ANEXO 3

MEMORIA DE CÁLCULO ESTRUCTURAL CON AISLADORES SÍSMICOS DEL HOSPITAL SAN JUAN DE DIOS DE AYAVIRI DE ACUERDO A LA NORMA E.030 2018.

- 4. PLANTEAMIENTO DE UN MODELO MATEMÁTICO CON AISLADORES SÍSMICOS.
- 4.1. MODELAMIENTO MATEMÁTICO CON AISLAMIENTO SÍSMICO DEL PABELLÓN A.

PREDIMENSIONAMIENTO DE ELEMENTOS ESTRUCTURALES DEL SISTEMA DE AISLAMIENTO.

Para la realización de la superestructura del modelo matemático del pabellón A, utilizaremos los mismos los elementos estructurales tales columnas, vigas y losas del sistema de base fija, adicionalmente a esto se incluirá un de nivel de aislamiento que contiene elementos estructurales como vigas de aislamiento, pedestales, capiteles y losa sólida.

• VIGAS PERALTADAS EN LA LOSA MACIZA

$$h = \frac{L}{10}; b = \frac{h}{2}$$
 (14)

Donde:

$$L = 7.35$$

Por tanto:

$$h = \frac{7.35}{10} = 0.735 \ m \ \cong 0.80 \ m$$

Además:

$$b = \frac{0.80}{2} = 0.40 \ m = 0.40 \ cm$$

Finalmente:

$$h = 0.80 m$$
 y $b = 0.40 m$

• PEDESTALES Y CAPITELES

h = 0.90 m

$$b = 1.0 * 1.0 m$$

• LOSA MACIZA

$$h_{L.Maciza} = \frac{L}{40}$$

Donde:

$$L = 7.35$$

Por tanto:

$$h_{L.Maciza} = \frac{7.35}{40} = 0.18 m$$

Redondeando:

$$h_{L.Maciza} = 0.18 m$$

• MUROS DE CORTE

e = 0.30 m

Elementos Estructurales del Sistema de Aislamiento Pab. A

ANÁLISIS ESTÁTICO.

Cargas Factorizadas o Amplificadas

Todos los elementos de la estructura sísmicamente aislada, incluidos los que no forman parte del sistema sismorresistente, deben ser diseñados utilizando las cargas sísmicas establecidas en esta Norma Técnica y las combinaciones de cargas adicionales para el diseño del sistema de aislamiento sísmico y para las pruebas de prototipos de unidades de aislamiento indicadas en el numeral 12.2 del artículo 12 de la RNE E.031.

a) Carga vertical promedio:

$$1,0 \text{ CM} + 0,5 \text{ CV}$$
 (15)

b) Carga vertical máxima:

$$1,25 (CM + CV) + 1,0 (CSH + CSV) + 0,2 CN$$
 (16)

c) Carga vertical mínima:

$$0.9 \,\mathrm{CM} - 1.0 \,(\mathrm{CSH} + \mathrm{CSV})$$
 (17)

Donde:

CM	: Carga muerta.
CV	: Carga viva.
CSH	: Carga sísmica horizontal.
CSV	: Carga sísmica vertical = $0,5 (1,5 \text{ ZS}) \text{ CM}$.
CN	: Carga de nieve.

PESO DE LA EDIFICACIÓN

En primer lugar, determinaremos el peso de la edificación utilizando el programa ETABS . La asignación de cargas vivas y cargas muertas serán las mismas que se asignaron al edificio de base fija, que se desarrollaron anteriormente. Para el cálculo del peso del Edificio incluiremos al modelo con base fija, una losa maciza, capiteles y vigas de aislamiento.

Figura A. 150

Modelamiento del Pabellón A, sin Aisladores con ETABS

Tabla A. 208

Factores Sísmicos Pab. A Según E.030 - 2018

CONCEPTO	FACTOR - TIPO	VALOR
Factor De Zona (Peligro Sísmico) SD	Z2	0.25

Factor De Zona (Peligro Sísmico) SMC	Z2	0.375
Perfil De Suelo	S2	1.20
Factor De Uso	U	1.00
Coeficiente De Reducción	R	6.00
Coeficiente C	С	2.50
Periodo Fijo (Etabs)	Т	0.33 s
Periodo Máximo	Tmax	3.0 s

Determinación de la Carga vertical máxima:

a) Carga vertical máxima:

$$PUmax = 1,25 (CM + CV) + 1,0 (CSH + CSV) + 0,2 CN$$
(18)

СМ	:	Carga Muerta.
CV	:	Cargas Viva.
CSH	:	Carga sísmica horizontal.
CSV	:	Carga sísmica Vertical = $0.5 (1.5 \text{ ZS}) \text{ CM}$.
CN	:	Carga de Nieve.

$$P = CM + 0.5CV + 0.25 CVT \dots E.030 - 2018$$
⁽¹⁹⁾

$$CSH = \frac{(ZUCS)}{R} * P \tag{20}$$

$$CSV = 0.5 (1.5 \times Z \times S) * CM$$
⁽²¹⁾

Tabla A. 209

Cargas De Gravedad En Servicio En Los Aisladores Pab. A

	Joint	Peso	СМ	CV	CVT	Carga de	Р	CSH	CSV	CARGA
Nivel	Label (To	Propio (Ton)	(Ton)	(Ton)	(Ton)	Nieve (Ton)	(Ton)	(Ton)	(Ton)	MAXIMA (Ton)

Base	3	42.92	22.73	6.61	2.36	0.43	69.55	9.66	14.77	117.80
Base	4	65.49	49.31	19.03	2.77	1.17	125.01	17.36	25.83	214.18
Base	5	67.24	48.86	19.20	3.00	1.19	126.45	17.56	26.12	216.79
Base	7	26.58	14.82	5.10	0.74	0.30	44.13	6.13	9.31	74.55
Base	8	86.94	67.50	26.20	4.13	1.65	168.57	23.41	34.75	289.45
Base	9	97.66	85.44	38.75	4.45	1.78	203.59	28.28	41.20	352.70
Base	10	99.45	83.81	41.48	4.53	1.82	205.13	28.49	41.23	356.67
Base	11	82.85	69.88	28.94	3.50	1.41	168.07	23.34	34.36	289.45
Base	12	77.71	60.83	28.56	3.26	1.31	153.64	21.34	31.17	265.73
Base	13	77.24	55.09	30.79	3.15	1.27	148.51	20.63	29.77	258.49
Base	14	60.19	47.00	22.48	2.01	0.80	118.93	16.52	24.12	205.40
Base	15	68.91	57.44	25.97	2.54	1.07	139.98	19.44	28.43	241.66
Base	16	47.42	32.21	9.64	2.94	0.40	85.18	11.83	17.92	145.08
Base	17	43.31	28.51	10.57	1.78	0.46	77.55	10.77	16.16	132.24
Base	18	52.46	25.30	13.20	2.39	0.41	84.95	11.80	17.49	146.04
Base	19	39.26	25.34	9.64	1.14	0.46	69.71	9.68	14.54	118.54
Base	20	35.83	13.69	5.30	2.62	0.00	52.83	7.34	11.14	90.28
Base	22	33.30	7.82	3.02	1.93	0.08	43.11	5.99	9.25	72.83
Base	23	38.03	17.35	7.07	2.73	-0.08	59.60	8.28	12.46	102.20
Base	26	97.49	50.19	22.90	2.91	1.69	159.86	22.20	33.23	272.63
Base	34	76.88	22.79	18.48	1.00	0.96	109.16	15.16	22.43	186.72
Base	54	113.56	64.34	32.46	3.22	1.98	194.93	27.07	40.03	334.47
Base	129	34.24	10.89	6.46	1.34	0.54	48.70	6.76	10.16	83.20
Base	187	69.77	10.05	11.09	2.21	1.14	85.92	11.93	17.96	146.52
Base	188	49.64	26.41	10.44	0.98	0.56	81.52	11.32	17.11	137.89
Base	43	57.08	16.88	10.01	0.94	0.98	79.19	11.00	16.64	133.96
Base	66	63.15	21.39	11.57	1.01	0.84	90.58	12.58	19.02	153.18

PUmax = 5, 140.95 Ton

CÁLCULO DE LOS DESPLAZAMIENTOS DE DISEÑO Y MÁXIMO.

a. PARÁMETROS

Debemos tener en cuenta los parámetros de la edificación para poder desarrollar el diseño de una edificación con aislamiento sísmico.

b. DESPLAZAMIENTO DE DISEÑO

$$D_M = \frac{S_{aM} \cdot T_M^2}{4\pi^2 B_M} \tag{22}$$

- S_{aM} : Ordenada del espectro elástico de pseudo aceleraciones correspondiente al sismo máximo considerado.
- T_M : Período efectivo de la estructura sísmicamente aislada, asociado al desplazamiento traslacional DM en la dirección de análisis.
- B_M : Factor de amortiguamiento, correspondiente a la razón entre la ordenada espectral para 5% del amortiguamiento crítico y la ordenada espectral para el amortiguamiento efectivo βM correspondiente al desplazamiento traslacional DM.
- D_M : Desplazamiento traslacional en el centro de rigidez del sistema de aislamiento sísmico, en la dirección de análisis.

$$S_{aM} = 1.5 ZCSg$$

(23)

 $S_{aM} = 1.5 \times 0.25 \times 2.5 \times 1.20 \times g = 1.125 g$

Tabla A. 210

Coeficiente De Amortiguamiento

COEFICIENTE DE AMORTIGUAMIE	NTO	B _M
Dispositivo HDP (alto amortiguamionto)	10%	1.20
Dispositivo IIDR (ano anoi tiguamento)		1.35
	20%	1.50
Dispositivo LRB (núcleo de plomo)	25%	1.60
	30%	1.70

Nota. Fuente: RNE E.031-2019

$B_M = 20 \%$ (Para dispositvos con Núcleo de plomo)

En esta investigación vamos a optar por un dispositivo con núcleo de plomo debido a que en el Perú es el más comercial.

$$D_M = \frac{S_{aM} \cdot T_M^2}{4\pi^2 B_M} \tag{24}$$

$$D_M = \frac{1.125 \times 3^2}{4\pi^2 \times 1.5} = 0.171 \ mt.$$

c. DESPLAZAMIENTO MÁXIMO TOTAL

El desplazamiento total (Dtm) de los elementos del sistema de aislamiento sísmico debe incluir el desplazamiento adicional debido a la torsión real y accidental, calculado con la distribución espacial de la rigidez lateral del sistema de aislamiento sísmico y la ubicación más desfavorable de la masa excéntrica.

$$D_{TM} = D_M \left[1 + y \frac{12e}{b^2 + d^2} \right]$$
(25)

Donde:

b : 19.31 Lado más corto de la edificación

d : 33.5 Lado mayor de la edificación

D_M: 17.1 cm (Desplazamiento de diseño)

y : 16.75 m Distancia del centro de rigidez al punto más alejado de la estructura

e : (33.5*0.05) = 1.675 Excentricidad, equivalente al 5% del lado mayor de la edificación.

Vista en Planta del Pabellón "A"

$$D_{TM} = 0.1709 \left[1 + (16.75) \frac{12(1.68)}{(19.30)^2 + (33.5)^2} \right]$$

 $D_{TM}=0.21\ m$

d. DETERMINAR LA RIGIDEZ HORIZONTAL

• RIGIDEZ HORIZONTAL DEL SISTEMA

Es necesario determinar la rigidez de cada uno de los dispositivos mediante:

$$K_h = P_{Umax} * \left(\frac{2\pi}{T_D}\right)^2 \tag{26}$$

Donde:

 K_h : Rigidez horizontal del dispositivo

 P_{Umax} : 5,139.67 Tn. Carga axial determinada

 T_D : 3.0 s Periodo Objetivo

$$K_{h} = P_{Umax} * \left(\frac{2\pi}{T_{D}}\right)^{2}$$

$$K_{h} = 5,139.67 \ tn * \left(\frac{2\pi}{3.0 \ s}\right)^{2}$$

$$K_{h} = 22.54 \ Mp.m$$

$$K_{h} = 22,540.73 \ tn/s2$$

e. DETERMINAR LA RIGIDEZ HORIZONTAL POR DISPOSITIVO

• DISPOSITIVOS (LRB - TIPO A)

$$K_{h} = P_{Umax} * \left(\frac{2\pi}{T_{D}}\right)^{2}$$
$$K_{h}^{A} = 356.83 Tn * \left(\frac{2\pi}{3.0 s}\right)^{2}$$
$$K_{h}^{A} = 356.67 (1000m \cdot s^{2} \cdot \left(\frac{1 Mpa}{1 000,000}\right)) * \left(\frac{2\pi}{3.0 s}\right)^{2}$$

$$K_{h}^{A} = 1.565 Mp.m$$

 $K_{h}^{A} = 1,564.53 \frac{tn}{s2} - \frac{KN}{m}$
 $K_{h}^{A} = 1.565 KN/mm$

f. DETERMINAR LA ALTURA DE CAUCHO LOS DISPOSITIVOS

Está determinado por la relación Desplazamiento de diseño – Altura del caucho del dispositivo equivalente a la deformación de corte directo $\Upsilon = 1.5$ (Equivalente).

D	_
	Ⅰ + ∽
	I

Sección de Aislador Sísmico con Núcleo de Plomo LRB

$$\gamma = \frac{D_D}{t_r}$$
(27)

$$t_r = \frac{D_D}{\gamma}$$
(28)

$$t_r : \text{Altura del caucho}$$
(28)

$$\gamma : 1.50 \qquad \text{Deformación de corte directa}$$

$$D_D : 0.171 \text{ m} \qquad \text{Desplazamiento de diseño}$$

$$t_r = \frac{0.171 \text{ m}}{1.50}$$

$$t_r = 0.114 m$$

g. DETERMINAR EL ÁREA REQUERIDA PARA EL DISPOSITIVO

Está determinado por la rigidez horizontal del dispositivo y es equivalente al Módulo de Corte del Caucho por el área total sometida a la compresión axial, entre la altura del caucho.

• ÁREA DEL DISPOSITIVO TIPO A

Vista en Planta de Aislador LRB Tipo A

$$K_h^A = \frac{G * A}{t_r} \tag{29}$$

$$A = \frac{t_r * K_h^A}{G}$$
(30)

K ^A h	:	1.565 Mpa.m	Rigidez horizontal en Mp.m
G	:	0.80 Mpa	Módulo de Corte del Caucho
tr	:	0.114 m	Altura total del caucho
A	:	0.223 m2	Área del Dispositivo sometida a compresión axial
D	:	0.53 m	Diámetro del Dispositivo sometida a compresión axial

h. PROPIEDADES MECÁNICAS DEL DISPOSITIVO TIPO "A" (0.53 m) RIGIDEZ COMPUESTA DEL SISTEMA

188

KH	:	42.24 KN/mm	Rigidez compuesta del sistema
n _A	:	27.00	Número de Dispositivos tipo A
K ^A h	:	1.56 KN/mm	Rigidez horizontal en Mp.m

• CÁLCULO DE LA ENERGÍA DISIPADA

WD	:	57.48 KN.m	Energía disipada
β	:	0.20	20 % coeficiente de amortiguamiento
D _M	:	0.17 m	Desplazamiento de diseño
K _{eff}	:	1.56 KN/mm	Rigidez horizontal efectiva
$W_D = 2$	$2\pi *$	$K_{eff} * D_D^2 * \beta$	(32)

• DETERMINAR LA FUERZA CARACTERISTICA

$Q_A = \frac{1}{4}$	• *	$\frac{w_D}{\left(D_D - D_y\right)}$	(33)
Dy	:	0.00 m	Donde inicialmente se asume que el
			desplazamiento de fluencia Dy es igual a
			cero
DD	:	0.17 m	Desplazamiento de diseño
WD	:	57.48 KN.m	Energía disipada
QA	:	84.04 KN	Fuerza característica

• PRIMERA APROXIMACIÓN DE VALORES DE K2 RIGIDEZ POST FLUENCIA

(31)

K_2^A	$=K_e^A$	l ff	$-\frac{Q_A}{D_D}$	(34)	
	QA	:	84.04 KN	Fuerza característica	
	K _{eff}	:	1,565 KN/m	Rigidez horizontal efectiva	
	DD	:	0.17 m	Desplazamiento de diseño	
	K ^A 2	:	1,073 KN/m	Rigidez post fluencia	
•	PRI INIC Asur K ^A ₁	ME CIA nie =	ERA APROXIM L. ndo que K ₂ es un 10 * K_2^A 1,073 KN/m	IACIÓN DE VALORES DE K1 RIGIDE 10% de K1 (35) Rigidez post fluencia	Z

K^A1 : 10,730 KN/m Rigidez inicial

• DESPLAZAMIENTO DE FLUENCIA

D ^A y	:	0.0087 m	Desplazamiento de fluencia	
K ₁	:	10,730 KN/m	Rigidez inicial	
K ₂	:	1,073 KN/m	Rigidez post fluencia	
QA	:	84.04 KN	Fuerza característica	
$D_y^A =$	= (1	$\frac{Q_A}{K_1^A - K_2^A)}$		(36)

• DETERMINAR LA FUERZA CARACTERÍSTICA.

$$Q = \frac{w_D}{4 * \left(D_D - D_y^A\right)} \tag{37}$$

QA	:	88.54 KN	Fuerza característica
WD	:	57.48 KN.m	Energía disipada
DD	:	0.171 m	Desplazamiento de diseño
D ^A y	:	0.009 m	Desplazamiento de fluencia

• HALLANDO LA RIGIDEZ POST FLUENCIA K2

K	$\frac{A}{2} =$	$= K_{eff}^A - \frac{Q_A}{D_D}$		(38)
QA	:	88.54 KN	Fuerza característica	
Keff	:	1,565 KN/m	Rigidez horizontal efectiva	
DD	:	0.17 m	Desplazamiento de diseño	
K ^A 2	:	1,047 KN/m	Rigidez post fluencia	
K ^A 2	:	1.047 KN/mm	Rigidez post fluencia	

• HALLANDO LA RIGIDEZ INICIAL DEL DISPOSITIVO K1

$$K_1^A = \frac{Q}{D_y} + K_2^A \tag{39}$$

- $\mathbf{Q}_{\mathbf{A}}$: 88.54 KN Fuerza característica
- $\mathbf{D}^{\mathbf{A}}_{\mathbf{y}}$: 0.009 m Desplazamiento de fluencia
- K^A₂ : 1,047 KN/m Rigidez post fluencia
- K^{A_1} : 11,222 KN/m Rigidez inicial
- K^A₁ : 11.222 KN/mm Rigidez inicial
- FUERZA DE FLUENCIA Fy.

$$F_y^A = Q_A + \left(K_2^A * D_y^A\right) \tag{40}$$

Fy	:	97.65 KN	Fuerza de fluencia
K ^A 2	:	1,047 KN/m	Rigidez post fluencia
D ^A y	:	0.009 m	Desplazamiento de fluencia
QA	:	88.54 KN	Fuerza característica

• RATIO DE RIGIDEZ.

r	:	0.0933	Ratio de rigidez	
K ^A 2	:	1,047 KN/m	Rigidez post fluencia	
K ^A 1	:	11,222 KN/m	Rigidez inicial	
$r = \frac{K_2}{K_1}$				(41)

• PERIODO REAL DEL SISTEMA.

$$T_D = 2\pi \sqrt{\frac{W/g}{K_H}} \tag{42}$$

$$K_H = (n)K_h^A + (n)K_h^B \tag{43}$$

K ^A h	:	1.56 KN/mm	Rigidez horizontal Efectiva	
n _A	:	27.00	Numero de Dispositivos tipo A	
K _H	:	42.12 kN/mm	Rigidez Horizontal del Sistema	
g	:	9810.00	Gravedad expresada en mm/s2.	
W	:	5,139 Tn	Peso estructural (Carga Estructura +	
			Carga Impuesta) sin amplificar	

TD	:	2.19 s	Periodo real del sistema de
			aislamiento

• FRECUENCIA ANGULAR DEL SISTEMA

$$\omega = \frac{2\pi}{T_{real}} \tag{44}$$

TD	:	2.19 s	Periodo real del sistema de
			aislamiento

ω : 2.867 rad/seg Frecuencia angular del sistema

• AMORTIGUAMIENTO EFECTIVO DE CADA AISLADOR.

$$C = \frac{W_D}{\pi * D_D^2 * \omega}$$
(45)

WD	:	57.48 KN.m	Energía disipada
DD	:	0.171 m	Desplazamiento de diseño
ω	:	2.867 rad/seg	Frecuencia Angular del Sistema
С	:	218.27 KN. seg/m	Amortiguamiento efectivo de cada aislador
С	:	0.218 KN.seg/mm	Amortiguamiento efectivo de cada aislador

Una vez realizado los cálculos para obtener las propiedades mecánicas del dispositivo tipo A, procedemos a realizar un cuadro de resumen con los valores que el programa ETABS requiere para efectuar el análisis.

Tabla A. 211

Propiedades	Mecánicas	de Aisla	ıdor Tipo A
-------------	-----------	----------	-------------

PROPIEDADES MECÁNICAS DE AISLADOR LRB EN EL PABELLÓN A				
K _{eff}	Effective Stiffness	Rigidez efectiva	1.56 KN/mm	
С	Effective Damping	Amortiguación efectiva	0.218 KN.seg/mm	
K ^A 2	Stiffness	Rigidez post fluencia	1.047 KN/mm	
Fy	Yield Strength	Fuerza de fluencia	97.653 KN	
r	Post Yield Stiffness Ratio	Razón de rigidez post rendimieto	0.09778	

ANÁLISIS DINÁMICO

MODELAMIENTO DEL PABELLÓN A CON AISLADOR TIPO LRB.

Para realizar el análisis Bilineal de la estructura aislada se utilizó el programa ETABS En el cual se ingresó el modelo estructural de la misma forma como se definió en el capítulo anterior, con todas las características geométricas, características de los materiales y propiedades de los elementos.

Figura A. 154

Modelado del Pabellón A con Aisladores Sísmicos.

Nota. Fuente: Etabs

DETALLE DEL MODELAMIENTO

Las variaciones de frecuencia de los aisladores son explícitamente modeladas utilizando "NLLink" o "propiedades de enlace" en español, con velocidad de amortiguación dependiente y exponentes no lineales, el elemento RUBER ISOLATOR se utiliza para modelar el aislador elastomérico con los datos obtenidos en la sección anterior resumidos en la Tabla N° 211.

Selección y Definición Del Tipo De Aislador

Edi	t Vie	w Define Di	raw Select As	ssign Analyze @ ① ② 🗐	Display Design 3-d Pla ele) Detailing	Options Too	Is Hel	lp • □ ℃.	□	📓 nd 🛛 I 🔹	🗌 • 丁	• 🔳 • =	∞ • C • D •	
ĺ.	· 6	9 41 1 8 4	X. 7 DI	m×I <u>M</u> IU	×%	= + 14 1g	× ×	BS	>\$\	1.4.5	1. 1/2 1/2	1. 1.	// 8	20QXX	ŝ (#
	E	evation View - 1	- Displacements (I	Peso Propio) (mm	1	8	Link Property	Data						:	×
							General								
							Link Prope	sty Name	AISL	ADOR DE B=20	Link Type	e	Rubbr	er Isolator \sim	
						_	Link Prope	arty Notes		Modify/Show Notes	P-Delta F	Parameters		Modify/Show	
	1	h Define Link Pr	operties			×	Total Mass ar	nd Weigh	t						
		Link Propertie	8	Click to			Mass		0.006	374 kN-s²/mm	Rota	stional Inert	ia 1	0 kN-mm-s²	
		AISLADOR	DE 8=20				Weight		6.374	3 kN	Rota	ational Inert	ia 2	0 kN-mm-s ²	
		AISLADOR DESLIZAD	DE B=20 - 2 OR	Α							Rota	ational Inert	ia 3	0 kN-mm-s ²	
		DISPOSITI	VO 47 CM VO 70	M	odfy/Show Property		Directional Pr	operties							
		DISPOSITI	VO DE 55 VO DE 65		Delete Presents		Direction	Fixed	NonLinear	Properties	Direction	Fixed	NonLinear	Properties	
		unki								Modify/Show for U1	🗌 🗌 R1			Modify/Show for R1	
					01/		🗹 U2			Modify/Show for U2	🗌 R2			Modify/Show for R2	
					UK		🗹 U3			Modify/Show for U3	🗌 R3			Modify/Show for R3	
					Cancel					Du All	Class Al				
-	(din	annragm Center	of Mass Uisplacem	nents						DX AL	Ciear Ai				
-	1.00-	1 de 4	▶ ▶ Reload	Apply	_					OK	Cancel				
ſ	_	Story	Diaphragm	Load	UX	UN				0.11					
- H -	,	AZOTEA	D1	SD-YY Max	37.118	124.416	0.000904		23	9064.22	19593.94	13120			_
ŀ			D1	SD-YY Max	36.507	122.091	0.000895		24	9458.87	19170.65	9470			
1	1	SER NIVEL													

Nota. Fuente: Etabs

Figura A. 156

Asignación de las Propiedades Mec. de los Aisladores en la Dir. X

TABS 2	1015 Ultimate 15.2.2 - MODELO BLOQUE A CON AISLADOR				- 0 X
File Edi	t View Define Draw Select Assign Analyze Display Design Detailing Opti	ions Tools Help	_		
📄 🂊	💾 🕫 🖓 🌈 🕨 🔍 🔍 🍳 🔍 🕄 🚱 🛯 s-d Plå el\$ 🕉 6-d 📥 🐺	⅀☑▣・▯・□ゞЩѱ	Tink/Support Directional Property	erties	×
• 👸 🗉	◇ \$ \$ \$ \$ \$ \$ \$ \$ * * * * * * * * * *		Identification		60 75 s
k II	Link Property Data	× ^{View}	Property Name	AISLADOR DE B=20	• X
%	General		Direction	U2	
$\overline{\mathbf{x}}$	Link Property Name AISLADOR DE 8=20 Link Type Rubber	r Isolator 🗸	Туре	Rubber Isolator	
N	Link Property Notes Modify/Show Notes P-Delta Parameters	Modify/Show	NonLinear	Yes	
[]	Tatal Mars and Weida		Linear Properties		
	Nass 0.006374 kN+32/mm Rotational Inertia 1	0 kN-mm-s ²	Effective Stiffness	1.56 kN/mm	
X	Weight 6.3743 kN Rotational Inertia 2	0 kN-mm-s ²	Effective Damping	0.218 kN-s/mm	
D	Rotational Inertia 3	0 kN-mm-s ²	Shear Deformation Location		_
	Directional Properties	🕅	Distance from End-J	0j mm	
	Direction Fixed NonLinear Properties Direction Fixed NonLinear	Properties	Nonlinear Properties		
L	☑ U1	Modify/Show for R1	Stiffness	1.047 kN/mm	
G	☑ U2	Modify/Show for R2	Yield Strength	97.653 kN	
	☑ U3 □ ☑ Modify/Show for U3 □ R3 □	Modify/Show for R3	Post Yield Stiffness Ratio	0.09327	
X					
	ho: All Clear All				
	OK Correct				
all	On Cancel		OK	Creat	
PS ^R X			UK	Carice	
ch ^R -4		X	VVVVV		$\neg \land \land \land$
N					
3-D View			X-7000 Y 4	40100 Z 13120 (mm) One Story	Global V Units

Nota. Fuente: Etabs

ETABS 2	015 Ultimate 15.2.2 - MODELO BLOQUE A CON AISLADOR		– ø ×
File Edit	View Define Draw Select Assign Analyze Display Design Detailing Options Tools Help		٠
	" ♀ ♀ ₽ ₽ ▶ ♥ ♥ ♥ ♥ ♥ ♥ ≥ ₩ ₩ > ₩ ₽ ₽ ₽ ₩ ₽ ₽ • ₽ • ₽ • ₽ ₩	This Contractional Properties X	
ă 🗆	▝▝▝▝▏\$'\$\$Z }ኇ▐₲ヽ▎▙▎Щヾ\$\$ ↓⋿⋪ ダクィ!\$≅₿\$\$\$ ₫₦₫	Identification	. Koj 72 27
	.ink Property Data X Vie	Property Name AISLADOR DE B=20	• X
%	General	Direction U3	
$\overline{\mathbf{x}}$	Link Type Rubber Isolator	Type Hubber Isolator	
53	Link Property Notes Modify/Show Notes P-Delta Parameters Modify/Show	NonLinear Tes	
[I]	Tatel Uses and Weida	Linear Properties	
F	Mass 0.006374 kN+s?/mm Rotational Inertia 1 0 kN+mm+s ²	Effective Stiffness 1.56 kN/mm	>
\times	Weight 6.3743 kN Rotational Inertia 2 0 kN-mm+2	Effective Damping 0.218 kN-s/mm	
	Rotational Inertia 3 0 kN-mm-e ²	Shear Deformation Location	
	Directional Properties	Distance from End-J 0 mm	
	Direction Fixed NonLinear Properties Direction Fixed NonLinear Properties	Nonlinear Properties	
L I	✓ U1 Modfy/Show for U1	Stiffness 1.047 kN/mm	
	U2 Image: Modify/Show for U2 R2 Image: Modify/Show for R2	Yield Strength 97.653 kN	
	V U3 Nodfy/Show for U3 R3 Modfy/Show for R3	Post Yield Stiffness Ratio 0.09327	
×			
III I	hix All Clear All		
1			
all	UK Cancel	OK Cancel	
PS ^R	N		
cir [®] -4			
N			$\langle X X \rangle$
3-D View		X -7000 Y 40100 Z 13120 (mm) One Story	✓ Global ✓ Units

Asignación de las Propiedades Mec. de los Aisladores en la Dir. Y.

Nota. Fuente: Etabs

Después, habiendo seleccionado los puntos en la base donde se colocarán los aisladores, se les asigna el elemento link correspondiente.

Finalmente, se seleccionan todos los puntos en la base y se les asigna un diafragma rígido.

FUNCIÓN ESPECTRAL

Una acción dinámica es aquella cuya variación en el tiempo es rápida y da origen a fuerzas de inercia comparables en magnitud con las fuerzas estáticas. Para realizar el análisis a una estructura es necesario definir su modelo mecánico y definir el movimiento del terreno, de modo que el análisis dinámico puede realizarse mediante procedimientos de análisis espectral o de tiempo historia.

Debido a la carencia de registro de los eventos sísmicos cercanos al lugar de implantación del Bloque "A" del Hospital de San juan de Dios de Ayaviri, el análisis dinámico se realizará con el espectro de respuesta.

Tabla A. 212Parámetros Sísmicos

Factores Sísmicos según E0.31 -2019

Z =	0.25	ZONA 2					
U =	1.00	ESENCIAL A1					
C =	2.50	TP < T < TL					
S =	1.20	S2					
R =	1.00	COEFICIENTE "R"					
SaM = 1.5 Z U C S g							

Tabla A. 213

Espectro de Respuesta Pab "A"

		Sa	SD - Sa	SD - Sa	SMC - Sa	SMC - Sa
(T)	С	E.030	E.031	E.031	E.031	E.031
		R=5.4	R=1	R=2	R=1	R=2
0.00	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.05	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.10	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.15	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.20	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.25	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.30	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.35	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.40	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.45	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.50	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.55	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.60	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.65	2.3077	0.1923	0.6923	0.3462	1.0385	0.5192
0.70	2.1429	0.1786	0.6429	0.3214	0.9643	0.4821
0.75	2.0000	0.1667	0.6000	0.3000	0.9000	0.4500
0.80	1.8750	0.1563	0.5625	0.2813	0.8438	0.4219
0.85	1.7647	0.1471	0.5294	0.2647	0.7941	0.3971
0.90	1.6667	0.1389	0.5000	0.2500	0.7500	0.3750
0.95	1.5789	0.1316	0.4737	0.2368	0.7105	0.3553
1.00	1.5000	0.1250	0.4500	0.2250	0.6750	0.3375

		Sa	SD - Sa	SD - Sa	SMC - Sa	SMC - Sa
(T)	С	E.030	E.031	E.031	E.031	E.031
		R=5.4	R=1	R=2	R=1	R=2
1.05	1.4286	0.1190	0.4286	0.2143	0.6429	0.3214
1.10	1.3636	0.1136	0.4091	0.2045	0.6136	0.3068
1.15	1.3043	0.1087	0.3913	0.1957	0.5870	0.2935
1.20	1.2500	0.1042	0.3750	0.1875	0.5625	0.2813
1.25	1.2000	0.1000	0.3600	0.1800	0.5400	0.2700
1.30	1.1538	0.0962	0.3462	0.1731	0.5192	0.2596
1.35	1.1111	0.0926	0.3333	0.1667	0.5000	0.2500
1.40	1.0714	0.0893	0.3214	0.1607	0.4821	0.2411
1.45	1.0345	0.0862	0.3103	0.1552	0.4655	0.2328
1.50	1.0000	0.0833	0.3000	0.1500	0.4500	0.2250
1.55	0.9677	0.0806	0.2903	0.1452	0.4355	0.2177
1.60	0.9375	0.0781	0.2813	0.1406	0.4219	0.2109
1.65	0.9091	0.0758	0.2727	0.1364	0.4091	0.2045
1.70	0.8824	0.0735	0.2647	0.1324	0.3971	0.1985
1.75	0.8571	0.0714	0.2571	0.1286	0.3857	0.1929
1.80	0.8333	0.0694	0.2500	0.1250	0.3750	0.1875
1.85	0.8108	0.0676	0.2432	0.1216	0.3649	0.1824
1.90	0.7895	0.0658	0.2368	0.1184	0.3553	0.1776
1.95	0.7692	0.0641	0.2308	0.1154	0.3462	0.1731
2.00	0.7500	0.0625	0.2250	0.1125	0.3375	0.1688
2.05	0.7139	0.0595	0.2142	0.1071	0.3212	0.1606
2.10	0.6803	0.0567	0.2041	0.1020	0.3061	0.1531
2.15	0.6490	0.0541	0.1947	0.0973	0.2920	0.1460
2.20	0.6198	0.0517	0.1860	0.0930	0.2789	0.1395
2.25	0.5926	0.0494	0.1778	0.0889	0.2667	0.1333
2.30	0.5671	0.0473	0.1701	0.0851	0.2552	0.1276
2.35	0.5432	0.0453	0.1630	0.0815	0.2445	0.1222
2.40	0.5208	0.0434	0.1563	0.0781	0.2344	0.1172
2.45	0.4998	0.0416	0.1499	0.0750	0.2249	0.1125
2.50	0.4800	0.0400	0.1440	0.0720	0.2160	0.1080

		Sa	SD - Sa	SD - Sa	SMC - Sa	SMC - Sa
(T)	С	E.030	E.031	E.031	E.031	E.031
		R=5.4	R=1	R=2	R=1	R=2
2.55	0.4614	0.0384	0.1384	0.0692	0.2076	0.1038
2.60	0.4438	0.0370	0.1331	0.0666	0.1997	0.0999
2.65	0.4272	0.0356	0.1282	0.0641	0.1922	0.0961
2.70	0.4115	0.0343	0.1235	0.0617	0.1852	0.0926
2.75	0.3967	0.0331	0.1190	0.0595	0.1785	0.0893
2.80	0.3827	0.0319	0.1148	0.0574	0.1722	0.0861
2.85	0.3693	0.0308	0.1108	0.0554	0.1662	0.0831
2.90	0.3567	0.0297	0.1070	0.0535	0.1605	0.0803
2.95	0.3447	0.0287	0.1034	0.0517	0.1551	0.0776
3.00	0.3333	0.0278	0.1000	0.0500	0.1500	0.0750

Espectro De Respuesta De Pseudo-Aceleraciones – SMC

VERIFICACIÓN DE RESULTADOS DEL SISTEMA DE AISLACIÓN

Ante una acción exterior, la respuesta de la estructura dependerá de sus modos de vibrar y sus respectivas frecuencias o períodos; los períodos de vibración dependen de las características geométricas, de la rigidez y de la masa que la estructura opone al movimiento.

Se ha obtenido los períodos y modos de vibración, cabe señalar que el uso de aisladores concentra la vibración de la edificación prácticamente en un solo modo por dirección.

Tabla A. 214

Periodos Y Modos De Vibración.

Casa	Mode	Period	UV	UV	DZ	Sum	Sum	Sum
Case	Nioue	(seg.)	UA	U1	κz	RX	RY	RZ
Modal	1	1.867	0.007	0.949	0.010	0.007	0.000	0.010
Modal	2	1.855	0.919	0.010	0.037	0.007	0.007	0.047
Modal	3	1.725	0.040	0.006	0.912	0.008	0.012	0.959
Modal	4	0.263	0.000	0.001	0.000	0.933	0.015	0.959
Modal	5	0.171	0.000	0.000	0.000	0.934	0.241	0.959
Modal	6	0.136	0.000	0.000	0.000	0.937	0.940	0.959
Modal	7	0.074	0.000	0.000	0.000	0.939	0.940	0.959
Modal	8	0.005	0.022	0.010	0.000	0.957	0.979	0.959
Modal	9	0.005	0.011	0.023	0.000	0.996	0.997	0.959

CONTROL DE DESPLAZAMIENTOS Y LA DISTORSIÓN DE PISO O DERIVAS

La norma E-030 2018 nos menciona que para estructuras regulares, los desplazamientos últimos laterales se calculan multiplicando por 0.75 R los resultados obtenidos del análisis lineal elástico con las solicitaciones sísmicas reducidas y para estructuras irregulares, los desplazamientos últimos laterales se calculan multiplicando por 0.85 R a los resultados obtenidos del análisis lineal

elástico, el edificio de base aislada, para calcular los desplazamientos últimos laterales de la superestructura se multiplicará por el factor de reducción R a los resultados obtenidos del análisis lineal sin importar si es regular o irregular, los resultados se muestran en las figuras A.161, figura A.162 y tabla A. 215, en donde claramente se observa los máximos desplazamientos en el Edifico de base aislada y el cual es absorbido por los aisladores.

La deriva máxima de entrepiso correspondiente con el factor de reducción R=1, no debe exceder 0,0035.

Figura A. 161

Desplazamientos en la dirección X-X Pab. A (Etabs)

Tabla A. 215

Cuadro de Desplazamientos y Derivas en la dirección X-X

	Dianh	Load	UV	Altura	Deriva	Deriva	Norma
Story	Diapi		0.4	Altura	Elástica	Inelástica	E031
	ragm	Case/Combo	mm	mm	Δ	$\Delta \mathbf{x} \mathbf{R}$	<0.0035
Nivel 3	D1	SD-X Max	121.22	3650	3.61x10 ⁻⁴	3.61x10 ⁻⁴	OK
Nivel 2	D1	SD-X Max	119.90	3700	6.08x10 ⁻⁴	6.08x10 ⁻⁴	OK
Nivel 1	D1	SD-X Max	117.65	3700	2.65x10 ⁻⁴	2.65x10 ⁻⁴	OK
Losa Rig.	D4	SD-X Max	116.67				

Gráfico de Desplazamientos en la Dirección Y-Y Pab. A

Figura A. 164

Desplazamientos en la Dirección Y-Y Pab. A (Etabs)

Tabla A. 216

Cuadro de Desplazamientos y Derivas en la Dirección Y-Y

Story	Diap hrag m	Load Case/ Com bo	UY mm	Altura mm	Deriva Elástica A	Deriva Inelástica ∆xR	Norma E031 <0.003 5
Nivel 3	D1	SD-Y Max	124.42	3650	6.38x10 ⁻⁴	6.38x10 ⁻⁴	OK
Nivel 2	D1	SD-Y Max	122.09	3700	7.11x10 ⁻⁴	7.11x10 ⁻⁴	OK
Nivel 1	D1	SD-Y Max	119.46	3700	7.41x10 ⁻⁴	7.41x10 ⁻⁴	OK
Losa Rig.	D4	SD-Y Max	116.72				

4.2. MODELAMIENTO MATEMÁTICOS CON AISLADORES SÍSMICO DEL PABELLÓN B.

PREDIMENSIONAMIENTO DE ELEMENTOS ESTRUCTURALES DEL SISTEMA DE AISLAMIENTO.

• VIGAS PERALTADAS EN LA LOSA MACIZA

De la ecuación (14)

$$h = \frac{L}{10} ; \ b = \frac{h}{2} \tag{46}$$

Donde:

$$L = 7.35$$

Por tanto:

$$h = \frac{7.35}{10} = 0.735 \ m \ \cong 0.80 \ m$$

Además:

$$b = \frac{0.80}{2} = 0.40 \ m = 0.40 \ cm$$

Finalmente:

$$h = 0.80 m$$
 y $b = 0.40 m$

• PEDESTALES Y CAPITELES

$$h = 0.90 m$$

 $b = 1.0 * 1.0 m$

• LOSA MACIZA

$$h_{L\,Maciza} = \frac{L}{40}$$

Donde:

$$L = 7.35$$

Por tanto:

$$h_{L.Maciza} = \frac{7.35}{40} = 0.18 m$$

Redondeando:

$$h_{L.Maciza} = 0.18 m$$

• MUROS DE CORTE

$$e = 0.30 m$$

Elementos Estructurales del Sistema de Aislamiento Pab. B

Con estos nuevos elementos estructurales crearemos en el programa ETABS un nuevo modelo matemático, para la definición de materiales y elementos estructurales usaremos los mismos pasos que se usó en los modelos matemáticos con base fija.

ANÁLISIS ESTÁTICO.

CARGAS FACTORIZADAS O AMPLIFICADAS

a) Carga vertical promedio:

$$1,0 \text{ CM} + 0,5 \text{ CV}$$
 (47)

b) Carga vertical máxima:

$$1,25 (CM + CV) + 1,0 (CSH + CSV) + 0,2 CN$$
 (48)

c) Carga vertical mínima:

$$0.9 \text{ CM} - 1.0 (\text{CSH} + \text{CSV})$$
 (49)

Donde:

CM : Carga muerta.

CV	: Carga viva.
CSH	: Carga sísmica horizontal.
CSV	: Carga sísmica vertical = 0,5 (1,5 ZS) CM
CN	: Carga de nieve.

PESO DE LA EDIFICACIÓN

En primer lugar, determinaremos el peso de la edificación utilizando el programa ETABS . La asignación de cargas vivas y cargas muertas serán las mismas que se asignaron al edificio de base fija, que se desarrollaron anteriormente. Para el cálculo del peso del Edificio incluiremos al modelo con base fija, una losa maciza, capiteles y vigas de aislamiento.

Figura A. 166

Modelamiento del Pabellón B con Aisladores con ETABS

Tabla A. 217

Factores de Sísmicos Pabellón B según E.030 -2018

CONCEPTO	FACTOR - TIPO	VALOR
Factor De Zona (Peligro Sísmico) SD	Z2	0.25
Factor De Zona (Peligro Sísmico) SMC	Z2	0.375
Perfil De Suelo	S2	1.20

CONCEPTO	FACTOR - TIPO	VALOR
Factor De Uso	U	1.00
Coeficiente De Reducción	R	5.40
Coeficiente C	С	6.00
Periodo Fijo (Etabs)	Т	2.50
Periodo Máximo	Tmax	0.183 s
Factor De Zona (Peligro Sísmico) SD	Z2	3.0 s

En este punto determinaremos la Carga vertical máxima:

a) Carga vertical máxima:

$$PUmax = 1,25 (CM + CV) + 1,0 (CSH + CSV) + 0,2 CN$$
 (50)

	СМ	:	Carga Muerta.	
	CV	:	Cargas Viva.	
	CSH	:	Carga sísmica horizontal.	
	CSV	:	Carga sísmica Vertical = 0.5 (1.5 ZS) CM.	
	CN	:	Carga de Nieve.	
$P = CM + 0.5CV + 0.25 CVT \dots \dots E.030 - 2018 $ (51)				

$$CSH = \frac{(ZUCS)}{R} * P \tag{52}$$

$$CSV = 0.5 (1.5 \times Z \times S) * CM$$
(53)

Tabla A. 218

Cargas De Gravea	lad En Servicio	En Los Aislad	dores Pab. B

Nivel	Joint Label	Peso Propio	CM (Ton)	CV (Ton)	CVT (Ton)	Carga de Nieve	P (Ton)	CSH (Ton)	CSV (Ton)	CARGA MÁXIMA
		(Ton)	() . – .			(Ton)		· · · ·		(10n)
Base	1	27.11	6.71	2.87	1.13	0.74	35.54	4.44	7.61	59.48
Base	2	28.02	8.22	3.82	1.21	0.78	38.45	4.81	8.15	64.71
Base	3	27.87	8.28	3.83	1.20	0.78	38.36	4.79	8.13	64.55
Base	4	27.05	6.72	2.87	1.13	0.74	35.49	4.44	7.60	59.40
Base	5	30.79	12.42	5.02	2.24	0.90	46.28	5.79	9.72	78.78
Base	6	27.15	11.38	4.61	2.08	0.79	41.36	5.17	8.67	70.53
Base	7	31.82	15.06	6.61	2.34	0.95	50.77	6.35	10.55	86.87
Base	8	28.55	13.62	6.13	2.14	0.82	45.77	5.72	9.49	78.42
Base	9	31.64	15.14	6.63	2.33	0.94	50.68	6.33	10.53	86.73
Base	10	28.43	13.66	6.15	2.13	0.82	45.69	5.71	9.47	78.30
Base	11	29.96	12.04	5.06	2.07	0.83	45.04	5.63	9.45	76.65
Base	12	27.35	11.51	4.60	2.13	0.81	41.69	5.21	8.74	71.10
Base	13	48.71	31.55	10.85	2.70	1.08	86.36	10.80	18.06	146.34
Base	14	47.38	29.94	10.42	2.61	1.04	83.18	10.40	17.40	140.94
Base	15	65.20	58.13	18.55	2.91	1.16	133.34	16.67	27.75	225.65
Base	16	74.09	65.31	28.45	3.10	1.24	154.40	19.30	31.36	264.60
Base	17	72.47	72.18	28.05	2.98	1.20	159.42	19.93	32.55	272.31
Base	18	75.96	48.62	15.72	2.82	1.08	133.15	16.64	28.03	223.80
Base	19	53.53	55.83	16.30	2.01	0.80	118.01	14.75	24.61	199.11
Base	20	69.69	63.05	27.94	2.86	1.15	147.42	18.43	29.87	252.94
Base	21	69.72	70.75	24.98	2.83	1.16	153.66	19.21	31.60	261.38
Base	22	52.86	57.74	11.49	2.56	1.02	116.98	14.62	24.88	195.52
Base	23	26.28	11.52	4.87	0.92	0.36	40.47	5.06	8.51	68.13
Base	24	41.70	30.39	11.16	2.11	0.84	78.20	9.78	16.22	132.86
Base	25	22.67	9.40	4.00	1.49	0.59	34.45	4.31	7.22	58.60
Base	26	44.75	32.51	8.05	3.52	1.41	82.17	10.27	17.38	138.98
Base	27	31.88	22.92	3.98	1.97	0.79	57.28	7.16	12.33	95.58
Base	28	13.92	4.07	1.85	0.57	0.22	19.06	2.38	4.05	31.99
Base	29	32.10	20.71	4.80	2.09	0.74	55.72	6.97	11.88	93.60
Base	30	20.36	8.36	0.72	0.95	0.11	29.31	3.66	6.46	48.13
Base	31	24.70	16.29	2.90	1.33	0.44	42.76	5.35	9.22	71.17
Base	32	20.15	8.45	0.85	0.96	0.11	29.27	3.66	6.44	48.13
Base	33	25.20	10.65	1.58	1.27	-0.05	36.95	4.62	8.07	61.05
Base	34	38.46	18.56	7.96	2.94	1.18	61.74	7.72	12.83	105.68
Base	35	41.32	24.28	10.55	1.80	0.71	71.32	8.92	14.76	121.25
Base	36	30.56	13.25	5.79	1.98	0.56	47.20	5.90	9.86	80.34
Base	50	51.89	9.52	6.42	0.73	0.20	64.81	8.10	13.82	107.67
Base	51	56.74	7.37	6.00	0.88	0.31	67.33	8.42	14.42	111.64
Base	52	51.50	13.28	12.66	0.93	0.44	71.35	8.92	14.58	121.55
Base	57	48.08	14.79	13.22	0.97	0.44	69.73	8.72	14.15	119.28
Base	66	73.31	19.19	14.56	1.45	0.63	100.14	12.52	20.81	169.09
Base	67	30.85	18.84	5.35	1.22	0.49	52.67	6.58	11.18	88.19
Base	70	81.57	76.73	23.96	4.09	1.63	171.30	21.41	35.62	290.29
Base	71	43.04	15.16	16.85	1.07	0.50	66.89	8.36	13.10	116.71
Base	72	27.78	26.66	4.40	0.90	0.40	56.86	7.11	12.25	94.10
Base	73	43.86	18.09	17.86	1.20	0.51	71.18	8.90	13.94	124.19
Base	58	84.45	36.03	12.05	4.08	1.63	127.53	15.94	27.11	214.14
Base	59	97.88	97.49	39.70	4.72	1.89	216.40	27.05	43.96	371.12

Nivel	Joint Label	Peso Propio (Ton)	CM (Ton)	CV (Ton)	CVT (Ton)	Carga de Nieve (Ton)	P (Ton)	CSH (Ton)	CSV (Ton)	CARGA MÁXIMA (Ton)
Base	74	43.44	12.80	14.52	0.73	0.39	63.68	7.96	12.65	110.05
Base	75	43.53	26.79	12.56	0.87	0.70	76.81	9.60	15.82	130.24
Base	76	95.31	102.41	38.58	4.52	1.81	218.14	27.27	44.49	<mark>373.13</mark>
Base	77	82.22	75.69	24.51	4.13	1.65	171.20	21.40	35.53	290.45
Base	78	100.99	40.68	16.28	4.61	1.89	150.97	18.87	31.88	254.33

PUmax = 7,299.79 Ton

CÁLCULO DE LOS DESPLAZAMIENTOS DE DISEÑO Y MÁXIMO.

a. PARÁMETROS

Debemos tener en cuenta los parámetros de la edificación para poder desarrollar el diseño de una edificación con aislamiento sísmico.

b. DESPLAZAMIENTO DE DISEÑO

$$D_M = \frac{S_{aM} \cdot T_M^2}{4\pi^2 B_M} \tag{53}$$

- S_{aM} : Ordenada del espectro elástico de pseudo aceleraciones correspondiente al sismo máximo considerado.
- T_M : Período efectivo de la estructura sísmicamente aislada, asociado al desplazamiento traslacional DM en la dirección de análisis.
- B_M : Factor de amortiguamiento, correspondiente a la razón entre la ordenada espectral para 5% del amortiguamiento crítico y la ordenada espectral para el amortiguamiento efectivo βM correspondiente al desplazamiento traslacional DM.
- D_M : Desplazamiento traslacional en el centro de rigidez del sistema de aislamiento sísmico, en la dirección de análisis.

$$S_{aM} = 1.5 ZCSg \tag{54}$$

 $S_{aM} = 1.5 \times 0.25 \times 2.5 \times 1.20 \times g = 1.125 g$

Tabla A. 219

Coeficiente De Amortiguamiento

COEFICIENTE DE AMORTIGUAMIENTO	B_M	
Dispositivo HDR (alto amortiguamiento)	10%	1.20
Dispositivo fibre (arto amor iguamiento)	15%	1.35
	20%	1.50
Dispositivo LRB (núcleo de plomo)	25%	1.60
	30%	1.70

Nota. Fuente: RNE E.031-2018

$B_M = 20 \%$ (Para dispositvos con Núcleo de plomo)

En esta investigación vamos a optar por un dispositivo con núcleo de plomo debido a que en el Perú es el más comercial.

$$D_M = \frac{S_{aM} \cdot T_M^2}{4\pi^2 B_M} \tag{55}$$

$$D_M = \frac{1.125 \times 3^2}{4\pi^2 \times 1.5} = 0.171 \, mt.$$

c. DESPLAZAMIENTO MÁXIMO TOTAL

El desplazamiento total (Dtm) de los elementos del sistema de aislamiento sísmico debe incluir el desplazamiento adicional debido a la torsión real y accidental, calculado con la distribución espacial de la rigidez lateral del sistema de aislamiento sísmico y la ubicación más desfavorable de la masa excéntrica.

$$D_{TM} = D_M \left[1 + y \frac{12e}{b^2 + d^2} \right]$$
(56)

Donde:

b	: 19.22 Lado más corto de la edificación
d	: 53.78 Lado mayor de la edificación
D _M	: 17 cm (Desplazamiento de diseño)
у	: 26.89 m Distancia del centro de rigidez al punto más alejado
	de la estructura

e : (53.78*0.05) = 2.69 Excentricidad, equivalente al 5% del lado mayor de la edificación.

Figura A. 167

Vista En Planta Del Pabellón "B"

$$D_{TM} = 0.17 \left[1 + (26.89) \frac{12(2.69)}{(19.22)^2 + (53.78)^2} \right]$$

 $D_{TM}=0.22\ m$

d. DETERMINAR LA RIGIDEZ HORIZONTAL

• RIGIDEZ HORIZONTAL DEL SISTEMA

Es necesario determinar la rigidez de cada uno de los dispositivos mediante:

$$K_h = P_{Umax} * \left(\frac{2\pi}{T_D}\right)^2 \tag{57}$$

Donde:

 K_h : Rigidez horizontal del dispositivo P_{Umax} : 7,299.79 Tn. Carga axial determinada T_D : 3.00 s Periodo Objetivo

$$K_{h} = P_{Umax} * \left(\frac{2\pi}{T_{D}}\right)^{2}$$
$$K_{h} = 7,299.79 \ tn * \left(\frac{2\pi}{3.0 \ s}\right)^{2}$$
$$K_{h} = 32.02 \ Mp. \ m$$

$$K_h = 32,020.46 \ tn/s2$$

e. DETERMINAR LA RIGIDEZ HORIZONTAL POR DISPOSITIVODISPOSITIVOS (LRB TIPO A)

Carga Axial = 373.13 tn (Redondeando)

$$K_{h} = P_{Umax} * \left(\frac{2\pi}{T_{D}}\right)^{2}$$

$$K_{h}^{A} = 373.13 Tn * \left(\frac{2\pi}{2.5 s}\right)^{2}$$

$$K_{h}^{A} = 373.13 (1000m \cdot s^{2} \cdot \left(\frac{1 Mpa}{1 000,000}\right)) * \left(\frac{2\pi}{2.5 s}\right)^{2}$$

$$K_{h}^{A} = 1.637 Mp.m$$

$$K_{h}^{A} = 1,636.73 \frac{tn}{s2} - \frac{KN}{m}$$

f. DETERMINAR LA ALTURA DE CAUCHO LOS DISPOSITIVOS

Está determinado por la relación Desplazamiento de diseño – Altura del caucho del dispositivo equivalente a la deformación de corte directo $\Upsilon = 1.5$ (Equivalente)

Sección de Aislador Sísmico con Núcleo de Plomo LRB

$$\gamma = \frac{D_D}{t_r}$$

$$t_r = \frac{D_D}{\gamma}$$

 t_r : Altura del caucho

γ	: 1.50	Deformación de corte directa
D_D	: 0.171 m	Desplazamiento de diseño
		$t_r = \frac{0.171 m}{1.50}$

$$t_r = 0.114 m$$

g. DETERMINAR EL ÁREA REQUERIDA PARA EL DISPOSITIVO

Está determinado por la rigidez horizontal del dispositivo y es equivalente al Módulo de Corte del Caucho por el área total sometida a la compresión axial, entre la altura del caucho.

• ÁREA DEL DISPOSITIVO TIPO A

Vista en planta de Aislador LRB tipo A

$$K_h^A = \frac{G * A}{t_r} \tag{58}$$

$$A = \frac{t_r * K_h^A}{G}$$
(59)

D	:	0.54 m	Diámetro del Dispositivo sometida a compresión axial
A	:	0.233 m2	Area del Dispositivo sometida a compresión axial
			<u> </u>
tr	:	0.114 m	Altura total del caucho
G	:	0.80 Mpa	Módulo de Corte del Caucho
K ^A h	:	1.637 Mpa.m	Rigidez horizontal en Mp.m

h. PROPIEDADES MECÁNICAS DEL DISPOSITIVO TIPO "A" (0.54m)

• RIGIDEZ COMPUESTA DEL SISTEMA

$$K_H = (n)K_h^A \tag{60}$$

K ^A h	:	1.637 KN/mm	Rigidez horizontal	en Mp.m
------------------	---	-------------	--------------------	---------

- **n**_A : 53 número de Dispositivos tipo A
- K_H : 86.75 KN/mm Rigidez compuesta del sistema
- CÁLCULO DE LA ENERGÍA DISIPADA

$$W_D = 2\pi * K_{eff} * D_D^2 * \beta$$
(61)

WD	:	60.13 KN.m	Energía disipada
β	:	0.20	20 % coeficiente de amortiguamiento
DD	:	0.17 m	Desplazamiento de diseño
K _{eff}	:	1.637 KN/mm	Rigidez horizontal efectiva

• DETERMINAR LA FUERZA CARACTERÍSTICA

$$Q_{A} = \frac{w_{D}}{4 * (D_{D} - D_{y})}$$

$$D_{y} : 0.00 \text{ m}$$

$$D_{y} : 0.00 \text{ m}$$

$$D_{y} : 0.17 \text{ m}$$

$$M_{D} : 0.17 \text{ m}$$

$$M_{D} : 60.13$$

• PRIMERA APROXIMACIÓN DE VALORES DE K2 RIGIDEZ POST FLUENCIA

$$K_2^A = K_{eff}^A - \frac{Q_A}{D_D} \tag{63}$$

K ^A 2	:	1,123 KN/m	Rigidez post fluencia
DD	:	0.17 m	Desplazamiento de diseño
K _{eff}	:	1,637 KN/m	Rigidez horizontal efectiva
QA	:	87.92 KN	Fuerza característica

• PRIMERA APROXIMACIÓN DE VALORES DE K1 RIGIDEZ INICIAL.

Asumiendo que K2 es un 10% de K1

$$K_1^A = 10 * K_2^A \tag{64}$$

 $\mathbf{K^{A}_{2}}$: 1,123 KN/m Rigidez post fluencia

K^A1 : 11,225 KN/m Rigidez inicial

• DESPLAZAMIENTO DE FLUENCIA

DAy	:	0.0087 m	Desplazamiento de fluencia	
\mathbf{K}_1	:	11.225 KN/m	Rigidez inicial	
K ₂	:	1,123 KN/m	Rigidez post fluencia	
QA	:	87.92 KN	Fuerza característica	
$D_y^A =$	(<i>K</i>	$\frac{\boldsymbol{Q}_A}{\frac{A}{1}-\boldsymbol{K}_2^A)}$		(65)

• DETERMINAR LA FUERZA CARACTERÍSTICA.

$$Q = \frac{W_D}{4 * \left(D_D - D_y^A\right)} \tag{66}$$

 $\mathbf{D}^{\mathbf{A}}_{\mathbf{y}}$: 0.009 m Desplazamiento de fluencia

QA	:	92.63 KN	Fuerza característica
WD	:	60.13 KN.m	Energía disipada
DD	:	0.171 m	Desplazamiento de diseño

• HALLANDO LA RIGIDEZ POST FLUENCIA K2

$K_2^A = K$	A eff	$-\frac{Q_A}{D_D}$		(67)
QA	:	92.63 KN	Fuerza característica	
Keff	:	1,637 KN/m	Rigidez horizontal efectiva	
DD	:	0.17 m	Desplazamiento de diseño	
K ^A 2	:	1,095 KN/m	Rigidez post fluencia	
K ^A 2	:	1.095 KN/mm	Rigidez post fluencia	

• HALLANDO LA RIGIDEZ INICIAL DEL DISPOSITIVO K1

K_1^A	=	$\frac{Q}{D_y} + K_2^A$		(68)
QA	:	92.63 KN	Fuerza característica	
D ^A y	:	0.009 m	Desplazamiento de fluencia	
K ^A 2	:	1,095 KN/m	Rigidez post fluencia	

- K^{A_1} : 11,740KN/m Rigidez inicial
- K^{A_1} : 11.740 KN/mm Rigidez inicial
- FUERZA DE FLUENCIA F_y.

$$F_y^A = Q_A + \left(K_2^A * D_y^A\right) \tag{69}$$

$\mathbf{F}_{\mathbf{y}}$:	102.16 KN	Fuerza de fluencia
K ^A 2	:	1,095 KN/m	Rigidez post fluencia
D ^A y	:	0.009 m	Desplazamiento de fluencia
QA	:	92.63 KN	Fuerza característica

• RATIO DE RIGIDEZ.

$$r = \frac{K_2}{K_1} \tag{70}$$

r	:	0.0933	Ratio de rigidez
K ^A 2	:	1,095 KN/m	Rigidez post fluencia
K ^A 1	:	11.740 KN/m	Rigidez inicial

• PERIODO REAL DEL SISTEMA.

$$T_D = 2\pi \sqrt{\frac{W/g}{K_H}}$$
(71)

(72)

- $K_H = (n)K_h^A + (n)K_h^B$
 - K^Ah : 1.64 KN/mm Rigidez horizontal Número de Dispositivos tipo A : 53.00 n_A K_H Rigidez Horizontal del Sistema : 8.85 TN.mm : 9800.00 Gravedad expresada en mm/s2. g : 7,300 Tn Peso estructural (Carga Estructura W + Carga Impuesta) sin amplificar

TD	:	1.82 s	Periodo real del sistema de
			aislamiento

• FRECUENCIA ANGULAR DEL SISTEMA

$$\omega = \frac{2\pi}{T_{real}} \tag{73}$$

			sistema
ω	:	3.447 rad/seg	frecuencia angular del
			aislamiento
TD	:	1.82 s	periodo real del sistema de

• AMORTIGUAMIENTO EFECTIVO DE CADA AISLADOR.

$$C = \frac{W_D}{\pi * D_D^2 * \omega}$$
(74)

С	:	0.190 KN.seg/mm	Amortiguamiento efectivo de cada aislador
С	:	189.92 KN. seg/m	Amortiguamiento efectivo de cada aislador
ω	:	3.447 rad/seg	Frecuencia Angular del Sistema
DD	:	0.171 m	Desplazamiento de diseño
WD	:	60.13 KN.m	Energía disipada

Una vez realizado los cálculos para obtener las propiedades mecánicas del dispositivo tipo A, procedemos a realizar un cuadro de resumen con los valores que el programa Etabs requiere para efectuar el análisis.

Tabla A. 220

Propiedades Mecánicas de Aislador LRB Tipo B

PROPIEDADES MECÁNICAS DE AISLADOR LRB EN EL PABELLÓN B

K _{eff}	Effective Stiffness	Rigidez efectiva	1.64 KN/mm
С	Effective Damping	Amortiguación efectiva	0.190 KN.seg/mm
K ^A 2	Stiffness	Rigidez post fluencia	1.095 KN/mm
F _Y	Yield Strength	Fuerza de fluencia	120.160 KN
r	Post Yield Stiffness Ratio	Razón de rigidez post rendimieto	0.09327

ANÁLISIS DINÁMICO

MODELAMIENTO DEL PABELLÓN CON AISLADOR TIPO LRB.

Figura A. 170

Modelado del Pabellón B con Aisladores Sísmicos.

DETALLE DEL MODELAMIENTO

Selección y Definición Del Tipo De Aislador

File Edi	2015 Ultimate 15.2.2 - MODELADO PABELLON it View Define Draw Select Assig 19 (0 10 10 10 10 0 0 0 0	B CON AISLADOR 2020 gn Analyze Display Design ↓ € Q [) [] 3-d P[n el]; Э (Detailing	g Options To 북 말 모두 오 f	ols Help] • 🎒 •	П. У	・ 「 」 「 」 「 」 「 」 「 」 「 」 「 」 「 」	nd I -	🗌 - T	• I •		- 0 ×
	ð \$`\$ \$ € \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	¥I≜IЩX⊗I∹E	₽ <i>1</i> 1	General Link Property	Data			Link Type	Y. 1.	Rubbe	er Isolator	
	Define Link Properties Link Properties DisPOSITIVO 8-20 LRB TIPO 8 Link 1	Click to: Add New Property Add Copy of Property Modify/Show Property	×	Total Mass and Mass Weight	nd Weight	0.00	Modfy/Show Notes 16374 kNs ³ /mm 143 kN	P-Deita Pa Rotat Rotat Rotat	ional Inertia ional Inertia ional Inertia	1 2 3	Modfy/Show 0 kNmm 0 kNmm 0 kNmm	1 ² 1 ² 2 ²
		Delete Property OK Cancel		Direction U1 U1 U2 U3	Fixed No	onLinear	Properties Modify/Show for U1 Modify/Show for U2 Modify/Show for U3	Direction R1 R2 R3	Fixed	NonLinear	Properties Modfy/Show for R1 Modfy/Show for R2 Modfy/Show for R3	
また。							Fx Al	Clear All Cancel				
3-D View					\sim	\sim					One Story V Gl	obal V Units

Figura A. 172

Asignación de las Propiedades Mec. de los Aisladores en la Dir. XX

File Ed	S 2015 Ultimate 15.2.2 - MOD dit View Define Draw Link Property Data	ELADO PABELLON B CON AISLADO v Select Assign Analyze v Select Assign Analyze v Q Q Q Q Q Q Q Q Q v Q Q Q Q Q Q Q Q v D P P V V V V V V V V V V V V V V V V V	Display Design Detailing Jod Pig el© 3 661 V V V V V V	Options Tools Help	¥ ш. <mark>"</mark> Хті	Link/Support Directional Propert Identification Property Name Direction Type	DISPOSITIVO B=20 LRB U2 Fuibber Isolator	× - ۵ × *
	Unk Property Notes Total Mass and Weight Mass Weight Directional Properties	Modfy/Show Notes 0.006374 kN+3*/mm 6.3743 kN	P-Deta Parameters Rotational Inetia 1 Rotational Inetia 2 Rotational Inetia 3	Modfy/Show 0 kN-mm-a² 0 kN-mm-a² 0 kN-mm-a²	d Ne Cop	NonLinear Linear Properties Effective Suffrees Effective Damping Shear Deformation Location Distance from End-J	Yes 1.64 kN/mm 0.19 kN-s/mm 01 mm	
	Direction Fixed NonU	near Properties Modify/Show for U1 Modify/Show for U2 Modify/Show for U3 Fix All	Direction Rived Non R1	Inear Properties Modify/Show for R1 Modify/Show for R2 Modify/Show for R3.	Delet	Nonlinear Properties Stiffness Yield Strength Post Yield Stiffness Ratio	1.095 kNVmm 120.16 kN 0.09327	
all [®] cl [®] × 3-D View	N	UN				ОК	Cancel	e Story V Global V Units.

Link Property Data			Identification	DISPOSITIVO B=20 LBB	× 6 6 7
General			Direction	U3	-
Link Property Name DISPOSITIVO B=20 LRB TIPO B	Link Type	Rubber Isolator	Туре	Rubber Isolator	
Link Property Notes Modify/Show Notes	P-Delta Parameters	Modfy/Show	NonLinear	Yes	
Total Mass and Weight			Linear Properties		
Mass 0.006374 kN-s²/mm	Rotational Inertia 1	0 kN-mm-s ²	Effective Stiffness	1.64 kN/mm	
Weight 6.3743 kN	Rotational Inertia 2	0 kN-mm-s ²	d 1 Effective Damping	0.19 kN-s/mm	
	Rotational Inertia 3	0 kN-mm-s ²	Cc Shear Deformation Location		
Directional Properties			bistance from End-J	0 mm	
Direction Fixed NonLinear Properties	Direction Fixed No	nLinear Properties	De Nonlinear Properties		
U1 Modify/Show for U1	🗆 R1 🗌	Modify/Show for R1	Stiffness	1.095 kN/mm	
U2 Modify/Show for U2	🗆 R2 🗌	Modify/Show for R2	Yield Strength	120.16 kN	
U3 Modify/Show for U3	🗆 R3 🗌	Modify/Show for R3	Post Yield Stiffness Ratio	0.09327	
Fix All	Clear All				
ОК	Cancel				
			OK	Cancel	
				Guida	

Asignación de las Propiedades Mec. de los Aisladores en la Dir. YY

Después, habiendo seleccionado los puntos en la base donde se colocarán los aisladores, se les asigna el elemento link correspondiente.

Finalmente, se seleccionan todos los puntos en la base y se les asigna un diafragma rígido.

FUNCIÓN ESPECTRAL

Una acción dinámica es aquella cuya variación en el tiempo es rápida y da origen a fuerzas de inercia comparables en magnitud con las fuerzas estáticas. Para realizar el análisis a una estructura es necesario definir su modelo mecánico y definir el movimiento del terreno, de modo que el análisis dinámico puede realizarse mediante procedimientos de análisis espectral o de tiempo historia.

Debido a la carencia de registro de los eventos sísmicos cercanos al lugar de implantación del Bloque "A" del Hospital de San juan de Dios de Ayaviri, el análisis dinámico se realizará con el espectro de respuesta.

Tabla A. 221

Cuadro de Parámetros Sísmicos

PARÁMETROS SÍSMICOS						
Z=	0.25	ZONA 2				
U=	1.00	ESENCIAL A1				

C=	2.50	TP < T < TL			
S=	1.20	S2			
R=	1.00	COEFICIENTE "R"			
SaM = 1.5 Z U C S g					

Tabla A. 222

Espectro de Respuesta DIR. X Pab. "B"

		Sa	SD - Sa	SD- Sa	SMC- Sa	SMC - Sa
(T)	С	E.030	E.031	E.031	E.031	E.031
		R=5.4	R=1	R=2	R=1	R=2
0.00	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.10	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.20	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.30	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.40	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.50	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.60	2.5000	0.2083	0.7500	0.3750	1.1250	0.5625
0.70	2.1429	0.1786	0.6429	0.3214	0.9643	0.4821
0.80	1.8750	0.1563	0.5625	0.2813	0.8438	0.4219
0.90	1.6667	0.1389	0.5000	0.2500	0.7500	0.3750
1.00	1.5000	0.1250	0.4500	0.2250	0.6750	0.3375
1.10	1.3636	0.1136	0.4091	0.2045	0.6136	0.3068
1.20	1.2500	0.1042	0.3750	0.1875	0.5625	0.2813
1.30	1.1538	0.0962	0.3462	0.1731	0.5192	0.2596
1.40	1.0714	0.0893	0.3214	0.1607	0.4821	0.2411
1.50	1.0000	0.0833	0.3000	0.1500	0.4500	0.2250
1.60	0.9375	0.0781	0.2813	0.1406	0.4219	0.2109
1.70	0.8824	0.0735	0.2647	0.1324	0.3971	0.1985
1.80	0.8333	0.0694	0.2500	0.1250	0.3750	0.1875
1.90	0.7895	0.0658	0.2368	0.1184	0.3553	0.1776
2.00	0.7500	0.0625	0.2250	0.1125	0.3375	0.1688
2.10	0.6803	0.0567	0.2041	0.1020	0.3061	0.1531
2.20	0.6198	0.0517	0.1860	0.0930	0.2789	0.1395
2.30	0.5671	0.0473	0.1701	0.0851	0.2552	0.1276
2.40	0.5208	0.0434	0.1563	0.0781	0.2344	0.1172
2.50	0.4800	0.0400	0.1440	0.0720	0.2160	0.1080
2.60	0.4438	0.0370	0.1331	0.0666	0.1997	0.0999
2.70	0.4115	0.0343	0.1235	0.0617	0.1852	0.0926
2.80	0.3827	0.0319	0.1148	0.0574	0.1722	0.0861
2.90	0.3567	0.0297	0.1070	0.0535	0.1605	0.0803
3.00	0.3333	0.0278	0.1000	0.0500	0.1500	0.0750

Gráfico Espectro de Respuesta SD DIR. X Pab. "B"

Figura A. 175

Gráfico Espectro de Respuesta SMC DIR. X Pab. "B"

Tabla A. 223

Espectro de Respuesta DIR. Y Pab. "B"

		S- E 020	SD - Sa	SD- Sa	SMC- Sa	SMC - Sa
(T)	С	$C \qquad \begin{array}{c} \text{Sa E.030} \\ \text{D} = C \end{array}$	E.031	E.031	E.031	E.031
		K=0	R=1	R=2	R=1	R=2
0.00	2.5000	0.1875	0.7500	0.3750	1.1250	0.5625
0.10	2.5000	0.1875	0.7500	0.3750	1.1250	0.5625
0.20	2.5000	0.1875	0.7500	0.3750	1.1250	0.5625
0.30	2.5000	0.1875	0.7500	0.3750	1.1250	0.5625
0.40	2.5000	0.1875	0.7500	0.3750	1.1250	0.5625
0.50	2.5000	0.1875	0.7500	0.3750	1.1250	0.5625
0.60	2.5000	0.1875	0.7500	0.3750	1.1250	0.5625
0.70	2.1429	0.1607	0.6429	0.3214	0.9643	0.4821
0.80	1.8750	0.1406	0.5625	0.2813	0.8438	0.4219
0.90	1.6667	0.1250	0.5000	0.2500	0.7500	0.3750
1.00	1.5000	0.1125	0.4500	0.2250	0.6750	0.3375
1.10	1.3636	0.1023	0.4091	0.2045	0.6136	0.3068
1.20	1.2500	0.0938	0.3750	0.1875	0.5625	0.2813
1.30	1.1538	0.0865	0.3462	0.1731	0.5192	0.2596
1.40	1.0714	0.0804	0.3214	0.1607	0.4821	0.2411
1.50	1.0000	0.0750	0.3000	0.1500	0.4500	0.2250
1.60	0.9375	0.0703	0.2813	0.1406	0.4219	0.2109
1.70	0.8824	0.0662	0.2647	0.1324	0.3971	0.1985
1.80	0.8333	0.0625	0.2500	0.1250	0.3750	0.1875
1.90	0.7895	0.0592	0.2368	0.1184	0.3553	0.1776
2.00	0.7500	0.0563	0.2250	0.1125	0.3375	0.1688
2.10	0.6803	0.0510	0.2041	0.1020	0.3061	0.1531
2.20	0.6198	0.0465	0.1860	0.0930	0.2789	0.1395
2.30	0.5671	0.0425	0.1701	0.0851	0.2552	0.1276
2.40	0.5208	0.0391	0.1563	0.0781	0.2344	0.1172
2.50	0.4800	0.0360	0.1440	0.0720	0.2160	0.1080
2.60	0.4438	0.0333	0.1331	0.0666	0.1997	0.0999
2.70	0.4115	0.0309	0.1235	0.0617	0.1852	0.0926
2.80	0.3827	0.0287	0.1148	0.0574	0.1722	0.0861
2.90	0.3567	0.0268	0.1070	0.0535	0.1605	0.0803
3.00	0.3333	0.0250	0.1000	0.0500	0.1500	0.0750

Gráfico Espectro de Respuesta SD DIR. Y Pab. "B"

Figura A. 177

Gráfico Espectro de Respuesta SMC DIR. Y Pab. "B"

VERIFICACIÓN DE RESULTADOS DEL SISTEMA DE AISLACIÓN

Ante una acción exterior, la respuesta de la estructura dependerá de sus modos de vibrar y sus respectivas frecuencias o períodos; los períodos de vibración dependen de las características geométricas, de la rigidez y de la masa que la estructura opone al movimiento.

Se ha obtenido los períodos y modos de vibración, cabe señalar que el uso de aisladores concentra la vibración de la edificación prácticamente en un solo modo por dirección.

Figura A. 178

Tabla A. 224

Periodos y Modos de Vibración.

Case	Mada	Period	UX U	UV	UY RZ	Sum	Sum	Sum
	wioue	sec	UA	UI		RX	RY	RZ
Modal	1	1.452	0.863	0.058	0.030	0.001	0.008	0.030
Modal	2	1.443	0.060	0.889	0.000	0.010	0.008	0.030
Modal	3	1.177	0.026	0.002	0.897	0.010	0.011	0.927
Modal	4	0.203	0.000	0.000	0.000	0.834	0.013	0.927
Modal	5	0.175	0.000	0.000	0.000	0.835	0.917	0.927
Modal	6	0.143	0.000	0.000	0.000	0.927	0.927	0.927
Modal	7	0.052	0.000	0.000	0.000	0.927	0.928	0.927
Modal	8	0.006	0.009	0.035	0.000	0.979	0.943	0.927
Modal	9	0.005	0.040	0.010	0.000	0.994	0.998	0.927

CONTROL DE DESPLAZAMIENTOS Y LA DISTORSIÓN DE PISO O DERIVAS

Figura A. 179

Desplazamientos y Derivas en la dirección X-X Pab. B

Tabla A. 225

Cuadro de Desplazamientos y Derivas en la dirección X-X

Story	Dianhr	Load	Altuno	Deriva	Deriva	Norma
	agm	Case/Co	mm	Elastica	Inelástica	E.031
		mbo		Δ	$\Delta \mathbf{x} \mathbf{R}$	<0.0035
Nivel 3	D1	SD XX	3650	4.70x10 ⁻⁴	4.70x10 ⁻⁴	OK
Nivel 2	D1	SD XX	3700	2.60x10 ⁻⁴	2.60x10 ⁻⁴	OK
Nivel 1	D1	SD XX	3700	6.70x10 ⁻⁴	6.70x10 ⁻⁴	OK
Story1	D2	SD XX				

Desplazamientos y Derivas en la Dirección Y-Y Pab. B

Tabla A. 226

Cuadro de Desplazamientos y Derivas en la Dirección Y-Y

Story	Diaph ragm	Load Case/Co mbo	Altura mm	Deriva ∆	Deriva Inelástica ∆xR	Norma E031 <0.0035
Nivel 3	D1	SD YY	3650	2.90x10 ⁻⁴	2.90x10 ⁻⁴	OK
Nivel 2	D1	SD YY	3700	3.30x10 ⁻⁴	3.30x10 ⁻⁴	OK
Nivel 1	D1	SD YY	3700	3.20x10 ⁻⁴	3.20x10 ⁻⁴	OK
Story1	D2	SD YY				