a abril y en el 2018 la frecuencia es en enero y febrero. De acuerdo con las estadísticas de la temperatura mínima media anual, se ha observado un aumento desde el año 2012, con valores por debajo de -6,50 °C, frente a valores tan bajos como -12,4 °C en años anteriores. A partir de las temperaturas máximas promedios anuales Se observó que los años entre los años examinados fueron casi idénticos, con un 0,42 °C más alto que el promedio de 12,92 °C en 2010, con base en la relación entre los valores de precipitación y NDVI, se prueba si existe una correlación entre las dos variables. A juzgar por la expansión del área de la cuenca, se confirmará que están relacionados con la precipitación anual acumulada. Se concluyó que, según Pearson, las variables precipitación pluvial, temperatura mínima e índice de vegetación "NDVI" presentaron una relación significativa <0.05.

También, Alvarado et al. (2019), realizaron un estudio que utiliza computación en la nube para comparar los índices de vegetación con imágenes Landsat. El área de Pampa de Majes-Siguas, Arequipa, fue el lugar donde se realizó el estudio, desde junio de 1984 hasta noviembre de 2018, utilizando imágenes satelitales de la atmósfera superior. El Índice de Vegetación (TOA) debe ser el mismo que Landsat. De 1984 a 2018, el Proyecto Especial de la Autoridad de Majes (AUTODEMA) se extendió hasta las Pampas de Majes - Siguas en Arequipa. Para lograrlo, la base de datos de Google Earth Engine (GEE) utiliza la aplicación en la nube Climate Engine. utilizó Climate Engine, una herramienta desarrollada por la Universidad de Idaho y el Desert Research Institute-DRI. Permite el procesamiento de imágenes satelitales de la misión a través de la red. Landsat extrae valores de zonas de cuadrícula individuales para determinar índices de vegetación como NDVI, NDWI, SAVI y GNDVI, logrando extensiones a los estudios de series temporales de AUTODEMA y permitiendo evaluar la abundancia y el nivel de desarrollo de las especies de plantas y su impacto en el crecimiento. en el límite de la agricultura, transfiriendo agua del río Camaná de la cuenca utiliza más agua para cultivar la vegetación, lo que normalmente contribuye a los aumentos en el NDVI. Utilice fácilmente las herramientas GEE y Climate Engine de Google Earth Engine para el procesamiento distribuido de imágenes Landsat y vea catálogos de imágenes de la región desde 1984 hasta el presente.

Finalmente ,Balcázar (2011), concluyó que el uso de nuevas tecnologías en la agricultura ha permitido a muchos agricultores de países desarrollados acceder a nuevos mercados internacionales, confiados en la calidad de sus productos, lo que también indica que la "calidad" alcanzada es mejor. El manejo de cultivos utilizando tecnologías como los sistemas de información se está convirtiendo en una herramienta importante para la implementación de la llamada agricultura de precisión y concluyó que GRASS GIS

facilita el procesamiento, análisis y visualización de datos de imágenes multiespectrales. Además, se encontró que la creación de archivos Geo TIFF permite asociar la captura de las imágenes capturadas con las coordenadas geográficas correspondientes, permitiendo una adecuada georreferenciación de las imágenes procesadas por GRASS.

1.4. OBJETIVOS

1.4.1. Objetivo general

Evaluar variabilidad temporal de la vegetación en las zonas impactadas por causas antropogénicas de la reserva nacional de Tambopata mediante el Índice de Vegetación Mejorado (EVI) y el índice de vegetación de diferencia normalizada (NDVI) en el periodo 2000-2022 usando el Google Earth Engine.

1.4.2. Objetivos específicos

- Determinar el Índice de Vegetación Mejorado (EVI) y el índice de vegetación de diferencia normalizada (NDVI), para el periodo de investigación.
- Determinar la correlación entre las variables Índice de Vegetación Mejorado (EVI) y Índice de vegetación de diferencia normalizada (NDVI).
- Clasificar la dinámica de la vegetación en las zonas de estudio mediante el análisis de series temporales a través de la respuesta espectral de los índices EVI y NDVI.

1.5. HIPÓTESIS

1.5.1. Hipótesis General

La evaluación de la variabilidad temporal de la vegetación en las áreas afectadas por causas antropogénicas en la Reserva Nacional de Tambopata,

utilizando el Índice de Vegetación Mejorado (EVI) y el Índice de Vegetación de Diferencia Normalizada (NDVI) entre 2000 y 2022, revela patrones significativos que reflejan cambios en la composición y la salud de la vegetación a lo largo del tiempo.

1.5.2. Hipótesis específicas

- El cálculo del Índice de Vegetación Mejorado (EVI) y el Índice de Vegetación de Diferencia Normalizada (NDVI) para el periodo de investigación revela patrones y cambios significativos en la vegetación, permitiendo una comprensión detallada de la dinámica vegetal a lo largo de los años.
- Existe una correlación significativa entre las variables del Índice de Vegetación Mejorado (EVI) y del Índice de Vegetación de Diferencia Normalizada (NDVI), indicando que estas métricas están relacionadas de manera consistente en la Reserva Nacional de Tambopata.
- El análisis de series de tiempo utilizando la respuesta espectral de los índices EVI y NDVI permite identificar patrones recurrentes, tendencias estacionales y cambios de largo plazo en la cobertura vegetal en las áreas de estudio. Esto proporciona una visión completa del crecimiento de la vegetación en la Reserva Nacional de Tambopata.

CAPÍTULO II

REVISIÓN DE LITERATURA

2.1. TELEDETECCIÓN

La detección de objetos, áreas o fenómenos sin estar en contacto con ellos se conoce como teledetección.

La teledetección utiliza instrumentos y sensores que pueden detectar señales electromagnéticas (radiación reflejada o radiada) del suelo y la atmósfera, y luego convertirlas en datos físicos que pueden procesarse y almacenarse. La señal electromagnética es procesada por sensores para producir imágenes digitales. Para realizar observaciones topográficas, se instalan sensores en plataformas, también conocidas como satélites. Desde una perspectiva práctica, la teledetección tiene como objetivo utilizar los datos registrados por los sensores para reconocer las características de la superficie terrestre y los fenómenos que ocurren allí (Sobrino et al., 2000).

"Los expertos en teledetección trabajan en una variedad de campos, como los físicos que investigan los fundamentos de la radiación y su relación con la Tierra, así como los ingenieros que diseñan herramientas de sensores. así como plataformas, matemáticos y estadísticos que se ocupan del procesamiento de datos numéricos o desarrolladores e implementadores de sistemas de teledetección. científicos) e intérpretes de información (especialistas en ciencias de la tierra, cartógrafos, geógrafos, geólogos, biólogos, meteorólogos, oceanógrafos, etc.)"(Sobrino et al., 2000).

2.2. ELEMENTOS QUE COMPONEN UN PROCEDIMIENTO DE TELEDETECCIÓN

Como se ilustra en la Figura 1, la "fuente de energía" es el primer componente del sistema de teledetección. Este tipo de teledetección se denomina pasiva porque los sensores dependen del sol como fuente de energía externa. La "cobertura del suelo" es la segunda parte. Cada grupo de objetos cubiertos (la masa vegetal, la capa de nieve, los cuerpos de agua, el suelo o las superficies urbanas) reaccionará en forma diferente al flujo de energía entrante según sus características y propiedades. Los objetos absorben una parte de este flujo, transmiten otra parte a los objetos cercanos y finalmente reflejan otra parte. El "sensor" (tercer componente) captura y codifica esta energía reflejada (Martínez, J. & Díaz, J., & Muñoz, F., 2010).

Numéricamente en un rango que determina el tipo de sensor y está estrechamente vinculado con la resolución radiométrica. Si los objetos reflejan poca energía, pero absorben o transmiten mucha, el valor registrado por el sensor será bajo. Esto se aplica en masas de agua en determinadas regiones espectrales del espectro visible (verde y rojo) y del infrarrojo cercano y medio. Por el contrario, si los objetos son muy reflectantes, el sensor registrará valores elevados, como la vegetación en el rango del infrarrojo cercano (Aroni-Quispe et al., 2021).

Los datos digitales almacenados a bordo son recibidos periódicamente por las "Estaciones receptoras", un cuarto componente convenientemente ubicado en la superficie de la Tierra. Los datos se registran allí y las imágenes se distribuyen a los usuarios a través de varios canales y políticas de marketing. Los programas informáticos se utilizan para procesar imágenes visuales o digitales" (Martínez, J. & Díaz, J., & Muñoz, F., 2010).

El mapeo de temas y otros productos son creados por el "intérprete" (quinto componente) utilizando procesamiento digital. Los datos digitales almacenados a bordo son recibidos periódicamente por las "Estaciones receptoras", un cuarto componente convenientemente ubicado en la superficie de la Tierra. también conocido como sexto componente (Martínez, J. & Díaz, J., & Muñoz, F., 2010).

Figura 1

Elementos de un sistema de teledetección

Nota: El grafico representa los elementos que se usan en un sistema de teledetección. Tomado por Martínez, J. & Díaz, J., & Muñoz, F., (2010).

2.3. LA ESTRUCTURA FÍSICA DE LA TELEDETECCIÓN

Desde la perspectiva física, la teledetección implica la presencia de perturbaciones (campos gravitacionales, energía electromagnética, etc.). El sistema receptor recibe esta energía, la cual se registra, almacena e interpreta. El principal desafío que enfrentan las

personas que trabajan en el campo de la teledetección es convertir los datos capturados por los sensores en cantidades físicas y, por lo tanto, en información útil para el usuario.

"La radiación electromagnética, la "gravity", el magnetismo, la geofísica y las ondas de radio son algunos de los muchos tipos de energía que los dispositivos de teledetección pueden detectar. Pero en general, la distribución de energía en el "espectro electromagnético" (EMM) es la fuente de energía más utilizada por la mayoría de los dispositivos o sensores remotos para registrar datos de la superficie terrestre. Debido a las características de la superficie terrestre, estos sensores recopilan datos del reflejo de la "radiación electromagnética" (REM). Puede ser artificial la fuente de energía de los datos (generada por el sensor) o natural (el sol) (Pérez, 2007).

2.3.1. Electromagnetic Energy Or Electromagnetic Radiation (EEM)

La "radiación electromagnética", que interactúa con la cobertura del suelo, permite la observación remota (Pérez & Muñoz, 2006).

De acuerdo con (Chuvieco, 1995)," existen dos teorías para explicar las características de la radioactividad electromagnética: la teoría ondulatoria, creada por Huygens y Maxwell, que describe la radiación electromagnética como un haz continuo de ondas. Por otro lado, la teoría cuantitativa del átomo, creada por Planck y Einstein, describe la radiación electromagnética como una serie de unidades discretas de energía, cuantos o fotones, con masa cero".

La Teoría de la Ondulación - Ondulatoria.

Según la teoría ondulatoria, dos campos de fuerzas ortogonales, eléctricas y magnéticas transmiten la energía electromagnética a la velocidad de la luz (Figura 2).

La velocidad de la luz ($\approx 3 \times 108 \text{ m s-1}$) es la velocidad constante a la que estas ondas viajan hacia el infinito. Estas ondas son representaciones de la radiación emitida desde la fuente. La longitud de onda (λ) de la radiación es la distancia entre la cresta de una onda y la siguiente, y la frecuencia (F) de una onda es el número de crestas por segundo que pasan por un mismo "punto".

La fórmula fundamental que sostiene esta teoría se encuentra en la ecuación (1).

$$\mathcal{C} = \lambda * \mathcal{F} \left(1 \right)$$

Donde:

- C es: la velocidad de propagación de la luz.
- λ es: la longitud de onda.

 \mathcal{F} es: la frecuencia.

Figura 2

Components of Electromagnetic Radiation

Nota: El grafico representa los componentes de radiación electromagnética como lo son la frecuencia, velocidad de la luz y longitud de onda. Tomado por Pérez, (2007).

La teoría cuántica

La fórmula fundamental utilizada para explicar el fenómeno de la radiación electromagnética en función de sus propiedades energéticas es la siguiente:

$$Q = h * F(2)$$

Corresponde:

- Q: "es la cantidad de energía transportada por una sola onda (energía radiante de un fotón)".
- h: constante de Planck $(6.6 * 10^{-34} Js)$.
- F:es la frecuencia.

Despejando F en la ecuación (1) y sustituyendo en la ecuación (2) obtenemos la

siguiente ecuación (3)

$$Q = F \frac{c}{\lambda} (3)$$

El análisis de esta expresión indica que las radiaciones con longitudes de onda más largas son más difíciles de detectar debido a su menor contenido energético (Pérez & Muñoz, 2006).

2.3.2. Electromagnetic Spectrum (EEM)

"Los sensores que se utilizan en los sistemas de teledetección, que van desde microondas hasta luz visible, tienen la capacidad de ampliar el rango de exploración de la Tierra. Los mecanismos físicos por los cuales la radiación electromagnética interactúa con la materia difieren en intervalos espectrales.

Como resultado, la teledetección proporcionará datos adicionales sobre las condiciones atmosféricas y terrestres." (Sobrino et al., 2000).

El espectro electromagnético, que es la distribución de la radiación electromagnética por energía, define la energía, la frecuencia y la longitud de onda de la radiación electromagnética (EEM). Las ondas de radio y los rayos gamma forman parte del espectro de ondas electromagnéticas (Fig. 3).

"Los infrarrojos, también conocidos como intervalos de longitud de onda correspondientes a la región óptica del espectro producida por la luz visible, son los infrarrojos que se utilizan con mayor frecuencia en la teledetección. un componente del espectro visible. El espectro está cubierto entre 0,4 μ m y 0,7 μ m. El rango de 0,4 m a 0,5 m es azul, el de 0,5 m a 0,6 m es verde y el de 0,6 m a 0,7 m es rojo. El infrarrojo cubre el espectro de 0,7 μ m a 100,0 μ m. Es posible elegir entre tres áreas de infrarrojo: infrarrojo cercano de 0,7 a 1,3 μ m, infrarrojo medio de 1,3 a 3,0 μ m y infrarrojo térmico de 3,0 μ m" (Sobrino et al., 2000).

Figura 3

El espectro de electromagnética

Nota: El grafico representa los componentes del efecto electromagnéticos. Tomado por Pérez, (2007).

2.3.3. La relación entre la superficie terrestre y la radiación solar

La radiación solar es la radiación electromagnética emitida por el sol. Una corriente de energía radiante solar de se refleja cuando toca la superficie de un material. La superficie (objeto) absorbe otra parte, lo que produce una corriente de absorción de como se ve en la Figura 4, de transferirá finalmente una parte del flujo incidente, generalmente en una forma diferente de energía (Sobrino et al., 2000).

Figura 4

Proceso de transformación para el flujo incidente

luz solar

Nota: Tomado por Sobrino et al., (2000).

Como resultado de la conservación de la energía, el flujo incidente (ϕ i) se puede expresar como flujo reflejado (ϕ), flujo absorbido (ϕ) y flujo transmitido (ϕ), ecuación (4).

$$\phi i = \phi r + \phi a + \phi t \ (4)$$

Sin embargo, esta relación se expresa generalmente en términos de números relativos. La siguiente relación se obtiene dividiendo la ecuación (4) por el flujo incidente:

$$1 = \frac{\phi r}{\phi i} + \frac{\phi a}{\phi i} + \frac{\phi t}{\phi i} = \alpha + \rho + \tau \ (5)$$

En la expresión anterior, α , ρ , τ , son similares a:

$$\rho = \frac{\phi r}{\phi i} = reflectividad o reflectancia$$

$$\alpha = \frac{\phi a}{\phi i} = absortividad$$

$$\tau = \frac{\phi t}{\phi i} = transmisividad$$

La fórmula es porque la relación entre las tres cantidades no es constante y cambia con la longitud de onda: fórmula (6)

$$\phi i = \phi r(\lambda) + \phi a(\lambda) + \phi t(\lambda)$$
(6)

2.3.4. La reflexión respecto a la superficie de la Tierra

Todo tipo de vegetación (rocas, cuerpos de agua, vegetación, núcleos urbanos, etc.) absorben parte de la radiación electromagnética, lo que confiere a la cubierta diferentes propiedades en el espectro. Basándose en la respuesta espectral de los sensores remotos, se pueden analizar las imágenes de los sensores remotos y se pueden crear hipótesis de cobertura bastante precisas.

'" La respuesta de diferentes materiales en la superficie de la Tierra a la radiación solar en función de la longitud de onda se conoce como firma espectral (λ) "(Melendres, 2018).

Los patrones de las propiedades espectrales del agua, la vegetación intacta, la vegetación estresada y el suelo. se muestran en la Figura 5.

Figura 5

Rangos visible e infrarrojo reflejado del espectro electromagnético y las firmas espectrales típicas de la vegetación, el suelo y el agua

Nota: Tomado por Hernández y Montaner (2009).

Las curvas de reflectancia espectral de la vegetación verde y saludable muestran picos y valles. La fotosíntesis es el proceso por el cual las plantas transforman el agua y el dióxido de carbono en oxígeno y carbohidratos. La fotosíntesis es catalizada por el pigmento-clorofílico, un compuesto orgánico complejo que contiene hierro. La clorofila absorbe la luz solar (Pérez, 2007).

La clorofila absorbe mucho a una distancia de 0,45 a 0,67 micrómetros y a una distancia de 0,5 micrómetros. Nuestros ojos perciben la vegetación sana como verde porque las hojas de las plantas absorben mucha energía y las longitudes de onda verdes reflejan mucha energía, Figura 6.

Cuando las plantas experimentan este tipo de estrés, su producción de clorofila disminuye, lo que reduce la absorción de bandas azules y rojas. Como

resultado, la reflectividad del color rojo aumenta, lo que hace que la planta parezca algo amarillenta (Pérez, 2007).

En la figura 6 podemos ver que la reflexión de las plantas aumenta hacia la región infrarroja cercana. En el rango de 0,7 a 1,3 μ m, la intensidad aumenta significativamente y las hojas reflejan del 40 al 50% de la energía incidente. Posteriormente, exhibe aumentos de 1,6 y 2,2 μ m. Debido a que la placa absorbe agua en estas longitudes de onda, la curva indica el mínimo en 1,4, 1,9 y 2,7 μ m. (Pérez, 2007).

Figura 6

La curva de reflectancia estándar en la vegetación sana (adaptada de Hoffer, 1978)

Nota: Tomado por Aguilar et al., (2010).

2.3.5. La respuesta espectral de la vegetación se ve afectada por factores externos

No solo características intrínsecas de una planta afectan su comportamiento en el espectro visible, sino también una variedad de factores exógenos que alteran su respuesta espectral. La siguiente secuencia muestra algunos de estos factores:

- El ángulo de incidencia de la iluminación solar, que está fuertemente influenciado tanto por la época del año como por el momento del sobrevuelo satelital.
- ii. Las variaciones del ángulo de iluminación causadas por el relieve.
- El efecto de la atmósfera, particularmente en lo que respecta a la dispersión selectiva en longitudes de onda variables.
- iv. Los cambios medioambientales que le ocurren a la capa vegetal incluyen su relación con otras superficies, su nivel de uniformidad, su estado fenológico, entre otros aspectos.
- v. El ángulo desde el cual se efectúa la observación, el cual guarda relación con la órbita seguida por el satélite y con las especificidades inherentes al sensor empleado.

Figura 7

Las variables que dan forma a la firma espectral: elevación solar, dirección,

inclinación, atmósfera, fenología y sustrato son factores importantes

Nota: Tomado por Chuvieco, (1995).

2.4. SISTEMAS DE DATOS GEOGRÁFICOS

"Es un sistema de información que integra, almacena, modifica, analiza, comparte y muestra datos geográficos. En general, los SIG son herramientas que permiten a los usuarios consultas interactivas, análisis de datos espaciales, manipulación de datos, creación de mapas y visualización de los resultados de cada operación". El término "sistema de información geográfica" se refiere a una combinación de datos y herramientas informáticas para su análisis con objetivos específicos. Además, el término "geográfico" se refiere al uso de la teledetección para producir mapas temáticos del medio ambiente. Dado que la cartografía obtenida por Sensores Remotos representa las variables agregadas al SIG, suelen representar la etapa final del proyecto. Como resultado, un SIG es un sistema informático que facilita los pasos de entrada de datos, análisis de datos

georreferenciados. Además, mediante el almacenamiento directo de datos de ubicación, facilitan la actualización y el acceso de los usuarios (Cartoteca, 2011).

2.5. TELEDETECCIÓN

La teledetección utiliza sensores instalados en plataformas espaciales para recopilar datos de la superficie terrestre. El sensor y el suelo interactúan electromagnéticamente, produciendo una serie de datos que se procesan para obtener información sobre la Tierra que se puede interpretar. La teledetección está disponible en Internet a través de la siguiente URL: www.ign.es/ign/layoutln/teledeteccion.

Imágenes desde el satélite

El término "imagen satelital" se refiere a la representación visual de la información que un sensor capturó en un satélite artificial. Estos sensores recogen la información reflejada por la superficie de la Tierra y luego la transmiten para que se procese fácilmente, proporcionando información útil sobre las características de la zona representada. El texto completo se puede encontrar en el siguiente enlace: http://sedici.unlp.edu.ar/handle/10915/34487.

2.6. INTERPRETACIÓN DE IMÁGENES SATELITALES

Tanto en términos de resolución como de biblioteca de firmas espectrales, la interpretación de imágenes satelitales ha avanzado rápidamente. Actualmente, existen imágenes donde cada píxel representa 30 m2 o menos. La interpretación computacional de imágenes también se ha desarrollado y utilizado. El archivo está disponible en línea en el siguiente enlace: http://www.dsr.inpe.br/sbsr2011/files/p0185.pdf).

2.7. SATÉLITE LANDSAT

Los Estados Unidos construyeron y pusieron en órbita los satélites Landsat para observar la superficie terrestre en alta resolución. Landsat tiene un período de 99 minutos y una órbita circular que se extiende por 705 km de helio sincrónico alrededor de la Tierra. Entre las 10:00 y las 10:15 de la mañana hora local, los satélites tienen una órbita que los lleva a cruzar el Ecuador de Norte a Sur.

Figura 8

Cobertura de satélite Landsat histórica

Nota: fuente (https://www.usgs.gov/landsat-missions/landsat-satellite-missions)

2.7.1. Requisitos técnicos para las imágenes Landsat.

a) Landsat-5

Es capaz de trabajar en siete bandas de espectro simultáneamente: tres en el espectro visible, una en el espectro infrarrojo cercano, dos en el espectro infrarrojo medio y una en el espectro infrarrojo termal. Su resolución espacial es de 30 metros en bandas visibles e "infrarrojas" medias, y 120 metros en bandas infrarrojas térmicas. El sensor puede medir una distancia de 185 km de tierra. Se puede acceder a esta información a través de este enlace:

http://www.inegi.org.mx/geo/contenidos/imgpercepcion/imgsatelite/doc/aspecto

s_tecnicos_de_imagenes_landsat.pdf.

Tabla 1

Especificaciones de Landsat 5

Modo espectral	Resolución espacial (m)	Resolución espectral (micras)	Resolución radiométrica	Resolución temporal
		Banda 1 azul:		
		0.45-0.52		
		Banda 2 verde:		
		0.52 - 0.60		
		Banda 3 roja:		
		0.63 - 0.69		
Multiespectral	30	Banda 4 infrarrojo cercano		
		1: 0.76 - 0.90	8 bits	16 días
		Banda 5 infrarrojo cercano		
		2: 1.55 – 1.75		
		Banda 7 infrarrojo medio:		
		2.08 - 2.35		
Tormal	120	Banda 6 Infrarrojo térmico:		
I CI III ai	120	10.4 - 12.5		

Nota:fuente(http://www.inegi.org.mx/geo/contenidos/imgpercepcion/imgsatelite/doc/aspectos_tecnicos_de __imagenes_landsat.pdf.)

b) Landsat-8

Las imágenes Landsat 8, capturadas por los sensores (OLI) y (TIRS), constan de nueve bandas espectrales con una resolución espacial de 30 metros, las bandas 1 a 7 y 9. Se ha agregado una nueva banda (1) (azul profundo), que será útil para las investigaciones sobre aerosoles y áreas costeras. Además, se ha demostrado que la banda adicional (9) es útil para identificar cirros. La banda 8 (pancromática) tiene una resolución mejorada de 15 metros. Para obtener temperaturas superficiales más precisas, se han incorporado dos bandas térmicas, la 10 y la 11, capturadas a una resolución de 100 metros. La región tiene una

longitud de alrededor de 170 kilómetros de norte a sur y 183 kilómetros de este a

oeste, con una distancia de 106 kilómetros por 114 kilómetros.

Tabla 2

Características del Satélite Landsat 8

Landsat8	Banda	Longitud de Onda (micrómetros)	Resolución Espacial (m)
	Banda 1 - Aerosol costero	0.43 - 0.45	30
	Banda 2 – Azul	0.45-0.51	30
	Banda 3 – Verde	0.53-0.59	30
	Banda 4- Rojo	0.64 - 0.67	30
Land	Banda5 - Infrarrojo cercano (NIR)	0.85 - 0.88	30
Imager (OU) and	Banda 6- SWIR 1	1.57-1.65	30
Thermal Infrared	Banda 7 - SWIR 2	2.11-2.29	30
Sensor	Banda 8 – Pancromático	0.50 - 0.68	15
(TIRS)	Banda 9-Cirrus	1.36-1.38	30
	Banda 10 - Infrarrojo térmico (TIRS) 1	10.60-11.19	100
	Banda 11 - Infrarrojo térmico (TIRS) 2	11.50-12.51	100

Nota: Tomado de INEGI, (2013).

2.8. LA RESOLUCIÓN DEL SENSOR

Los sistemas de sensores de teledetección tienen cinco resoluciones diferentes, mientras que en otros tipos de sistemas cartográficos solemos relacionar resolución y precisión geométrica. Se pueden evaluar niveles de precisión relacionados con una variedad de conceptos fundamentales para el análisis de imágenes espaciales. Las siguientes son las resoluciones espaciales, radiométricas, espectrales, temporales y angulares: En 2006, C. Pérez y Muñoz publicaron un libro (Pérez & Muñoz, 2006).

2.8.1. La Resolución - espacial

Este concepto proporciona una explicación de la capacidad del sistema para identificar objetos en función de su tamaño. En otras palabras, la resolución espacial se define con frecuencia como el tamaño del objeto más pequeño que se puede distinguir en una imagen: tamaño del píxel en el suelo (Pérez & Muñoz, 2006).

2.8.2. La Resolución-radiométrica

Indica la habilidad del sensor para detectar niveles o intensidades de radiación. La codificación de la energía electromagnética del sensor requiere un formato binario, también conocido como "número de bits". El número de bits disponibles para almacenar el valor de la reflectividad de un píxel aumenta con la resolución radiométrica. "Como resultado, la resolución radiométrica de 8 bits del sensor LANDSAT TM permite el registro de valores decimales equivalentes en un rango de 0 a 255, es decir 25628" (Pérez & Muñoz, 2006).

2.8.3. La Resolución - espectral

Indica la cantidad y la amplitud de bandas espectrales que puede distinguir el sensor. "Por lo tanto, cuantas más bandas proporcione un sensor, más resolución espectral tendrá. También es conveniente que estas bandas sean lo suficientemente pequeñas para concentrar el serial en áreas consistentes del espectro. Es necesario "registrar" un valor promedio para bandas muy amplias que pueda reflejar las variaciones espectrales entre las cubiertas de interés"(Pérez & Muñoz, 2006).

2.8.4. Resolución de problemas temporales

Calcula el tiempo que lleva el satélite a través del mismo punto. Con esto se establece la frecuencia con la que se recopilan fotografías de la misma zona. De esta manera, es posible evaluar la capacidad de un sistema sensor para registrar los cambios temporales que ocurrieron en una capa específica, lo cual es esencial para llevar a cabo investigaciones evolutivas. La resolución temporal está influenciada por el tipo de órbita, el ángulo de barrido y la velocidad del satélite (Pérez & Muñoz, 2006).

2.8.5. Resolución angular

La capacidad de un sensor para tomar imágenes oblicuas se define. Esta característica permite la producción de imágenes estereoscópicas y, por lo tanto, la reconstrucción del relieve, lo que no solo reduce los ciclos temporales de recubrimiento. Si analizamos todas las resoluciones de los satélites, llegaríamos a la conclusión de que la resolución de uno no es mejor ni peor que la de otro. Cada misión espacial ha creado sensores que cumplen una función específica, y eso es crucial (Pérez & Muñoz, 2006).

2.9. MEJORA VISUAL DE IMÁGENES SATELITAL

La restauración de la imagen es el objetivo principal de las primeras intervenciones, que consistirán en restaurar lo más posible las condiciones de la toma. Esto implica la creación de dos tipos de correcciones: unas geométricas y otras radiométricas (Pérez & Muñoz, 2006).

Las correcciones geométricas tienen como objetivo reconstruir la geometría de la imagen ajustándola a una Proyección cartográfica específica y su sistema de coordenadas

asociado. El término georreferenciación se ha consolidado para referirse a este tipo de operaciones. Los métodos matemáticos que resuelven este problema y las técnicas utilizadas para implementarlo a través de algoritmos en aplicaciones de informática de teledetección son muy diversos (Pérez & Muñoz, 2006).

El objetivo de las correcciones radiométricas es reestablecer los valores de los niveles digitales de la imagen depurando cualquier error en su registro achacable, ya sea debido a errores en el sistema sensor o a las condiciones ambientales en el momento de la toma.

2.10. PRE PROCESAMIENTO DE IMÁGENES SATELITALES.

El preprocesamiento de imágenes consiste en realizar correcciones en la imagen para eliminar posibles anomalías en la imagen, ya sea en su ubicación o en la radiometría del píxel. Según Salinero (2008). Debido a una variedad de factores, cualquier imagen capturada por un sensor remoto sufrirá variaciones radiométricas y geométricas. Estos factores son especialmente importantes para las imágenes espaciales.

Esto demuestra que la imagen en formato numérico difiere significativamente de la escena real vista. Estas anomalías son el resultado de la ubicación de los pixeles en la matriz de datos. La reducción de estas modificaciones es el objetivo de las operaciones de corrección. El resultado es una imagen corregida que es lo más cercana posible, geométrica y radiométricamente, a la verdadera energía radiante y a las características espaciales del área de estudio (APN, 2017).

2.10.1. Correcciones geométricas y/o georreferenciación

La corrección geométrica es la alteración de la geometría de una imagen en comparación con la geometría de la superficie terrestre. La georreferenciación

es la adaptación de un sistema geodésico de referencia (como ED50 o ETRF 89) y una proyección geográfica específica. Los algoritmos empleados en las aplicaciones de teledetección ofrecen una variedad de técnicas matemáticas para resolver este problema (Pérez & Muñoz, 2006).

2.10.2. Correcciones-radiométricas

Después de propagarse, la radiación electromagnética interactúa con la atmósfera. Esto provoca cambios en la intensidad, distribución espectral, longitud de onda y/o dirección de la radiación. Los dos efectos que produce la atmósfera son la absorción y la dispersión. Convertir los valores de los sensores remotos en los valores de reflectancia en superficie, que es la magnitud física de interés, es el objetivo general de las correcciones atmosféricas. Para analizar cuantitativamente las propiedades biofísicas de los elementos de la superficie terrestre con datos satelitales, se deben identificar y evaluar los procesos que ocurren en ella mediante la comparación de diferentes escenas en estudios temporales. Estos valores son esenciales (APN, 2017) y cuando se deriven índices a partir de bandas ubicadas en diferentes regiones del espectro electromagnético.

2.10.3. Correcciones- atmosféricas.

El cálculo del valor de reflectancia en superficie requiere ajustar la señal del sensor a la influencia de la atmósfera.

Los procedimientos para comprobar las correcciones atmosféricas son muy complejos y requieren información sobre las condiciones atmosféricas en el momento de la toma de la imagen, que muchas veces no está disponible. Además, el efecto de la atmósfera sobre la imagen no es uniforme; Las fluctuaciones de los

aerosoles o del vapor de agua pueden afectar a algunas zonas más que a otras (Chuvieco, 2002).

2.11. ANÁLISIS DE IMÁGENES.

Se utilizan tres bandas de sensores para el análisis visual de imágenes, que coinciden con las capacidades de los monitores RGB utilizados en informática. Los cañones RGB, rojo, verde y azul están disponibles en los monitores. Los colores rojo, verde y azul se crean combinando estos tres colores básicos.

Podemos enviar una de las bandas del sensor a través de cada uno de estos tres cañones, que se combinará con nuestra pantalla y producirá una variedad de colores y tonos. Se combinan estos colores y tonos para analizar visualmente la imagen para comprender el contenido. Las combinaciones de colores hacen que la geología de la imagen sea diferente. Usar el suelo de la imagen, morfología urbana, etc. (Pérez & Muñoz, 2006).

2.12. COMBINACIÓN EN BANDAS

Las imágenes de satélite se distribuyen en diversas bandas espectrales y se pueden combinar para producir imágenes nuevas. Para llevar a cabo este procedimiento, los programas de interpretación de imágenes brindan instrucciones especiales que permiten combinar bandas y asignar a cada una un color de visualización específico. La combinación de las bandas espectrales correspondientes al azul, verde y rojo permite la creación de una imagen en color verdadero, similar a una fotografía aérea en colores. Se utilizan imágenes Landsat para construir esta imagen, por lo que se combinan las bandas 1-2-3 y se les da el color correspondiente, como azul, verde y rojo (Edquén, 2019).

55

En una imagen de falso color, en lugar de seguir este patrón, los colores azul, verde y rojo se asignan a diferentes bandas espectrales. Una imagen de falso color, que es muy utilizada en la interpretación de imágenes de satélite, se puede obtener al combinar las bandas Landsat 2-3-4 y darle a cada una un color diferente. La radiación verde se registra en la banda espectral 2, la radiación roja se registra en la banda espectral 3 y la radiación infrarroja cercana se registra en la banda espectral 4. El color azul se aplica a la banda espectral 2 y el color rojo se aplica a la banda espectral 3.

Debido a que la vegetación activa refleja una gran cantidad de la radiación infrarroja cercana incidente, la vegetación bajo estrés (por enfermedad o sequía) se verá de color amarillo claro, mientras que la vegetación en áreas boscosas se verá de color rojo intenso. El resultado es una imagen de falso color. Además, los ríos con agua limpia serán negros y los ríos con mucho sedimento serán azules. Finalmente, en esta imagen, el suelo con pastos y cultivos agrícolas se verá de color rojo claro, mientras que el suelo sin vegetación se verá de color gris-azulado (Edquén, 2019).

2.13. ÍNDICE DE VEGETACIÓN NORMALIZADO DE DIFERENCIA (NDVI)

Los procedimientos para comprobar las correcciones atmosféricas son muy complejos y requieren información sobre las condiciones atmosféricas en el momento de la toma de la imagen, que muchas veces no está disponible. Además, el efecto de la atmósfera sobre la imagen no es uniforme; Las fluctuaciones de los aerosoles o del vapor de agua pueden afectar a algunas zonas más que a otras (Matsushita et al., 2007).

Según el trabajo de Liu y Huete (1995), el EVI se define como [8]:

$$EVI = G * \frac{\rho_{nir} - \rho_{red}}{\rho_{nir} + (C_1 * \rho_{red} - C_2 * \rho_{blue}) + L}$$
(7)

y se puede reescribir como:

$$EVI = G * \frac{\frac{\rho_{nir}}{\rho_{red}}}{\frac{\rho_{nir}}{\rho_{red}} + \left(C_1 - C_2 * \frac{\rho_{blue}}{\rho_{red}}\right) + \frac{L}{\rho_{red}}}$$
(8)

Donde L es un factor de ajuste del suelo, y C₁ y C₂ son coeficientes utilizados para corregir la dispersión de aerosoles en la banda roja mediante el uso de la banda azul. El ρ_{azul} , $\rho_{rojo\ y} \rho_{nir}$; representan la reflectancia en las longitudes de onda azul (0,45-0,52 µm), roja (0.6-0,52 µm), e infrarrojo cercano (NIR) (0,7-1,1 µm), respectivamente. En general,G = 2.5, $C_1 = 6.0$, $C_2 = 7.5$ y L = 1, (Matsushita et al., 2007).

Por otro lado, el NDVI está definido por Rouse et al. (1974) de la siguiente manera:

$$NDVI = \frac{\rho_{nir} - \rho_{red}}{\rho_{nir} + \rho_{red}} (9)$$

y se puede reescribir como:

$$NDVI = \frac{\frac{\rho_{nir}}{\rho_{red}}}{\frac{\rho_{nir}}{\rho_{red}} + 1} (10)$$

2.13.1. Modelo no lambertiano para efecto topográfico.

La variación en la radiación que se produce en respuesta a un cambio en la fuente de luz y la posición del sensor en respuesta a un cambio en la orientación de una superficie horizontal a una inclinada se conoce como efecto topográfico.

El efecto topográfico generalmente se compone de dos componentes: efecto directo e indirecto. El efecto directo son los cambios de brillo causados por los cambios en el área objetivo (por píxel) detectados por un sensor por el factor 1/cos (ángulo normal de la superficie de visión). Además, los cambios en el área objetivo que está perpendicular a la dirección solar y el factor 1/cos (ángulo

normal a la superficie solar) contribuyen. Las dependencias direccionales de la radiación dispersada desde el píxel objetivo causan el indirecto, que con frecuencia se explican principalmente (o en cierta medida) utilizando la función de distribución de reflectancia bidireccional (BRDF). Las características ópticas de los objetos dentro del píxel (vegetación, suelo y otros materiales) producen este efecto "direccional" (Matsushita et al., 2007).

Se utilizó un modelo no lambertiano que utiliza una función creada por Minnaert para evaluar los efectos topográficos de la acción directa e indirecta (1941, 1961), uno de los primeros modelos estadísticos de superficie BRDF que se habían utilizado en astronomía planetaria. Según Smith et al. (1980), se puede expresar de esta manera:

$$L_T = L_O \frac{\cos e}{(\cos i * \cos e)^k} \,(11)$$

Dónde $L_0 \ y \ L_T$ son la radiancia de una superficie inclinada y la radiancia normalizada, respectivamente; y k es la constante de Minnaert, que da una medida de la desviación de una superficie lambertiana igual a 1 indica una superficie lambertiana en la que la mayoría de las superficies naturales tienen valores entre 0 y 1. *i y e* son los ángulos de incidencia y salida medidos desde la normal a la superficie, respectivamente; y están definidos por

 $\cos i = \cos \theta_s * \cos \theta_n + \sin \theta_s * \sin \theta_n * \cos (\phi_s - \phi_n)$ (12)

Y

$$\cos e = \cos \theta_n \, (13)$$

Dónde θ_n es el ángulo cenital de la superficie normal o la pendiente de la superficie del terreno, θ_s es el ángulo cenital solar, φ_n es el acimut o ángulo de aspecto de la superficie, y ϕ_s es el ángulo de azimut solar. La pendiente θ_n y aspecto ϕ_n se definen como:

$$\theta_n = \arctan(\sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2})$$
 (14)

$$\phi_n = \arctan\left(\frac{\frac{\partial z}{\partial y}}{\frac{\partial z}{\partial x}}\right)$$
 (15)

dónde $\frac{\partial z}{\partial x} y \frac{\partial z}{\partial y}$ en cada punto (i, j) se calculan por diferencias finitas:

$$\frac{\partial z}{\partial x} = \frac{Z_{i+1,j} - Z_{i-1,j}}{2\Delta h} (16)$$
$$\frac{\partial z}{\partial y} = \frac{Z_{i,j+1} - Z_{1,j-1}}{2\Delta h} (17)$$

dónde Δh es la distancia horizontal de los datos DEM.

2.13.2. Análisis teórico de los efectos topográficos sobre EVI y NDVI.

Para explicar teóricamente cómo la topografía afecta el índice de vegetación, asumimos que existe un píxel Ω , cuya pendiente y aspecto son S y A, respectivamente. Así, para dos bandas dadas 1 y 2 de un sensor, se pueden obtener las siguientes ecuaciones a partir de la ecuación 11:

$$L_{T1} = L_{01} \frac{\cos e}{(\cos i * \cos e)^{k_1}}$$
(18)

$$L_{T2} = L_{O2} \frac{\cos e}{(\cos i * \cos e)^{k_2}}$$
(19)

Dónde L_{01} y L_{02} son la radiancia de una superficie inclinada en las bandas 1 y 2, respectivamente; L_{T1} y L_{T2} son la radiancia normalizada en las bandas 1 y 2 y K1 y K2 son las constantes de Minnaert para las bandas 1 y 2.

Dividiendo los dos lados de las ecuaciones 18 y 19 por las radiancias incidentes en las bandas correspondientes (E1, E2), podemos obtener:

$$\rho_{T1} = \rho_{01} * \frac{\cos e}{(\cos i * \cos e)^{k_1}} (20)$$
$$\rho_{T2} = \rho_{02} * \frac{\cos e}{(\cos i * \cos e)^{k_2}} (21)$$

Al tomar la razón de las ecuaciones 20 y 21, podemos obtener

$$\frac{\rho_{T_1}}{\rho_{T_2}} = \frac{\rho_{01}}{\rho_{02}} * \frac{(\cos i * \cos e)^{k_2}}{(\cos i * \cos e)^{k_1}}$$
(22)

que se puede reescribir como:

$$RVI_T = RVI_0 * \frac{(\cos i * \cos e)^{k_2}}{(\cos i * \cos e)^{k_1}} (23)$$

Donde $RVI = \frac{\rho_1}{\rho_2}$, y los términos del subíndice *T* y *O* indicar índices de vegetación normalizados y originales.

Si los valores de las constantes de Minnaert k para las bandas azul, roja e infrarroja cercana (nir), las sustituimos en las ecuaciones 23 y 20, y obtuvimos.

$$\frac{\rho_{nirT}}{\rho_{redT}} = RVI_T^{nir-red} = RVI_o^{nir-red} (\cos i * \cos e)^{k_{red}-k_{nir}} (24)$$

$$\frac{\rho_{blueT}}{\rho_{redT}} = RVI_T^{blue-red} = RVI_o^{blue-red} (\cos i * \cos e)^{k_{red}-k_{blue}}$$
(25)

$$\frac{1}{\rho_{redT}} = RVI_T^{red} = RVI_o^{red} \frac{(\cos i * \cos e)^{k_{red}}}{\cos e} (26)$$

Dónde k_{blue} , k_{red} y k_{nir} Son constantes de Minnaert de las bandas azul, roja e infrarroja cercanas. En este caso, empleamos las siguientes definiciones:

$$f1 = (\cos i * \cos e)^{k_{red} - k_{blue}} (27)$$
$$f1 = (\cos i * \cos e)^{k_{red} - k_{nir}} (28)$$
$$f3 = \frac{(\cos i * \cos e)^{k_{red}}}{\cos e} (29)$$

Sustituyendo las ecuaciones 27-29 en las ecuaciones 8 y 10, obtuvimos

$$EVI_{T} = \frac{2.5(RVI_{o}^{nir-red}*f2-1)}{RVI_{o}^{nir-red}*f2+6-7.5 RVI_{o}^{blue-red}*f1+RVI_{o}^{red}*f3} (30)$$

$$EVI_{o} = \frac{2.5(RVI_{o}^{nir-red}-1)}{RVI_{o}^{nir-red}+6-7.5 RVI_{o}^{blue-red}+RVI_{o}^{red}} (31)$$

$$NDVI_{T} = \frac{RVI_{o}^{nir-red}*f2-1}{RVI_{o}^{nir-red}*f2+1} (32)$$

$$NDVI_o = \frac{RVI_o^{nir-red} - 1}{RVI_o^{nir-red} + 1} (33)$$

Las ecuaciones 30-33 muestran claramente que f1 y f2 y f3, juegan un papel importante en la determinación de la relación entre $EVI_T y EVI_0$ así como $NDVI_T y NDVI_0$ los valores de f1, f2 y f3 están determinados por las constantes de Minnaert de las bandas azul, roja y nir. Para una superficie lambertiana, tenemos $k_{azul} = k_{rojo} = k_{nir} = 1$, y f1 = f2 = 1, $f3 = \cos i$, por lo tanto $NDVI_0 = NDVI_T$, pero $EVI_0 \neq EVI_T$. Es decir, no hay efecto topográfico en el NDVI, que sólo incluye un formato de relación de banda en una superficie lambertiana, mientras que el EVI es efecto topográfico sensible. "Para una

superficie no lambertiana, si la condición de $k_{rojo} = k_{azul}$ puede satisfacerse, también podemos considerar que el NDVI que sólo incluye el formato de relación de banda no se ve afectado por la topografía. Sin embargo, es mucho más complicado de considerar con el EVI, y las constantes de Minnaert de las bandas azul, roja y nir son necesarias para analizar los efectos topográficos sobre el EVI" (Matsushita et al., 2007).

a) Índice de Vegetación de Diferencia Normalizada (NDVI)

"El NDVI (Índice de Vegetación de Diferencia Normalizada) fue propuesto inicialmente por ROUSE et al. (1973). Utilizaron imágenes del sensor ERTS-1, más tarde rebautizado como Landsat-1. El NDVI es, sin duda, el índice más utilizado en aplicaciones de teledetección agronómica, porque combina tres características importantes: su sencillez matemática, su facilidad de interpretación y su poder para normalizar la respuesta espectral de los sistemas de vegetación, logrando un alto grado de correlación con diversos parámetros de interés agronómico y forestal, entre otras aplicaciones. Este índice es bidimensional (Sobrino et al., 2000) e implica la división de la diferencia y la suma entre dos bandas: el infrarrojo cercano y el rojo"(Cayo, 2018).

$$NDVI = \frac{(NIR - RED)}{NIR + RED} (34)$$

En donde:

NIR es la reflectancia

RED es la reflectancia

El NDVI de Shimabukuro (2007) se puede utilizar para crear perfiles estacionales y temporales de las actividades vegetales, lo que permite comparaciones interanuales. permitiendo su uso como un instrumento para monitorear la vegetación (Cayo, 2018).

b) Enhanced Vegetation Index (EVI) o Índice de vegetación mejorado

El Índice de Vegetación Mejorado, también conocido como el Enhanced Vegetation Index (EVI), facilita la observación de la condición vegetativa en situaciones de alta densidad de biomasa al calcular la diferencia de radiancia entre las bandas de azul y rosa.

El proceso es similar al del NDVI a excepción que, con el NDVI, en este caso también necesitamos la banda que corresponde al color azul del espectro visible. excepción de que en este caso también necesitamos la banda corresponde al color azul del espectro visible. La siguiente es la fórmula de cálculo (Pérez et al., 2015).

$$EVI = G * \frac{(NIR - RED)}{NIR + C1 * RED - C2 * BLUE + L)}$$

Donde:

- EVI es el Índice de Vegetación Mejorado
- G es el factor de ganancia (generalmente 2.5),
- NIR es la reflectancia en el infrarrojo cercano,
- RED es la reflectancia en la región roja,
- BLUE es la reflectancia en la región azul,

- C1 y C2 son coeficientes (comúnmente establecidos en 6 y 7.5, respectivamente),
- L es un factor de ajuste del fondo del dosel.

Esta fórmula se utiliza en teledetección para evaluar la salud y densidad de la vegetación. Específicamente, el EVI mejora la sensibilidad en regiones con alta biomasa y mejora la sensibilidad en áreas con baja cobertura vegetal. Ten en cuenta que los valores específicos de los coeficientes pueden variar según el sensor y el tipo de vegetación que se esté estudiando.

c) Clasificación del índice NDVI y EVI

El álgebra de mapas se utilizó para obtener la variación del NDVI para diferentes fechas asociadas con la clasificación señalada. La superficie de cada tipo de vegetación (NA, SV, VL, VM y VA) se determinó a través del análisis de pixeles.

Tabla 3

Clasificación de los valores NDVI-EVI.

Clasificación	Valor	
Nubes y Agua (NA)	< 0.01	
Suelo sin vegetación (SV)	0.01-0.1	
Vegetación ligera (VL)	0.1-0.2	
Vegetación Mediana (VM)	0.2-0.4	
Vegetación Alta (VA)	>0.4	

Nota: Tomada por Pérez et al., (2015).

2.14. GOOGLE EARTH ENGINE

Google Earth Engine (GEE) es una plataforma para analizar datos ambientales en todo el mundo. La empresa afirma que recopila más de 40 años de imágenes satelitales históricas y actuales y brinda las herramientas y la capacidad computacional necesarias para analizar y explorar el vasto almacén de datos, como imágenes de varios sensores y satélites integrados. Las aplicaciones actuales incluyen la detección de la deforestación, la clasificación de la cobertura terrestre y sus cambios, la estimación de la biomasa forestal y el carbono. El Catálogo de datos públicos de GEE es una colección de varios petabytes de conjuntos de datos geoespaciales comunes que se han organizado y tratado (Figura 9).

La mayor parte del catálogo consta de imágenes de teledetección de la Tierra, incluidos los archivos completos de Landsat, Sentinel-1 y Sentinel-2, pero también incluye datos de cobertura terrestre, pronósticos climáticos y una variedad de datos socioeconómicos, ambientales y medioambientales y fuerzas geofísicas (Tabla 4).

Figura 9

"Catalog of Public Data on Google Earth Engine"

4, 5, 7, and 8

Daily, NBAR, etc.

Terrain SRTM, NED, etc.

Land Cover GlobCover, NLCD, etc.

Atmospheric NOAA NCEP, etc.

Nota: Tomada por Cayo, (2018).

Tabla 4

Conjunto de datos (Dataset)	Resolución nominal	Granularidad temporal	Cobertura temporal	Cobertura espacial
Landsat		•	•	•
Landsat 8 OLI/TIRS	30 m	16 días	2013-Presente	Global
Landsat 7 ETM +	30 m	16 días	2000-Presente	Global
Landsat 5 TM	30 m	16 días	1984-2012	Global
Landsat 4–8 surface	30 m	16 días	1984_Presente	Global
reflectance	50 m	10 dias	1904-1 lesente	Global
Sentinel				
Sentinel I A/B ground range	10 m	6 días	2014-Presente	Global
Sentinel 2A MSI	10/20 m	10 dias	2015-Presente	Global
MODIS	10/20 11	10 dius	2015 T Tesente	Giobai
MOD08-atmosphere	1°	Diariamente	2000-Presente	Global
MOD09-surface reflectance	500m	1 dia/8 días	2000-Presente	Global
MOD10-snow cover	500m	1 dia	2000-Presente	Global
MOD11 temperature and	20011	1 diu	2000 1 lesente	Giobai
emissivity	1000 m	1 dia/8 dias	2000–Presente	Global
MCD12 Land cover	500 m	Anual	2000–Presente	Global
MOD13 Vegetation índices	500/250 m	16 días	2000–Presente	Global
MOD14 Thermal anomalies & fire	1000 m	8 días	2000–Presente	Global
MCD15 Leaf area index/FPAR	500 m	4 días	2000–Presente	Global
MOD17 Gross primary productivity	500 m	8 días	2000–Presente	Global
MCD43 BRDF-adjusted reflectance	1000/500 m	8 días/16 días	2000–Presente	Global
MOD44 veg. cover conversion	250 m	Anual	2000–Presente	Global
MCD45 thermal anomalies and fire	500 m	30 días	2000–Presente	Global
ASTER				
L1 T radiance	15/30/90 m	1 día	2000–Presente	Global
Global emissivity	100 m	Una vez	2000-2010	Global
Outras imagens				
PROBA-V top of canopy	100/200	2.4	2012 D	C[1, 1, 1]
reflectance	100/300 m	2 dias	2013–Presente	Global
EO-1 hyperion	30 m	Targeted	2001_Presente	Global
hyperspectral radiance	50 m	Ingelee		
DMSP-OLS nighttime lights	1 km	Anual	1992–2013	Global
USDA NAIP aerial imagery	1 m	Sub-Anual	2003–2015	CONUS
Topografia				

Catálogo de bases de datos públicas de Google Earth Engine

Shuttle Radar Topography Mission	30 m	Único	2000	60°N–54°S
USGS National Elevation				United
Dataset	10 m	Unico	Múltiple	States
USGS GMTED2010	7.5″	Único	Múltiple	83°N–57°S
GTOPO30	30″	Único	Múltiple	Global
ETOPO1	1′	Único	Múltiple	Global
Cobertura da terra (Landcover)				
GlobCover	300 m	No periódico	2009	90°N-65°S
USGS National Landcover	30 m	No periódico	1992_2011	CONUS
Database	50 m	No periodico	1772-2011	conos
UMD global forest change	30 m	Anual	2000-2014	$80^{\circ}N-57^{\circ}S$
JRC global surface water	30 m	Mensual	1984–2015	78°N–60°S
GLCF tree cover	30 m	5 años	2000-2010	Global
USDA NASS cropland data	30 m	Anual	1997-2015	CONUS
Clima precipitacion y atmosfe	ra			
Clobal precipitation	14			
measurement	6'	3 h	2014–Presente	Global
TRMM 3B42 precipitation	15′	3 h	1998–2015	50°N-50°S
CHIRPS precipitation	3'	5 días	1981–Presente	$50^{\circ}N$ – $50^{\circ}S$
NLDAS-2	7.5′	1 h	1979–Presente	North América
GLDAS-2	15'	3 h	1948–2010	Global
NCEP reanalysis	2.5°	6 h	1948–Presente	Global
ORNL DAYMET weather	1 km	Anual	1980–Presente	North América
GRIDMET	4 km	1 día	1979–Presente	CONUS
NCEP global forecast	15′	6 h	2015–Presente	Global
system NCEP climate forecast		~ ~		2-300
system	12'	6 h	1979–Presente	Global
WorldClim	30″	12 imágenes	1960–1990	Global
NEX downscaled climate projections	1 km	1 día	1950–2099	North América
Poblacion				
WorldPop	100 m	5 anos	Múltiple	2010-2015
GPWv4	30″	5 anos	2000-2020	85°N-60°S

Nota: Tomada por Cayo, (2018).

El catálogo se actualiza continuamente a un ritmo de casi 6000 escenas por día de misiones activas, con una latencia típica de aproximadamente 24 horas desde el momento de la adquisición de la escena. Esto le permite trabajar con la precisión y la velocidad de procesamiento de la nube. Además, GEE brinda los siguientes beneficios: cuenta con una

copia de todo el catálogo de imágenes multitemporales y tecnología de procesamiento masivo paralelo de alto rendimiento para datos geoespaciales. GEE se convirtió en unos pocos días, lo que habría llevado 15 años para una sola computadora (Cayo, 2018).

Finalmente, se indica que el surgimiento de plataformas de computación geoespacial basadas en la nube, como Google Earth Engine (GEE), permite una solución a problemas de datos masivos (Bigdata), proporcionando un entorno para el procesamiento paralelo de algoritmos complejos a individuales (Cayo, 2018).

Figura 10

API de Google Earth Engine

Nota: Tomada por Cayo,(2018).

La arquitectura del sistema de GEE se basa en tecnologías existentes disponibles en el entorno del centro de datos de Google. La Figura 11 muestra la arquitectura del sistema GEE simplificada. Las aplicaciones de terceros, como "Earth Engine Code Editor", pueden enviar solicitudes interactivas o grupales al sistema a través de la "API REST"(Cayo, 2018).

Figura 11

Earth Engine C	ode Editor	Web Apps de terceiros		
	Bibliotecas (JavaScript	de clien / Python)	tes	
	Web RE	ST APIs		
On-the-Fly Cor	nputation			
Front Ends				
Compute Masters	Cashas	Processamento batch		
Compute Servers	Caches			
	Lojas d	le dados		
Fusion Tables	Tiles	tore /ers	Asset Database	

Diagrama de arquitectura del sistema simplificado

Nota: Tomada por Cayo, (2018).

Series de Tiempo

El método de descomposición de tendencias estacionales (STL) basado en Loess, propuesto por primera vez por Cleveland et al. (1990) y Ripley (1990), es un procedimiento de filtrado para la descomposición de series de tiempo. (Tt), estacional (St) y aleatorio o residual (Rt) (JIANG et al., 2010):

$$Yt = T_t + S_t + R_t (35)$$

Considerar una serie temporal como una combinación de varios elementos es una perspectiva común al analizar series temporales. Cuando queremos relacionar series temporales, Es crucial distinguir las tendencias y los elementos estacionales de la serie temporal. La descomposición y la identificación de puntos de quiebre en la serie temporal están disponibles en R, como la fenología de la superficie verde oliva y la análisis de tendencia (FORKEL; WUTZLER, 2015) ,(Cayo, 2018).

2.15. COEFICIENTE DE CORRELACIÓN LINEAL DE PEARSON

El coeficiente de correlación lineal de Pearson mide la asociación o relación lineal entre dos variables numéricas continuas, es decir, si la relación entre las dos variables se acerca a una línea recta, lo que se puede ver gráficamente mediante un gráfico o diagrama de dispersión. (también conocida como nube de puntos).

Se pueden observar correlaciones positivas o directas (0,5 < r < 1), que sugieren que los valores de la variable independiente X aumentan en el eje de abscisas junto con los de la variable dependiente Y. La proporción entre peso y altura es un ejemplo. Una nube de puntos ascendente muestra una correlación positiva. Sin embargo, hay correlaciones negativas o inversas (-0,5<r<-1) que sugieren que los valores de X aumentan mientras que los valores de Y disminuyen.

Figura 12

Valores para el coeficiente de correlación lineal de Pearson

Nota: Tomado de https://estamatica.net/analisis-de-correlaciones/.

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1. ÁREA DE INVESTIGACIÓN

La Reserva Nacional Tambopata fue creada fue creada el 4 de septiembre de 2000, mediante el decreto supremo DS N.º 048-2000-AG, es un área natural protegida que se extiende por los distritos de Tambopata e Inambari y está completamente en el departamento de Madre de Dios de la provincia de Tambopata. Esta zona protegida tiene una altura de 200 a 400 metros sobre el nivel del mar y una altura promedio de 300 metros. La Reserva Nacional Tambopata, cuya ubicación se describe a continuación, es el centro de la Amazonía peruana y hogar de uno de los mayores recursos naturales del país:

Ubicación

a) Ubicación Política

- El departamento se llama "Madre de Dios".
- La provincia de "Tambopata".
- Los distritos son "Tambopata e Inambari".
- La zona protegida de "Tambopata".

b) Ubicación Geográfica

El ámbito geográfico del proyecto es el siguiente:

- Zona UTM :WGS_1984_UTM_Zone_19S
- Este :401, 926.00 a 535, 937.00
- Norte :8 539, 908.00 a 8 616, 022.00
- Altitud :200.00 m.s.n.m. a 400.00 m.s.n.m.

c) Ubicación Hidrográfica

- Autoridad Administrativa del agua: Madre de Dios
- Región hidrográfica : Región hidrográfica del Titicaca
- Cuencas : Tambopata e Inter-cuenca Medio Bajo Madre de Dios

Figura 13

Mapa Georreferenciación de la Reserva Nacional de Tambopata

TAMBOPATA

CARABAYA SANDIA

MANU

QUISPICANC

CANCHIS

MAPA DE UBICACION DE LA RESERVA NACIONAL TAMBOPATA

MADRE DE DIOS

LABERINTO INAMBARI AYAPATA COASA LIMBAN

3.2. MATERIALES Y EQUIPOS DE GABINETE

3.2.1. Materiales

- Papel bond -Tamaño A4
- Lapicero.
- Folder.

3.2.2. Equipos

- Laptop.
- Memoria RAM 3GHz.
- Disco Duro 500 Gb.
- Impresora.
- Escáner.

3.2.3. Material cartográfico

- Shapefile de la cuenca adquirido a través de GeoGPS Perú.
- Imagen satelital Landsat TM 5 y Landsat TM 8.

3.2.4. Software

ArcGIS 10.3.1., Google Earth Engine, Microsoft Office 2016 y Windows 8.

3.3. METODOLOGÍA

3.3.1. Metodología de investigación

Tipo de investigación

• Investigación aplicada tecnológica

Nivel de investigación

• Investigación Descriptivo Correlacional

Los tipos de correlación se deben a que "tiene como objetivo determinar el grado de relación o asociación entre dos o más variables y se caracteriza por medir primero las variables y luego estimar la correlación, probar hipótesis relevantes y aplicar métodos estadísticos". El tipo descriptivo de investigación, también conocido como investigación estadística, consiste en describir los datos y las características del fenómeno o población en estudio.

- Diseño y esquema de investigación
- Diseño no experimental analítico y correlacional (teledetección).

La investigación se enmarca dentro del diseño de estudios analíticos observacionales no experimentales.

Debido a que no se llevará a cabo un control directo sobre las variables independientes, la investigación se considera no experimental porque sus manifestaciones ya han ocurrido; en cambio, se realizarán inferencias sobre las relaciones entre las variables y no se intervendrá directamente en la variación simultánea de las variables independientes y dependientes. La investigación se

basará principalmente en la observación de los fenómenos tal y como se dan en su contexto natural para después. (Kerlinger & Lee, 2002).

La técnica se basó en las imágenes de Landsat5 y Landsat8, que luego se utilizaron para crear los dos índices espectrales de vegetación EVI, NDVI, se utilizó la metodología con lenguaje de programación Java Script inicialmente en Google Earth Engine para la obtención de la data y Rstudio para el procesamiento en Mann Kendall, posterior a esto se realizara los mapas temáticos para ello necesitaremos la reclasificación del índice NDVI y EVI en función a sus categorías desarrollado por (Chuvieco, 2002).

Diagrama de flujo de la metodología usada

3.3.2. Explicación paso a paso del código para calcular el NDVI con

Landsat 5

Figura 15

Datos preliminares a importar en lenguaje java script

Landsa	Get Link	•	Sä	
Ŧ	Imports (2 entries) 🗐			
	<pre>var zona: Table users/mzapanalope/reservantambopata type: FeatureCollection id: users/mzapanalope/reservantambopata version: 1673197781894279 columns: Object (12 properties) properties: Object (1 property)</pre>			
	<pre>var imageCollection: ImageCollection LANDSAT/LT05/C02/T1_TOA (13 type: ImageCollection id: LANDSAT/LT05/C02/T1_TOA version: 1697146429863136 bands: List (13 elements)</pre>	bands)		

Figura 16

Shapefile importado al código de java script de GEE de la reserva Nacional de

Asset details			DELETE	SHARE	IMPORT	Edit	
Table: reservantambopata	DESCRIPTION	FEATURES	PROPERTIES				
	No description.						
Table ID 📋 users/mzapanalope/reservantambopata							
Date							de nas
Start date: NA do							
End date: NA di							
File Size 55.12KB							
Number of Features 1							-
Last modified 2023-01-08 17:09:41 UTC							alda
						CLOSE	canag
(AAB	8		Guarayos				

Tambopata

Nota: Esta figura N° 16 representa el shapefile cargado exitosamente dentro de la plataforma Google Earth Engine desde la dirección de escritorio ID: users/mzapanalope/reservantambopata y de paso nos indica el tamaño del archivo shapefile cargado que es de 55.12 kb

Descripción del satélite usado para el análisis del NDVI con Landsat 5.

Reflectancia TOA de nivel 1 de la colección 2 del USG...

1984-04-19T13:56:39 - 2011-11-08T14:18:44 Proveedor de conjuntos de datos USGS/Google Fragmento de colección

ee.ImageCollection("LANDSAT/LT05/ C02/T1_T0A") See example DESCRIPCIÓN BANDAS PROPIEDADES DE IMAGEN CONDICIONES DE USO

Z

Landsat 5 TM Collection 2 Nivel 1, reflectancia calibrada de la parte superior de la atmósfera (TOA). Los coeficientes de calibración se extraen de los metadatos de la imagen. Véase Chander et al. (2009) para obtener detalles sobre el cálculo del TOA.

Nota: Esta figura N° 17 nos muestra la descripción del satélite a usar para el análisis de los índices espectrales de vegetaciones ,utilizaremos la colección Landsat (Reflectancia TOA del nivel 1 colección 2 del USGS),que posteriormente a nivel de código del lenguaje Java script lo veremos de la siguiente forma:ee.ImageCollection ("LANDSAT/LT05/C02/T1_TOA),respecto a su descripción precisa ,que esta colección de datos cuentan con la reflectancia calibrada de la parte superior de la atmosfera (TOA) y precisa que los coeficientes de calibración se extraen de los metadatos de la imagen.

Detalle de las bandas del satélite Landsat 5

Reflectancia TOA de nivel 1 de la colección 2 del USG...

Charles 192		DESCRIPCIÓN	BANDAS	PROPIEDADES DE IN	IAGEN CON	DICIONES DE USO
September 1	Tabla de ba	ndas				
						Longitud de
	Nombre	Des	cripción		Resolución	onda
Disponibilidad del conjunto de datos 1984-04-19T13:56:39 - 2011-11- 08T14:18:44	B1	Azu	l		30 metros	0,45 - 0,52 µm
	B2	Ver	de		30 metros	0,52 - 0,60 µm
	B3	Roje	D		30 metros	0,63 - 0,69 µm
Proveedor de conjuntos de datos						
Fragmento de colección []	B4	Infr	arrojo cercar	10	30 metros	0,76 - 0,90 μm
ee.ImageCollection("LANDSAT/LT05/ C02/T1_TOA")	В5	Infr	arrojo de ono	da corta 1	30 metros	1,55 - 1,75 µm
See example		Infe	erreie Térrei	- 1		10.40
Etiquetas global satélite terrestre toa nosotros	B6	Ren	nuestreado o	de 60 ma 30 m.	30 metros	12,50 μm
	В7	Infr	arrojo de ono	da corta 2	30 metros	2,08 - 2,35 µm

Nota: Esta figura N° 18 nos detalla las características de cada una de las bandas con las que cuenta Landsat 5 en lo que respecta a Resolución espacial, longitud de onda y la denominación de cada banda con su respectiva descripción.

1. Definir la región de interés (ROI):

var zona = ee.FeatureCollection('users/mzapanalope/reservantambopata');

Map.centerObject(zona, 11);

Map.addLayer(zona, {}, 'Área de interés - Reserva Tambopata');

Se define una región de interés usando la colección de características ee.FeatureCollection. Se centra el mapa en esta región y se agrega una capa al mapa para visualizar el área de interés.

2. Seleccionar la colección de imágenes Landsat 5:

varl5collection = ee.ImageCollection("LANDSAT/LT05/C02/T1_TOA")

.filterBounds(zona)

.filterDate('2000-06-01', '2000-08-31');

Se selecciona la colección de imágenes Landsat 5 (TOA) para la región de

interés y un rango de fechas específico (junio a agosto de 2000).

3. Definir la función para calcular el NDVI:

var getNDVI = functior	n (img) {
return	img.addBands(img.normalizedDifference(['B4',
'B3']).rename('NDVI'));	
};	

Se define una función (getNDVI) para calcular el NDVI de cada imagen de Landsat. La función utiliza la banda infrarroja (B4) y la banda roja (B3) y renombra la banda resultante como 'NDVI'.

4. Aplicar la función de mapeo sobre la colección de imágenes:

var l5ndvi = l5collection.map(getNDVI);

Se aplica la función getNDVI a cada imagen en la colección Landsat, creando así una nueva colección que incluye el NDVI para cada imagen.

5. Filtrar imágenes por calidad de nube:

var filtered l5ndvi.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 15));

Se filtran las imágenes según un umbral de calidad de nube. En este caso,

se seleccionan imágenes con una cobertura de nube inferior al 15%.

6. Encontrar la imagen con el NDVI máximo por año:

var composite = l5ndvi.qualityMosaic('NDVI').clip(zona);

Se utiliza la función qualityMosaic para encontrar la imagen con el NDVI máximo y crear un mosaico basado en la calidad de las imágenes.

7. Visualizar el NDVI en el mapa:

Map.addLayer(composite.select('NDVI'), {min: 0, max: 1, palette:

ndviPalette}, 'NDVI');

Se visualiza la capa del NDVI en el mapa con una paleta de colores específica.

8. Exportar la imagen a Google Drive:

var banda = ['NDVI']; Export.image.toDrive({ image: composite.select(banda), description: 'NDVI_2000', folder: '15_NDVI_RNT_UNAP', scale: 30, region: zona }); =

• Finalmente, se exporta la imagen del NDVI a Google Drive.

Este código realiza un análisis de series temporales de imágenes Landsat para la región de la Reserva Nacional Tambopata, calcula el NDVI para cada imagen, selecciona las imágenes con baja cobertura de nubes, y crea un mosaico del NDVI máximo por año para los meses Junio, Julio y Agosto por ser los periodos secos para la región Madre de Dios. Luego, visualiza este mosaico en el mapa y exporta la imagen resultante a Google Drive.

Figura 19

Cálculo del índice NDVI utilizando Landsat 5 para el año 2000-RNT

Cálculo del índice NDVI utilizando Landsat 5 para el año 2006-RNT

Cálculo del índice NDVI utilizando Landsat 5 para el año 2009-RNT

3.3.3. Recopilación de la información.

a) Selección y descarga de imágenes Landsat 5

Imágenes y/o fotografías Landsat de la Reserva Nacional de Tambopata se obtuvieron a través de un script en lenguaje java utilizado en la plataforma Google Earth Engine.

Tabla 5

	Índiaa			Periodos s	ecos
N°	Fyeluedo	Año	Satélite	Fecha	Fecha
	Evaluauo			Inicial	Final
1	_	2000		1/06/2000	31/08/2000
2	Icia	2001		1/06/2001	31/08/2001
3	ren	2002	Υ	1/06/2002	31/08/2002
4	life	2003	ŬĹ.	1/06/2003	31/08/2003
5	Б С	2004	L1	1/06/2004	31/08/2004
6	n d	2005	02/"	1/06/2005	31/08/2005
7	VI	2006	/C(1/06/2006	31/08/2006
8	eta ND	2007	.05	1/06/2007	31/08/2007
9	ege a (1	2008	LT.	1/06/2008	31/08/2008
10	e V cads	2009	AT/	1/06/2009	31/08/2009
11	e du aliz	2010	/SC	1/06/2010	31/08/2010
12	dic	2011	I.	1/06/2011	31/08/2011
13	Ín No	2012	LA	1/06/2012	31/08/2012

Datos de las imágenes procesadas y descargadas de NDVI con Landsat 5

3.3.4. Explicación paso a paso del código para calcular el NDVI con Landsat 8

Figura 22

Datos ingresados de la colección de imágenes Landsat 8 y el shapefile de la

reserva nacional de Tambopata

LANDS	AT 8_RNT_NDVI	Get Link	Ŧ	Save	r	Run	Ŧ
*	Imports (2 entries) 🗏						
	<pre>var zona: Table users/mzapanalope/reservantambop type: FeatureCollection id: users/mzapanalope/reservantambopata version: 1673197781894279 columns: Object (12 properties) properties: Object (1 property)</pre>	ata					
	 var imageCollection: ImageCollection LANDSAT/LC0 type: ImageCollection id: LANDSAT/LC08/C02/T1_T0A version: 1700778014451902 bands: List (17 elements) 	8/C02/T1	L_T04	A (17 b	ands)		

DESCRIPCIÓN BANDAS PROPIEDADES DE IMAGEN CONDICIONES DE USO Landsat 8 Collection 2 Nivel 1, reflectancia calibrada de la parte superior de la atmósfera (TOA). Los coeficientes de calibración se extraen de los metadatos de la imagen. Véase Chander et al. (2009) para obtener detalles sobre el cálculo del TOA. Las escenas Landsat con la mayor calidad de datos disponible se colocan en el Nivel 1 y se consideran adecuadas para el análisis de procesamiento de series temporales. El nivel 1 incluye datos procesados de terreno de precisión de nivel 1 (L1TP) que tienen radiometría bien caracterizada y están intercalibrados entre los diferentes sensores Landsat. El registro geográfico de las escenas de Nivel 1 será consistente y estará dentro de las tolerancias Disponibilidad del conjunto de datos prescritas [<= error cuadrático medio (RMSE) de 12 m]. Todos los datos Landsat de Nivel 1 2013-03-18T15:58:14 pueden considerarse consistentes e intercalibrados (independientemente del sensor) en Proveedor de conjuntos de datos toda la colección. Vea más información en los documentos del USGS La colección T1 RT contiene activos de nivel 1 y de tiempo real (RT). Los datos Landsat 7 ETM+ y Landsat 8 OLI/TIRS recientemente adquiridos se procesan en el enlace descendente, pero utilizan efemérides previstas, parámetros iniciales del modo parachoques o parámetros iniciales del modelo de línea de visión TIRS. Los datos se colocan en el nivel de Tiempo real y están disponibles para su descarga inmediata. Una vez que los datos se han reprocesado con efemérides definitivas, parámetros de modo parachoques actualizados y parámetros TIRS refinados, los productos pasan al Nivel 1 o al Nivel 2 y se eliminan del nivel en tiempo real. El retraso de transición de Tiempo Real al Nivel 1 o Nivel 2 es de entre 14 y 26 días.

Descripción de la colección 2 Nivel 1 de Landsat 8

Reflectancia TOA de nivel 1 de la colección 2 Landsat ...

Detallado de las bandas de Landsat 8

Reflectancia TOA de nivel 1 de la colección 2 Landsat ...

Se VI ST	В1	Aerosol costero	30 metros	0,43 - 0,45 µm
Disponibilidad del conjunto de datos	B2	Azul	30 metros	0,45 - 0,51 µm
2013-03-18T15:58:14 - Proveedor de conjuntos de datos	вз	Verde	30 metros	0,53 - 0,59 µm
Fragmento de colección 🌔	В4	Rojo	30 metros	0,64 - 0,67 µm
ee.ImageCollection("LANDSAT/LC08/ C02/T1_T0A") See example	В5	Infrarrojo cercano	30 metros	0,85 - 0,88 µm
c2 global satélite terrestre	B6	Infrarrojo de onda corta 1	30 metros	1,57 - 1,65 µm
toa nosotros	B7	Infrarrojo de onda corta 2	30 metros	2,11 - 2,29 μm
	B8	Banda 8 Pancromática	15 metros	0,52 - 0,90 μm
	B9	Cirro	30 metros	1,36 - 1,38 µm
	B10	Infrarrojo térmico 1, remuestreado de 100 ma 30 m	30 metros	10,60 - 11,19 µm

86

Z

1. Área de interés y visualización en el mapa:

var zona = ee.FeatureCollection('users/mzapanalope/reservantambopata');

Map.centerObject(zona, 11);

Map.addLayer(zona, { }, 'users/mzapanalope/reservantambopata');

Se define la variable zona cogmo una colección de características de Earth Engine (ee.FeatureCollection) que representa el área de interés llamada "reservantambopata".

El mapa se centra en esa área con una escala de 11 y se agrega la capa de la zona al mapa.

2. Colección de imágenes Landsat 8:

var l8collection = ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA")

.filterBounds(zona)

.filterDate('2013-06-01', '2013-08-31');

Se define la variable l8collection como una colección de imágenes Landsat 8 tomando datos del conjunto de datos "LANDSAT/LC08/C02/T1_TOA" (Top of Atmosphere reflectance).

La colección se filtra para incluir solo imágenes que se encuentran dentro de la zona de interés y que fueron adquiridas entre el 1 de junio de 2013 y el 31 de agosto de 2013.

3. Cálculo del NDVI:

var getNDVI = function (img) {
 return img.addBands(img.normalizedDifference(['B5', 'B4']).rename('NDVI'));
};

var l8ndvi = l8collection.map(getNDVI);

Se define una función getNDVI que toma una imagen Landsat 8 y calcula el NDVI usando la banda de infrarrojos cercanos (B5) y la banda roja (B4).

La función se aplica a cada imagen en la colección utilizando el método map, creando una nueva colección llamada l8ndvi que contiene imágenes Landsat 8 con la banda NDVI añadida.

4. Filtrado por calidad de nube:

var filtered = l8ndvi.filter(ee.Filter.lt('cloud', 15));

Se filtra la colección l8ndvi para eliminar imágenes con una cobertura de nubes superior al 15%. El umbral de 15 puede ser ajustado según tus necesidades.

5. Generación de un mosaico de calidad:

var composite = l8ndvi.qualityMosaic('NDVI').clip(zona);

Se crea un mosaico de calidad (composite) seleccionando la imagen con

el valor máximo de NDVI para cada píxel.

El mosaico resultante se recorta a la zona de interés.

6. Definición de la paleta de colores del NDVI:

var ndviPalette = [

'FFFFFF', 'CE7E45', 'DF9230', 'F1B555', 'FCD163', '998718',

'74A901', '66A000', '529400', '3E8601', '207401', '056201',

'004C00', '023801', '012E01', '011D01', '011301'

];

Se define una paleta de colores (ndviPalette) para visualizar el NDVI en el mapa.

7. Visualización del NDVI en el mapa:

Map.addLayer(composite.select('NDVI'), { min: 0, max: 1, palette: ndviPalette }, 'NDVI');

Se agrega la capa de NDVI al mapa con la paleta de colores definida. La escala de visualización va de 0 a 1.

8. Exportación de la imagen NDVI:

var bandToExport = ['NDVI'];

Export.image.toDrive({

image: composite.select(bandToExport),

description: '2013', // Descripción de la exportación

folder: ", // Carpeta de exportación (puedes especificar una carpeta en tu Google Drive)

scale: 30, // Escala de exportación

region: zona // Región de exportación

});

Se selecciona la banda de NDVI (['NDVI']) para la exportación.

Se exporta la imagen del NDVI a Google Drive utilizando el método Export.image.toDrive, especificando la imagen, la descripción, la carpeta de exportación, la escala y la región de interés.

Recopilación de la data.

Para crear el análisis de los índices espectrales de vegetación NDVI y EVI, se utilizó la información del satélite Landsat, que incluye una colección de su base de datos en la plataforma de Google Earth Engine. Esta información fue posteriormente trabajada por RStudio.

a) Selección y descarga de imágenes Landsat 8

Las imágenes Landsat para la Reserva Nacional de Tambopata, estas fueron adquiridas del servidor de un código en lenguaje java script dentro de la plataforma Google Earth Engine. Que sirve como base para el análisis de la salud vegetal de las plantas mediante el uso del índice NDVI, cuyas especificaciones son:

Tabla 6

	Í. dias			Period	os secos
N°	Evaluado	Año	Satélite	Fecha Inicial	Fecha Final
1		2013		1/06/2013	31/08/2013
2		2014		1/06/2014	31/08/2014
3	Índice de 20 Vegetación 20	2015	LANDSAT/LC08/C02/T1_TOA	1/06/2015	31/08/2015
4		2016		1/06/2016	31/08/2016
5	de	2017		1/06/2017	31/08/2017
6	Diferencia	2018		1/06/2018	31/08/2018
7	Normalizada (NDVI) 2020 2021	2019		1/06/2019	31/08/2019
8			1/06/2020	31/08/2020	
9		1/06/2021	31/08/2021		
10		2022		1/06/2022	31/08/2022

Data de imágenes NDVI procesadas y descargadas con Landsat 8

Figura 25

Descarga de datos del NDVI en imágenes tiff con Landsat 8

3.3.5. Explicación paso a paso del código para calcular el EVI con Landsat 5:

Este código de Earth Engine realiza las siguientes operaciones para calcular y ver el Índice de Vegetación Mejorado (EVI) a través de imágenes Landsat 5, filtrarlas por una región de interés y un periodo específico, y luego exportar el resultado a Google Drive.

1. Filtrar, Seleccionar y Combinar Imágenes de Landsat 5:

```
var L5 = ee.ImageCollection("LANDSAT/LT05/C01/T1_TOA")
.filterBounds(ROI)
.filterDate("2008-06-01", "2008-08-31")
.filterMetadata('CLOUD_COVER', 'less_than', 40)
.max()
.clip(ROI);
```

Filtrar por Área de Interés y Fecha: Se selecciona una colección de imágenes Landsat 5 ("LANDSAT/LT05/C01/T1_TOA") y se filtran las imágenes por la región de interés (ROI) y el periodo de tiempo entre el 1 de junio y el 31 de agosto de 2008.

Filtrar por Cobertura de Nubes: Se eliminan las imágenes que tienen una cobertura de nubes superior al 40% (filterMetadata('CLOUD_COVER', 'less_than', 40)).

Seleccionar la Imagen de Máxima Intensidad: Se selecciona la imagen con el valor máximo para cada píxel utilizando la función max().

Recortar a la Región de Interés (ROI): Se recorta la imagen resultante a la región de interés.

2. Calcular el Índice de Vegetación Mejorado (EVI):

var evi = L5.expression(
'2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))', {
 'NIR': L5.select('B4'), // Banda NIR
 'RED': L5.select('B3'), // Banda Roja
 'BLUE': L5.select('B1') // Banda Azul
}
);

Calcular el EVI: Se utiliza la expresión del Índice de Vegetación Mejorado (EVI) en las bandas NIR (Banda 4), RED (Banda 3), y BLUE (Banda 1) de la imagen seleccionada.

3. Visualizar la Región de Interés en el Mapa:

Map.addLayer(ROI, { }, 'melilope343/assets/reservantambopata');

Visualizar la Región de Interés (ROI): Se agrega la capa de la región de interés al mapa.

4. Visualizar el Mapa con la Capa del EVI:

Map.addLayer(evi, {min: -1, max: 1, palette: ['red', 'orange', 'green']});

Visualizar en el Mapa: Se agrega la capa del EVI al mapa utilizando una paleta de colores personalizada.

5. Exportar la Imagen del EVI a "Google Drive":

Export.image.toDrive({	
image: evi,	
description: '2008',	
folder: 'EVI_L5-RNT-UN	AP',
scale: 30,	
maxPixels: 1e13,	
region: ROI	
});	

Exportar a Google Drive: Se exporta la imagen del EVI a Google Drive con la descripción '2008', almacenada en la carpeta 'EVI_L5-RNT-UNAP'. La escala de exportación es 30 metros, y se especifica la región de interés (ROI).

3.3.6. Recopilación de la información

Para la elaboración del análisis de los índices espectrales de vegetación NDVI Y EVI se obtuvo información brindada por el satélite Landsat que cuenta

con una colección de su base datos en la plataforma de Google Earth Engine, que posteriormente fue trabajada por con RStudio.

a) Selección y descarga de imágenes Landsat 5

Imágenes Landsat para la Reserva Nacional de Tambopata, estas fueron adquiridas del servidor de un código en lenguaje java script dentro de la plataforma Google Earth Engine. Lo cual constituyo la base para el análisis de la salud vegetal de las plantas a través del índice EVI, cuyas especificaciones son:

Tabla 7

	Índice Evaluado			Periodos secos		
N°		Año	Satélite	Fecha Inicial	Fecha Final	
1		2000		1/06/2000	31/08/2000	
2		2001		1/06/2001	31/08/2001	
3	ado	2002	,OA	1/06/2002	31/08/2002	
4	jora	2003	L_T	1/06/2003	31/08/2003	
5	me	2004	2/T	1/06/2004	31/08/2004	
6	ión)	2005	,CO	1/06/2005	31/08/2005	
7	etac EVI	2006	105,	1/06/2006	31/08/2006	
8	veg (]	2007	NLT	1/06/2007	31/08/2007	
9	de	2008	SAT	1/06/2008	31/08/2008	
10	lice	2009	Â,	1/06/2009	31/08/2009	
11	ínc	2010	TAN	1/06/2010	31/08/2010	
12		2011	Ι	1/06/2011	31/08/2011	
13		2012		1/06/2012	31/08/2012	

Datos de imágenes procesadas y descargadas de EVI con Landsat 5

Fuente: Propia

Nota: Esta Tabla N° 7 nos muestra el resumen de las imágenes descargadas para el análisis del índice EVI con el satélite Landsat 5 (desde el año 2000-2012), se escogió entre los meses de junio a agosto por ser épocas de estiaje donde la neblina no es un inconveniente para analizar cobertura vegetal.

Muestra del resultado del cálculo del índice EVI para el año 2011 problemas de

bandeado (año incluido para el análisis)

Nota: Esta figura N° 26 y Figura N° 27 se excluyó del análisis porque estaba incompleta parte del área de la reserva nacional de Tambopata.

Figura 27

Resultado del cálculo del índice EVI para el año 2009 cubierto de nubes (año

excluido para el análisis).

3.3.7. Explicación paso a paso del código para calcular el EVI con

Landsat 8

1. Filtrar y Seleccionar la Imagen de Máxima Calidad:

```
var L8 = ee.ImageCollection("LANDSAT/LC08/C01/T1_TOA")
.filterBounds(ROI)
.filterDate("2013-06-01", "2013-08-31")
.filterMetadata('CLOUD_COVER', 'less_than', 15)
.max()
.clip(ROI);
```

Filtrar por Área de Interés y Fecha: Se filtran las imágenes Landsat 8 por la región de interés (ROI) y el periodo de tiempo entre el 1 de junio y el 31 de agosto de 2013.

Filtrar por Cobertura de Nubes: Se eliminan las imágenes que tienen una cobertura de nubes superior al 15% (filterMetadata('CLOUD_COVER', 'less_than', 15)).

Seleccionar la Imagen de Máxima Calidad: Se selecciona la imagen con el valor máximo para cada píxel, utilizando la función max().

Recortar a la Región de Interés: Se recorta la imagen resultante a la región de interés.

2. Calcular el Índice de Vegetación Mejorado (EVI-L8):

```
var evi = L8.expression('2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE
+ 1))', {
    'NIR': L8.select('B5'),
    'RED': L8.select('B4'),
    'BLUE': L8.select('B2')
});
```


Calcular el EVI: Se utiliza la expresión del Índice de Vegetación Mejorado (EVI) en las bandas NIR (Banda 5), RED (Banda 4), y BLUE (Banda 2) de la imagen seleccionada.

3.Visualizar el Mapa con la Capa del EVI_L8:

Map.addLayer(evi, {min: -1, max: 1, palette: ['red', 'orange', 'green']});

Visualizar en el Mapa: Se agrega la capa del EVI al mapa utilizando una paleta de colores personalizada.

4. Exportar la Imagen del EVI _L8a Google Drive:

```
Export.image.toDrive({
image: evi,
description: '2013',
folder: 'EVI_L8-RNT-UNAP',
scale: 30,
maxPixels: 1e13,
region: ROI
});
```

Exportar a Google Drive: Se exporta la imagen del EVI a Google Drive con la descripción '2013', almacenada en la carpeta 'EVI_L8-RNT-UNAP'. La escala de exportación es 30 metros, y se especifica la región de interés (ROI).

a) Recopilación de la información.

Para la elaboración del análisis de los índices espectrales de vegetación NDVI Y EVI se obtuvo información brindada por el satélite Landsat que cuenta

con una colección de su base datos en la plataforma de Google Earth Engine, que posteriormente fue trabajada por con RStudio.

b) Seleccionar y cargar imágenes Satellite Landsat 5

Imágenes Landsat para la Reserva Nacional de Tambopata, estas fueron adquiridas del servidor de un código en lenguaje java script dentro de la plataforma Google Earth Engine. Lo cual constituyo la base para el análisis de la salud vegetal de las plantas a través del índice EVI, cuyas especificaciones son:

Tabla 8

Datos de las imágenes procesadas y descargadas de EVI con Landsat 8.

	Índiaa			Period	os secos
N°	Evaluado	Año	Satélite	Fecha Inicial	Fecha Final
1		2013		1/06/2013	31/08/2013
2		2014		1/06/2014	31/08/2014
3		2015		1/06/2015	31/08/2015
4	índice de	2016	LANDSAT/LC08/C0	1/06/2016	31/08/2016
5	vegetación	2017		1/06/2017	31/08/2017
6	mejorado	2018	2/T1_TOA	1/06/2018	31/08/2018
7	(EVI)	(EVI) 2019 2020		1/06/2019	31/08/2019
8				1/06/2020	31/08/2020
9		2021		1/06/2021	31/08/2021
10		2022		1/06/2022	31/08/2022

Nota: Esta tabla N° 8 nos muestra información sobre los meses de análisis (Junio -Agosto) y el periodo de años analizados para el cálculo del EVI con el satélite Landsat 8.

Resultado erróneo del cálculo de índice EVI con Landsat 8 para el año 2022

Nota: Esta figura N° 28 nos muestra el cálculo para el EVI en un script para el año 2022, pero se excluyó del análisis porque se necesita de la banda 5 para el análisis con Landsat 8 y como no contiene esa banda no se pudo realizar el cálculo para ese año.

Figura 29

Resultado con porcentaje mínimo de nubes del 40% en el cálculo del índice EVI

con Landsat 5 (Año 2008 excluido del análisis).

Nota: Esta figura N° 29 muestra el cálculo del EVI para el año 2008, se excluyó del análisis por que para el filtro de nubes de 10% no se mostraba nada y solo se mostraba cuando se le permitía un 40% lo cual es muy alto y sus datos no iba a ser los esperados para el análisis.

3.3.8. Explicación paso a paso del código para calcular el NDVI con R Studio

Realiza un análisis de la serie temporal de NDVI para la Reserva Nacional de Tambopata.

1. Establecer el Directorio de Trabajo:

setwd("C:/Users/Meliza/Documents/DATA GEE-RNT

UNAP/RSTUDIO_RNT_UNAP/1)NDVI_RNT_UNAP")

Establece el directorio de trabajo donde se encuentran los archivos necesarios.

2.Instalar y Cargar Paquetes:

install.packages("kendall")

library(raster)

library(rgdal)

library(Kendall)

Instala y carga los paquetes necesarios para el análisis, incluyendo "kendall" para calcular la prueba de Mann-Kendall.

3. Empaquetar Imágenes TIFF en una Única Imagen Multibanda:

```
lista_imagenes <- list.files(pattern ='*.tif', full.names = TRUE)
```

ndvis <- brick(stack(lista_imagenes))</pre>

Combina todas las imágenes TIFF generadas en GEE en una única imagen multibanda.

4.Extraer Años de los Nombres de los Archivos y Asignarlos como Nombres

de las Capas:

years <- gsub('.*_(\\d{4})_.*', '\\1', lista_imagenes)

names(ndvis) <- years

5. Configurar la Disposición de Paneles para los Gráficos:

par(mfrow = c(3, 7))

Configura la disposición de paneles para visualizar múltiples gráficos en una cuadrícula.

6.Crear y Mostrar Gráficos de la Serie Temporal NDVI:

```
for (i in 1:nlayers(ndvis)) {
    plot(ndvis[[i]], main = paste("NDVI - R.N.T. ", names(ndvis)[i]), xlab =
    "Año", ylab = "NDVI")
}
```


Plot del NDVI periodo 2000-2022

7.Exportar la Imagen a TIFF:

writeRaster(ndvis,	filename="ndvis_rnt_2000-2022.tif",	format="GTiff",
overwrite=TRUE)		

Exporta la imagen multibanda a un archivo TIFF.

8.Calcular la Serie Temporal de Todos los Píxeles usando la Prueba de Mann-Kendall:

fun_k <- function(x){return(unlist(MannKendall(x)))}</pre>

kendal_result <- calc(ndvis, fun_k)

Calcula la serie temporal de todos los píxeles utilizando la prueba de Mann-Kendall y guarda los resultados.

9.Exportar la Tendencia (Tau) a un Archivo TIFF:

writeRaster(kendal_result\$"layer.1",	filename	="tau_ndvi_rnt.tif",
format="GTiff", overwrite=TRUE)		

Exporta la banda que contiene las tendencias (tau) a un archivo TIFF.

10.Reclasificar para Visualizar Mejor las Tendencias Positivas y Negativas:

m <- c(-1, -0.25, -1, -0.25, 0.5, 0, 0.5, 1, 1)

rclmat <- matrix(m, ncol=3, byrow = TRUE)</pre>

rc_tau <- reclassify(kendal_result\$"layer.1", rclmat)</pre>

writeRaster(rc_tau, filename="rc_tau_NDVI_RNT.tif", format="GTiff",
overwrite=TRUE)

$\langle \downarrow \downarrow \rangle$	2 V	Filter	
^	V1 [‡]	V2 [‡]	V 3 [‡]
1	-1.00	-0.25	-1
2	-0.25	0.50	0
3	0.50	1.00	1

Define una matriz de reclasificación para resaltar tendencias muy positivas y muy negativas, realiza la reclasificación y guarda el resultado en un archivo TIFF.

Este flujo de trabajo analiza la serie temporal de NDVI, calcula la tendencia utilizando la prueba de Mann-Kendall, y visualiza las tendencias destacadas en un archivo ráster reclasificado.

		Project: (None) 💌			
Environment History Connec	actions Tutorial				
🚰 📊 🐨 Import Dataset + 🔰 702 MiB + 🥑					
R 🝷 🛑 Global Environment 🝷		Q,			
Data					
🔘 kendal_result	Formal class RasterBrick	Q,			
🔘 ndvis	Formal class RasterBrick	٩,			
Orc_tau	Large RasterLayer (12616236 elements, 100.9 MB)	Q,			
rclmat	num [1:3, 1:3] -1 -0.25 0.5 -0.25 0.5 1 -1 0 1				
Values					
i	21L				
lista_imagenes	chr [1:21] "./2000.tif" "./2001.tif" "./2003.tif" "./2004.tif"	"./2005.tif" "./2			
m	num [1:9] -1 -0.25 -1 -0.25 0.5 0 0.5 1 1				
years	chr [1:21] "./2000.tif" "./2001.tif" "./2003.tif" "./2004.tif"	"./2005.tif" "./2			
Functions					
fun_k	function (x)	E			

Visualización del código para calcular el NDVI de la Reserva Nacional

Tambopata utilizando Google Earth Engine

e e	VI_2013_of.R ×	EVI_2013_2021.R ×	Untitled1* ×	Q, arvis ×	EVI_RNT_UNAP.R*	× ONDVI_RNT	UNAP.R* ×	» _ 🗆	
	🔊 🗧 🗌 Source on Save 🔍 🎽 🛛 📃					🔿 Run 🕴 🈏 🔶	🕹 🛛 🔿 So	ource 🔹 🖹	
1	##Analisis de la serie temporal	de NDVI dela cu	enca de Rami	5					
2	""""" a trabala o anno 20								
3	##ruta de trabajo y cargamos los	5 paquetesnecesa		DNT UNAD /1		.")			
4 5	secwd(C:/osers/meiiza/bocuments	S/DATA GEE-RNI-U	INAP/RSTUDIO_	KNT_UNAP/J	L)NDVI_KNI_UNAP)			E
6									1
7	install.packages("kendall")								- (
8	library(raster)								
9	library(rgdal)								,
10	library(Kendall)								
11									
12	##Empaquetamos todas las imagenes	titt.generadas	en GEE en un	a <u>unica</u> ir	magen multiband	a			
14	ndvis < brick(stack(lista image	tern = ".tit ,tu	III.names = 1	RUE)					
15	# Extraer los años de los nombro	enes)) es de los archiv	05						Ŀ.
16	$vears <- gsub(', * (\\d{4}), *',$	'\\1'. lista in	agenes)						Ľ
17	,	((=)							
18	# Asignar los años como nombres	de las capas de	l objeto ras	ter					
19	names(ndvis) <- years								
20									
21	# Configurar la disposición de p	paneles a 3 fila	s y 7 column	as					
22	par(mfrow = c(3, 7))								
23	" care of an and a sufficient								
24	# Crear y mostrar los graficos								
25 *	nlot(ndvis[[i]] main = naste		" names (ndv	is)[i]) y	vlah - "Año" v	lah - "NDVT"	`		
27 .	}	(10/1 - 1.1.1.	, manes (nuv	13/[1]/, /	kiab – Alio , y	Tab = NOVI ;	, ,		
28	Í								1
29	##Exportamosla imagen a tif								ŝ
30									
31	writeRaster(ndvis, filename="ndv	/is_rnt_2000-202	2.tif", form	at="GTiff'	", overwrite=TR	UE)			
32			-						
33	##Calculamos la serie temporal d	de <u>todos los pix</u>	eres						
24	fun $k < function(x) \{noturn(un)\}$	t (MannKondall()	2222						
36	run_k <-runceron(x) [recurr(unr).	se (Hannkendari (A	////3						
37	kendal result <-calc(ndvis, fun	k)							
38									
39	##Exportamosla tendencia (tau)	aun tif_problema	s con la ban	da tau					
40								-	ć
28:1	(Top Level) 💠							R Script \$	1
Console	Terminal × Background lobs ×								
	4.2.1								
	4.5.1 · */DATA GLE-KINT-ONAP/KSTODIO_KINT_ONA	P/I)NDVI_KNI_ONAP/							
WARNI	NG: Error exit, tauk2. IFAULI =	filonamo -"tau	u ndvi not ti	f" forma	t-"ctiff" over	write-TRUE)		-	
> ##R	eclasificamos para ver mejor los	sitios con ten	encia muv no	sitiva vi	muv negativa	willce-ikoe)			
> ##	Definir la matriz de reclasifica	ción para resalt	ar tendencia	s muv pos	itivas v muv ne	gativas			
> m <	- c(-1,-0.25,-1,-0.25,0.5,0,0.5,	1,1)				-			
> rcl	mat <- matrix(m, ncol=3, byrow =	TRUE)							
> ##	## Realizar la reclasificación usando la matriz definida anteriormente en terrete de destructor de la condición de la condi						ģ		
> nc_	<pre>> rc_tau <- reclassify(kendal_result5"layer.1", rclmat)</pre>								
> # E:	• # ESCRIDIR el raster reclasificado en un archivo TIFF weitenscher (est et al filonone)" (est et al NUT UNT tiff" format_"CTIFF" exemutite_TU(5)								
< wr.1.	teraster(rc_tau, iiiename= rc_ta	u_NOVI_KNI.CIT ,	iormat= GI1	ii , overi	WITCE=TRUE)				
ΣI.									
-								*	

3.3.9. Explicación paso a paso del código para calcular el EVI con R Studio

1. Establecer el directorio de trabajo y cargar paquetes:

- setwd("C:/Users/Meliza/Documents/DATA GEE-RNT-UNAP/RSTUDIO_RNT_UNAP/2)EVI_RNT_UNAP"): Establece el directorio de trabajo en la ruta especificada.
- install.packages("kendall"): Instala el paquete "kendall" si no está instalado.
- library(raster), library(rgdal), library(Kendall): Carga los paquetes necesarios.
- 2. Empaquetar todas las imágenes TIFF generadas en GEE en una única imagen multibanda:
- Se utiliza list.files para obtener la lista de archivos TIFF en el directorio.
- Se crea un objeto raster llamado evis que contiene todas las imágenes como capas utilizando la función brick y stack.
- Se extraen los años de los nombres de los archivos y se asignan como nombres de las capas.
- 3. Visualización de las series temporales:
- Se configura la disposición de paneles a 3 filas y 7 columnas (par(mfrow = c(3, 7))).
- Se crea un gráfico de líneas para visualizar la serie temporal de EVI para toda la cuenca.
- Se utiliza un bucle para crear y mostrar gráficos individuales para cada año.

- 4. Exportar la imagen multibanda a un archivo TIFF:
- Se utiliza la función writeRaster para exportar la imagen multibanda a un archivo TIFF llamado "evis_rnt_2000-2021.tif".
- 5. Calcular la serie temporal de todos los píxeles usando la prueba de Kendall:
- Se define la función fun_k, que calcula la prueba de Kendall (MannKendall) para cada píxel.
- Se utiliza la función **calc** para aplicar esta función a cada capa de la imagen multibanda, generando una nueva imagen que contiene las tendencias.
- 6. Exportar la tendencia (tau) a un archivo TIFF:
- Se utiliza **writeRaster** para exportar la capa correspondiente a la tendencia (tau) a un archivo TIFF llamado "tau_evi_rnt.tif".
- 7. Reclasificar para ver mejor los sitios con tendencia muy positiva y muy negativa:
- Se define una matriz de reclasificación rclmat para resaltar tendencias muy positivas y muy negativas.
- Se utiliza la función reclassify para aplicar la reclasificación a la capa de tendencia (tau).
- Se exporta la capa reclasificada a un archivo TIFF llamado "rc_tau_EVI_RNT.tif".

Environment History Connections To	itorial	-0			
🚰 🔒 🖙 Import Dataset 🔹 🌗 1.13 GIB 🔹 🔏					
R 🝷 🛑 Global Environment 🝷	Q,				
Data					
evis	Formal class RasterBrick	Q,			
kendal_result	Formal class RasterBrick	Q,			
Orc_tau	Large RasterLayer (12616236 elements, 100.9 MB)	Q,			
rclmat	num [1:3, 1:3] -1 -0.25 0.5 -0.25 0.5 1 -1 0 1				
Values					
i	18L				
lista_imagenes	chr [1:18] "./2000.tif" "./2001.tif" "./2003.tif" "./2004.tif" "./2005.tif	f" "./2			
m	num [1:9] -1 -0.25 -1 -0.25 0.5 0 0.5 1 1				
years	chr [1:18] "./2000.tif" "./2001.tif" "./2003.tif" "./2004.tif" "./2005.tif	F" "./2			
Functions					
fun_k	function (x)	1			

3.3.10. Reclasificación para el NDVI por cada año analizado con Landsat:

Figura 32

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2000.

Nota: Esta figura N° 32 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2000; la clasificación estadística nos da un valor mínimo de -0.025, un valor máximo de 0.982, un valor medio de 0.699.

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2001

Nota: Esta figura N° 33 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2001; la clasificación estadística nos da un valor mínimo de -0.250, un valor máximo de 0.975, un valor medio de 0.695.

Figura 34

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2003

Nota: Esta figura N° 34 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2003; la clasificación estadística nos da un valor mínimo de -0.221, un valor máximo de 0.994, un valor medio de 0.681.

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2004

Nota: Esta figura N° 35 nos muestra las categorías de reclasificación (Categoría 1: *Nubes y agua* [<0,01[; Categoría 2: *Suelo sin vegetación* [0.01-0,1[; Categoría 3: *Vegetación ligera* [0,1-0,2[; Categoría 4: *Vegetación mediana* [0,2-0,4[; Categoría 5: *Vegetación alta* [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2004; la clasificación estadística nos da un valor mínimo de -0.017, un valor máximo de 0.994, un valor medio de 0.771.

Figura 36

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2006

Nota: Esta figura N° 36 nos muestra las categorías de reclasificación (Categoría 1: *Nubes y agua* [<0,01[; Categoría 2: *Suelo sin vegetación* [0.01-0,1[; Categoría 3: *Vegetación ligera* [0,1-0,2[; Categoría 4: *Vegetación mediana* [0,2-0,4[; Categoría 5: *Vegetación alta* [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2006; la clasificación estadística nos da un valor mínimo de 0.025, un valor máximo de 0.994, un valor medio de 0.700.

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2007

Nota: Esta figura N° 37 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2007; la clasificación estadística nos da un valor mínimo de -0.112, un valor máximo de 0.994, un valor medio de 0.715.

Figura 38

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2008

Nota: Esta figura N° 38 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2008; la clasificación estadística nos da un valor mínimo de -0.106, un valor máximo de 0.994, un valor medio de 0.702.

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2009

Nota: Esta figura N° 39 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2009; la clasificación estadística nos da un valor mínimo de 0.0254, un valor máximo de 0.994, un valor medio de 0.700.

Figura 40

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2010

Nota: Esta figura N° 40 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2010; la clasificación estadística nos da un valor mínimo de -0.112, un valor máximo de 0.994, un valor medio de 0.715.

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2011

Nota: Esta figura N° 41 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2011; la clasificación estadística nos da un valor mínimo de -0.0416, un valor máximo de 0.994, un valor medio de 0.714.

Figura 42

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2013.

Nota: Esta figura N° 42 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2013; la clasificación estadística nos da un valor mínimo de -0.079 un valor máximo de 0.994, un valor medio de 0.691.

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2014

Nota: Esta figura N° 43 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2014; la clasificación estadística nos da un valor mínimo de 0.0120, un valor máximo de 0.876, un valor medio de 0.760.

Figura 44

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2015

Nota: Esta figura N° 44 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2015; la clasificación estadística nos da un valor mínimo de -0.041, un valor máximo de 0.857, un valor medio de 0.752.

Reclasificación dl índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2016

Nota: Esta figura N° 45 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2016; la clasificación estadística nos da un valor mínimo de 0.011, un valor máximo de 0.850, un valor medio de 0.733.

Figura 46

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2017

Nota: Esta figura N° 46 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2017; la clasificación estadística nos da un valor mínimo de -0.037, un valor máximo de 0.855, un valor medio de 0.746.

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2018

Nota: Esta figura N° 47 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2018; la clasificación estadística nos da un valor mínimo de 0.059, un valor máximo de 0.873, un valor medio de 0.732.

Figura 48

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2019

Nota: Esta figura N° 48 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2019; la clasificación estadística nos da un valor mínimo de 0.0327, un valor máximo de 0.890, un valor medio de 0.755.

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Classification Classification Method: Classification Statistics Manua Count: Minimum: Maximum: \sim 2509273 Classes: -0.019684 0.884814 Data Exclusion 1917939.893387 Sum: Mean: Exclusion ... Sampling ... 0.764341 Standard De 0.071726 100 ≑ Show Mean Columns: Show Std. Dev Break Values % 600000-g 8 0.009 0.09 0.19 5000 0.39 0.884814 40000 3000 20000 1000 OK Г 0.20644 0.432565 0.658689 0.884814 -0.0 Cancel Snap breaks to data valu

Nota: Esta figura N° 49 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta <math>[>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2020; la clasificación estadística nos da un valor mínimo de -0.0196, un valor máximo de 0.884, un valor medio de 0.764.

Figura 50

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2021

Nota: Esta figura N° 50 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2021; la

clasificación estadística nos da un valor mínimo de -0.554, un valor máximo de 0.863, un valor medio de 0.753.

Figura 51

Reclasificación del índice de cobertura vegetal normalizado de la Reserva

Natural Nacional Tambopata para el año 2022

Nota: Esta figura N° 51 nos muestra las categorías de reclasificación (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) una vez obtenido el índice NDVI con la imagen tiff obtenido del cálculo preliminar en GEE para el año 2022; la clasificación estadística nos da un valor mínimo de -0.144, un valor máximo de 0.874, un valor medio de 0.738.

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1. RESULTADOS DEL ÍNDICE DE VEGETACIÓN MEJORADO (EVI) E ÍNDICE DE VEGETACIÓN DE DIFERENCIA NORMALIZADA (NDVI).

Los índices NDVI y EVI se obtuvieron en la plataforma de Google Earth Engine, plasmado en imágenes *.tiff para cada año del periodo analizado y se reclasifico en 5 categorías (Categoría 1: *Nubes y agua* [<0,01[; Categoría 2: *Suelo sin vegetación* [0.01-0,1[; Categoría 3: *Vegetación ligera* [0,1-0,2[; Categoría 4: *Vegetación mediana* [0,2-0,4[; Categoría 5: *Vegetación alta* [>0,6[) posterior a ello se convierto estos datos ráster en polígono con la herramienta <ráster to polygon> y se calculó el área por cada categoría con apoyo de la herramienta dissolve, y estos valores en unidades de hectáreas se muestran en la tabla N°9.

La interpretación a la tabla 9 de las categorías más resaltantes como son los valores mínimos, máximos y promedio empezaríamos por cada categoría:

Categoría 1: *Nubes y agua* [<0,01[; su valor máximo para NDVI se da en el año 2001 con un valor en área de 1602 ha. en cambio, para el EVI muestra su máximo valor para el año 2000 con 1711 ha.; para esta categoría el valor mínimo se presenta para el NDVI con un área de 0.1 ha. en el año 2021 y para el EVI con 440.8 ha. en el año 2005, los valores promedio en esta categoría para el NDVI es de 201.3 ha y para el EVI es de 1236.3 ha.

Categoría 2: *Suelo sin vegetación* [0.01-0,1[; su valor máximo para NDVI se da en el año 2009 con un valor en área de 2250 ha. en cambio, para el EVI muestra su máximo valor para el año 2006 con 1133 ha.; para esta categoría el valor mínimo se

presenta para el NDVI con un área de 3.3 ha. en el año 2013 y para el EVI con 441.3 ha. en el año 2019, los valores promedio en esta categoría para el NDVI es de 349.8 ha y para el EVI es de 816.9 ha.

Categoría 3: *Vegetación ligera* [0,1-0,2[; su valor máximo para NDVI se da en el año 2009 con un valor en área de 13351 ha. en cambio, para el EVI muestra su máximo valor para el año 2014 con 1483 ha.; para esta categoría el valor mínimo se presenta para el NDVI con un área de 391.8 ha. en el año 2017 y para el EVI con 406.2 ha. en el año 2020, los valores promedio en esta categoría para el NDVI es de 1675.5 ha y para el EVI es de 892.7 ha.

Categoría 4: *Vegetación mediana* [0,2-0,4[; su valor máximo para NDVI se da en el año 2009 con un valor en área de 41158 ha. en cambio, para el EVI muestra su máximo valor para el año 2016 con 8871 ha.; para esta categoría el valor mínimo se presenta para el NDVI con un área de 1397 ha. en el año 2001 y para el EVI con 841.9 ha. en el año 2020, los valores promedio en esta categoría para el NDVI es de 4310.7 ha y para el EVI es de 2308.8 ha.

Categoría 5: *Vegetación alta* [>0,6[; su valor máximo para NDVI se da en el año 2006 con un valor en área de 274809 ha. en cambio, para el EVI muestra su máximo valor para el año 2006 con 273583 ha.; para esta categoría el valor mínimo se presenta para el NDVI con un área de 221055 ha. en el año 2009 y para el EVI con 253626 ha. en el año 2017, los valores promedio en esta categoría para el NDVI es de 270580.3 ha y para el EVI es de 266653.7 ha.

Tabla 9

CATEG	CATEG Nubes y agua [<0,01]		Suelo sin vegetación [0.01-0,1[Vegetación ligera [0,1-0,2[Vegetación mediana [0,2-0,4[Vegetación alta [>0,6[
AÑO	NDVI	EVI	NDVI	EVI	NDVI	EVI	NDVI	EVI	NDVI	EVI
2000	46.2	1711	354.1	790.1	1657	475.4	3291	1163	272481	256636
2001	1602	1602	951.7	951.7	495.6	495.6	1397	1397	257834	259231
2003	590.2	1261	403.7	987.3	1112	591.1	1523	1099	274192	257936
2004	9.9	1301	278.8	1113	1548	763.6	1629	1365	274355	273273
2005	S/D	440.8	145.8	724.6	951.1	1074	2178	2887	274545	272692
2006	1.7	1271	99	1133	927.2	634.3	1984	1198	274809	273583
2007	11.3	1502	183.1	1005	1143	874.1	2061	1438	274423	272991
2008	17.3		54.8		1135		2657		273963	
2009	1.2		2250		13351		41158		221055	
2010	60.9	489.8	340.4	1116	1620	1380	1911	1418	273889	272488
2011	86.7	1112	339.8	1008	1488	587.9	4541	1020	271365	256643
2013	S/D	1444	3.3	812.5	715.7	832.8	2495	1864	274614	272865
2014	382.6	1301	542.9	691.2	1171	1483	1675	5912	274050	268433
2015	0.5	1692	70.1	628	1920	1060	1658	2397	274172	272040
2016	1.2	863.2	55.4	502.4	901.3	1220	3030	8871	273834	266361
2017	S/D	1358	17.3	688.8	391.8	594.4	4357	852.8	273055	253626
2018	S/D	1529	336.5	845.1	1060	1056	2368	1027	274063	273362
2019	0.2	1187	463.7	441.3	922.8	1340	2365	1394	274070	273457
2020	658.7	1639	139.5	643.5	892.9	406.2	2306	841.9	273823	254121
2021	0.1	550.2	279.1	622.7	800.7	1201	3224	5414	273516	270028
2022	2.3		36.9		981.7		2718		274082	

Áreas en hectáreas por categorías del índice NDVI y EVI para el periodo 2000-2022

CATEG	Nubes : [<0,	y agua 01[Suelo sin vegetación [0.01-0,1[Vegetación ligera [0,1-0,2[Vegetación mediana [0,2-0,4[Vegetación alta [>0,6[
AÑO	NDVI	EVI	NDVI	EVI	NDVI	EVI	NDVI	EVI	NDVI	EVI
Máx.	1602	1711	2250	1133	13351	1483	41158	8871	274809	273583
año	2001	2000	2009	2006	2009	2014	2009	2016	2006	2006
Min.	0.1	440.8	3.3	441.3	391.8	406.2	1397	841.9	221055	253626
año	2021	2005	2013	2019	2017	2020	2001	2020	2009	2017
Prom.	204.3	1236.3	349.8	816.9	1675.5	892.7	4310.7	2308.8	270580.3	266653.7

4.2. RESULTADOS RESPECTO AL COEFICIENTE DE CORRELACIÓN LINEAL DE PEARSON PARA LOS VALORES DE NDVI Y EVI

El coeficiente de correlación lineal de Pearson fue usado para evalúar la conexión o asociación lineal entre los índices NDVI y EVI (véase la tabla N°10),

indicando la proximidad de la relación entre ambas a una línea recta. Este análisis se realizó por separado por cada categoría (Categoría 1: Nubes y agua [<0,01[; Categoría 2: Suelo sin vegetación [0.01-0,1[; Categoría 3: Vegetación ligera [0,1-0,2[; Categoría 4: Vegetación mediana [0,2-0,4[; Categoría 5: Vegetación alta [>0,6[) para el periodo 2000-2021 y se obtuvo una correlación positiva débil por la metodología de correlación lineal Pearson, puede visualizarse en las figuras N°53, N°54, N°55, N°56, N°57 de dispersión, también denominado nube de puntos, que representa gráficamente la relación entre las dos variables.

La correlación de Pearson débil entre los valores NDVI (Índice de Vegetación de Diferencia Normalizada) y EVI (Índice de Vegetación Mejorado) sugiere que hay una relación lineal modesta o limitada entre estas dos variables en el contexto específico del estudio. El coeficiente de correlación de Pearson oscilaría cercano a cero, como se observa en la tabla N°10 (donde se observa valores de 0.35 para la categoría Nubes y agua, 0.17 para la categoría Suelo sin vegetacion,0.15 para la categoría Vegetación ligera 0.04 para la categoría Vegetación Mediana y 0.37 para la categoría Vegetación Alta) indicando que los cambios en los valores de un índice no se corresponden de manera significativa con los cambios en el otro. En otras palabras, la variabilidad en los valores de NDVI no está estrechamente relacionada con la variabilidad en los valores de EVI, y viceversa.

Es importante destacar que, aunque la correlación sea débil, no necesariamente significa que no haya relación entre las dos variables; simplemente, la relación es más tenue y no sigue una tendencia lineal fuerte.

Tabla 10

Cuadros resumen de la correlación lineal de Pearson para las 5 categorías evaluadas

n°cat	categoria	Coef. Pearson ®	Determinación R 2	correlacion pearson
1	Nubes y agua [<0,01[0.35	0.13	_
2	Suelo sin vegetación [0.01-0,1]	0.17	0.03	Correlación
3	Vegetación ligera [0,1-0,2[0.15	0.02	positiva
4	Vegetación mediana [0,2-0,4[0.04	0.00	débil
5	Vegetación alta [>0,6[0.37	0.14	-

en los índices NDVI y EVI

Figura 52

Correlación positiva débil entre los valores multianuales en área del índice NDVI y

EVI, para la categoría Nubes y Agua

Correlación positiva débil entre los valores multianuales en área del índice NDVI y

Figura 54

Correlación positiva débil entre los valores multianuales en área del índice NDVI y

EVI, para la categoría Vegetación Mediana

Correlación positiva débil entre los valores multianuales en área del índice NDVI y

Figura 56

Correlación positiva débil entre los valores multianuales en área del índice NDVI y

EVI, para la categoría Vegetación Alta

4.3. TENDENCIA MULTITEMPORAL MANN KENDALL CON DATOS DEL NDVI Y EVI EN LA RESERVA NACIONAL DE TAMBOPATA.

En el análisis de datos NDVI y EVI mediante la prueba de Mann-Kendall, se buscó identificar tendencias significativas en la vegetación a lo largo del tiempo. Los resultados proporcionaron información sobre la dirección de la tendencia (aumento o disminución), la significancia estadística y la posible presencia de patrones estacionales.

Para el índice NDVI la tendencia significada analizada pixel a pixel en el periodo 2000-2022 se obtuvo a nivel de áreas para cada categoría que se indica de menor a mayor, primero la categoría *Suelo sin vegetación* con 1222.21 ha que representa a nivel de la cuenca el 0.44%, *Vegetación Ligera* con 2735.7 ha que representa el 0.99%, *Nubes y Agua* con 4137.95 ha que representa el 1.49 %, *Vegetación Mediana* con 38323.69 ha que representa el 13.81% y por ultimo con mayor área la categoría *Vegetación Alta* con 231174.25 ha que representa el 83.28 % del total de la cuenca, tal como se muestra en la tabla N°11 y visualmente se distingue en la figura del grafico de barras N°57.

Tabla 11

Porcentaje de la tendencia multitemporal periodo 2000-2022 del normalized difference vegetation index (NDVI) en función a su clasificación

RESERVA NACIONAL DE TAMBOPATA							
MA	NN KENDALL_NDVI_TENDENCIA	2000-2022					
COD	CATEGORIA	AREA_HA	%				
1	Nubes y agua [<0,01[4137.95	1.49				
2	Suelo sin vegetación [0.01-0,1]	1222.21	0.44				
3	Vegetación ligera [0,1-0,2[2735.7	0.99				
4	4 Vegetación mediana [0,2-0,4[13.81				
5	Vegetación alta [>0,6[231174.25	83.28				
Suma 277593.8							

Área de la tendencia multitemporal del normalized difference vegetation index (NDVI)

en función a su clasificación.

Para el índice EVI la tendencia significada analizada pixel a pixel en el periodo 2000-2022 se obtuvo a nivel de áreas para cada categoría que se indica de menor a mayor, *primero* la categoría *Suelo sin vegetación* con 1737.2 ha que representa a nivel de la cuenca el 0.63%, *Vegetación Ligera* con 5299.7 ha que representa el 1.91%, *Nubes y Agua* con 5625.4 ha que representa el 2.03 %, *Vegetación Mediana* con 29351.9 ha que representa el 10.57% y por ultimo con mayor área la categoría *Vegetación Alta* con 235586.4 ha que representa el 84.87 % del total de la cuenca, tal como se muestra en la tabla N°12 y visualmente se distingue en la figura del grafico de barras N°58.

Tabla 12

Porcentaje de la tendencia multitemporal periodo 2000-2022 del Enhanced vegetation

RESERVA NACIONAL DE TAMBOPATA									
MANN KENDALL_EVI_TENDENCIA 2000-									
COD	CATEGORIA	AREA_HA	%						
1	Nubes y agua [<0,01[5625.4	2.03						
2	Suelo sin vegetación [0.01-0,1[1737.2	0.63						
3	Vegetación ligera [0,1-0,2[5299.7	1.91						
4	Vegetación mediana [0,2-0,4[29351.9	10.57						
5	Vegetación alta [>0,6[235586.4	84.87						
	Suma 277600.6 100								

index (EVI) en función a su clasificación

Figura 58

Área de la tendencia multitemporal del Enhanced vegetation index (EVI) en función a su clasificación

4.4. VARIACIÓN AREAL MULTITEMPORAL POR CATEGORÍAS DEL ÍNDICE NDVI Y EVI.

La tabla 13 nos muestra los resultados multitemporales sometidos al test no paramétrico Mann Kendall de los índices NDVI y EVI, ambos índices mostraron una variación por cada Categoría analizada en función a la tendencia como se observa en la tabla N°13:

- Categoría 1: Nubes y agua [<0,01[; se evidencia que el NDVI tiene mayor área respecto al EVI, haciendo una diferencia de 1487.45 ha que representa el 0.54% del total de la Reserva Nacional de Tambopata.
- Categoría 2: Suelo sin vegetación [0.01-0,1[; se evidencia que el NDVI tiene mayor área respecto al EVI, haciendo una diferencia de 514.99 ha que representa el 0.19% del total de la Reserva Nacional de Tambopata.
- Categoría 3: Vegetación ligera [0,1-0,2[; se evidencia que el NDVI tiene mayor área respecto al EVI, haciendo una diferencia de 2564 ha que representa el 0.92% del total de la Reserva Nacional de Tambopata.
- Categoría 4: Vegetación mediana [0,2-0,4[; se evidencia que el EVI tiene mayor área respecto al NDVI, haciendo una diferencia de 8971.79 ha que representa el 3.23% del total de la Reserva Nacional de Tambopata.
- Categoría 5: Vegetación alta [>0,6[; se evidencia que el NDVI tiene mayor área respecto al EVI, haciendo una diferencia de 4412.15 ha que representa el 1.59% del total de la Reserva Nacional de Tambopata.

La diferencia en áreas tanto para el NDVI y EVI suman en total un 6.47% que en área representa 17950.38 ha que redondeando hace un 7% del total del área de la Reserva Nacional de Tambopata ,lo cual si es significativo y se puede afirmar que el EVI brinda

mejores resultados distribuidos en categorías menores ya que tiene la capacidad para corregir los efectos atmosféricos y del suelo, así como para manejar la variabilidad en la cobertura del suelo y se afirma que en áreas con vegetación muy densa como es la Reserva Nacional de Tambopata , el NDVI tiende a saturarse, perdiendo sensibilidad para detectar cambios en la salud de la vegetación en cambio el EVI reduce esta saturación y proporciona mediciones más precisas en áreas con alta densidad de vegetación, Asimismo el EVI demostró que puede ofrecer una mejor sensibilidad a los cambios en la concentración de clorofila, lo que lo hace más adecuado para evaluar la salud de la vegetación en comparación con el NDVI tal como se muestra en el anexo 46 y 47 asimismo en la tabla N° 13.

Tabla 13

Variación del análisis de tendencia multitemporal con Mann Kendall a nivel de área por cada categoría entre los índices NDVI y EVI

		NDVI	EVI	DIFERENCIA IVS		>EVI	>NDVI
	CATEGORIA	AREA_HA	AREA_HA	DIFERENCIA EVI-NDVI (AREA_HA)	DIFERENCIA NDVI-EVI (AREA_HA)	%EVI-NDVI (AREA_HA)	%NDVI-EVI (AREA_HA)
1	Nubes y agua [<0,01[4137.95	5625.4	1487.45		0.54	
2	Suelo sin vegetación [0.01- 0,1[1222.21	1737.2	514.99		0.19	
3	Vegetación ligera [0,1-0,2[2735.7	5299.7	2564		0.92	
4	Vegetación mediana [0,2-0,4[38323.69	29351.9		8971.79		3.23
5	Vegetación alta [>0,6[231174.25	235586.4	4412.15		1.59	
	AREA TOTAL RNT		277600.6				
			SUBTOTAL- Δ	8978.59	8971.79	3.234	3.232
			TOTAL- Δ	1795	50.38	6.	47
			% TOTAL - Δ	6.4	7%		

4.5. **DISCUSION**

 El cálculo del Índice de Vegetación Mejorado (EVI) y el Índice de Vegetación de Diferencia Normalizada (NDVI) para el periodo de investigación revela patrones y cambios significativos en la vegetación, permitiendo una comprensión detallada de la dinámica vegetal a lo largo de los años.

La evaluación de ambos índices, el EVI y el NDVI, durante el periodo de estudio ha revelado patrones y cambios significativos en la vegetación mostraron resultados eficientes, cumpliendo la hipótesis planteada. Esta observación proporciona una comprensión detallada de la dinámica vegetal a lo largo de los años. Los resultados obtenidos a partir de estos índices han contribuido a un análisis más profundo de la salud y la evolución de la cobertura vegetal, permitiendo identificar tendencias y variaciones importantes en el entorno estudiado. La aplicación conjunta de EVI y NDVI ha demostrado ser una estrategia efectiva para capturar la complejidad de la dinámica vegetal y brindar información valiosa para investigaciones relacionadas con el cambio ambiental y la gestión de recursos naturales, la respuesta podría ser formulada de la siguiente manera:

En otro sentido, el análisis realizado por Matsushita et al., (2007) se enfocó en la comparación de índices de vegetación, los cuales desempeñan un papel crucial en la monitorización de las variaciones en la vegetación. Tanto el Índice de Vegetación Mejorado (EVI) propuesto por el Grupo de Disciplina de la Tierra MODIS como el Índice de Vegetación de Diferencia Normalizada (NDVI) son índices de vegetación de alcance global diseñados para ofrecer información consistente en términos espaciales y temporales sobre la vegetación a nivel mundial. Sin embargo, diversos factores ambientales, como las condiciones atmosféricas y las características del suelo, pueden

introducir errores en estos índices. Con el propósito de mitigar tanto el ruido atmosférico como el del suelo, se propuso el Índice de Vegetación Mejorado (EVI). A pesar de su desempeño superior al NDVI en varias aplicaciones, el estudio evidencio que el EVI es más susceptible a las condiciones topográficas en comparación con el NDVI. Entonces, podemos afirmar que el índice EVI es más sensible que el NDVI por ende puede captar variaciones más sutiles en la vegetación.

Nota: En términos simples, la sensibilidad implica la capacidad de un índice para detectar cambios en la vegetación en respuesta a diferentes factores. Si un índice es altamente sensible, significa que puede captar variaciones más sutiles en la vegetación o en las condiciones del entorno. En este caso, el estudio sugiere que el EVI es más propenso a ser afectado por las características del terreno, como elevaciones o desniveles, en comparación con el NDVI.

Por otro lado Núñez, (2022) Llevó a cabo una investigación titulada "Estimación de la biomasa vegetal aérea mediante teledetección calibrada con un método destructivo" en Cajatambo, Lima. En este estudio, se determinó que el modelo de estimación basado en el índice EVI resultó ser el más eficaz para explicar la biomasa vegetal aérea a una resolución espacial de 7 metros utilizando el satélite SPOT 6, a pesar de no alcanzar significancia estadística. La fórmula respectiva para estimar la biomasa vegetal aérea en la zona de estudio, donde predominan las praderas, matorrales y actividades agrícolas, es la siguiente: Peso = 327,45 * EVI + 217,66, expresada en gramos de materia seca vegetal por metro cuadrado (g MSV/m^2). Mediante este modelo de estimación, se creó el mapa de biomasa vegetal aérea, y utilizando las categorías sugeridas de cobertura vegetal para la región en estudio, se elaboró el correspondiente mapa. Así, se respalda la teoría Matsushita et al.

 Existe una correlación significativa entre las variables del Índice de Vegetación Mejorado (EVI) y del Índice de Vegetación de Diferencia Normalizada (NDVI), indicando que estas métricas están relacionadas de manera consistente en el área de estudio seleccionadas.

La correlación entre el índice NDVI y EVI nos dio en todas las categorías estar en una correlación positiva débil, mostrando mejores resultados para el EVI en zonas boscosas como lo es la reserva nacional de Tambopata como se ilustra en la tabla 10.

Mozhaeva & Shoshany, (2022) realizaron un estudio denominado Relaciones entre índices de vegetación y lluvia y PET en diferentes tiempos: un estudio en un gradiente Mediterráneo A Árido de regresión lineal se concluyen que los índices de vegetación tienen menor correlación con los parámetros climáticos acumula .El objetivo de este estudio fue examinar y mapear las relaciones entre el NDVI y los parámetros climáticos (lluvias y PET) sobre ecosistemas marginales desérticos de alta geodiversidad de vegetación y patrones de suelo. La metodología comienza con el NDVI y la preparación de datos climáticos, continúa con la evaluación de las relaciones entre el NDVI y las precipitaciones y el PET en diferentes intervalos de acumulación para 38 sitios en la zona del gradiente climático, calculando coeficientes de regresión por píxel que representan esas relaciones para las imágenes Sentinel2 entre 2016 y 2018. y finalmente comparar entre la clasificación SVM de NDVI multitemporal y de coeficientes de regresión. Los resultados del análisis de regresión revelan que Las variaciones en el NDVI durante el período estudiado se describen mejor mediante la regresión lineal ajustada localmente entre el índice y las precipitaciones y el PET acumulados durante dos meses. Dado que se puede percibir que los coeficientes de pendiente e intercepción representan el régimen de uso del agua en cada píxel, la amplia similitud entre los resultados de la clasificación sugiere que las tipologías de NDVI multitemporales

corresponden a tipologías de regímenes de uso del agua en ecosistemas marginales desérticos en los márgenes de las regiones mediterráneas.

López (2017), Afirma que el impacto devastador de la deforestación en la Reserva Nacional Tambopata se revela con cifras alarmantes. Según un estudio reciente, desde septiembre de 2015 utizando imágenes Sentinel y Planet, aproximadamente 550 hectáreas de este precioso pulmón verde han sido taladas. Estas cifras, aunque impactantes, solo son una parte del panorama más amplio. Un reporte del Proyecto de Monitoreo de los Andes Amazónicos (MAAP), presentado en mayo, arrojó luz sobre la situación en la zona de amortiguamiento. Desde el 2012 hasta mayo del 2017, se estima que unas 4440 hectáreas de bosques han desaparecido, equivalente a la extensión de 6080 campos de fútbol. Esta pérdida no solo representa una tragedia ambiental, sino también un golpe a la biodiversidad única de la región. Es hora de tomar medidas urgentes para proteger estos preciosos ecosistemas antes de que sea demasiado tarde ,esta investigación respecto a nuestro presente estudio para el periodo 2012 al 2017 tenemos valores a nivel de área tanto para el NDVI y el EVI con excepción del año 2012 porque ese año fue eliminado del análisis porque para el catálogo Landsat 5 con los parámetros de nubosidad y en el periodo de análisis no había data de bandas por ello para hacer un comparativo referencial tomaremos el valor del 2011 que el mas cercano para poder hacer la comparación respecto al NDVI y EVI, en la tabla 9 tenemos la categoría Suelo sin vegetación sumando los valores desde el 2011 al 2017 para EVI da un valor de 4330.5 ha. en cambio para NDVI en este mismo periodo dio un valor de 1029 ha que ya de por si podemos afirmar que el índice EVI nos da mejores resultados para la zona de estudio ya que en el estudio de López analizan deforestación y les da como resultado 4440 ha entonces la diferencia respecto a la categoría 2 del EVI es de 109.5 ha, asimismo la diferencia con la categoría 2 del NDVI es de 3411.2 ha lo que se descarta de estar próximo al estudio de López

,podemos afirmar con este estudio que el EVI da mejores resultados para la Reserva Nacional de Tambopata.

Entonces hablando en términos de índices espectrales de vegetación y al estar demostrado que el EVI presenta los resultados más reales para la zona de estudio respecto al NDVI esto corroborado por Finer & López ,entonces si tenemos una cifra de la categoría 2 que es suelo sin vegetación que se acercaría al termino deforestación el NDVI muestra para el periodo 2000-2022 una pérdida de 8045.8 ha y el EVI que viene a ser el resultado más próximo con otras metodologías y catálogos de base de datos de imágenes satelitales nos da como resultado un suelo sin vegetación para el periodo 200-2022 de 18,979 ha.

Finer et al. (2017), realizo un estudio denominado "La Minería Aurífera se Incrementa en la Zona de Amortiguamiento de la Reserva Nacional Tambopata" en la revista Monitoring of the Andean Project afirma que, en la zona de amortiguamiento de la Reserva Nacional Tambopata, desde septiembre del 2016 hasta mayo del 2017. El área deforestada en la zona de amortiguamiento ha llegado a 4,440 hectáreas (6,080 campos de fútbol) desde el 2012 lo que confirma lo dicho en el estudio de López confirmando nuestro análisis anterior.

V. CONCLUSIONES

Después de completar el estudio actual, se llegó a las siguientes conclusiones:

- Se logró determinar mediante el cálculo de los índices NDVI y EVI utilizando imágenes satelitales Landsat 5 y Landsat 8 de los años 2000 al 2022 en la plataforma Google Earth Engine y se puso filtros tanto para la nubosidad del 10% y el periodo de imágenes que obtuvieran dentro de los meses de junio, julio y agosto por ser épocas de estiaje y se puede obtener imágenes de mayor calidad.
- Respecto a la correlación durante el periodo de investigación, se evaluaron los índices de vegetación NDVI y EVI para comprender la salud y cobertura vegetal en la región de estudio. Se observó una correlación positiva entre ambos índices a lo largo del tiempo, aunque esta relación fue identificada como débil, con un coeficiente cercano entre -0.5 y 0, para las 5 categorías del NDVI y EVI (Nubes y agua [<0,01[;Suelo sin vegetación [0.01-0,1[;Vegetación ligera [0,1-0,2[;Vegetación mediana [0,2-0,4[;Vegetación alta [>0,6[) .Esto indica que, aunque ambos índices siguen una tendencia positiva general, la asociación es modesta, sugiriendo que podrían estar reflejando aspectos ligeramente diferentes de la salud vegetal.

Es esencial tener en cuenta que la debilidad en la correlación señala la influencia de otras variables en la respuesta de los índices de vegetación. Durante el análisis estacional, se identificó que el NDVI mostró un aumento pronunciado, mientras que el EVI experimentó una respuesta más moderada. Este hallazgo resalta la sensibilidad diferencial de los índices ante cambios específicos en la vegetación, posiblemente influenciados por la composición del dosel, la diversidad de especies vegetales y las condiciones climáticas.

 Se clasifico la tendencia pixel por pixel con apoyo del test Mann Kendall y se obtuvo un producto a nivel de áreas que hayan sufrido una tendencia significa sea positiva o negativa que los llevo a posicionarse de la siguiente forma:

Después de analizar, interpretar y comparar los datos obtenidos mediante el filtro de Mann-Kendall para los índices NDVI y EVI en cada categoría, se concluye que el NDVI presenta una distribución menos clara dentro de la Reserva Nacional de Tambopata. Este índice tiende a homogeneizar áreas que han experimentado variaciones a lo largo del periodo analizado. En contraste, el EVI se percibe como más realista, ya que destaca con mayor énfasis los resultados y facilita la identificación de zonas afectadas por deforestación u otros efectos antropogénicos en la reserva. Para el NDVI, se registraron 1222.2 hectáreas en la categoría de suelo sin vegetación, mientras que para el EVI se obtuvo un total de 1737.2 hectáreas. La diferencia de 510 hectáreas entre ambos valores es considerable y coincide con una correlación positiva pero débil. Por lo tanto, el EVI se presenta como el indicador más adecuado para el análisis en la Reserva Nacional de Tambopata, ya que resulta beneficioso para examinar áreas con altos niveles de clorofila, como los bosques tropicales, y es preferible en zonas con mínimos efectos topográficos.

VI. RECOMENDACIONES

- Con el fin de reducir los errores y llevar a cabo un estudio más detallado, use imágenes satelitales que brinden una mayor resolución espacial y que tengan una nubosidad mínima en el área de estudio, en el presente análisis se eliminó algunos años para el análisis por errores que contenían en sus bandas o en la zona de estudio no estaba completa con los parámetros establecidos como se visualiza en los anexos desde el 42 al 45 por ello se refleja celdas de color rojo en la tabla N°9.
- Según los resultados de este estudio sobre la tendencia del NDVI, se recomienda reconsiderar los efectos en la Reserva Nacional ANP Tambopata porque hay algunos píxeles con tendencia negativa que indican cambios. En un proyecto ambiental, siempre es preferible la mejora continua. Se recomienda a los estudiantes que estén interesados en el proyecto que realicen extensiones temporales en los próximos años y sigan observando los cambios en la vegetación, especialmente en el departamento de Madre de Dios, basándose en observaciones en las zonas de mayor actividad humana.
- Este estudio representa el desarrollo de herramientas de planificación de políticas y gestión territorial, por lo que se recomienda trabajar en períodos de tiempo más largos y lograr un buen resultado, generando así escenarios futuros basados en la información obtenida para reducir los impactos causados por el cambio de cobertura reducir.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Aroni-Quispe, D. X., Alfaro-Alejo, R., Huaman-Gutierrez, H. A., & Belizario-Quispe, G. (2021, September). Comparative analysis of evapotranspiration using the SEBAL model and the evaporimeter pan method in the Huancane basin of Puno, Peru. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII (Vol. 11856, pp. 74-84). SPIE. https://doi.org/10.1117/12.2600821
- Alatorre, L. C., Beguería, S., & Vicente-Serrano, S. M. (2010). Análisis de la evolución espacio-temporal del NDVI sobre áreas vegetadas y zonas de riesgo de erosión en el Pirineo Central. *Pirineos*, 165, 7-27. https://doi.org/10.3989/Pirineos.2010.165001
- Alcaraz, D., Baldi, G., Durante, P., & Garbulsky, M. F. (s. f.). Análisis de la dinámica temporal del NDVI en áreas protegidas: Tres casos de estudio a distintas escalas espaciales, temporales y de gestión.
- Alvarado, C., Leandro, A., & Sarango, D. (2019). Comparación de Índices de Vegetación con imágenes Landsat usando la computación en la nube: Zona Pampa de Majes-Siguas, Arequipa Perú (Periodo: Jun 1984 a Nov 2018). *Revista de Investigación de Física*, 22(1), Article 1. https://doi.org/10.15381/rif.v22i1.20280
- APN. (2017). Protocolo para el pre procesamiento de imágenes satelitales Landsat para aplicaciones de la administración de parques nacionales. Administración de Parques Nacionales.
- Balcázar, M. (2011). Desarrollo de un módulo SIG para el manejo de imágenes multiespectrales orientado a la agricultura de precisión. https://tesis.pucp.edu.pe/repositorio/handle/20.500.12404/1132

- Cartoteca. (2011). *Tutorial (nivel básico) para la elaboración de mapas con ArcGIS*. https://www.academia.edu/29654445/Tutorial_nivel_b%C3%A1sico_para_la_el aboraci%C3%B3n_de_mapas_con_ArcGIS
- Cayo, Y. T. (2018). Modelagem de mudanças espaço-temporais de ambientes glaciais dos Andes do Sul—Peru. Superintendencia Nacional de Educación Superior Universitaria - SUNEDU. https://renati.sunedu.gob.pe/handle/sunedu/753383
- Chuvieco, E. (2002). Teledetección ambiental: La observación de la Tierra desde el espacio. https://dialnet.unirioja.es/servlet/libro?codigo=286798
- Chuvieco, E. (1995). Fundamentos de Teledetección espacial—ProQuest. https://www.proquest.com/openview/fa0851b2def4bc35d8ac1287bd08d7d0/1?p q-origsite=gscholar&cbl=1818083
- Edquén, W. H. (2019). Cambios de cobertura y uso del suelo con imágenes satelitales del distrito de llapa-cajamarca periodo 2003 2018. Universidad Nacional de Cajamarca.
- Guzmán, D. F. (2021). Cálculo del índice de vegetación de diferencia normalizada— NDVI usando la plataforma Google Earth Engine para los años 2019 y 2020 de la vereda La Florida en el municipio de Puerto Asís. http://repository.unimilitar.edu.co/handle/10654/40417
- Kumari, N., Srivastava, A., & Dumka, U. C. (2021). A long-term spatiotemporal analysis of vegetation greenness over the Himalayan Region using Google Earth Engine. Climate, 9(7), 109. https://doi.org/10.3390/cli9070109
- Lasaponara, R., Abate, N., Fattore, C., Aromando, A., Cardettini, G., & Di Fonzo, M. (2022). On the Use of Sentinel-2 NDVI Time Series and Google Earth Engine to Detect Land-Use/Land-Cover Changes in Fire-Affected Areas. *Remote Sensing*, *14*(19), Article 19. https://doi.org/10.3390/rs14194723

- Li, H., Jia, M., Zhang, R., Ren, Y., & Wen, X. (2019). Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform. *Remote Sensing*, *11*(21), Article 21. https://doi.org/10.3390/rs11212479
- Liu, Z., Chen, Y., & Chen, C. (2023). Analysis of the Spatiotemporal Characteristics and Influencing Factors of the NDVI Based on the GEE Cloud Platform and Landsat Images. Remote Sensing, 15(20), 4980. https://doi.org/10.3390/rs15204980
- Finer, M., Novoa, S., Olexy, T., & Durand, L. (2017). La Minería Aurífera se Incrementa en la Zona de Amortiguamiento de la Reserva Nacional Tambopata. MAAP: 60. *Monitoring of the Andean Amazon Project*, 3.
- Lopez, M. (2017). Perú: 550 hectáreas fueron deforestadas en la Reserva Nacional Tambopata desde setiembre del 2015. MONGABAY (Periodismo Ambiental Independiente de Latinoamerica), 6.
- Mamani, A. J. P. (2021). Determinación de la relación entre los índices de vegetación y el cambio climático, haciendo una evaluación multitemporal de imágenes Landsat durante el periodo 1972—2018, en la laguna Paucarani Tacna. Universidad Privada de Tacna. http://repositorio.upt.edu.pe/handle/20.500.12969/1925
- Martínez, J., & Díaz, J., & Muñoz, F. (2010). Guía didáctica de Teledetección y Medio Ambiente. *Red Nacional de Teledetección Ambiental*, 124.
- Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress Forest. *Sensors*, 7, 2636-2651. https://doi.org/10.3390/s7112636

Melendres, M. (2018). Análisis de Series de Tiempo de los Índices de Vegetación EVI y NDVI a partir de Datos Imágenes del Sensor MODIS-TERRA (250 m) y el seguimiento de la producción y rendimiento de los cultivos agrícolas en la cuenca Chancay Lambayeque (2001—2014). FACULTAD DE INGENIERÍA AGRÓNOMA.

Moreno, R. (2013). Calculo de la tasa de deforestación anual en el periodo 2001-2011
en la provincia de Tambopata con imágenes de NDVI (MOD13) de MODIS,
mediante relación de ajuste de recta.
http://marte2.sid.inpe.br/col/dpi.inpe.br/marte2/2013/05.29.00.05/doc/p0865.pdf

Mozhaeva, S., & Shoshany, M. (2022). RELATIONSHIPS BETWEEN VEGETATION INDICES AND RAINFALL AND PET AT DIFFERENT TIME-LAGS: A STUDY AT A MEDITERRANEAN TO ARID GRADIENT. *The International* Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2022, 939-944. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-939-2022

- Nuñez, G. A. (2022). Estimación de la biomasa vegetal aérea mediante teledetección calibrada con un método destructivo en Cajatambo, Lima. Universidad Agraria La Molina.
- Pérez, D. D. J. (2007). Introducción a los Sensores Remotos—Aplicaciones en Geología. U.B.A, 9(45).
- Pérez, Mario R. Martínez Menes, & Reynoso, D. S. F. (2015). Priorización de áreas de intervención mediante análisis morfométrico e índice de vegetación. *Tecnología y ciencias del agua*, 6(1), Article 1. http://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/1211

Pérez, & Muñoz, A. L. (2006). Teledetección: Nociones y Aplicaciones.

Salas, C., Ene, L., Ojeda, N., & Soto, H. (2010). Métodos estadísticos paramétricos y no paramétricos para predecir variables de rodal basados en Landsat ETM+: Una comparación en un bosque de Araucaria araucana en Chile. *Bosque (Valdivia)*, *31*(3), 179-194. https://doi.org/10.4067/S0717-92002010000300002

Salinero, E. C. (2008). Teledeteccion ambiental. Grupo Planeta (GBS).

- Sobrino, J. A., Raissouni, N., Kerr, Y., Olioso, A., Olioso, A., & Belaid, A. (2000). Teledetección.
- Srivastava, A., Umrao, S., & Biswas, S. (2023). Exploring Forest Transformation by Analyzing Spatial-temporal Attributes of Vegetation using Vegetation Indices. International Journal of Advanced Computer Science and Applications, 14(5). https://dx.doi.org/10.14569/IJACSA.2023.01405114
- Yan, Y., Xin, Z., Bai, X., Zhan, H., Xi, J., Xie, J., & Cheng, Y. (2023). Analysis of growing season normalized difference vegetation index variation and its influencing factors on the Mongolian Plateau based on Google Earth Engine. Plants, 12(13), 2550. https://doi.org/10.3390/plants12132550

ANEXOS

ANEXO 1. Mapa NDVI de Landsat 5 para el año 2000

ANEXO 2. Mapa NDVI de Landsat 5 para el año 2001

ANEXO 3.Mapa NDVI de Landsat 5 para el año 2003

ANEXO 4. Mapa NDVI de Landsat 5 para el año 2004

ANEXO 5.Mapa NDVI de Landsat 5 para el año 2005

ANEXO 6.Mapa NDVI de Landsat 5 para el año 2006

ANEXO 7.Mapa NDVI de Landsat 5 para el año 2007

ANEXO 8.Mapa NDVI de Landsat 5 para el año 2008

152

ANEXO 9.Mapa NDVI de Landsat 5 para el año 2009

ANEXO 10. Mapa NDVI de Landsat 5 para el año 2010

ANEXO 11.Mapa NDVI de Landsat 5 para el año 2011

ANEXO 12.Mapa NDVI de Landsat 8 para el año 2013

ÍNDICE DE VEGETACIÓN DE DIFERENCIA NORMALIZADA-2014 - R.N.TAMBOPATA

ANEXO 14. Mapa NDVI de Landsat 8 para el año 2015

158

ANEXO 15.Mapa NDVI de Landsat 8 para el año 2016

ANEXO 16. Mapa NDVI de Landsat 8 para el año 2017

ANEXO 17.Mapa NDVI de Landsat 8 para el año 2018

161

ANEXO 18. Mapa NDVI de Landsat 8 para el año 2019

ANEXO 19. Mapa NDVI de Landsat 8 para el año 2020

ANEXO 20.Mapa NDVI de Landsat 8 para el año 2021

ANEXO 21. Mapa NDVI de Landsat 8 para el año 2022

166

ANEXO 23.Mapa de EVI Año 2001-Landsat 5

ANEXO 24.Mapa de EVI Año 2003-Landsat 5

168

ANEXO 27.Mapa de EVI Año 2006-Landsat 5

ANEXO 28.Mapa de EVI Año 2007-Landsat 5

ANEXO 30.Mapa de EVI Año 2011-Landsat 5

ANEXO 31. Mapa de EVI Año 2013-Landsat 8

ANEXO 33.Mapa de EVI Año 2015-Landsat 5

ANEXO 34. Mapa de EVI Año 2016-Landsat 8

ANEXO 35.Mapa de EVI Año 2017-Landsat 8

ANEXO 36. Mapa de EVI Año 2018-Landsat 8

ANEXO 37.Mapa de EVI Año 2019-Landsat 8

ANEXO 38. Mapa de EVI Año 2020-Landsat 8

ANEXO 39. Mapa de EVI Año 2021-Landsat 8

ANEXO 40.Mapa general del índice EVI periodo 2000-2021

ANEXO 41. Mapa general del índice NDVI periodo 2000-2022

repositorio.unap.edu.pe No olvide citar adecuadamente esta tesis

ANEXO 42. Resultado del cálculo del NDVI para el año 2002 con Landsat 5(no data).

186

Guaca

ANEXO 43.Resultado del cálculo del NDVI para el año 2012 con Landsat 5 (no data).

187

Guac

ANEXO 44.Resultado del cálculo del NDVI para el año 2000 con Landsat 5(problema de nubosidad)

188

ANEXO 45. Resultado del cálculo del NDVI para el año 2012 con Landsat 7 (problema de bandeado-excluido del análisis)

ANEXO 46. Resultado de la Tendencia NDVI para la reserva Nacional de Tambopata periodo 2000-2022

TENDENCIA NDVI 2000-2022 - RESERVA NACIONAL DE TAMBOPATA

190

420000

30000

TENDENCIA EVI 2000-2021 - RESERVA NACIONAL DE TAMBOPATA

Vicerrectorado de Investigación

DECLARACIÓN JURADA DE AUTENTICIDAD DE TESIS

Por el presente documento, Yo<u>Melissa</u> Juleisy Zapana Lope identificado con DNI<u>70257089</u> en mi condición de egresado de:

🛙 Escuela Profesional, 🗆 Programa de Segunda Especialidad, 🗆 Programa de Maestría o Doctorado

LINGENIERIA AGRICOLA

Informo que he elaborado el/la 🛛 Tesis o □ Trabajo de Investigación denominada: <u>VARIABILIDAD TEMPORAL DE LA VEGETACIÓN EN LA RESERUA NACIONAL.</u>

TRHBOPATA MEDIANTE LOS INDICES NOUL YEVI USANDO LA PLATAFORME

GOOGLE EARTH ENGINE PERIODO 2000 - 2022

Es un tema original.

Declaro que el presente trabajo de tesis es elaborado por mi persona y **no existe plagio/copia** de ninguna naturaleza, en especial de otro documento de investigación (tesis, revista, texto, congreso, o similar) presentado por persona natural o jurídica alguna ante instituciones académicas, profesionales, de investigación o similares, en el país o en el extranjero.

Dejo constancia que las citas de otros autores han sido debidamente identificadas en el trabajo de investigación, por lo que no asumiré como suyas las opiniones vertidas por terceros, ya sea de fuentes encontradas en medios escritos, digitales o Internet.

Asimismo, ratifico que soy plenamente consciente de todo el contenido de la tesis y asumo la responsabilidad de cualquier error u omisión en el documento, así como de las connotaciones éticas y legales involucradas.

En caso de incumplimiento de esta declaración, me someto a las disposiciones legales vigentes y a las sanciones correspondientes de igual forma me someto a las sanciones establecidas en las Directivas y otras normas internas, así como las que me alcancen del Código Civil y Normas Legales conexas por el incumplimiento del presente compromiso

Puno 24 de Junio del 2024

FIRMA (obligatoria)

Huella

Universidad Nacional del Altiplano Puno

AUTORIZACIÓN PARA EL DEPÓSITO DE TESIS O TRABAJO DE INVESTIGACIÓN EN EL REPOSITORIO INSTITUCIONAL

Por el presente documento, Yo <u>MEUSSA JULEISY</u> ZAPANA LOPE identificado con DNI <u>7025 7089</u> en mi condición de egresado de:

🗷 Escuela Profesional, 🗆 Programa de Segunda Especialidad, 🗆 Programa de Maestría o Doctorado

	ING	ENIER	LA AG	RICOLA				,
informo que he ela	borado el/la 🛛	Tesis o	🗆 🗆 Trabaj	jo de In	vestigación	denominada:		
" VARIABILIDAD	TEMPORAL	DE	LA VEGE	TACIÓN	EN LA	RESERVA	N	ACPONAL
TAMBOPATA	MEDIANTE	Los	INDICES	NDVI	Y EVI	GANAZU	LA	PLATAFORM
GOOGLE	EARTH E	NGIN	E PER	ogois	2000 - 7	2022		,,

para la obtención de 🗆 Grado, 🖾 Título Profesional o 🗆 Segunda Especialidad.

Por medio del presente documento, afirmo y garantizo ser el legítimo, único y exclusivo titular de todos los derechos de propiedad intelectual sobre los documentos arriba mencionados, las obras, los contenidos, los productos y/o las creaciones en general (en adelante, los "Contenidos") que serán incluidos en el repositorio institucional de la Universidad Nacional del Altiplano de Puno.

También, doy seguridad de que los contenidos entregados se encuentran libres de toda contraseña, restricción o medida tecnológica de protección, con la finalidad de permitir que se puedan leer, descargar, reproducir, distribuir, imprimir, buscar y enlazar los textos completos, sin limitación alguna.

Autorizo a la Universidad Nacional del Altiplano de Puno a publicar los Contenidos en el Repositorio Institucional y, en consecuencia, en el Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto, sobre la base de lo establecido en la Ley N° 30035, sus normas reglamentarias, modificatorias, sustitutorias y conexas, y de acuerdo con las políticas de acceso abierto que la Universidad aplique en relación con sus Repositorios Institucionales. Autorizo expresamente toda consulta y uso de los Contenidos, por parte de cualquier persona, por el tiempo de duración de los derechos patrimoniales de autor y derechos conexos, a título gratuito y a nivel mundial.

En consecuencia, la Universidad tendrá la posibilidad de divulgar y difundir los Contenidos, de manera total o parcial, sin limitación alguna y sin derecho a pago de contraprestación, remuneración ni regalía alguna a favor mío; en los medios, canales y plataformas que la Universidad y/o el Estado de la República del Perú determinen, a nivel mundial, sin restricción geográfica alguna y de manera indefinida, pudiendo crear y/o extraer los metadatos sobre los Contenidos, e incluir los Contenidos en los índices y buscadores que estimen necesarios para promover su difusión.

Autorizo que los Contenidos sean puestos a disposición del público a través de la siguiente licencia:

Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. Para ver una copia de esta licencia, visita: https://creativecommons.org/licenses/by-nc-sa/4.0/

En señal de conformidad, suscribo el presente documento.

24 del 2024 Puno

FIRMA (obligatoria)