

UNIVERSIDAD NACIONAL DEL ALTIPLANO DE PUNO FACULTAD DE INGENIERIA AGRÍCOLA ESCUELA PROFESIONAL DE INGENIERIA AGRÍCOLA

"MODELACIÓN HIDROLÓGICA E HIDRÁULICA BIDIMENSIONAL DEL RÍO CABANILLAS TRAMO PUENTE – BOCATOMA CABANILLA, UTILIZANDO EL MODELO HEC-RAS 2D".

TESIS

PRESENTADA POR:

Bach. LUZ MARGOT MAMANI MAMANI

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO AGRÍCOLA

PUNO – PERÚ

2020

DEDICATORIA

A DIOS, por darme la oportunidad de llegar hasta este momento tan importante de mi formación profesional, por fortalecer mi corazón e iluminar mi mente.

A mis padres **ALBERTO y GRACIELA**, por los consejos brindados para encaminarme en un futuro de éxito, y ser un ejemplo de lucha, perseverancia y dedicación, los quiero mucho.

A mis hermanas, **MERY**, **NELLY**, **RUTH** y **NADITH**, por su apoyo diario y por estar siempre conmigo en esos momentos que necesite de ellas.

A mi familia y amigos por compartir tantos momentos adversos como maravillosos, quienes siempre están ahí para darme la mano cada vez que sea necesario; sin ellos sé que no hubiera podido llegar hasta donde me encuentro, estaré eternamente agradecido.

Luz Mamani

AGRADECIMIENTOS

Agradezco a Dios por protegerme durante todo mi camino y darme fuerzas para superar obstáculos y dificultades a lo largo de toda mi vida.

Quisiera expresar mis más sinceros agradecimientos a mi alma mater, Universidad Nacional del Altiplano - Puno y a la Escuela Profesional de Ingeniería Agrícola, que me formó académicamente con sus dedicados docentes, de los cuales guardo grandes enseñanzas.

A mi asesor, M. Sc. Roberto Alfaro Alejo, por su valiosa amistad, por brindarme sus valiosos comentarios, sugerencias y apoyo de manera desinteresada en la realización del presente trabajo.

A toda mi familia que siempre me brindó su apoyo incondicional, en mi formación para ser una profesional de éxito, porque son ellos quienes nunca dudaron de mis capacidades para lograr mi objetivo.

A mis amistadas quienes siempre me brindaron su apoyo y consejos durante la elaboración del presente trabajo: Judy, Cristhian, Alexander, Paul y Abel.

Al M. Sc. Bernardo Pio Coloma Paxi, docente de la Facultad de Ingeniería Agrícola, por su apoyo incondicional durante la elaboración del presente trabajo.

A los jurados por su valiosa colaboración y consejos para la elaboración de la tesis.

Agradezco a todos los docentes de la Facultad de la Ingeniería Agrícola, por compartir sus conocimientos, que hacen posible el logro de nuestras metas.

Luz Mamani

INDICE GENERAL

DEDICATORIA

AGRADECIMIENTOS

INDICE GENERAL

ÍNDICE DE FIGURAS

ÍNDICE DE TABLAS

RESUMEN	
ABSTRACT	

CAPÍTULO I

INTRODUCCIÓN

1.1. GENERALIDADES	
1.2. IDENTIFICACIÓN DEL PROBLEMA	
1.3. ANTECEDENTES	
1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN	
1.5. OBJETIVOS DE LA INVESTIGACIÓN	
1.5.1. Objetivo general	
1.5.2. Objetivos específicos	

CAPITULO II

REVISIÓN DE LITERATURA

2.1. SISTEMA DE INFORMACIÓN GEOGRÁFICA (SIG)	22
2.1.1. Concepto de SIG	22
2.1.2. Componentes de un sistema de información geográfica (SIG):	22
2.2. CUENCA	23
2.2.1. Parámetros básicos	23
2.3. PRECIPITACIÓN EFECTIVA	26
2.3.1. Método del SCS para abstracciones	26
2.4. MÉTODOS ESTADÍSTICOS	27
2.4.1. Distribución de frecuencia Gumbel	28
2.4.2. Distribución de frecuencia tipo Log Normal	28
2.4.3. Distribución de frecuencia Log Pearson Tipo III	29

2.4.4. Pruebas de bondad de ajuste	30
2.4.5. Prueba Kolmogorov – Smirnov	30
2.5. HEC HMS	31
2.6. HIDRÁULICA FLUVIAL	32
2.7. DINÁMICA FLUVIAL	33
2.8. HIDRÁULICA DE RÍOS	33
2.9. MORFOLOGIA FLUVIAL	33
2.9.1. Clasificación morfológica de los ríos	34
2.10. LAS AVENIDAS	34
2.11. HEC-GEORAS	35
2.12. CAUDALES MÁXIMOS	36
2.12.1. Método directo	36
2.13. AVENIDA DE DISEÑO Y PERIODO DE RETORNO	38
2.14. HIDROGRAMA DE AVENIDA	38
2.14.1. Hidrograma unitario	38
2.14.2. Hidrogramas unitarios sintético	39
2.14.3. Hidrograma unitario triangular del S.C.S.	39
2.14.4. Hidrogramas unitarios adimensionales	42
2.15. COEFICIENTE DE RUGOSIDAD (N DE MANNING)	42
2.16. MODELACIÓN HIDRÁULICA	45
2.16.1. Levantamiento topográfico.	46
2.16.2. Aplicación de ArcGIS en la modelación.	46
2.17. MODELACIÓN MATEMÁTICA	47
2.17.1. Modelos unidimensionales	47
2.17.2. Modelos bidimensionales.	47
2.18. HEC RAS	48
2.18.1. Capacidades y ventajas.	49
2.18.2. Ecuaciones hidráulicas en el modelo HEC-RAS 2D	50
2.18.3. Esquemas numéricos	54
2.18.3.1. Volumen finito implícito	54
2.18.3.2. Mallas computacionales.	54
2.18.3.3. Tabla detallada de propiedades hidráulicas para celdas y contorno	os de
celdas computacionales en 2D.	55
2.18.3.4. Mapas detallados de inundación y animaciones de los mismos	56

2.19. MODELO IBER	57
2.19.1. Aplicaciones de IBER	57
2.19.2. Estructura del programa	57
2.19.3. Proceso de modelamiento en IBER.	58

CAPITULO III

MATERIALES Y MÉTODOS

3.1. DESCRIPCIÓN DE LA ZONA DE ESTUDIO	64
3.1.1. Ubicación del área de estudio	64
3.2. MATERIALES	. 66
3.2.1. Información cartográfica	. 66
3.2.2. Información meteorológica	66
3.2.3. Información topográfica	. 66
3.2.4. Programas de computo	66
3.2.5. Equipos de computo	. 67
3.3. MÉTODOLOGÍA.	. 67
3.4. MODELAMIENTO HIDROLÓGICO	. 67
3.4.1. Delimitación de la cuenca en estudio mediante el ArcGIS.	. 67
3.4.2. Caracterización geomorfológica de la cuenca.	.72
3.4.3. Parámetros de relieve	.76
3.4.4. Estaciones meteorológicas en estudio	78
3.4.5. Tratamiento de la información meteorológica – identificación de valores	
atípicos (outliers).	.79
3.4.6. Modelación hidrológica – generación de caudales máximos	. 80
3.4.7. Periodo de retorno	. 87
3.4.8. Análisis de probabilidad mediante el software HYFRAN	. 87
3.4.9. Hietograma de diseño	. 89
3.4.10. Determinación de las curvas IDF, según el método de Dick Peschke	. 89
3.4.11. Hietogramas de diseño – método del bloque alterno	.90
3.4.12. Cálculo de caudales máximos con HEC HMS	.90
3.4.13. Hec GeoRAS 1	105
3.5. MODELAMIENTO HIDRÁULICO MEDIANTE HEC-RAS 2D 1	106
3.5.1. Cargado de los datos espaciales1	107
3.5.2. Generación de la malla 2D1	108

3.5.3. Asignación de condiciones de borde y datos de flujo	110
3.5.4. Análisis de la modelación	113

CAPITULO IV

RESULTADOS Y DISCUSIÓN

4.1. RESULTADOS DEL MODELAMIENTO HIDROLÓGICO114
4.1.1. Parámetros geomorfológicos de la cuenca:114
4.1.2. Parámetros hidrológicos de la cuenca115
4.1.3. Tratamiento de la información meteorológica – identificación de valores
atípicos (outliers)115
4.1.4. Distribución de probabilidad:
4.1.5. Determinación de las curvas IDF, según el método de Dick Peschke 128
4.1.6. Hietogramas de diseño – método del bloque alterno
4.1.7. Caudales máximos para los periodos de retorno 10, 20, 50, 100, 200 y 500
años mediante el HEC – HMS158
4.2. RESULTADOS DEL MODELAMIENTO HIDRÁULICO 159
4.2.1. Secciones transversales
4.2.2. Características hidráulicas de las secciones transversales
4.3. OBTENCIÓN DE MAPAS CON HEC RAS 2D167
4.3.1. Mapas de profundidad de nivel de agua167
4.3.2. Mapas de velocidades y flujos de agua169
4.3.3. Mapas de inundación
V. CONCLUSIONES178
VI. RECOMENDACIONES 180
VII. REFERENCIAS BIBLIOGRÁFICAS181
ANEXOS184

Área: Ingeniería y tecnología

Línea: Recursos hídricos

FECHA DE SUSTENTACIÓN: 16 de enero 2020

ÍNDICE DE FIGURAS

Figura	1. Variables en el método.	27
Figura	2. Elementos de una sección	37
Figura	3. Hidrograma unitario triangular del S.C.S	40
Figura	4. Hidrograma unitario adimensional	42
Figura	5. Propiedades de las celdas en una malla computacional	54
Figura	6. Relación elevación-volumen para cada celda computacional, basada en el	
	terreno subyacente	56
Figura	7. Parámetros hidráulicos calculados en el pre proceso para cada celda	
	computacional	56
Figura	8. Estructuras de procesos que maneja IBER	58
Figura	9. Ejemplo de malla no estructurada programa IBER	59
Figura	10. Ejemplo de simulación de inundación.	60
Figura	11. Dimensionalidad del flujo.	61
Figura	12. Mapa de ubicación del proyecto	65
Figura	13. Diagrama de flujo de la metodología empleada en la investigación	67
Figura	14. Modelo digital "TIN" creado	69
Figura	15. Creación de "FILL"	69
Figura	16. Flow Direction creado	70
Figura	17. Creación de watershed	70
Figura	18. Creación de raster polygon	71
Figura	19. Interpolate shape	71
Figura	20. Ubicación de estaciones meteorológicas seleccionadas	79
Figura	21. Precipitaciones máximas de 24 horas (mm)	81
Figura	22. Precipitaciones máximas de 24 horas (mm)	82
Figura	23. Precipitaciones máximas de 24 horas (mm)	84
Figura	24. Precipitaciones máximas de 24 horas (mm)	85
Figura	25. Precipitaciones máximas de 24 horas (mm)	87
Figura	26 . Esquema del modelamiento en HEC-HMS para determinar los caudales	
	máximos	92
Figura	27. Caudales máximos de salida para un periodo de retorno de 10 años	99
Figura	28. Caudales máximos de salida para un periodo de retorno de 20 años 1	00
Figura	29. Caudales máximos de salida para un periodo de retorno de 50 años 1	01

Figura	30. Caudales máximos de salida para un periodo de retorno de 100 años 102
Figura	31 . Caudales máximos de salida para un periodo de retorno de 200 años 103
Figura	32. Caudales máximos de salida para un periodo de retorno de 500 años 104
Figura	33. Secciones generadas en el río Cabanillas mediante el comando Create Cross
	Sections105
Figura	34. Exportación de datos para procesar en el HEC-RAS106
Figura	35 . DEM importado dentro de RAS Mapper107
Figura	36 . Herramientas para generar la geometría 2D108
Figura	37. Configuración de los parámetros para creación de la malla 2D109
Figura	38 . Malla generada en HEC RAS 2D109
Figura	39 . Líneas de condiciones de borde de entrada y salida de flujo110
Figura	40 . Asignación de parámetros hidráulicos para el modelamiento en 2D 111
Figura	41 . Condiciones de entrada de flujo112
Figura	42 . Condiciones de pendiente de salida de flujo112
Figura	43 . Ventana de análisis de modelación113
Figura	44 . Distribución de probabilidades – estación Quillisani
Figura	45 . Distribución de probabilidades – estación Jarpaña
Figura	46 . Distribución de probabilidades – estación Santa Lucia
Figura	47 . Distribución de probabilidades – estación Cabanillas126
Figura	48 . Distribución de probabilidades – estación Lagunillas
Figura	49. Resultado de la curva IDF129
Figura	50 . Resultados de la curva IDF
Figura	51 . Resultados de la curva IDF
Figura	52. Resultados de la curva IDF
Figura	53. Resultados de la curva IDF
Figura	54. Caudales generados con el HEC-HMS159
Figura	55. Sección transversal datos tomados en campo progresiva 0+050 160
Figura	56. Sección transversal obtenidos mediante el HEC-RAS 2D160
Figura	57 . Sección transversal, datos tomados en campo progresiva 3+829160
Figura	58. Sección transversal obtenidos mediante el HEC-RAS 2D161
Figura	59 . Sección transversal mediante datos obtenidos en campo161
Figura	60. Sección transversal obtenidos mediante el HEC-RAS 2D162
Figura	61. Secciones transversales del río Cabanillas166
Figura	62 . Mapa de profundidades del nivel de agua, TR 10 años

Figura	63. Mapa de profundidades del nivel de agua, TR 20 años
Figura	64. Mapa de profundidades del nivel de agua, TR 50 años 169
Figura	65. Mapa de velocidades y líneas de flujo, TR 10 años
Figura	66. Mapa de velocidades y líneas de flujo, TR 20 años
Figura	67. Mapa de velocidades y líneas de flujo, TR 50 años
Figura	68. Mapa de inundación para un TR 10 años172
Figura	69. Mapa de inundación, TR 20años173
Figura	70. Mapa de inundación, TR 50años174

ÍNDICE DE TABLAS

Tabla 1. Valores críticos para la prueba Kolmogorov-Smirnov.	31
Tabla 2. Tabla de Cowan para determinar influencia de diversos factores sobre el	
coeficiente "n".	43
Tabla 3. Evolución del tipo de modelización y herramientas de HEC-RAS	49
Tabla 4. Coordenadas de ubicación de la zona de estudio	64
Tabla 5. Coordenadas punto aguas arriba y aguas abajo	68
Tabla 6. Área de la cuenca.	72
Tabla 7. Perímetro de la cuenca.	73
Tabla 8. Parámetros asociados a la longitud de la cuenca.	74
Tabla 9. Valores del coeficiente de compacidad.	74
Tabla 10. Altitudes de la cuenca.	77
Tabla 11. Datos de estaciones meteorológicas seleccionadas para la modelación	
hidrológica de la cuenca	79
Tabla 12. Precipitaciones máximas de 24 horas (mm) - Quillisani	81
Tabla 13. Precipitaciones máximas de 24 horas (mm) - Jarpaña	82
Tabla 14. Precipitaciones máximas de 24 horas (mm) – Santa Lucia	83
Tabla 15. Precipitaciones máximas de 24 horas (mm) – Cabanillas	84
Tabla 16. Precipitaciones máximas de 24 horas (mm) – Lagunillas	86
Tabla 17. Métodos de distribución de probabilidades.	88
Tabla 18. Número de curva para los suelos (NC).	96
Tabla 19. Número de curva (NC) para la cuenca analizada.	96
Tabla 20. Parámetros de forma de la cuenca Coata.	. 114
Tabla 21. Parámetros de relieve de la cuenca Coata	. 114
Tabla 22. Parámetros de relieve de la cuenca Coata	. 115
Tabla 23. Análisis de valores atípicos – estación Quillisani	. 116
Tabla 24. Análisis de valores atípicos – estación Jarpaña.	. 117
Tabla 25. Análisis de valores atípicos – estación Santa Lucia.	. 118
Tabla 26. Análisis de valores atípicos – estación Cabanillas	. 119
Tabla 27. Análisis de valores atípicos – estación Lagunillas	. 121
Tabla 28. Precipitación máxima de 24 horas para diferentes tiempos de retorno segú	ín
cada distribución de probabilidades – estación Quillisani	. 123

Tabla 29. Precipitación máxima de 24 horas para diferentes tiempos de retorno según
cada distribución de probabilidades – estación Jarpaña
Tabla 30. Precipitación máxima de 24 horas para diferentes tiempos de retorno según
cada distribución de probabilidades – estación Santa Lucia
Tabla 31. Precipitación máxima de 24 horas para diferentes tiempos de retorno según
cada distribución de probabilidades – estación Cabanillas 126
Tabla 32. Precipitación máxima de 24 horas para diferentes tiempos de retorno según
cada distribución de probabilidades – estación Lagunillas 127
Tabla 33. Precipitación máxima para distintas duraciones y tiempos de retorno
Tabla 34. Intensidad para distintas duraciones y tiempos de retorno
Tabla 35. Valores de las constantes de la ecuación para las curvas IDF.129
Tabla 36. Precipitación máxima para distintas duraciones y tiempos de retorno129
Tabla 37. Intensidad para distintas duraciones y tiempos de retorno
Tabla 38. Valores de las constantes de la ecuación para las curvas IDF. 130
Tabla 39. Precipitación máxima para distintas duraciones y tiempos de retorno131
Tabla 40. Intensidad para distintas duraciones y tiempos de retorno
Tabla 41. Valores de las constantes de la ecuación para las curvas IDF.132
Tabla 42. Precipitación máxima para distintas duraciones y tiempos de retorno
Tabla 43. Intensidad para distintas duraciones y tiempos de retorno
Tabla 44. Valores de las constantes de la ecuación para las curvas IDF133
Tabla 45. Precipitación máxima para distintas duraciones y tiempos de retorno
Tabla 46. Intensidad para distintas duraciones y tiempos de retorno
Tabla 47. Valores de las constantes de la ecuación para las curvas IDF
Tabla 48. Hietogramas para TR 10 años, estación Quillisani
Tabla 49. Hietogramas para TR 20 años, estación Quillisani
Tabla 50. Hietogramas para TR 50 años, estación Quillisani
Tabla 51. Hietogramas para TR 100 años, estación Quillisani
Tabla 52. Hietogramas para TR 200 años, estación Quillisani
Tabla 53. Hietogramas para TR 500 años, estación Quillisani
Tabla 54. Hietogramas para TR 10 años, estación Jarpaña.140
Tabla 55. Hietogramas para TR 20 años, estación Jarpaña.140
Tabla 56. Hietogramas para TR 50 años, estación Jarpaña. 141
Tabla 57. Hietogramas para TR 100 años, estación Jarpaña. 142
Tabla 58. Hietogramas para TR 200 años, estación Jarpaña.143

Tabla 59. Hietogramas de diseño para TR 500 años, estación Jarpaña	;
Tabla 60. Hietogramas de diseño para TR 10 años, estación Santa Lucia	ŀ
Tabla 61. Hietogramas de diseño para TR 20 años, estación Santa Lucia	,
Tabla 62. Hietogramas de diseño para TR 50 años, estación Santa Lucia	5
Tabla 63. Hietogramas de diseño para TR 100 años, estación Santa Lucia	7
Tabla 64. Hietogramas de diseño para TR 200 años, estación Santa Lucia	7
Tabla 65. Hietogramas de diseño para TR 500 años, estación Santa Lucia	;
Tabla 66. Hietogramas de diseño para TR 10 años, estación Cabanillas)
Tabla 67. Hietogramas de diseño para TR 20 años, estación Cabanillas. 150)
Tabla 68. Hietogramas de diseño para TR 50 años, estación Cabanillas. 150)
Tabla 69. Hietogramas de diseño para TR 100 años, estación Cabanillas. 151	
Tabla 70. Hietogramas de diseño para TR 200 años, estación Cabanillas. 152	2
Tabla 71. Hietogramas de diseño para TR 500 años, estación Cabanillas. 153	;
Tabla 72. Hietogramas de diseño para TR 10 años, estación Lagunillas	ŀ
Tabla 73. Hietogramas de diseño para TR 20 años, estación Lagunillas. 154	ŀ
Tabla 74. Hietogramas de diseño para TR 50 años, estación Lagunillas. 155	,
Tabla 75. Hietogramas de diseño para TR 100 años, estación Lagunillas. 156	5
Tabla 76 . Hietogramas de diseño para TR 200 años, estación Lagunillas	7
Tabla 77. Hietogramas de diseño para TR 500 años, estación Lagunillas. 157	1
Tabla 78. Caudales generados con el HEC-HMS en periodos de retorno de 10, 20, 50,	
100, 200 y 500 años	3
Tabla 79: Resultados de velocidad y profundidades. 172	2
Tabla 80. Zonas críticas a ser inundadas para el TR 10 años 174	ŀ
Tabla 81. Zonas críticas a ser inundadas para el TR 20 años 175	;
Tabla 82. Niveles de intensidad de inundación	;
Tabla 83. Zonas críticas de velocidades máximas 176	5

ÍNDICE DE ACRÓNIMOS

- NC : Número de Curva.
- IDF : Intensidad Duración y frecuencia.
- PDF : Profundidad, duración y frecuencia.
- MED : Modelo Digital de Elevación
- DEM : Digital Elevation Modeling
- TIN : Triangulate Irregular Networ
- SCS : Servicio de concentración de Suelos de los Estados Unidos.
- HEC : Hydrologic Engineer Center
- HMS : Hydrologic Modeling System
- RAS : River Analysis System

RESUMEN

En el Perú la región altiplánica es una de las regiones vulnerables frente a peligros o amenazas climáticas, por las intensas precipitaciones (ocurrencias de una tormenta o lluvias torrenciales) y acumulación de sedimentos que son transportados en épocas de avenidas, ocasionando desbordamiento e inundaciones en zonas vulnerables, cuyas magnitudes varían anualmente con efectos en su gran mayoría negativos. Ante este contexto se realizó la modelación hidrológica e hidráulica bidimensional del río Cabanillas con el modelo matemático HEC RAS en 2D, para proponer medidas de prevención de desbordamientos e inundaciones. Para ello se realizó el análisis de la información meteorológica, parámetros morfológicos e hidrológicos de la cuenca del río Cabanillas, y mediante el uso del modelo matemático bidimensional HEC-RAS 2D, en conjunto con las herramientas del sistema de información geográfica (SIG), se determinó las áreas vulnerables a ser inundables, siendo estas para periodos de retorno de 10, 20, 50, 100, 200 y 500 años obteniendo áreas de inundación 179,53 ha; 195,13 ha; 182,86 ha; 187.86 ha; 182.96 ha y 195.70 ha respectivamente llegando a una velocidad máxima de 3,48 m/s; 3,55 m/s; 3,55 m/s; 3,55 m/s; 3,60 m/s y 3,72 m/s y un tirante máximo de 3,24 m, 3,28 m; 3,31 m; 3,33 m; 3,36 m y 3,38 m para los periodos de retorno mencionados líneas arriba. De esta manera se concluye que los modelos bidimensionales se adecuan a las condiciones del tramo de estudio, manteniendo resultados y una misma tendencia, pero aun así existiendo variaciones entre los resultados ofrecidos debido a la geometría de la malla, la sensibilidad ante ciertos parámetros y condiciones que trabaja cada modelo.

Palabras Clave: Áreas de inundación, bidimensional, HEC RAS 2D, máximas avenidas, modelación hidráulica.

ABSTRACT

In Peru, the highland region is one of the regions vulnerable to climatic hazards or threats, due to intense rainfall (occurrences of a storm or torrential rains) and accumulation of sediments that are transported in times of floods, causing overflow and flooding in areas vulnerable, whose magnitudes vary annually with mostly negative effects. In this context, the two-dimensional hydrological and hydraulic modeling of the Cabanillas river was carried out with the HEC RAS 2D mathematical model, to propose measures to prevent overflows and floods. For this, the analysis of meteorological information, morphological and hydrological parameters of the Cabanillas river basin was carried out, and through the use of the two-dimensional mathematical model HEC-RAS 2D, in conjunction with the tools of the geographic information system (GIS), determined the vulnerable areas to be flooded, being these for return periods of 10, 20, 50, 100, 200 and 500 years obtaining flood areas 179,53 ha; 195,13 ha; 182,86 ha; 187,86 ha; 182,96 hay 195,70 ha respectively, reaching a maximum speed of 3,48 m/s; 3,55 m/s; 3,55 m/s; 3,55 m/s; 3,60 m/s and 3,72 m/s a maximum tie of 3,24 m; 3,28 m; 3,31 m; 3,33 m; 3,36 m and 3,38 m for the return periods mentioned above. In this way, it is concluded that the two-dimensional models are adapted to the conditions of the study section, maintaining results and the same trend, but even so there are variations between the results offered due to the geometry of the mesh, the sensitivity to certain parameters and conditions. that each model works.

Keywords: Flood areas, two-dimensional, HEC RAS 2D, maximum avenues, hydraulic modeling.

CAPÍTULO I

INTRODUCCIÓN

1.1. GENERALIDADES

Uno de los problemas ambientales más relevantes que se está presentando a nivel mundial y específicamente en el Perú, es el proceso de degradación de las tierras de cultivo por estos fenómenos hidrológicos, de la misma manera el altiplano puneño está inmerso en este problema. Las zonas aledañas del río Cabanillas, desde hace varios años atrás presenta problemas de desbordamiento por las intensas precipitaciones pluviales y acumulación de sedimentos, lo que genera pérdidas de suelos agrícolas, área de pastoreo, lo cual representa una serie de amenazas para el abastecimiento de alimentos de primera necesidad para la población creciente, poniendo en riesgo el bienestar de sus habitantes.

Las crecidas en los ríos sumados a la topografía y relieve de las cuencas de nuestro país llevan a un inminente fenómeno de inundación que trae consigo pérdidas de suelos agrícolas, daños en la infraestructura vial, infraestructura hidráulica y evidentemente una crisis económica. Dado la complejidad y dinámica de la naturaleza es casi imposible determinar con exactitud el daño que causaría un evento extremo, pero en la actualidad se han desarrollado nuevos métodos y tecnologías que permiten simular con cierto grado de certeza, pudiendo así tomar las medidas preventivas, no para evitar que el evento ocurra, sino para minimizar los efectos que pudiera causar

HEC-RAS es una herramienta que ha venido evolucionando, y que a la fecha en su versión 5.0 (versión beta), cuenta con una extensión que permite simular el flujo de agua combinando modelos 1D/2D, así como totalmente 2D; basa su aplicación en las ecuaciones de Onda Difusiva y Saint-Venant (a criterio del usuario) las cuales resuelve

mediante el algoritmo de volúmenes finitos implícitos. Lo novedoso de esta nueva versión, es que incorpora la ventana de interface RasMapper en la cual el usuario incorpora el modelo digital del terreno, lo cual es fundamental para la simulación en 2D, (Cea & Bladé, 2015).

1.2. IDENTIFICACIÓN DEL PROBLEMA

En el Perú la región altiplánica es una de las regiones vulnerables frente a peligros o amenazas climáticas, ocasionando desbordamiento e inundaciones cuyas magnitudes varían anualmente con efectos en su gran mayoría negativos. La falta de una cultura de prevención no permite y limita la asignación de recursos para contar con un banco de proyectos y es una de las razones de la falta de asistencia de las zonas vulnerables, (AAA. XIV TITICACA, 2016).

Las áreas adyacentes al río Cabanillas tiene como problema principal el riesgo a sufrir inundaciones por las intensas precipitaciones (ocurrencias de una tormenta o lluvias torrenciales) y la acumulación de sedimentos que son transportados desde aguas arriba en épocas de avenidas, en zonas poco estables y vulnerables, por lo que los tirantes de agua tienden a elevarse provocando desbordamiento e inundación en áreas agrícolas, y zonas urbanas, ocasionando pérdidas agrícolas, altamente productivos. Por consiguiente, generando pérdidas económicas. Entonces si estos fenómenos de cambio climático (precipitaciones intensas) son causantes de los desbordamientos(Belizario, 2015).

Entendiendo la importancia de los daños ocasionados por los fenómenos naturales en épocas de avenidas por las intensas precipitaciones y la acumulación de sedimentos del río Cabanillas en el Sector Lizacia, conlleva a preguntarnos ¿De qué manera podemos prevenir los desbordamientos e inundaciones, en el sector Lizacia del río Cabanillas?

1.3. ANTECEDENTES

A nivel internacional, según (Sintayehu, 2015; Ramly, Tahir, 2016; Quedraogo et al. 2018; Tassew, Belete, & Miegel, 2019) HEC-HMS ha sido utilizado con éxito por muchos investigadores para la simulacion de escorrentía y descarga de los ríos en muchas cuencas en todo el mundo.

Martínez & Hidalgo (2017), realizaron la investigación modelo bidimensional para flujo en aguas poco profundas: tratamiento con IBER, en la Universidad Politécnica de Madrid, Facultad de Ingeniería de Geología y Minas. El presente trabajo consiste en analizar y predecir situaciones de inundaciones fluviales, y las consecuencias que pueden producir estas, especifica en el norte de León. Para ello se empleó el software libre IBER que permite resolver que permite resolver modelos matemáticos basados en las ecuaciones de aguas someras en un dominio bidimensional mediante esquemas numéricos en volumen finitos. Dicho software es de uso muy extendido.

A nivel nacional Hurtado (2017), realizó la investigación, modelamiento hidráulico bidimensional del río Rímac en el sector Huachipa, donde obtuvo 3 resultados de parámetros semejantes y manteniendo una misma tendencia. Existiendo variaciones en los resultados ofrecidos entre ambos modelos debido a: el tipo de geometría de la malla, las simplificaciones y consideraciones que realiza cada modelo dentro de las ecuaciones hidrodinámicas, así como la sensibilidad que tiene cada uno ante la influencia de las características propias del cauce natural al momento de calcular sus parámetros hidráulicos.

Tito (2017), realizó la investigación, modelamiento hidráulico del río Cañete sector Puente Socsi – altura puente colgante, con fines de diseño de defensas ribereñas, llegando a la conclusión que, desde el punto de vista hidrológico, para nuestra serie

histórica de 1950 – 2010, nuestros datos se ajustan al método de Gumbel, habiéndose obtenido un caudal promedio para un periodo de retorno de TR=50 años, de 757.53 m³/s.

A nivel local Mamani (2014), realizó la investigación, modelamiento de máximas avenidas que generan riesgos de inundación en la ciudad de Ayaviri – Puno. La investigación tuvo como objetivo principal determinar las zonas de riesgo de inundación por máximas avenidas del río Ayaviri, mediante el modelamiento con caudales máximos para proponer la protección de obras de infraestructura existente en la zona urbana de la ciudad de Ayaviri margen derecha e izquierda y llegando a la conclusión que el caudal simulado fue 424.20 m³/s para un periodo de retorno de 50 años, se producen ya algunos problemas e indicios de desbordes y derrumbes esto en el margen derecho del río a la altura del barrio Pueblo Libre y es el margen izquierdo a altura del parque recreacional, que corresponde al área urbana de la ciudad de Ayaviri.

1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN.

La modelación matemática del flujo de agua en un río consiste en pronosticar y/o predecir los valores que toman las variables hidráulicas (velocidad, caudal, etc.)(Cea & Bladé, 2015). En la actualidad los modelos numéricos, ayudados con la capacidad de procesamiento de los ordenadores, permiten adecuarse a un esquema en dos dimensiones (2D), donde predominan las dimensiones horizontales sobre la vertical, y de esta manera conocer con mayor precisión las variables hidráulicas cuantificables (Lluén, 2015). La modelación matemática es siempre una aproximación a la realidad.

En el presente trabajo, aplica las herramientas de modelación matemática bidimensional para el área de estudio que abarca el tramo del sector Lizacia desde el Puente Cabanillas hasta la Bocatoma Cabanillas, siendo una zona expuesta a desbordamiento e inundaciones por las intensas precipitaciones y acumulación de

sedimento debido a que la topográfica es casi plana, afectando a la población y áreas agrícolas. Es por ello que mediante la modelación hidrológica e hidráulica bidimensional con el programa HEC-RAS 2D y aplicando la ecuación de Onda Difusiva, Saint-Venant, y en conjunto con las herramientas de SIG (Sistemas de Información Geográfica), se llevó a cabo el cálculo de áreas afectadas por eventos máximos, identificación zonas de mayor vulnerabilidad.

La presente investigación permitirá aportar a futuros trabajos en diseño de encausamiento de ríos, en el río Cabanillas sector Lizacia, ya que es una zona propensa a ser inundada.

1.5. OBJETIVOS DE LA INVESTIGACIÓN.

1.5.1. Objetivo general.

Realizar la modelación hidrológica e hidráulica bidimensional del río Cabanillas tramo puente - bocatoma Cabanillas con el programa HEC RAS 2D, para planificar medidas de prevención ante desbordamientos e inundaciones.

1.5.2. Objetivos específicos.

- Recopilar la información necesaria del río Cabanillas tramo puente Cabanillas–
 bocatoma Cabanillas con fines de modelación hidrológica e hidráulica para obtener resultados de caudal, geometría del cauce y secciones transversales.
- Determinar las áreas de inundación con el modelo matemático bidimensional HEC RAS en 2D en áreas de transición fluvial.

CAPITULO II

REVISIÓN DE LITERATURA

2.1. SISTEMA DE INFORMACIÓN GEOGRÁFICA (SIG).

2.1.1. Concepto de SIG.

Olaya (2011) define el termino SIG como un elemento que permite: analizar, presentar e interpretar hechos relativos a la superficie terrestre. También define que es un conjunto de software y hardware diseñado específicamente para la adquisición, mantenimiento y uso de datos cartográficos.

2.1.2. Componentes de un sistema de información geográfica (SIG):

Olaya (2011) define que un SIG está conformado por cinco componentes o elementos y cada uno de esos componentes cumplen con una función para que existan entre ellos una interacción. Es decir, estos conforman la información para que sea procesada o se realice un tratamiento, los recursos técnicos, humanos y las metodologías que se adopten en la organización de la empresa. Los cuales son (Olaya, 2011):

- Datos: Los datos son la materia prima necesaria para el trabajo en un SIG, y los que contienen la información geográfica vital para la propia existencia de los SIG.
- Métodos: Un conjunto de formulaciones y metodologías a aplicar sobre los datos.
- Software: Es necesaria una aplicación informática que pueda trabajar con los datos e implemente los métodos anteriores.
- Hardware: El equipo necesario para ejecutar el software.

2.2. CUENCA.

2.2.1. Parámetros básicos.

Lux (2014) define que los principales aspectos a tener en cuenta para definir los parámetros básicos de una cuenca son (Lux, 2014):

- Área.
- Perímetro
- Centro de gravedad
- Momentos de inercia
- Factor de forma

2.2.1.1. Área.

Lux (2014) define como la proyección horizontal de toda la superficie de drenaje de un sistema de escorrentía dirigido directa o indirectamente a un mismo cauce natural. Incidiendo una vez más en la necesidad de mantener una coherencia conceptual entre los diferentes valores extraídos de las representaciones utilizadas, y un control sobre los errores que puedan ser introducidos por el uso conjunto de ambas, complementamos lo ya conocido con una expresión analítica del área de la cuenca en función de los puntos (xi, yi) de su contorno. Dicha expresión es de la forma.

$$A = \left| \frac{1}{2} \sum_{i=1}^{n} x_i y_i + 1 - x_i + 1 y_i \right|$$
(1)

Donde se considera que el vértice n +1 se corresponde con el primero, esto es, el polígono es cerrado.

2.2.1.2. **Perímetro.**

Gonzales & Alfaro (2008) definen que el perímetro es la longitud sobre un plano horizontal. Que recorre la divisoria de aguas, este parámetro se mide en unidades de

longitud y se expresa normalmente en metros o kilómetros. En lo referente a su cálculo, estas resultan obvio utilizando la representación vectorial de la cuenca, tal como se define:

$$P = \sum_{i=1}^{n} \sqrt{(x_{i+1} + x_i)^2 + (y_{i+1} + y_i)^2}$$
(2)

2.2.1.3. Centro de gravedad

Gonzales & Alfaro (2008), define que, haciendo uso del área de la cuenca ya conocida, las coordenadas del centro de gravedad de la misma pueden evaluarse mediante las expresiones:

$$C_x = \frac{1}{6A} \sum_{i=1}^{n} (x_i x_{i+1}) \left(x_i y_{i+1} - x_{i+1} y_i \right)$$
(3)

$$C_x = \frac{1}{6A} \sum_{i=1}^{n} (y_i y_{i+1}) \left(x_i y_{i+1} - x_{i+1} y_i \right)$$
(4)

Cuando la cuenca tiene un aspecto bastante irregular, puede ocurrir que el centro de gravedad se sitúe fuera de la misma.

2.2.1.4. Momentos de inercia.

Lux (2014) indica que el cálculo computacional de los momentos de inercia complementa las expresiones para el área y centro de gravedad, cerrando el conjunto de las propiedades de masa que pueden atribuirse al diseño en planta de la cuenca.

En su expresión matemática se define:

$$I_{X^{I}} = \int \int y^{r^{2}} dx dy \ I_{y^{I}} = \int \int x^{r^{2}} dx dy \ I_{x^{I}y^{I}} = \int \int y^{I} X^{I} dx dy$$
(5)

2.2.1.5. Parámetros de forma

Pendiente: La pendiente representa el primer factor caracterizador de la cuenca al que el uso de cartografía digital va a modificar notablemente. Una de las fórmulas más utilizadas es:

$$S = \frac{L}{\Delta H} \tag{6}$$

Donde ΔH es la diferencia de alturas entre el punto más elevado de la cuenca y el punto de salida y L es la separación hidrológica entre ambos puntos es decir, la longitud de la cuenca (Lux, 2014).

Longitud de la cuenca (Lc): Se define como la distancia horizontal desde la desembocadura de la cuenca (punto de desfogue).

Ancho de cuenca (B): Se define como la relación entre el área y la longitud de la cuenca, los valores analizados del ancho de cuenca tienen una naturaleza distinta, no definiendo un valor concreto para la cuenca sino una función como tal, con una expresión de la forma:

$fANCHO: R \longrightarrow N$

Donde x es una distancia medida desde el punto de salida. Esta distancia puede ser tanto o una distancia sobre el cauce como una distancia en línea recta.

Factor de forma de Horton (Hf): Es la relación entre el área y el cuadrado de la longitud de la cuenca.

$$Kf = \frac{A}{L^2} \tag{7}$$

Coeficiente de compacidad (kc): Se define como la razón entre el perímetro de la cuenca que es la misma longitud del parteaguas o divisoria que la encierra y el perímetro de la circunferencia. Este coeficiente adimensional, independiente del área estudiada tiene por definición un valor de uno para cuencas imaginarias de forma exactamente circular.

$$Kc = \frac{P}{Pc} = \frac{P}{2\pi R} \tag{8}$$

2.3. PRECIPITACIÓN EFECTIVA.

El exceso de precipitación o precipitación efectiva (Pe), es la precipitación que no se retiene en la superficie terrestre y tampoco se infiltra en el suelo. Después de fluir a través de la superficie de la cuenca, el exceso de precipitación se convierte en escorrentía directa a la salida de la cuenca bajo la suposición de flujo superficial hortoniano.

Las gráficas de exceso de precipitación vs tiempo o hietograma de excesos de precipitación es un componente clave para el estudio de las relaciones lluvia-escorrentía. La diferencia entre el hietograma de lluvias totales y el hietograma de exceso de precipitación se conoce como abstracciones o pérdidas. Las pérdidas son primordialmente agua absorbida por filtración con algo de intercepción y almacenamiento superficial. (M.T.C, 2011).

2.3.1. Método del SCS para abstracciones.

El Soil Conservation Service (1972) desarrolló un método para calcular las abstracciones de la precipitación de una tormenta. Para la tormenta como un todo, la profundidad de exceso de precipitación o escorrentía directa Pe es siempre menor o igual a la profundidad de precipitación P; de manera similar, después de que la escorrentía se inicia, la profundidad adicional del agua retenida en la cuenca Fa es menor o igual a alguna retención potencial máxima S. Existe una cierta cantidad de precipitación la

(abstracción inicial antes del encharcamiento) para lo cual no ocurrirá escorrentía, luego

la escorrentía potencial es P-Ia.

Figura 1. Variables en el método.

Fuente: Chow, Maidment, & Mays (1994)

2.4. MÉTODOS ESTADÍSTICOS.

Las funciones de distribución de probabilidades se utilizan ampliamente en diversos estudios hidrológicos relacionados con los recursos, por ejemplo, el estudio de las avenidas, caudales de estiaje, volúmenes de avenidas, precipitaciones máximas e intensidades.

No existe en hidrología ninguna base teórica sólida para justificar una función específica de distribución de probabilidades. Como no hay un procedimiento teórico para decidir qué modelo probabilístico es el mejor, en un análisis de frecuencia particular, es habitual verificar y comparar la conveniencia o conformidad de muchas distribuciones candidatas y hacer una elección entre ellas basándose en consideraciones como ajuste de datos disponibilidad, facilidad computacional y consistencia con varios tamaños de muestra (Zalina, Desa, Nguyen, & Kassim, 2002). Algunas de las distribuciones habitualmente utilizadas para el análisis de las series de máximos anuales son la distribución de Gumbel, Log Normal, Log Pearson, Gamma, L momentos. Los valores

de la precipitación máxima horaria o diaria se ajustan bien a distribuciones tales como la de Valores Extremos Tipo I y Log Pearson Tipo III (Chereque, 1989).

2.4.1. Distribución de frecuencia Gumbel.

Llamada también Distribución General de valores Extremos, los valores extremos son valores máximos o mínimos seleccionados de conjuntos de datos. Por ejemplo, el caudal máximo anual en un lugar dado es el mayor caudal registrado durante un año y los valores de caudal máximo anual para cada año de registro histórico conforman un conjunto de valores extremos que puede analizarse estadísticamente. (Fisher & Tippet, 1928)han demostrado que las distribuciones de valores extremos seleccionados de conjuntos de muestra de cualquier de probabilidad convergen en una de las tres formas de distribución de valor extremo, llamadas Tipo I, II y III respectivamente, cuando el número de valores extremos seleccionados es grande (Chereque, 1989).

$$F(x) = exp\left(-\left(1 - \frac{k(x-\mu)}{\alpha}\right)^{\frac{1}{k}}\right)$$
(9)

Donde K, μ y α son los parámetros que deben ser determinados.

2.4.2. Distribución de frecuencia tipo Log Normal.

La distribución normal es una distribución simétrica en forma de campana, también conocida como campana gauss. Aunque muchas veces no se ajusta a los datos hidrológicos tiene amplia aplicación en datos transformados que siguen la distribución normal. (Chow et al., 1994), define que la distribución log normal describe la distribución de la conductividad hidráulica en un medio poroso, la distribución de tamaño de gotas de lluvia en una tormenta y otras variables hidrológicas. La distribución log normal tiene las ventajas sobre la distribución normal de que está limitada (X > O) y de que la transformación log tiende a reducir la asimetría positiva comúnmente encontrada en

información hidrológica, debido a que al tomar logaritmos se reducen en una proporción mayor los números grandes que los números pequeños (Chereque, 1989).

La función de densidad de probabilidades normal se define como:

$$f(x) = \frac{1}{\sqrt[s]{(2\pi)}} e^{1/2(\frac{x-\mu}{s})^2}$$
(10)

Donde f(x)=función densidad normal de la variable x.

X = variable independiente

 μ = parámetro de localización, igual a la media aritmética de x.

S = parámetro de escala, igual a la desviación estándar de x.

2.4.3. Distribución de frecuencia Log Pearson Tipo III

La localización del límite \in en la distribución log-Pearson tipo III depende de la asimetría de la información. Si esta tiene asimetría positiva, entonces log $X \ge \epsilon$ y ϵ es un límite inferior, mientras que, si la información tiene asimetría negativa, log $X \ge \epsilon$ y ϵ es un límite superior. La transformación log reduce la asimetría de la información transformada y puede producir información transformada con asimetría negativa utilizando información original con asimetría positiva. En este caso, la aplicación de la distribución log-Pearson tipo III impondría un límite superior artificial a la información (Chow et al., 1994).

La función de densidad de probabilidades se define como:

$$f(x) = \frac{(lnx - x_0)^{y - 1} e^{\frac{(lnx - x_0)}{\beta}}}{x\beta^y r(y)}$$
(11)

Donde:

 x_0 : parámetro de posición

- y : parámetro de forma
- β : parámetro de escala

2.4.4. Pruebas de bondad de ajuste

Aparicio (1998) sostiene que la prueba de ajuste, tienen por objeto medir la incertidumbre que se obtiene al hacer una hipótesis estadística sobre una población, es decir, calificar el hecho de suponer que una variable aleatoria se distribuya según cierta función. Las pruebas de bondad de ajuste más utilizadas son de ajuste gráfico y ajuste estadístico (Chi-Cuadrado, Kolmogorov-Smirnov, error cuadrático mínimo).

Las pruebas de bondad de ajuste son pruebas de hipótesis que se usan para evaluar si un conjunto de datos es una muestra independiente de la distribución elegida. En la teoría estadística, las pruebas de bondad de ajustes más conocida es la Kolmogorov-Smirnov, las cuales se describen a continuación:

2.4.5. Prueba Kolmogorov-Smirnov

Aparicio (1994) indica que este método comprueba la bondad de ajuste de las distribuciones. Asimismo, permite elegir la más representativa, es decir la de mejor ajuste. Esta prueba consiste en comparar el máximo valor absoluto de la diferencia D entre la función de distribución de probabilidad observada Fo (xm) y la estimada F (xm):

$$D = \frac{max}{Fo_{(xm)}} - F_{(xm)} \tag{12}$$

Con un valor crítico d que depende del número de datos y el nivel de significancia seleccionado. Si D<d, se acepta la hipótesis nula. Esta prueba tiene la ventaja sobre la prueba de X^2 que compara los datos con el modelo estadístico sin necesidad de agruparlos. La función de distribución de probabilidad observada se calcula como:

$$Fo_{(xm)} = 1 - \frac{m}{(n+1)}$$
(13)

Donde m es el número de orden de datos en una lista de mayor a menor y n es el número total de datos.

Tamaño de Muestra	α=0.10	α=0.05	α=0.01
5	0.51	0.56	0.67
10	0.37	0.41	0.49
15	0.30	0.34	0.4
20	0.26	0.29	0.35
25	0.24	0.26	0.32
30	0.22	0.24	0.29
35	0.20	0.22	0.27
40	0.19	0.21	0.25

Tabla 1. Valores críticos para la prueba Kolmogorov-Smirnov.

Fuente: Aparicio (1994).

2.5. **HEC HMS**.

El centro de Ingeniería Hidrológica, del cuerpo de ingenieros del ejército de los EEUU, diseñó el programa de computación sistema de modelamiento hidrológico (HEC-HMS), este provee una variedad de opciones para simular procesos de precipitación escurrimiento y también tránsito de caudales entre otros.

HEC-HMS, requiere las siguientes especificaciones:

- El primer conjunto, llamado modelo de cuenca (Basin Model), contiene parámetros y datos conectados para elementos hidrológicos. Los tipos de elementos son: cuenca, tránsito de avenidas, empalme o cruce, reservorio, fuente, retención y distribución.
- El segundo conjunto llamado modelo meteorológico, consiste en datos meteorológicos e información requerida para procesarlos.

- El tercer conjunto, llamado especificaciones de control, con el cual se especifica información de relación tiempo para efectuar la simulación.

2.6. HIDRÁULICA FLUVIAL.

Al enfrentarnos al estudio de los ríos debemos tener en cuenta tres grandes ideas, si se quiere comprender la mejor manera de controlarlos. En primer lugar, que debemos ver a los ríos como riqueza, como recursos naturales, como fuentes de vida; es decir, como posibilidades de aprovechamiento en beneficio de la humanidad. En segundo lugar, tenemos que mirar a los ríos como elementos naturales de los cuales tenemos que defendernos, tanto de las avenidas que son producto de la aparición de determinadas condiciones hidrometeorológicas, como de las inundaciones, debido al desbordamiento de un río por la incapacidad del cauce para contener el caudal que se presentan. Y la tercera idea que debemos tener presente es la protección de un rio contra la agresión humana (Rocha, 2007).

La hidráulica fluvial no puede comprenderse ni aplicarse aisladamente de otras disciplinas de la ingeniería que son complementarias. La hidráulica fluvial se ubica dentro de la hidráulica general y la hidráulica de canales. La meteorología y la hidrología resultan indispensables para el estudio de una de las fases del fenómeno fluvial. La geología, la geomorfología y disciplinas afines constituyen fundamento importante para entender mejor el comportamiento fluvial. La teoría del transporte de sedimentos resulta indispensable para aproximación al problema (Rocha, 2007).

2.7. DINÁMICA FLUVIAL

Un río aluvial está cambiando continuamente de posición y forma, como consecuencia de las fuerzas que actúan sobre el fondo y las márgenes. Estos cambios pueden ser lentos o rápidos. Estos cambios pueden ser naturales o haber sido inducidos, provocados por acciones humanas. Cuando los agentes externos actúan sobre un río (en una sección determinada), se produce consecuencias que se propagan hacia unas aguas arriba y/o hacia aguas abajo.

Estas consecuencias puedes ser incontrolables. Así un derrumbe de laderas puede producir un embalse natural, obviamente sin aliviadero, cuya rotura puede ser catastrófica. La construcción de una presa sobre el lecho de un río puede causar cambios fluviomorfológicos importantes como erosión (degradación) aguas abajo y sedimentación (a gradación) aguas arriba. Los ríos son dinámicos a lo largo del tiempo y el espacio. Los cambios se propagan a grandes distancias. Los agentes externos (naturales o inducidos) pueden causar efectos cuyo control escapan a las posibilidades humanas (Rocha, 2007).

2.8. HIDRÁULICA DE RÍOS.

Un río no es un objeto de la ingeniería como una carretera o un canal. El río es un elemento natural que acopia aguas de las cuencas cercanas que discurren a su cuenca, la misma que transporta en cualquier régimen hasta su desembocadura (Rocha, 1998). MORFOLOGIA FLUVIAL

Rocha (1998), el comportamiento fluvial depende fundamentalmente de la topografía, asociada a las condiciones geológicas. El desarrollo de los ríos y las formas que adopta son diferentes en una zona plana y en una zona de fuerte pendiente. La

naturaleza geológica, terciario o cuaternario son determinantes en la evolución de las formas fluviales.

2.8.1. Clasificación morfológica de los ríos.

Desde el punto de vista morfológico existen tres grandes grupos de ríos (Alfaro 2011):

- a. Ríos rectos: No existen ríos rectos en la naturaleza. Existen un sistema de encauzamiento recto, constituido por diques paralelos, pero dentro de él, para caudales menores que el de diseño, el río desarrolla su propia sinuosidad. Para el caudal de diseño el río ocupa toda la sección transversal y se comporta como si fuese recto.
- b. Ríos entrelazados: A veces se les llama ríos trenzados, generalmente son ríos anchos, cuya pendiente es fuerte, lo que da lugar a pequeños tirantes (calados) y el río corre en forma de varios canales o brazos alrededor de pequeñas islas.
- c. Ríos Meándricos: Están formados por una sucesión de curvas. La característica de estas curvas es muy dinámica, es que no se deben esencialmente a las propiedades de terreno sino a la naturaleza del comportamiento fluvial.

2.9. LAS AVENIDAS.

Es la elevación del nivel de un curso de agua significativamente mayor que el flujo medio de éste. Durante la crecida, el caudal de un curso de agua aumenta en tales proporciones que el lecho del río puede resultar insuficiente para contenerlo. Entonces el agua lo desborda e invade el lecho mayor, también llamado llanura aluvial. Los ríos experimentan un fenómeno extraordinario aumento de caudal y subidas del nivel de las aguas, incluso graves, pero no son un fenómeno independiente. Estos sucesos se conjugan

con factores hidrológicos (tamaño pequeño de cuenca), hidráulicos (pendiente alta de causes) y transporte de sedimentos (gran magnitud). Las avenidas se pueden caracterizar según su variabilidad en el tiempo, así se pueden distinguir:

- a. Avenidas periódicas: Generalmente no causan daños, e incluso son benéficas, como por ejemplo las del río Nilo previo a la construcción de la presa de Asuán, donde contribuían a la fertilidad del valle bajo del río. Este tipo de avenidas es de larga duración, pudiendo durar semanas o meses. Son causadas por las variaciones climáticas de vastas regiones de la cuenca hidrográfica. Son previsibles, pudiéndose tomar medidas de protección para evitar o minimizar los daños.
- b. Avenidas excepcionales: Son causadas por precipitaciones intensas sobre toda la cuenca o parte de esta. Son difícilmente previsibles, para ello se requiere de una red de monitoreo operada en tiempo real. Generalmente causan daños a las poblaciones y a la infraestructura económica. Se pueden tomar medidas de protección civil y mantenimiento preventivo de las infraestructuras.
- c. Combinación de ambas: Son combinación de ambas, difícil de predecir.

2.10. HEC-GEORAS.

Es una extensión para usar con ARC-GIS específicamente diseñada para procesar datos geo referenciados para usar posteriormente con HEC-RAS, Hec-GEORAS crea un archivo para importar a HEC-RAS datos de geometría del terreno incluyendo el cauce del rio, secciones transversales, etc. Información sobre estructuras hidráulicas-puentes, etc., no puede importarse desde ARC-GIS mediante HEC-GEORAS y debe añadirse a la simulación desde HEC-RAS. Posteriormente los resultados obtenidos de calados y velocidades se exportan desde HEC-RAS a ARC-GIS y pueden ser procesador para obtener mapas de inundación y riego (Molero, 2013).

Hec-GeoRAS es una extensión para ArcGIS 10 desarrollada conjuntamente por el hydrologic Engineering Center (HEC) del United States Army Corps of Engineer y e Environmental System Research Institute (ESRI). Básicamente es un conjunto de procedimientos, herramientas y utilidades específicamente diseñadas para procesar datos georreferenciados que permiten bajo el entorno de los sistemas de información geográfica (SIG), facilitar y complementar el trabajo con HEC-RAS (Molero, 2013).

2.11. CAUDALES MÁXIMOS

Los caudales máximos son utilizados en la predicción de inundaciones y diseño de obras hidráulicas, tales como conductos, alcantarilla, canales entre otros. Asimismo, el caudal máximo puede ser estimado con: ajuste de una distribución estadística, regionalización de caudales y precipitación. Sotero (1987) define como el mayor volumen de agua que pasa por un determinado punto de control, consecuencia de una fuerte precipitación.

Chow (2004) define la crecida máxima probable como la mayor corriente que puede esperarse suponiendo una coincidencia completa de todos los factores que producirán la máximas lluvias y máxima escorrentía Los caudales máximos referidas a un determinado periodo de retorno pueden ser estimados por diferentes métodos teniendo en cuenta la disponibilidad de registros hidrometereológicos.

2.11.1. Método directo.

Según Villón (2007) es un método hidráulico, llamado de sección y pendiente, en el cual el caudal máximo se estima después del paso de una avenida, con base en datos específicos obtenidos en el campo, como secciones transversales de un tramo de río,

pendiente de la superficie libre de agua con huelles de la avenida máxima y el coeficiente

de rugosidad n de Manning.

Figura 2. Elementos de una sección Fuente: Villón, (2007)

$$V = -\frac{1}{n}R^{2/3}S^{1/2} \tag{15}$$

Dónde:

R: Radio hidráulico promedio

S: Pendiente m/m

n: Coeficiente de rugosidad y de la ecuación de continuidad se tienen que:

$$Q = V \times A \tag{16}$$

Juntando las ecuaciones (1) y (2) se obtiene:

$$Q = \frac{1}{n} A R^{2/3} S^{1/2} \tag{17}$$

Dónde:

- Q: Caudal máximo, m³/s
- n: Coeficiente de rugosidad

A: Área hidráulica promedio, m²

R: Radio hidráulico promedio, m

S: Pendiente m/m

Los valores de coeficiente de rugosidad "n" Manning de acuerdo a las condiciones físicas del cauce, según (Olivera, 2016).

2.12. AVENIDA DE DISEÑO Y PERIODO DE RETORNO

Para obtener la avenida de diseño o el caudal máximo en la sección de interés de un cauce natural (río o quebrada) además de los métodos de análisis regional e hidráulico (sección-pendiente y modelamientos), existen dos formas de más comunes de obtenerlo; la primera consiste en la aplicación de teorías estadísticas a series históricas de caudales máximos (método hidrológico) registrados en el tramo fluvial de interés o cercano a él; la segunda forma, se refiere a los métodos indirectos mediante el uso de relaciones precipitación escorrentía (método hidrometeorológico), a partir de información pluviométrica registrada en el área o cuenca hidrográfica de interés. La avenida de diseño o caudal máximo está asociado a un período de retorno específico y este a su vez depende del riesgo de falla y vida útil de la obra.

2.13. HIDROGRAMA DE AVENIDA.

Se trata de una representación gráfica de la variación del tiempo y el caudal producido por una precipitación en una cuenca hidrográfica determinada, información muy importante para el dimensionamiento estructural de obras hidráulicas, y modelamientos hidráulicos (Ayala, 2014).

2.13.1. Hidrograma unitario.

De acuerdo al manual de carreteras: hidrología, hidráulica y drenaje (M.T.C., 2011), el hidrograma unitario es el centímetro (o una pulgada) de escorrentía directa de una tormenta con una duración especificada. matemáticamente, también es la función Kernel U (t-T) dada por:

$$Q(T) = \int i(u) \times U \times (t - T)dt$$
(18)

Donde:

- Q(t) : Función del hidrograma de salida.
- i(t) : Función de hietograma de entrada.

Se debe tomar en cuenta que aun cuando las características físicas de la cuenca permanezcan relativamente constantes, las características variables de las tormentas producen cambios en la forma de los hidrogramas resultantes (Chow, 2004).

2.13.2. Hidrogramas unitarios sintético.

Aparicio (1998) menciona que son aquellos hidrogramas que son simulados, artificiales y se obtienen usando las características fisiográficas y parámetros de la cuenca de interés. Su finalidad es representar o simular un fenómeno hidrológico de la cuenca, para determinar el caudal pico (Qp) y el tiempo con respecto a la ocurrencia del pico (tp).

2.13.3. Hidrograma unitario triangular del S.C.S.

Con base en la revisión de un gran número de hidrogramas unitarios, el Soil Conservation Service S.C.S sugiere que el tiempo esté dado en horas y el caudal en m³/s (Aparicio, 1998).

Figura 3. Hidrograma unitario triangular del S.C.S. Fuente: Chow et al. (1994)

Para Aparicio (1998) los parámetros del hidrograma sintético triangular se pueden calcular aplicando las siguientes formulas:

Para el cálculo del tiempo de concentración *tc* se puede estimar con la ecuación de Kirpich:

$$t_c = 0.00325 \times \frac{L^{0.77}}{S^{0.385}} \tag{19}$$

Donde:

 t_c = Tiempo de concentración de la cuenca, en horas

L = Longitud de cauce principal de cuenca, en metros

S = Pendiente del cauce, en m/m

Además, la duración en exceso con la que se tiene mayor caudal pico, a falta de mejores datos, se puede calcular aproximadamente para cuencas grandes, como:

$$de = 2 \times \sqrt{t_c} \tag{20}$$

Donde:

de = duración en exceso en h.

Del análisis de varios hidrogramas, Mockus concluye que el tiempo base y el tiempo (tp) pico se relacionan mediante la expresión:

$$t_b = 2.67 \times t_p \tag{21}$$

A su vez el tiempo de ocurrencia pico (tp) puede expresarse como:

$$t_p = \frac{de}{2} + t_r \tag{22}$$

Donde:

De : Duración en exceso de la lluvia, en horas

Tr : Tiempo de retraso, en horas

Adicionalmente, un estudio de mucha cuenca ha demostrado que:

$$t_r = 0.6 \times t_c \tag{23}$$

Donde:

 t_r = Tiempo de retraso, en horas

 t_c = Tiempo de concentración de la cuenca, en horas

Como el área bajo el hidrograma unitario debe ser igual a una escorrentía de 1cm, puede demostrarse que:

$$Q_p = \frac{2.08 \times \times hpe \times A}{t_p} \tag{24}$$

Donde:

A : Área de drenaje en km^2 .

Tp : Tiempo de ocurrencia del pico, en horas.

hpe : Altura de precipitación en exceso.

2.13.4. Hidrogramas unitarios adimensionales

Aparicio (1998) afirma que del estudio de gran cantidad de hidrogramas registrados en una en numerosas cuencas se obtuvieron hidrogramas adimensionales, dividiendo la escala de caudales entre el caudal pico (Qp) y la escala del tiempo entre el tiempo al que se presenta el caudal pico (tp), se observó que se obtiene un hidrograma adimensional como el que se muestra:

Figura 4. Hidrograma unitario adimensional Fuente: Aparicio (1994)

Asimismo, para obtener un hidrograma unitario a partir de dicha figura para una cuenca en particular basta con multiplicar las ordenadas si se dispone de los datos del pico del hidrograma, se puede calcular el hidrograma resultante multiplicando las coordenadas por los valores de tp y Qp.

2.14. COEFICIENTE DE RUGOSIDAD (N DE MANNING).

Chow (2004) recomienda tener en cuenta varios métodos uno de ellos, donde analiza varios factores que afectan al coeficiente de rugosidad Manning y que son representados en la siguiente ecuación:

$$n = (n_0 + n_1 + n_2 + n_3 + n_4) \times m \tag{25}$$

Donde:

- n_0 : valor básico de Manning para un canal abierto.
- n_1 : factor de corrección el efecto de irregularidades en el fondo del cauce.
- n_2 : Valor que corrige las variaciones de forma y tamaño de la sección transversal a lo largo del cauce.
- n_3 : Corrige el efecto por obstrucciones existentes en el cauce.
- n_4 : Rugosidad adicional equivalente debido a la presencia de vegetación.
- m : Por la presencia de meandros a lo largo del cauce

 Tabla 2. Tabla de Cowan para determinar influencia de diversos factores sobre el coeficiente "n".

CONDICIONES DEL CANAL			VALORES		
Material Involucrado	Tierra		0,020		
	Corte en Roca		0,025		
	Grava fina	n ₀	0,024		
	Grava gruesa		0,028		
	Suave		0,000		
Grada da irragularidad	Menor		0,005		
Grado de integularidad	Moderado	n 1	0,010		
	Severo		0,020		
Variacionas da la	Gradual		0,000		
variaciones de la sección transversal	Ocasionalmente Altemante	n 2	0,050		
	Frecuencia Altemante		0,010-0,015		
	Insignificante		0,000		
Efecto relativo de las	Menor	n.	0,010-0,015		
obstrucciones	Apreciable	113	0,020-0,030		
	Severo		0,040-0,060		
Vegetación	Baja		0,005-0,010		
	Media	n	0,010-0,025		
	Alta	114	0,025-0,050		
	Muy alta		0,050-0,100		
Grado de los efectos por meandro	Menor		1,000		
	Apreciable	m5	1,150		
	Severo		1,300		

Fuente: Hidráulica de tuberías y canales (Rocha, 2007).

Cuando los lechos de los cauces naturales están constituidos por material pedregoso, donde el sedimento es representado por un diámetro medio, se recomienda el uso de la ecuación de Strickler para la estimación de n_0 .

D: diámetro representativo de la rugosidad superficial (m). El diámetro D es equivalente al diámetro D₆₅, D₉₀ o D₉₅ dependiendo del acorazamiento del lecho. Particularmente, cuando los sedimentos ofrecen una granulometría gruesa y extendida, el diámetro medio de la coraza es cercano al D₉₀ o D₉₅ obtenido de la curva granulométrica original del lecho. Dentro de las publicaciones técnicas se tiene la publicación Water Supply Paper 1949 del US Geological Survey que presenta fotografías de diferentes corrientes naturales, indicando para cada caso el valor del coeficiente de rugosidad de Manning, calibrado con mediciones de terreno. Esta publicación es una buena referencia y guía para estimar los coeficientes de rugosidad en cauces naturales.

Cuando la rugosidad global o rugosidad compuesta de la sección varía con el tirante de agua, se debe, a que a distintas profundidades intervienen zonas de la sección con diferentes rugosidades. Este es el caso de los cursos naturales donde el lecho está constituido de un cierto tipo de material y las márgenes por otro tipo, usualmente con presencia de vegetación en las zonas de inundación. Para evaluar la rugosidad compuesta, se propone el método de Einstein y Banks, quienes demostraron mediante experimentos que los valores de la rugosidad están asociados a distintos sistemas independientes entre sí y que pueden superponerse linealmente. Es decir, que el área de la sección transversal del curso natural es separable y se supone que para cada subsección es válida la ecuación de Manning y que la velocidad media en la sección es uniforme.

Entonces el coeficiente de rugosidad global generado por m subsistemas está dado por:

44

$$n = \left(\sum_{Pi,nn^{\frac{2}{3}}}^{Pi,nn^{\frac{2}{3}}}\right)^{2/3}$$
(26)

Donde:

- n : Coeficiente de rugosidad global o compuesta de la sección total.
- ni : Coeficiente de rugosidad asociado a la subsección i. x.
- i : Perímetro mojado de la subsección i.
- x : Perímetro mojado de la sección total.

2.15. MODELACIÓN HIDRÁULICA.

En hidráulica el término modelo corresponde a un sistema que simula un objeto real, mediante la entrada de cierta información que se procesa y presenta en forma adecuada para emplearse en el diseño y operación de obras de ingeniería (Vergara, 1993).

Un modelo, es la representación física de un sistema real, mediante un conjunto de variables y parámetros interrelacionados por medio de una expresión matemática, y que permite simular un proceso del sistema. Igualmente, expone que existen dos razones para el desarrollo de un modelo, la primera es entender el sistema físico que provee un marco de datos, es la prueba de una hipótesis. La segunda es proporcionar una herramienta de predicción. Estas no deben confundirse pues la primera de ellas se puede satisfacer con un ajuste empírico, pero la segunda requiere un modelo que tenga experimentación extensiva y conocimiento para producir adecuadamente una salida particular para ciertas condiciones bien definidas, lo cual hace que sea factible producir salidas para ciertas condiciones con alguna confianza gL Fr = U.

El uso real de estos modelos es asistir en el análisis de datos, probar hipótesis en conjunto con estudios de campo, mejorar nuestro entendimiento de los procesos y su interacción e identificar las áreas de pobre entendimiento en nuestro proceso de descripción (Vergara, 1993).

2.15.1. Levantamiento topográfico.

Antes de iniciar con los trabajos de modelamiento se debe tener la topografía de la zona de trabajo, en esta etapa se examina la superficie teniendo en cuenta las características físicas, geográficas del terreno, a su vez las alteraciones existentes. El levantamiento topográfico tiene el fin de acopiar datos para poder reflejarlos en un plano con mayor detalle las características del terreno.

2.15.2. Aplicación de ArcGIS en la modelación.

ArcGIS es una herramienta que permite realizar un análisis del terreno. En el campo, ArcGIS dispone de diferentes opciones de uso, en nuestro caso lo utilizaremos para crear un modelo de elevación, el mismo que se cargara posteriormente al programa IBER y HEC RAS, A su vez ArcGis es amplio en el ámbito hidrológico e hidráulico, Dicha información es fundamental para:

- Planificar los recursos hidrológicos del territorio.
- Gestionar los recursos hídricos de forma eficiente y sostenible.
- Realización de estudios hidrológicos o de inundabilidad.
- Gestionar y controlar las masas de agua superficiales

2.16. MODELACIÓN MATEMÁTICA.

La mayoría de los modelos hidráulicos se utilizan para la modelación de inundaciones, a continuación, se mencionan algunas características de los modelos más utilizados.

2.16.1. Modelos unidimensionales

Estos requieren de información topográfica e hidráulica se introduce mediante secciones transversales ortogonales a lo largo del río o canal, situados en los puntos donde mejor se define la geometría del cauce y sus márgenes. Estos modelos tienen la limitación de que únicamente son capaces de analizar un flujo constante descendente y siempre perpendicular a las secciones trasversales seleccionadas para la modelización (Ayala, 2014).

2.16.2. Modelos bidimensionales.

Estos utilizan las ecuaciones de conservación de la masa y momento expresadas en dos dimensiones y los resultados se calculan en cada punto de la malla en el dominio de solución. Los modelos bidimensionales pueden resolverse usando el método de los elementos finitos a su vez, dichos modelos tienen la desventaja de requerir un mayor tiempo de implementación.

La principal diferencia entre los modelos unidimensionales y bidimensionales es que los primeros sólo consideran la velocidad media en la sección transversal, bajo la suposición de que su dirección es perpendicular a ella; mientras que los modelos bidimensionales emplean las dos componentes de la velocidad promediada en su profundidad (Robles, 2016).

2.16.2.1. Mallas estructuradas

Están constituidas por una matriz de celdas cuadrangulares, de manera que cada una puede identificarse por sus índices (i, j). Su principal ventaja, desde el punto de vista del cálculo numérico, es su eficiencia, tanto en lo que respecta a los algoritmos de programación como a su precisión; sin embargo mediante estas mallas es difícil representar geometrías sumamente irregulares (Robles, 2016)

2.16.2.2. Mallas no estructuradas

Pueden conformarse por elementos poligonales de distintos tamaños y formas; aunque generalmente se construyen con elementos triangulares. Al contrario de las estructuradas, este tipo de mallas es muy útil para representar de forma más real las irregularidades del terreno (Robles, 2016).

2.17. HEC RAS.

Lluén (2015) menciona que HEC-RAS permite la modelación hidráulica en régimen permanente y no permanente, transporte de sedimentos y análisis de calidad del agua en cauces abiertos, ríos y canales artificiales. Actualmente cuenta con una extensión que permite simular el flujo de agua combinando modelos 1D/2D, así como totalmente 2D; basándose su aplicación en las ecuaciones de Onda Difusiva y Saint Venant las cuales se resuelven mediante el algoritmo de volúmenes finitos implícitos.

Versión HEC RAS	Model ID	Model Cuasi 2D	Model 2D	Flujo Permanente	Flujo No Permanente	Análisis de Transporte de sedimentos	Análisis de Calidad de Agua
2.2	Х			Х			
3.1.3	Х			X	Х		
4.1.0	Х	Х		Х	Х	Х	Х
5.0	Х	Х	Х	Х	Х	Х	Х

Tabla 3.	Evolución d	lel tipo d	le modelización ^y	v herramientas	de HEC-RAS.
I ublu bi		tor upo c		y nonunitumentus	

Fuente: Lluén, (2015)

2.17.1. Capacidades y ventajas.

Las capacidades que el modelo matemático HEC-RAS posee en su análisis en 2D son descritas a continuación, información tomada del manual de modelación de HEC RAS 2D.

Realizar modelización en 1D, 2D o una combinación de ambos.

- Emplea las ecuaciones de Saint-Venant y Onda Difusa en 2D.
- Esquema numérico empleado: volumen finito implícito.
- Algoritmo de solución para el acoplamiento de modelos 1D y 2D.
- Mallas computacionales estructuradas y no estructuradas.
- Tabla detallada de propiedades hidráulicas para celdas y contornos de celdas computaciones 2D.
- Mapas detallados de inundación y animaciones de los mismos.
- Solución del esquema numérico basado en multiprocesadores.
- Permite trabajar con procesadores de 64-Bit y 32-Bit.

2.17.2. Ecuaciones hidráulicas en el modelo HEC-RAS 2D.

Brunner (2016) define que el programa permite elegir entre las ecuaciones de Saint-Venant u Onda Difusa en 2D para llevar a cabo la modelización. De forma general las ecuaciones de Onda Difusa en 2D permiten que el software procese la información rápidamente y tiene mayores propiedades de estabilidad, sin embargo, las ecuaciones de Saint-Venant 2D son aplicables a una gama más amplia en la resolución de problemas información tomada del manual de modelación con Hec Ras 5.0 2D.

2.17.2.1. Ecuación de Saint-Venant:

$$C = \frac{V * \Delta T}{\Delta X} \le 1.0 \tag{27}$$

Donde:

С	=	Número de Courant
V	=	Velocidad de flujo
ΔT	=	Paso de tiempo computacional
ΔX	=	Promedio de tamaño de celda

2.17.2.2. Ecuaciones de difusión de onda en aguas poco profundas.

a. Forma de onda de difusión de la ecuación de momentum.

Con un flujo controlado, los componentes de la ecuación de momentum pueden ser descartados hasta llegar a una versión simplificada. El movimiento del flujo es conducido por el gradiente de presión barotropica balanceado por la fricción de fondo, simplificando la ecuación:

$$\frac{n^2 I V I V}{(R(H))^{\frac{4}{3}}} = -\nabla H$$
(28)

Dividiendo ambos lados de la ecuación por la raíz cuadrada de su normal,

la ecuación puede ser arreglada en una forma más clásica:

$$V = \frac{-(R(H))^{\frac{2}{3}}}{n} = \frac{\nabla H}{|\nabla H|^{1/2}}$$
(29)

Donde:

- V : Vector velocidad
- R : Radio hidráulico
- ∇H : Gradiente de la superficie de elevación
- N : Valor empírico derivado de Manning.

b. Aproximación de onda de difusión de ecuaciones de agua poca profundas.

Cuando la velocidad es determinada por un balance entre gradiente de presión barotrópica y la fricción de fondo, la forma de onda de difusión de la ecuación de momentum puede ser usada en lugar de la ecuación de momentum completa y el correspondiente sistema de ecuaciones puede ser simplificado en el siguiente modelo de ecuación:

$$\frac{\delta H}{\delta t} - \nabla . \,\beta \nabla H + q = 0 \tag{30}$$

Donde:

$$\beta = \frac{(R(H))^{\frac{5}{3}}}{n|\nabla V|^{\frac{1}{2}}}$$

Si la información batimétrica es de interés, la ecuación de difusión de onda puede también ser sustituida de la ecuación de continuidad para obtener la siguiente expresión:

$$\frac{\Omega(H^{n+1}) - \Omega(H^n)}{\Delta t} - \sum k \alpha \nabla H. n + Q = 0$$
(31)

Donde:

$$\propto = \propto (H) = \frac{(R(H))^{\frac{2}{3}}Ak(H)}{n|\nabla H|^{\frac{1}{2}}}$$

 $\Omega(H^n)$ = Volumen de celda al tiempo "n"

A = Area de cara "k", como funciones de la elevación.

2.17.2.3. Ecuaciones de conservación de momentum

Cuando las escalas de longitud horizontal son mucho más grandes que la escala de longitud vertical, la conservación de volumen implica que la velocidad vertical es pequeña. La ecuación de momentum vertical de Navier-Stokes puede utilizarse para justificar que la presión es casi hidrostática. En ausencia de gradientes de presión baroclínicos (densidad variable), una fuerza fuerte del viento y presión no hidrostática, es adecuada usar una versión verticalmente promediada de la ecuación de momento. La velocidad vertical y los términos derivados verticales pueden ser despreciados con seguridad (tanto en ecuaciones de masa como de impulso), permitiendo de ese modo obtener las ecuaciones de aguas poco profundas.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -g \frac{\partial H}{\partial x} + Vt * \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) - C_f u + fv \qquad (32)$$
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -g \frac{\partial H}{\partial x} + Vt * \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) - C_f V + fu$$

Donde:

U, v = Velocidad en las direcciones cartesianas.

g = Aceleración gravitatoria.

- Vt = Coeficiente de viscosidad horizontal
- Cf = Coeficiente de fricción inferior

H = Tirante de agua

f = Parámetro de Coriolis

El lado izquierdo de la ecuación contiene los términos de aceleración, el lado derecho representa las fuerzas internas o externas que actúan sobre el fluido. El término del lado izquierdo y el lado derecho se organizan de tal manera que estén de acuerdo con la segunda ley de Newton, de la cual se derivan las ecuaciones de momento.

Las ecuaciones de momento también se pueden representar como una forma única vectorial diferencial. La ventaja de esta presentación de la ecuación es que se vuelve más compacta y fácilmente legible, siendo la forma vectorial de la ecuación de momento la siguiente:

$$\frac{\partial v}{\partial t} + V \cdot \nabla V = -g \nabla H + V t \cdot \nabla^2 V - C_f V + AFK * V$$
(33)

Donde;

 ∇ = Vector de los operadores de derivadas parciales dados por

$$\nabla = (\delta/\delta x, \delta/\delta y)$$

K = Vector unitario en la dirección vertical.

Cada término de la ecuación vectorial tiene una contraparte física clara. De izquierda a derecha hay la aceleración no permanente, la aceleración convectiva, el término de presión barotrópica, la difusión de remolinos, la fricción de fondo y el término de Coriolis. Un análisis dimensional muestra que cuando la profundidad del agua es muy pequeña el término de fricción inferior domina la ecuación. Como consecuencia, la ecuación para celdas secas toma la forma límite V = 0.

2.17.3. Esquemas numéricos.

2.17.3.1. Volumen finito implícito.

El método de volúmenes finitos, incrementa la mejora en la estabilidad y robustez sobre las técnicas de diferencias finitas y elementos finitos; pudiendo manejar adecuadamente situaciones de flujo en regímenes subcrítico, supercrítico y mixto (Brunner, 2016)

2.17.3.2. Mallas computacionales.

Brunner (2016) indica que HEC-RAS 2D fue diseñado para trabajar con mallas no estructuradas, pero también puede trabajar con mallas estructuradas. Las celdas computacionales de una determinada malla pueden ser triángulos, cuadrados, rectángulos o polígonos de hasta 8 lados como máximo. La celda que compone una malla computacional tiene las siguientes propiedades (Ver figura 5): centro de celda, contorno de celda y puntos en contorno de celda.

Figura 5. Propiedades de las celdas en una malla computacional Fuente: HEC RAS 2D Modeling User's Manual (2016).

La malla generada puede ser manipulada con facilidad con herramientas que ofrece el software; esta edición permite mover, agregar y remover puntos de las celdas que se generan.

El proceso de mallado computacional se realiza siguiendo la técnica de triangulación de Delaunay y luego construye un diagrama de Voronoi. Asimismo, la elección del tamaño de malla es uno de los pasos importantes a considerar ya que debe optarse por elegir una malla que mejor se adecue al terreno que controlará el movimiento del flujo. Las variaciones del tamaño de malla deben hacerse de forma gradual de manera para mejorar la precisión de cálculos.

2.17.3.3. Tabla detallada de propiedades hidráulicas para celdas y contornos de celdas computacionales en 2D.

Cada celda y contorno de celda es pre - procesada con la finalidad de obtener tablas de propiedades hidráulicas basadas en el terreno subyacente empleado en la modelización. Básicamente el pre - proceso, calcula una relación detallada de Elevación Volumen para cada celda; y para cada contorno de celda calcula la relación elevación perímetro mojado, elevación-área, elevación-rugosidad, y demás propiedades hidráulicas. Estas relaciones que crea el programa permiten al usuario crear celdas computacionales grandes conservando los detalles del terreno; lo cual resulta ventajoso porque hace más rápido los tiempos de cálculo, pues genera mayores detalles hidráulicos a nivel de cada celda. La elección del tamaño de celda se basa en el nivel de detalle que se quiere obtener (Cea & Bladé, 2015).

Figura 6. Relación elevación-volumen para cada celda computacional, basada en el terreno subyacente

Figura 7. Parámetros hidráulicos calculados en el pre proceso para cada celda computacional

Fuente: HEC RAS 2D Modeling User's Manual (2016)

2.17.3.4. Mapas detallados de inundación y animaciones de los mismos.

HEC-RAS, a través de su herramienta RAS Mapper, ofrece la posibilidad de visualizar mapas de zonas inundadas, así como la animación del flujo de agua cuando acontece la inundación. Dicho proceso se basa en función del terreno subyacente y no en el tamaño de celda computacional de la malla generada (Cea & Bladé, 2015).

2.18. MODELO IBER.

IBER (2015), indica que es un modelo de uso libre, incluyen procedimientos más sofisticados basados en la solución de la ecuación 2D. IBER en su módulo hidrodinámico resuelve ecuaciones del flujo en lámina libre para agua poco profundas (ecuaciones de Saint Venant 2D). Además de esto, tanto en el módulo hidrodinámico como en el de turbulencia y el de sedimentos, se resuelven las ecuaciones en forma integral por el método de volúmenes finitos en una malla no estructurada, con todas las ventajas que ello conlleva.

2.18.1. Aplicaciones de IBER

La aplicación de IBER puede abarcar:

- Simulación del flujo en lámina libre en cauces naturales.
- Evaluación de zonas inundables. Cálculo de las zonas de flujo preferente.
- Cálculo hidráulico de encauzamientos.
- Cálculo hidráulico de redes de canales en lámina libre.
- Cálculo de corrientes de marea en estuarios.
- Estabilidad de los sedimentos del lecho.
- Procesos de erosión y sedimentación por transporte de material granular.

2.18.2. Estructura del programa

La estructura del programa se puede definir 3 en proceso:

c. Pre proceso: En este proceso se define las condiciones geométricas como la cartografía de la zona a estudiar, las condiciones iniciales del proyecto tales como: la cota inicial del modelo, rugosidad, las condiciones de contorno tanto de entrada

como de salida y el mallado de la superficie (pudiendo ser mallada automáticamente por el programa o manualmente por el usuario).

- d. Proceso: En este proceso se realizará el cálculo de la hidrodinámica del tramo en estudio río Cabanillas.
- e. Postproceso: Es el proceso en que se visualiza los resultados obtenidos en el modelamiento hidráulico, se puede observar en gráficos, secciones y mapas de resultados y videos.

Figura 8. Estructuras de procesos que maneja IBER.

Fuente: IBER (2015)

2.18.3. Proceso de modelamiento en IBER.

En el programa IBER, para poder desarrollar el proceso del modelamiento se considera los siguientes parámetros:

a) Malla de cálculo

IBER (2015) indica que para resolver una ecuación diferencial por el método de volúmenes finitos es necesario realizar previamente una desratización espacial del dominio a estudiar. Para ello se divide el dominio de estudio en celdas de tamaño relativamente pequeño (malla de cálculo). IBER trabaja con mallas no estructuradas formadas por elementos que pueden tener 3 o 4 lados. Se pueden combinar elementos irregulares de 3 y 4 lados dentro de la misma malla. La principal ventaja de trabajar con mallas no estructuradas es la facilidad con que se adaptan a cualquier geometría, ya que no es necesario que la malla tenga ningún

tipo de organización o estructura interna. Esta característica las hace especialmente indicadas para su utilización en hidráulica fluvial.

Figura 9. Ejemplo de malla no estructurada programa IBER. Fuente: IBER (2015)

b) Dimensionalidad de un flujo

Existen tres maneras de entender las variables hidráulicas para secciones naturales o artificiales:

Los modelos unidimensionales (ID), una de las dimensiones del modelo unidimensional prevalece sobre las otras dos. Esta dimensión es la longitudinal a lo largo del eje del río o canal. La información topográfica e hidráulica se introduce mediante secciones transversales, es decir toda la sección es representada por un único valor medio de velocidad, no considerándose variaciones en la distribución de velocidades tanto horizontales como verticales.

Los modelos cuasi - bidimensional cuasi-2D. Con el objetivo de incorporar la llanura de inundación de una manera simplificada pero efectiva, en la década de los 70 se desarrolló un método para considerar las áreas cercanas al cauce principal

como una serie de celdas o depósitos conectados entre sí. El flujo de agua entre estos depósitos se calcula con ecuaciones simplificadas. Esta simplificación resulta efectiva cuando en la zona de llanura no se requiere el detalle del campo de velocidades, sino que el objetivo es conocer únicamente los niveles de la lámina de agua y conocer las llanuras de inundación.

Los modelos bidimensionales (2D) consideran las variaciones en las dos dimensiones del plano horizontal. Las variaciones de velocidad de interés en la columna vertical de agua se promedian y se asumen como un único valor. Estos modelos son especialmente útiles en flujos muy extendidos (como estuarios, lagos, etc.) donde la variación vertical de velocidad es pequeña, por eso suelen llamarse modelos de aguas someras o poco profundas. Estrictamente no son aplicables a casos en que la variación vertical de la velocidad es apreciable, como por ejemplo el flujo sobre vertederos o a través de un orificio sumergido; sin embargo, mediante uso de expresiones empíricas o similares pueden incorporarse estas singularidades dentro de los modelos.

Figura 10. Ejemplo de simulación de inundación.

c) Fundamentos teóricos de los flujos bidimensionales

Los modelos numéricos consisten en predecir los valores que toman las variables hidráulicas (velocidades, caudal, tirante, etc.) a partir de la resolución mediante métodos numéricos de unas ecuaciones obtenidas con una serie de hipótesis. Para el estudio de los efectos de la propagación de avenidas en ríos se pueden utilizar modelos bidimensionales. La necesidad de estudiar cada vez fenómenos más complejos, y la observación que en la naturaleza se encuentran muchas situaciones donde el flujo parece ser efectivamente bidimensional es decir predominan las dimensiones horizontales sobre la vertical, para esta solución se tiene como básicos la conservación de masas, conservación de energía e impulso-cantidad de movimiento: conservación de momento.

Figura 11. Dimensionalidad del flujo.

d) Modelos numéricos para flujo de agua en lámina libre.

Los modelos numéricos de un flujo en lámina libre han evolucionado paralelamente a la capacidad de los ordenadores. Los softwares para el desarrollo de estos modelos numéricos se inician como trabajos de investigación en universidades o centros de investigación, haciendo difícil la comercialización de estas herramientas debido al poco diseño del interfaz gráfico, sin embargo, a la

actualidad estos trabajos se han mejorado y hasta ha surgido la fusión de algunos programas con un entorno gráfico más amigable para el usuario.

En el pasado los modelos numéricos han simplificado para reducir el tiempo y capacidad de cálculo, con la necesidad de estudiar fenómenos más complejos donde la hipótesis de una dimensión se aleja demasiado de la realidad, y la similitud que tiene con la realidad a un flujo bidimensional; esto condujo al desarrollo de los esquemas bidimensionales. Para ello se pueden hacer distintas aproximaciones según se trate de estudiar un problema, según cuales sean las principales fuerzas determinantes del movimiento del agua, y según qué variables nos interesa conocer.

e) Ecuaciones de flujos bidimensionales en lámina libre o ecuaciones de Saint-Venant.

Las ecuaciones de Saint-Venant bidimensionales se obtienen a partir de las leyes físicas de conservación de la masa y la cantidad de movimiento, junto con la primera y segunda leyes de la termodinámica. De ellas, para un fluido newtoniano e isótropo se obtienen las ecuaciones de Navier-Stokes, que particularizadas para describir las variables promediadas en un pequeño incremento de tiempo y se concretan en las ecuaciones de Reynolds. (Cea & Bladé, 2015)

Para poder llevar a cabo la deducción de las ecuaciones de Saint-Venant son necesarios las siguientes suposiciones:

- d. Pendiente de fondo suave.
- e. Presión hidrostática.
- f. Movimiento de las partículas solo ocurre en planos horizontales.

- g. Velocidad vertical de la partícula despreciable con respecto a la gravedad.
- Los componentes de velocidad en las direcciones x e y en una misma son casi iguales.
- La profundidad es pequeña en relación con las otras dimensiones (Cea & Bladé, 2015).

Al trabajar con flujos en dos direcciones espaciales x e y, para ecuaciones de forma vectorial:

$$\frac{\partial U}{\partial t} + A \frac{\partial U}{\partial x} + B \frac{\partial U}{\partial y} = H$$
(34)

CAPITULO III

MATERIALES Y MÉTODOS

3.1. DESCRIPCIÓN DE LA ZONA DE ESTUDIO

3.1.1. Ubicación del área de estudio.

El área de estudio comprende el margen derecho e izquierdo del río Cabanillas de la cuenca Coata, específicamente el sector Lizacia, del distrito de Cabanillas, provincia San Román, departamento de Puno a una altitud de 3885 m.s.n.m, estando delimitada por las siguientes coordenadas UTM.

Coordenadas UTM		
Tramo	Ν	Ε
Aguas arriba	8266983.95	351179.36
Aguas abajo	8271016.72	355354.02

Tabla 4. Coordenadas de ubicación de la zona de estudio

Fuente: Elaboración propia (2019).

Fuente: Elaboración propia

65

3.2. MATERIALES

3.2.1. Información cartográfica

El área de influencia de la cuenca que aporta descarga al tramo de estudio está comprendida en los planos catastrales (1/100,000), recopilados del Instituto Geográfico Nacional (IGN).

3.2.2. Información meteorológica

Para la presente investigación se utilizó información meteorológica de diferentes estaciones como son: estación Santa Lucia, Cabanillas, Lagunillas, Quillisani y Jarpaña

3.2.3. Información topográfica

El levantamiento topográfico (batimetría), tiene por finalidad definir el área donde se realizará la investigación, para la simulación de posibles inundaciones, esta actividad se llevó a cabo en el río Cabanillas Sector Lizacia.

Para la presente investigación se utilizó la base de datos del Plan de contingencia por temporada de lluvias 2016-2017 (Identificación de las zonas vulnerables ante inundaciones), elaborado por la Autoridad Administrativa del agua XIV TITICACA.

3.2.4. Programas de computo

Los cálculos y el manejo de datos se realizaron mediante el uso de los softwares los cuales se describirán a continuación: ArcGIS, HEC RAS 2D, HEC-HMS, AutoCAD CIVIL3D, software HYFRAN y microsoft office 2016.

3.2.5. Equipos de computo

Dentro de los materiales utilizados en la ejecución de esta investigación se tienen los siguientes: Procesador Intel CORE i7, impresora, material de escritorio, disco duro externo.

3.3. MÉTODOLOGÍA.

La metodología empleada en el presente trabajo de investigación comprende los siguientes procedimientos: (1) modelación hidrológica (2) modelación hidráulica (3) obtención de mapas de inundación, velocidad y profundidad, los cuales se resumen en el siguiente diagrama de flujo de la figura 13.

Figura 13. Diagrama de flujo de la metodología empleada en la investigación Fuente: Elaboración propia.

3.4. MODELAMIENTO HIDROLÓGICO.

3.4.1. Delimitación de la cuenca en estudio mediante el ArcGIS.

Para realizar la delimitación de la cuenca en estudio, primeramente, se realizó el levantamiento topográfico para poder delimitar el área de estudio del río Cabanillas en el

sector Lizacia. Se tomó como punto base el puente Cabanillas considerando desde aguas arriba bocatoma Cabanillas con progresiva 34+000 hasta el puente Cabanillas con progresiva 41+000. En el tramo de estudio se evaluará el río Cabanillas con caudales máximos con la finalidad de plantear soluciones ante posibles inundaciones.

3.4.1.1. Modelo digital del río Cabanillas.

a) Primeramente, seleccionaremos el área de estudio del proyecto, abarcando así desde la progresiva 34+000 (Bocatoma Cabanilla) hasta la progresiva 41+000 (puente vehicular Cabanillas).

Insertaremos las coordenadas de los puntos de las progresivas mencionadas anteriormente (progresiva 34+000 hasta la progresiva 41+00), Se tiene:

Tabla 5. Coordenadas punto aguas arriba y aguas aba	ijo
---	-----

Item	Descripción	Coord_X	Coord_Y
1	Aguas arriba	351179.36	8266983.96
2	Aguas abajo	355354.02	8271016.72

Fuente: Elaboración propia.

 b) Generaremos el modelo digital de terreno en formato vectorial TIN (Triangular Irregular Network) con el siguiente procedimiento: En el ArcGIS seleccionaremos la herramienta catalog / toolboxes/ system toolboxes/ 3d

analysis tools / data management/ tin / create tin, especificando el sistema de

coordenadas WGS 1984_UTM_Zone 19S. Por lo que se obtiene.

Figura 14. Modelo digital "TIN" creado

FUENTE: Elaboración propia

Posteriormente generaremos el "FILL", seleccionando la herramienta catalog/

spatial analyst tools/ hydrology/ fill. Por lo que se tiene:

Figura 15. Creación de "FILL"

FUENTE: Elaboración Propia

c) Una vez obtenido el FILL generaremos la dirección del flujo con la herramienta

flow dirección, con el siguiente procedimiento:

 Seleccionamos catalog/ system toolboxes/ spatial analyst tools/ hydrology/ flow direction.

Figura 16. Flow Direction creado

Fuente: Elaboración propia

- d) Generación de Watershed
 - Seleccionar catalog/ system toolboxes/ spatial analyst tools/ hydrology/

watershed.

Fuente: Elaboración propia

Luego de tener el fill, flow dirección, y el watershed Generaremos el Ráster

To Polygon, para ello seleccionamos catalog/ system toolboxes/ conversión

tools/ from raster/ raster to polygon.

Figura 18. Creación de raster polygon

Fuente: Elaboración propia

e) Posteriormente interpolaremos mediante la herramienta catalog/ system toolboxes/ conversión tools/ from raster/ raster to polygon, obteniendo:

Figura 19. Interpolate shape

Fuente: Elaboración propia

3.4.2. Caracterización geomorfológica de la cuenca.

El análisis de gran parte de los fenómenos hidrológicos que ocurren sobre un determinado espacio geográfico suele tener como referencia a la unidad fisiográfica conocida como cuenca. Para el concepto de cuenca hidrográfica se tienen varias definiciones.

Las características físicas de una cuenca desempeñan un papel esencial en el estudio y comportamiento de parte de los componentes del ciclo hidrológico, tales como la evaporación, infiltración, flujo superficial, entre otros(Belizario, 2014). Las principales características físicas que se consideran en investigaciones hidrológicas son las concernientes a la cuenca, a la red de drenaje y al cauce o río principal.

3.4.2.1. Parámetros de forma.

Para determinar la forma de una cuenca se utilizan los coeficientes que se describen a continuación:

3.4.2.2.Área de la cuenca.

El área de cuenca es el área proyectada sobre un plano horizontal, medida dentro de los límites de la cuenca siguiendo la línea de divortium acuarium. Desde el punto de vista hidrológico es más importante la proyección horizontal que la superficie real de la cuenca.

Parámetros	Cuenca Coata Puente Cabanillas
Área (km ²)	2774,66

Tabla 6. Área de la cuenca.

Fuente: Elaboración propia

3.4.2.3.Perímetro de la cuenca.

Es el contorno que delimita el área de la cuenca, igual a la longitud de la línea de divortium acuarium.

Tabla 7. Perímetro de la cuenca.

Puente Cabanillas
23,980

Fuente: Elaboración propia.

3.4.2.4. Parámetros asociados a la longitud.

Longitud del cauce principal (Lc): El desarrollo longitudinal del colector principal es una magnitud característica útil y de efecto importante en la respuesta hidrológica de la cuenca, ya que en un río corto los efectos de la precipitación se reflejan más rápidamente que en un río largo. La longitud del cauce principal es la distancia medida a lo largo del curso fluvial de mayor orden, desde las nacientes hasta el final del mismo.

Longitud máxima de la cuenca (Lm): Es la longitud medida entre los puntos extremos de la cuenca a través de una línea recta paralela al cauce principal que no necesariamente coincide uno de ellos con el desagüe.

Ancho promedio de la cuenca (Ap): Es un parámetro promedio que se obtiene a partir del cociente entre el área de la cuenca y la longitud máxima (Lm) de la misma.

$$A_p = \frac{A}{L_m}$$

Donde:

Ap : Ancho promedio de la cuenca (km)

A : Área de la cuenca (km^2)

Lm : Longitud máxima de la cuenca (km).

Tabla 8. Parámetros asociados a la longitud de la cuenca.

Parámetros	Cuenca Coata Puente Cabanillas
Longitud cauce Lc (km)	124,73
Longitud máxima cuenca Lm (km)	80,312
Ancho promedio cuenca Ap (km)	55,365

Fuente: Elaboración Propia

3.4.2.5.Coeficiente de compacidad o índice de gravelius.

El índice de Gravelius está definido como la relación entre el perímetro de la cuenca y la circunferencia del círculo de la superficie de la cuenca.

La peligrosidad de una cuenca aumenta si el coeficiente Kc se acerca a la unidad, o a una forma redonda ya que indica que las distancias relativas de los puntos de la divisoria en relación a uno central, no tienen diferencias mayores y es menor el tiempo de concentración y la posibilidad de las ondas decrecidas sean continuas.

$$K_c = 0.2821 \frac{P}{\sqrt{A}}$$

Donde:

Kc : Coeficiente de compacidad o Índice de Gravelius

P : Perímetro de la cuenca (km)

A : Área de la cuenca (km^2)

 Tabla 9. Valores del coeficiente de compacidad.

Kc	Forma de la cuenca	Tendencia de crecidas.
1.00 - 1.25	De casi redonda a oval redonda	ALTA
1.25 - 1.50	De oval redonda a oval oblonga	MEDIA
1.50 - 1.75	De oval oblonga a rectangular	BAJA

3.4.2.6.Factor de forma.

Este factor es utilizado para establecer dinámica esperada de la escorrentía superficial en una cuenca. Una cuenca tiende a ser alargada si el factor de forma tiende a cero, mientras que su forma es redonda, en la medida que el factor de forma tiene a uno. Este coeficiente por Horton afecta los hidrogramas de escorrentía y las tasas de flujo máximo. El factor de forma está definido por la siguiente expresión:

$$f_f = \frac{A}{{L_c}^2}$$

Donde:

- Ff : Factor de forma
- A : Área de la cuenca (km^2)
- Lc : Longitud del cauce principal (km)

3.4.2.7. Radio de elongación.

Definido por S. A. Schumm como la relación entre el diámetro (D) de un círculo que tenga la misma superficie de la cuenca y la longitud máxima de la cuenca (Lm)

$$R_e = 1.128 \frac{\sqrt{A}}{Lm}$$

Donde:

Re : Radio de elongación.

A : Área de la cuenca (km^2)

Lm : Longitud máxima de la cuenca (km)

3.4.2.7.1. Radio de circularidad

Este coeficiente es el cociente entre el área de la cuenca y la del circulo cuya circunferencia es equivalente al perímetro de la cuenca.

Si los resultados obtenidos indican que la cuenca en estudio está cercana a una simetría en sus dimensiones cartesianas, hidrológicamente implicaría hidrogramas casi simétricos en su desembocadura. Se calcula de la siguiente manera:

$$Rc = \frac{4\pi A}{p2}$$

Dónde:

Re

: Radio de circularidad

A : Área de la cuenca (km^2)

P : Perímetro de la cuenca (km)

3.4.3. Parámetros de relieve.

La influencia del relieve sobre la respuesta hidrológica de la cuenca es importante, puesto que a mayores pendientes corresponden mayores velocidades del agua en las corrientes y menor será el tiempo de concentración de la cuenca. Para describir el relieve de una cuenca existen numerosos parámetros que han sido desarrollados por varios autores, entre los más utilizados destacan los siguientes.

3.4.3.1. Altitud media de la cuenca (hm).

La altitud media de una cuenca es aquella para la cual el 50% del área de la misma está situado por encima de dicha altitud y el 50% se encuentra por debajo, se determina a partir de la curva hipsométrica.

Parámetros	Cuenca Coata Puente Cabanillas
Altitud Máxima (msnm)	5393,57
Altitud Mínima (msnm)	3877,49
Altitud Media (msnm)	4750,00

Tabla 10.Altitudes de la cuenca.

Fuente: Elaboración Propia.

3.4.3.2.Pendiente media del cauce.

La pendiente de la cuenca tiene una relación importante con los fenómenos de infiltración, escurrimiento superficial, humedad del suelo y con la contribución del agua subterránea de los cauces. Por lo que para el cálculo de la pendiente media de las cuencas en estudio se utilizó un Modelo Digital del Terreno.

3.4.3.3.Índice de pendiente de la cuenca.

El índice de pendiente de la cuenca es un parámetro que permite determinar la declividad de un curso de agua entre dos puntos y se calcula con la siguiente fórmula:

$$lp = \left(\frac{H_M - H_m}{1000Lc}\right)^{0.5}$$

Donde:

Lp : índice de pendiente.

HM : Altitud máxima (msnm)

Hm : Altitud máxima (msnm)

3.4.3.4. Tiempo de concentración.

También conocido como tiempo de respuesta o de equilibrio, Se atribuye muy comúnmente el tiempo de concentración, al tiempo que tarda una partícula de agua caída

en el punto de la cuenca más alejado (según el recorrido de drenaje). A continuación, se muestran las fórmulas utilizadas en el presente estudio.

- Formula de Kirpich

$$T_c = 0.000325 \frac{L^{0.77}}{S^{0.385}}$$

- Formula de Giandotti.

$$T_c = \frac{4\sqrt{A} + 1.5L}{25.3\sqrt{SXL}}$$

- Formula de U.S. Hathaway

$$T_c = 0.286 \left(\frac{L^{0.467}}{S^{0.234}} \right)$$

Para cada una de las ecuaciones anteriores se definen las variables a continuación:

- Tc : Tiempo de concentración (h)
- A : Área de la cuenca (km^2)
- L : Longitud del cauce (km)
- S : Pendiente de la cuenca (m/m)

El tiempo de concentración para el modelo precipitación – escorrentía será el promedio geométrico de los valores obtenidos:

$$Tc_{promedio} = \sqrt[n]{\prod_{i=1}^{n} Tci}$$

3.4.4. Estaciones meteorológicas en estudio.

En la figura 20 y tabla 11 se muestran las estaciones meteorológicas consideradas en la presente investigación.

Figura 20. Ubicación de estaciones meteorológicas seleccionadas.

Tabla 11. Datos de estaciones meteorológicas seleccionadas para la modelación
hidrológica de la cuenca.

N°	ESTACIÓN	LATITUD	LONGITUD	X	Y	ALTITUD (msnm)	PRECIPITACIÓN ANUAL (mm)
1	QUILLISANI	15°23'00"	70°45'00"	312176	8298514	4600	48,40
2	JARPAÑA	15°34'00"	70°43'00"	308720	8283731	4250	63,80
3	SANTA LUCIA	15°42'00"	70°36'00''	328541	8263601	4050	115,60
4	CABANILLAS	15°39'00"	70°22'00"	353514	8269308	3892	68,70
5	LAGUNILLAS	15°46'02"	70°22'00"	353514	8269308	3892	58,90

Fuente: Elaboración propia.

3.4.5. Tratamiento de la información meteorológica – identificación de valores atípicos (outliers).

Los valores atípicos son observaciones con características diferentes de las demás. Este tipo de valores no pueden ser caracterizados categóricamente como benéficos problemáticos si no que deben ser contemplados en el contexto del análisis y debe

evaluarse el tipo de información que pueden proporcionar. Su principal problema radica en que son elementos que pueden no ser representativos de la población pudiendo distorsionar seriamente el comportamiento de los contrastes estadísticos. Para identificar los siguientes valores se ha seguido la siguiente metodología.

- Umbral de datos dudosos altos:

$$X_H = e^{(y + k_{n, \alpha = 0.10} \times S_y)}$$

- Umbral de datos dudosos bajos:

$$X_{I} = e^{\left(y - k_{n, \alpha = 0.10} \times S_{y}\right)}$$

Donde:

$k_{n, \propto = 0.10}$: Valores estadísticos de Grubbs y Beck
Y	: Media del logaritmo natural de los datos
Sy	: Desviación Estándar del logaritmo natural de los datos.

En la tabla 23, 24, 25, 26 y 27 se muestran el análisis de valores atípicos de las estaciones en estudio.

3.4.6. Modelación hidrológica – generación de caudales máximos.

Se estimarán las máximas crecidas que se puedan presentar en el tramo de intervención para optimizar los drenajes, mediante el modelo precipitación escorrentía.

3.4.6.1. Registro de precipitación máxima 24 horas.

Las precipitaciones máximas en 24 horas disponibles en la zona de estudio, corresponde a las estaciones: Quillisani, Jarpaña, Santa Lucia, Cabanillas y Lagunillas. En las tablas 12, 13, 14, 15 y 16, y las figuras 21, 22, 23, 24 y 25 se muestran las precipitaciones máximas 24 horas de las estaciones consideradas en el estudio,

Año	Quillisani (mm)
1964	28,0
1965	35,4
1966	25,7
1967	27,2
1968	37,5
1969	43,3
1970	44,3
1971	33,4
1972	46,9
1973	31,1
1974	34,3
1975	30,3
1976	37,5
1977	25,4
1978	39,0
1979	33,1
1980	46,3
1981	41,4
1982	28,0
1983	17,0
1984	46,0
1985	48,4
1986	43,9
1987	19,9
1988	24,3
N° datos	22

Tabla 12. Precipitaciones máximas de 24 horas (mm) - Quillisani

Fuente: Elaboración propia

Fuente: Elaboración propia

Año	Jarpaña (mm)
1964	32,5
1965	51,0
1966	26,0
1967	43,5
1968	25,0
1969	39,3
1970	40,0
1971	35,8
1972	43,3
1973	30,7
1974	37,2
1975	36,0
1976	35,2
1977	27,0
1978	34,0
1979	31,8
1980	32,5
N° datos	17

Tabla 13. Precipitaciones máximas de 24 horas (mm) - Jarpaña

Figura 22. Precipitaciones máximas de 24 horas (mm)

Fuente: Elaboración propia.

Año	Santa Lucia (mm)
1966	41,3
1967	53,5
1968	52,9
1969	40,5
1970	54,3
1971	44,5
1972	47,6
1973	51,4
1974	80,6
1975	54,3
1976	86,7
1977	50,1
1978	28,4
1979	28,2
1980	31,5
1981	29,5
1982	22,6
1983	24,1
1985	28,3
1986	36,2
1987	31,0
1988	33,8
1989	34,1
1990	30,8
1991	17,5
2001	52,4
2002	30,9
2003	40,9
2004	25,3
2005	50,0
2006	38,0
2007	21,6
2008	35,8
2009	24,7
2010	19,9
2011	23,5
2012	20,2
N° datos	37

Tabla 14. Precipitaciones máximas de 24 horas (mm) – Santa Lucia

_

Tabla 15. Precipitaciones máximas de 24 horas (mm) – Cabanillas

Año	Cabanillas (mm)
1964	22,0
1965	27,8
1966	25,0
1967	31,2
1968	22,2
1969	27,2
1970	24,0
1971	30,8
1972	31,8
1973	40,0
1974	43,6
1975	36,0
1976	38,2
1977	36,7
1978	25,9
1979	31,8
1980	33,2
1981	26,2
1982	13,4
1983	21,0
1984	28,2
1985	20,5
1986	54,2
1987	29,0
1988	46,0
1989	29,5

.

1770	51,0
1991	20,2
1992	21,2
1993	53,4
1994	54,6
1995	15,5
1996	42,7
1997	44,6
1998	39,5
1999	34,9
2000	31,6
2001	44,2
2002	30,5
2003	42,3
2004	29,6
2005	66,0
2006	35,2
2007	46,4
2008	44,1
2009	35,6
2010	27,3
2011	68,7
2012	32,6
2013	54,3
2014	33,0
N° datos	51

Fuente:	Elaboración	propia

Fuente: Elaboración propia.

85

Año	Lagunillas (mm)
1964	28,0
1965	53,6
1966	35,9
1967	32,9
1968	26,2
1969	27,9
1970	35,8
1971	28,9
1972	31,8
1973	58,9
1974	46,2
1975	31,1
1976	56,4
1977	26,4
1978	26,7
1979	38,6
1980	29,3
1981	28,7
1982	42,4
1983	37,6
1984	40,3
1985	35,4
1986	35,8
1987	38,2
1988	22,4
1989	32,8
1990	30,3
1991	33,9
1992	28,6
1993	34,7
1994	29,3
1995	23,3
1996	37,3
1997	25,3
1998	35,2
1999	42,0
2000	24,1
2001	52,4
2002	30,9
2003	40,9
2004	25,3
2005	50,0
N° datos	42

Tabla 16. Precipitaciones máximas de 24 horas (mm) – Lagunillas

86

Figura 25. Precipitaciones máximas de 24 horas (mm)

Fuente: Elaboración propia.

3.4.7. Periodo de retorno.

Se define el periodo de retorno, Tr, de un evento de cierta magnitud como el tiempo promedio que transcurre entre la ocurrencia de ese evento y la próxima ocurrencia de ese evento con la misma magnitud. Se define también como el tiempo que transcurre para que un evento sea excedido o igualado, al menos una vez en promedio. Si P es la probabilidad de excedencia, se puede demostrar matemáticamente que:

$$Tr = \frac{1}{P}$$

En el presente proyecto los periodos de retorno que se consideraran son 10, 20, 50, 100 y 500años.

3.4.8. Análisis de probabilidad mediante el software HYFRAN.

Para representar variables hidrológicas se requiere de modelos probabilísticos para ello, es necesario la selección de modelos adecuados, lo que consiste en elegir el tipo de modelo y estimar sus parámetros. Los modelos así obtenidos nos permiten la

estimación de variables hidrológicas asociadas a diferentes probabilidades. Para realizar este análisis se utilizó el software estadístico HYFRAN.

3.4.8.1.Distribución de probabilidad.

La distribución de probabilidades de los valores de Xt para periodos de retorno de 10, 10, 50, 100, 200 y 500 años, se obtendrá calculando mediante el software por los siguientes métodos:

N°	Método
1	Exponencial
2	GEV
3	Gumbell
4	Weibull
5	Halphen Gamma
6	Normal
7	Lognormal
8	Lognormal 3 parámetros
9	Gamma
10	Gamma Generalizada
11	Gamma Inversa
12	Pearson Tipo III
13	Log Pearson tipo III

Tabla 17. Métodos de distribución de probabilidades.

De acuerdo al análisis probabilístico y a la comparación de criterios, la distribución que mejor estima los valores de precipitación máxima para cada estación es:

-	Estación Quillisani	: Log Pearson tipo III
-	Estación Jarpaña	: Normal
-	Estación Santa Lucia	: Pearson Tipo III
-	Estación Cabanillas	: Normal
-	Estación Lagunillas	: Log Normal

3.4.9. Hietograma de diseño.

Para generar los hietogramas se procedió a distribuir temporalmente la lluvia, luego se hallaron las curvas de Intensidad – Duración – Frecuencia (IDF) y finalmente se crearon los hietogramas de diseño mediante el método del bloque alterno.

3.4.9.1.Distribución temporal de la lluvia.

$$Pd = P_{24h} \left(\frac{d}{1440}\right)^{0.25}$$

Donde:

- Pd : Precipitación total (mm)
- D : Duración (min)
- P24h : Precipitación máxima en 24 horas (mm)

La intensidad hallaremos dividiendo la precipitación Pd entre la duración d.

Las curvas de intensidad-duración-frecuencia, se han calculado indirectamente, mediante la siguiente relación:

$$I = \frac{KT^m}{t^n}$$

Donde:

I : Intensid	ad máxima (mm/h)
--------------	------------------

K, m, n : Factores característicos de la zona de estudio

T : Periodo de retorno (años)

Tmin : Duración de la precipitación equivalente al tiempo de concentración.

3.4.10. Determinación de las curvas IDF, según el método de Dick Peschke.

Calcularemos las curvas IDF mediante la siguiente formula:

$$P_d = P_{\max 24h} \cdot \left(\frac{d}{1440}\right)^{0.25}$$
89

Donde [.]	
Donuc.	

Pd	: Precipitación máxima total (mm)
Pmáx24hr	: Precipitación máxima en 24 horas (mm)
D	: Duración en minutos

3.4.11. Hietogramas de diseño - método del bloque alterno.

Los hietogramas de diseño utilizando el método del bloque alterno es calculado a partir de las curvas IDF, el cual especifica la profundidad de precipitación que ocurre en n intervalos de tiempo sucesivos de duración Δt sobre una duración total de $Td = n\Delta t$.

Después de seleccionar el periodo de retorno de diseño, la intensidad es leída en una curva IDF para cada una de las duraciones y la profundidad de precipitación correspondiente se encuentra al multiplicar la intensidad y la duración. Tomando diferencias entre valores sucesivos de profundidad de precipitación, se encuentra la cantidad de precipitación que debe añadirse por cada unidad adicional de tiempo.

3.4.12. Cálculo de caudales máximos con HEC HMS.

El HEC-HMS comprende una interface gráfica para el usuario (GUI), componentes de análisis hidrológicos, capacidades para manejo y almacenamiento de datos, y facilidades para expresar los resultados mediante gráficas y reportes tabulados.

La ejecución de la simulación en el HEC HMS, requiere de las siguientes especificaciones:

- El primer conjunto, llamado modelo de cuenca (Basin Model), contiene parámetros y datos conectados para elementos hidrológicos. Los tipos de

elementos son: cuenca, tránsito de avenidas, empalme o cruce, reservorio, fuente, retención y distribución.

- El segundo conjunto llamado modelo meteorológico, consiste en datos meteorológicos e información requerida para procesarlos.
- El tercer conjunto, llamado especificaciones de control, con el cual se especifica información de relación tiempo para efectuar la simulación.
- El cuarto conjunto, llamado datos de series de tiempo, sirve para especificar qué tipo de dato meteorológico se va a ejecutar en el modelamiento y como ésta irá variando en el tiempo.

La relación para determinar el caudal de salida se extrajo de (Chow et al., 1994), la cual es:

$$Q_{Salida} = C \times L \times (H - h)^{3/2}$$

Dónde:

- C : Coeficiente de descarga.
- L : Longitud efectiva.
- H-h : Diferencia de cota entre el nivel de agua y de vertedero.

Para el cálculo de caudales máximos se ingresó la delimitación de la cuenca en estudio con sus respectivas propiedades morfológicas:

Figura 26. Esquema del modelamiento en HEC-HMS para determinar los caudales máximos.

3.4.12.1. Separación de la lluvia neta o efectiva (LOSS METHOD).

El LOSS METHOD, genera escorrentía directa el cual es el resultado de descontar de la precipitación, el agua interceptada por la vegetación, infiltrada en el suelo, almacenada en la superficie del mismo, evaporada desde diferentes superficies o transpirada a través de las plantas.

Para ello HEC-HMS usa los siguientes modelos:

- Déficit and constant (modelo de déficit constante).
- Exponential (modelo exponencial).
- Green and Ampt (Modelo de Green & Ampt).
- Gridded Deficit Constant (Modelo Asociado a Celdas).
- Gridded SCS Curve Number (Modelo SCS Asociado a Celdas).
- Gridded Soil Moisture Accounting (Modelo SMA Asociado a Celdas).
- Initial and Constant (Modelo de Pérdidas Iniciales y Constantes).
- SCS Curve Number (Modelo del Número de Curva del SCS).
- Smith Parlange (Modelo de Smith Parlange).
- Soil Moisture Accounting (Modelo SMA).

3.4.12.2. Modelo del número de curva del SCS.

El Soil Conservation Service (1972) desarrollo un método para calcular la escorrentía directa de una precipitación. Para la lluvia como un todo, la profundidad de exceso de precipitación o escorrentía directa Pe es siempre menor o igual a la profundidad de precipitación P; de manera similar, después de que la escorrentía se inicia, la profundidad adicional del agua retenida Fa es menor o igual a alguna retención potencial máxima S.

Existe una cierta cantidad de precipitación Ia (abstracción inicial antes del encharcamiento) para la cual no ocurrirá escorrentía, luego la escorrentía potencial es P – Ia. La hipótesis del método del SCS consiste en que las relaciones de las dos cantidades reales y las dos cantidades potenciales son iguales, encontrándose la siguiente relación para Pe:

$$Pe = \frac{(P - Ia)^2}{P - Ia + S}$$

Dónde:

- Pe : Precipitación efectiva (mm).
- P : Precipitación (mm).
- Ia : Abstracción inicial antes del encharcamiento (mm).
- S : Retención potencial máxima (mm).

La ecuación anterior es básica para el cálculo de la profundidad de exceso de precipitación o escorrentía directa. La SCS al estudiar los resultados obtenidos para muchas cuencas experimentales desarrolló la siguiente relación empírica.

$$\begin{aligned} Ia &= 0.2S \\ 93 \end{aligned}$$

Quedando Finalmente:

$$Pe = \frac{(P - 0.2S)^2}{P + 0.8S}$$

Al representar en graficas la información de P y Pe, se encontró la necesidad de estandarizarlas mediante un número adimensional llamado Número de Curva (CN), el cual se relaciona con S de la siguiente manera:

$$S = \frac{25400}{CN} - 254$$

3.4.12.3. Clasificación hidrológica de los suelos.

Por ser de importancia, se indican dos definiciones que están consideradas en la clasificación hidrológica de los suelos:

- Tasa de infiltración, es el porcentaje de agua que penetra en el suelo superficial y que es controlado por condiciones de superficie.
- Tasa de transmisión, es el porcentaje de agua que se mueve en el suelo y que es controlado por los horizontes.

Los grupos hidrológicos en que se pueden dividir los suelos son utilizados en el planeamiento de cuencas para la estimación de la escorrentía, a partir de la precipitación. Las propiedades de los suelos que son considerados para estimar la tasa mínima de infiltración para suelos desnudos luego de un humedecimiento prolongado son: profundidad del nivel freático de invierno, infiltración y permeabilidad del suelo luego de humedecimiento prolongado y profundidad hasta un estrato de permeabilidad muy lenta. La influencia de la cobertura vegetal es tratada independientemente. Los suelos han sido clasificados en cuatro grupos A, B, C y D de acuerdo al potencial de escurrimiento. Según la clasificación Hidrológica de los Suelos – <u>USDA:</u>

- <u>Grupo hidrológico A:</u> Bajo potencial de Escorrentía, son suelos que tienen altas tasas de infiltración aun cuando están enteramente mojados y están constituidos mayormente por arenas y gravas profundas bien y hasta excesivamente drenadas. Estos suelos tienen una alta tasa de transmisión de agua.
- <u>Grupo hidrológico B:</u> Moderadamente bajo potencial de escorrentía, son suelos que tienen tasas de infiltración moderadas cuando están cuidadosamente mojados y están constituidos mayormente de suelos profundos de texturas moderadamente finas a moderadamente gruesas. Estos suelos tienen una tasa moderada de transmisión del agua.
- <u>Grupo hidrológico C:</u> Moderadamente bajo potencial de escorrentía, son suelos que tienen bajas de infiltración cuando están completamente mojados y están constituidos mayormente por suelos con un estrato que impide el movimiento del agua hacia abajo, o suelos con una textura que va moderadamente fina a fin. Estos duelos tienen una baja tasa de transmisión del agua.
- Grupo hidrológico D: Alto potencial de escorrentía, son suelos de alto potencial de escurrimiento, de tasas de infiltración muy bajas cuando están completamente mojados y están constituidos mayormente por suelos arcillosos con un alto potencial de esponjamiento, suelos con índice de agua permanentemente alto, suelos con arcilla o capa de arcilla en la superficie o cerca de ella y suelos superficiales sobre material casi impermeable. Estos suelos tienen una tasa muy baja de transmisión del agua.

	Cobertura			Grupo d	le suelos	
Uso de la	Tratamiento	Condición	Α	В	С	D
tierra	o práctica	hidrológica		Número o	de curvas	
		-	77	80	91	94
	Hileras rectas	Mala	71	91	88	91
Destroio		Buena	67	78	85	89
Kastrojo	C/curvas de	Mala	70	79	84	88
biloro	nivel	Buena	65	76	82	86
mera	C/curvas de	Mala	66	74	80	82
	nivel y terrazas	Buena	62	71	78	81
	11'1	Mala	65	76	84	86
	Hileras rectas	Buena	63	75	83	87
Cultivos en	Curvas de	Mala	63	74	82	85
hileras	nivel	Buena	61	73	81	84
estrechas	Curvas de	Mala	61	72	79	82
	nivel y terrazas	Buena	59	70	78	81
	TT ¹	Mala	66	77	85	89
Laguminosas	Hileras rectas	Buena	58	72	81	85
en hileras	Curvas de	Mala	64	75	83	85
estrechas o	nivel	Buena	55	69	78	83
forraje en	Curvas de	Mala	63	73	80	89
rotación	nivel y terrazas	Buena	51	67	76	80
	D (1	Mala	68	79	86	89
	Pastizales o	Regular	49	69	79	84
Pasto de	similares	Buena	39	31	74	80
pastoreo	C	Mala	78	37	81	88
_	Curvas de	Regular	25	59	75	83
	IIIvei	Buena	66	35	70	79
Pasto de corte	Pradera	Buena	30	59	71	78
		Mala	45	66	77	83
Bosque	Bosque	Regular	36	60	73	79
_	-	Buena	25	55	70	77
Cortijos	Patios		59	74	82	86
Caminos tierra			72	82	87	89
Pavimentos			74	84	90	92

Tabla 18. Número de curva para los suelos (NC).

Fuente: Hidrología Básica: Reyes C. Luís. CONCYTEC Lima Perú 1992 – Pág. 91

Para determinar el número de curva ponderada de la microcuenca se ha utilizado

el mapa de suelos y textura de suelos. Por lo que se obtiene:

Tabla 1	9. Número	de curva	(NC)	para la	cuenca	analizada.
---------	-----------	----------	------	---------	--------	------------

Número d	le Curva
Microcuenca	NC
Cabanillas	79

Fuente: Elaboración propia.

3.4.12.4. Transformar precipitación neta a escorrentía directa (Trans Form Method).

La parte más importante del modelo de simulación del HEC-HMS lo constituyen los modelos para calcular la escorrentía directa producida por la precipitación neta, para esto usa los modelos:

- Clark Unithydrograph (Hidrograma Unitario Sintético de Clark).
- Kinematic Wave (Modelo de la Onda Cinemática).
- Mod Clark (Hidrograma de Clark Modificado).
- SCS Unit Hydrograph (Hidrograma Unitario Sintético del SCS).
- Snyder Unit Hidrograph (Hidrograma Unitario Sintético de Snyder).

Para nuestro modelamiento haremos uso del Hidrograma Unitario Sintético - SCS.

3.4.12.5. Hidrograma unitario sintético – SCS.

Es un hidrograma unitario sintético en el que expresamos el caudal dividido entre la caudal punta generado en la cuenca de estudio q_p , en función del tiempo entre el tiempo al pico Tp.

Se trata de calcular el valor del tiempo al pico y la caudal punta de la cuenca y buscar los valores de caudal y tiempo basándonos en los valores del hidrograma adimensional SCS. Analizando un gran número de hidrogramas se encontró que:

$$q_p = 0.75 \frac{Q}{Tp}$$

Donde:

 q_p : Caudal Pico o de punta (mm)

Q : Volumen de escurrimiento directo (mm)

Tp : Periodo de elevación o tiempo hasta el caudal pico (hora)

Introduciendo el área de aporte en km², de manera de llevar el valor puntual a un valor representativo para toda la cuenca, el escurrimiento directo en mm, el tiempo pico en horas, el caudal de punta queda expresado en m^3/s , de la siguiente forma:

$$q_p = 0.208 \frac{AQ}{Tp}$$

El periodo de elevación puede estimarse a partir del tiempo de concentración según la relación empírica:

$$T_p = 0.6Tc$$

Donde

Tc : Tiempo de concentración (hora).

3.4.12.6. Tránsito de caudales.

El discurrir del caudal a lo largo de un cauce da lugar a un nuevo hidrograma, el HEC-HMS permite por medio de varios modelos, representar la transformación que experimenta un hidrograma entre los puntos inicial y final de un tramo de un cauce, los modelos que usa son los siguientes:

- Kinematic Wave (Modelo de Onda Cinemática).
- Lag (Modelo de Retardamiento).
- Modified Puls (Modelo de Puls Modificado).
- Muskingum (Modelo de Muskingum).
- Muskingun Cunge (Modelo de Muskingum Cunge).
- Straddle Tagger (Modelo de Straddle Stagger).

De acuerdo al tiempo de retorno se han obtenido los caudales máximos de diseño

de las estaciones consideradas de la cuenca Coata, se describe:

		I	Project: PROYE	CTO FINAL S Subbasin: Cue	imulation Run: Ru nca	un 1		
		Start of Run: End of Run: Compute Time:	27nov2019, 00 11dic2019, 00: 03ene2020, 12	:00 Bas 00 Me :14:08 Cor	in Model: teorologic Model: ntrol Specificatior	Cuenca 10años ns:control (tiem	po)	
Date	Time	Precip (MM)	Loss (MM)	Excess (MM)	Direct Flow (M3/S)	Baseflow (M3/S)	Total Flow (M3/S)	
27nov2019	00:00				0,0	0,0	0,0	
28nov2019	00:00	14,80	12,73	2,07	48,6	0,0	48,6	
29nov2019	00:00	17,60	15,14	2,46	72,2	0,0	72,2	
30nov2019	00:00	19,50	16,77	2,73	84,1	0,0	84,1	
01dic2019	00:00	20,90	17,97	2,93	91,7	0,0	91,7	
02dic2019	00:00	22,10	19,01	3,09	97,5	0,0	97,5	
03dic2019	00:00	23,10	18,89	4,21	125,1	0,0	125,1	
04dic2019	00:00	24,00	17,85	6,15	178,7	0,0	178,7	
05dic2019	00:00	24,90	16,86	8,04	238,3	0,0	238,3	
06dic2019	00:00	25,60	15,79	9,81	295,8	0,0	295,8	
07dic2019	00:00	26,30	14,81	11,49	350,7	0,0	350,7	
08dic2019	00:00	0,00	0,00	0,00	95,9	0,0	95,9	
09dic2019	00:00	0,00	0,00	0,00	19,1	0,0	19,1	
10dic2019	00:00	0,00	0,00	0,00	3,5	0,0	3,5	
	00.00	0.00	0.00	0.00	0.2	0.0	0.2	

Figura 27. Caudales máximos de salida para un periodo de retorno de 10 años.

		I	Project: PROYEC	TO FINAL Subbasin: Cu	Simulation Run: Ru enca	ın 2	
	Star End Com	t of Run: 27n of Run: 11d npute Time:DAT	ov2019, 00:00 ic2019, 00:00 `A CHANGED, RE	COMPUTE	Basin Model: Meteorologic Mo Control Specifica	Cuenca odel: 20años ations:control (tiempo)
Date	Time	Precip	Loss	Excess	Direct Flow	Baseflow	Total Flow
		(MM)	(MM)	(MM)	(M3/S)	(M3/S)	(M3/S)
27nov2019	00:00				0,0	0,0	0,0
28nov2019	00:00	15,33	13,18	2,15	50,4	0,0	50,4
29nov2019	00:00	18,24	15,69	2,55	74,8	0,0	74,8
30nov2019	00:00	20,18	17,35	2,83	87,0	0,0	87,0
01dic2019	00:00	21,69	18,65	3,04	95,1	0,0	95,1
02dic2019	00:00	22,93	19,69	3,24	101,8	0,0	101,8
03dic2019	00:00	24,00	19,32	4,68	137,5	0,0	137,5
04dic2019	00:00	24,94	18,20	6,74	196,1	0,0	196,1
05dic2019	00:00	25,79	17,09	8,70	258,5	0,0	258,5
06dic2019	00:00	26,56	16,00	10,56	319,0	0,0	319,0
07dic2019	00:00	27,27	14,97	12,30	376,2	0,0	376,2
08dic2019	00:00	0,00	0,00	0,00	102,9	0,0	102,9
09dic2019	00:00	0,00	0,00	0,00	20,5	0,0	20,5
10dic2019	00:00	0,00	0,00	0,00	3,7	0,0	3,7
11dic2019	00:00	0,00	0,00	0,00	0,2	0,0	0,2

Figura 28. Caudales máximos de salida para un periodo de retorno de 20 años.

	X
	~~~

#### Project: PROYECTO FINAL Simulation Run: Run 3 Subbasin: Cuenca

Start of Run: 27nov2019, 00:00 End of Run: 11dic2019, 00:00

Basin Model: Cuenca Meteorologic Model: 50años Compute Time:DATA CHANGED, RECOMPUTE Control Specifications:control (tiempo)

Date	Time	Precip	Loss	Excess	Direct Flow	Baseflow	Total Flow
		(MM)	(MM)	(MM)	(M3/S)	(M3/S)	(M3/S)
27nov2019	00:00				0,0	0,0	0,0
28nov2019	00:00	15,94	13,71	2,23	52,4	0,0	52,4
29nov2019	00:00	18,96	16,31	2,65	77,8	0,0	77,8
30nov2019	00:00	20,98	18,04	2,94	90,5	0,0	90,5
01dic2019	00:00	22,54	19,38	3,16	98,8	0,0	98,8
02dic2019	00:00	23,84	20,39	3,45	107,8	0,0	107,8
03dic2019	00:00	24,95	19,73	5,22	151,8	0,0	151,8
04dic2019	00:00	25,93	18,54	7,39	215,5	0,0	215,5
05dic2019	00:00	26,81	17,35	9,46	281,6	0,0	281,6
06dic2019	00:00	27,61	16,21	11,40	345,1	0,0	345,1
07dic2019	00:00	28,35	15,12	13,23	405,0	0,0	405,0
08dic2019	00:00	0,00	0,00	0,00	110,7	0,0	110,7
09dic2019	00:00	0,00	0,00	0,00	22,0	0,0	22,0
10dic2019	00:00	0,00	0,00	0,00	4,0	0,0	4,0
11dic2019	00:00	0,00	0,00	0,00	0,3	0,0	0,3



Figura 29. Caudales máximos de salida para un periodo de retorno de 50 años.



	x

#### Project: PROYECTO FINAL Simulation Run: Run 4 Subbasin: Cuenca

Start of Run: 27nov2019, 00:00 End of Run: 11dic2019, 00:00

Basin Model: Cuenca Meteorologic Model: 100años Compute Time:DATA CHANGED, RECOMPUTE Control Specifications:control (tiempo)

Date	Time	Precip	Loss	Excess	Direct Flow	Baseflow	Total Flow
		(MM)	(MM)	(MM)	(M3/S)	(M3/S)	(M3/S)
27nov2019	00:00				0,0	0,0	0,0
28nov2019	00:00	16,33	14,04	2,29	53,6	0,0	53,6
29nov2019	00:00	19,42	16,70	2,72	79,7	0,0	79,7
30nov2019	00:00	21,50	18,49	3,01	92,7	0,0	92,7
01dic2019	00:00	23,10	19,87	3,23	101,2	0,0	101,2
02dic2019	00:00	24,42	20,81	3,61	112,3	0,0	112,3
03dic2019	00:00	25,56	19,98	5,58	161,4	0,0	161,4
04dic2019	00:00	26,57	18,74	7,83	228,4	0,0	228,4
05dic2019	00:00	27,47	17,52	9,95	296,8	0,0	296,8
06dic2019	00:00	28,29	16,33	11,96	362,3	0,0	362,3
07dic2019	00:00	29,05	15,22	13,83	423,8	0,0	423,8
08dic2019	00:00	0,00	0,00	0,00	115,8	0,0	115,8
09dic2019	00:00	0,00	0,00	0,00	23,1	0,0	23,1
10dic2019	00:00	0,00	0,00	0,00	4,2	0,0	4,2
11dic2019	00:00	0,00	0,00	0,00	0,3	0,0	0,3



#### Figura 30. Caudales máximos de salida para un periodo de retorno de 100 años.





#### Project: PROYECTO FINAL Simulation Run: Run 5 Subbasin: Cuenca

Start of Run: 27nov2019, 00:00 End of Run: 11dic2019, 00:00 Compute Time:DATA CHANGED, RECOMPUTE

Basin Model: Cuenca Meteorologic Model: 200años Control Specifications:control (tiempo)

Date	Time	Precip (MM)	Loss (MM)	Excess (MM)	Direct Flow (M3/S)	Baseflow (M3/S)	Total Flow (M3/S)
27nov2019	00:00				0,0	0,0	0,0
28nov2019	00:00	16,70	14,36	2,34	54,9	0,0	54,9
29nov2019	00:00	19,86	17,08	2,78	81,5	0,0	81,5
30nov2019	00:00	21,98	18,90	3,08	94,8	0,0	94,8
01dic2019	00:00	23,61	20,30	3,31	103,5	0,0	103,5
02dic2019	00:00	24,97	21,18	3,79	116,9	0,0	116,9
03dic2019	00:00	26,13	20,21	5,92	170,7	0,0	170,7
04dic2019	00:00	27,16	18,93	8,23	240,6	0,0	240,6
05dic2019	00:00	28,08	17,66	10,42	311,1	0,0	311,1
06dic2019	00:00	28,92	16,44	12,48	378,4	0,0	378,4
07dic2019	00:00	29,69	15,30	14,39	441,4	0,0	441,4
08dic2019	00:00	0,00	0,00	0,00	120,6	0,0	120,6
09dic2019	00:00	0,00	0,00	0,00	24,0	0,0	24,0
10dic2019	00:00	0,00	0,00	0,00	4,4	0,0	4,4
11dic2019	00:00	0,00	0,00	0,00	0,3	0,0	0,3



Figura 31. Caudales máximos de salida para un periodo de retorno de 200 años. Fuente: HEC-HMS (Elaboración propia).



#### Project: PROYECTO FINAL Simulation Run: Run 6 Subbasin: Cuenca

 Start of Run:
 27nov2019, 00:00

 End of Run:
 11dic2019, 00:00

 Compute Time:DATA CHANGED, RECOMPUTE

Basin Model: Cuenca Meteorologic Model: 500años E Control Specifications:control (tiempo)

Date	Time	Precip (MM)	Loss (MM)	Excess (MM)	Direct Flow (M3/S)	Baseflow (M3/S)	Total Flow (M3/S)
27nov2019	00.00	()	()	6.0.0	0.0	0.0	0.0
28nov2019	00.00	17.12	14 72	2.40	56.2	0,0	56.2
29nov2019	00:00	20.36	17,51	2,85	83.5	0.0	83.5
30nov2019	00:00	22,53	19.38	3,15	97.2	0.0	97.2
01dic2019	00:00	24.21	20,82	3,39	106.1	0.0	106.1
02dic2019	00:00	25,60	21,59	4,01	122,8	0,0	122,8
03dic2019	00:00	26,79	20,47	6,32	181,7	0,0	181,7
04dic2019	00:00	27,84	19,13	8,71	254,9	0,0	254,9
05dic2019	00:00	28,79	17,82	10,97	327,9	0,0	327,9
06dic2019	00:00	29,65	16,57	13,08	397,3	0,0	397,3
07dic2019	00:00	30,44	15,39	15,05	462,0	0,0	462,0
08dic2019	00:00	0,00	0,00	0,00	126,2	0,0	126,2
09dic2019	00:00	0,00	0,00	0,00	25,1	0,0	25,1
10dic2019	00:00	0,00	0,00	0,00	4,6	0,0	4,6
11dic2019	00:00	0,00	0,00	0,00	0,3	0,0	0,3







# 3.4.13. Hec GeoRAS.

El Hec-GeoRAS nos permitirá digitalizar elementos vectoriales, para elaborar la cartografía base que describirá los elementos territoriales de la zona de estudio y que estos posteriormente contribuyan al Hec-RAS a simular las inundaciones en el área de estudio. Con las herramientas RAS Geometry, RAS Mapping, Construct XS Cut Lines, generaremos secciones en el área de estudio río Cabanillas.



Figura 33. Secciones generadas en el río Cabanillas mediante el comando Create Cross Sections

Fuente: Elaboración Propia.



- Exportamos la base de datos mediante el comando RAS Geometry/Export RAS

Data, para procesar en el HEC-RAS.

sages		
Start Time	Message Type	Message
23:30	Informative	Workspace F:\luz margot\rio cabanillas1.mdb specified for Storag
23:30	Informative	Target location not specified for ElevVol under ApLayer. The layer
23:30	Informative	Target location not specified for ElevVol under ApLayer. The layer
23:30	Informative	Target location not specified for StoragePts under ApLayer. The I
23:30	Informative	Target location not specified for StoragePts under ApLayer. The I
23:30	Informative	Workspace F:\luz margot\rio cabanillas1.mdb specified for SACon
23:30	Informative	Target location not specified for SAConnections3D under ApLayer
23:30	Informative	Target location not specified for SAConnections3D under ApLayer
23:30	Informative	Target location not specified for SAConnections3D under ApLayer
23:30	Informative	Failed to update control file at C:\Users\LUZ\AppData\Local\Te

Figura 34. Exportación de datos para procesar en el HEC-RAS.

Fuente: Elaboración propia.

# 3.5. MODELAMIENTO HIDRÁULICO MEDIANTE HEC-RAS 2D.

HEC-RAS es una herramienta que nos ayudara a simular inundaciones en periodos de retorno de 10,20,50, 100, 200 y 500 años en el río Cabanillas.

- Primeramente, se deben configurar los parámetros del sistema de unidades a utilizar (sistema métrico internacional).
- Crear un proyecto nuevo y posteriormente la carpeta donde se guardarán los archivos.



#### 3.5.1. Cargado de los datos espaciales.

Se debe abrir la ventana de Geometric Data, definir un nombre, guardarlo y abrir la ventana de Ras Mapper. La introducción de datos espaciales al modelo es mediante la interacción de estas dos ventanas.

Dentro la ventana RAS Mapper se procede a establecer la proyección del sistema de referencia de coordenadas de la zona de estudio a modelar, mediante la herramienta Set Projection for Project dentro de la pestaña Tools. Se puede seleccionar y extraer el archivo PRJ del archivo DEM e importarlo al HEC-RAS.

Después se procede a la importación del Modelo Digital de Terreno (DEM) al programa HEC-RAS, ya que este acepta los formatos TIF, FLT y ADF. Una vez creada la capa del terreno, se debe exportar este mismo como imagen para la base de fondo visual que se utilizara al digitalizar la malla 2D en la ventana Geometric Data.



Figura 35. DEM importado dentro de RAS Mapper.

Fuente: Elaboración propia.



#### 3.5.2. Generación de la malla 2D.

Para la modelación bidimensional se requiere generar la malla 2D y su tamaño de celda en base al Modelo Digital de Terreno (DEM), esto se realiza dentro de la ventana de Geometric Data (Ver figura 36).



Figura 36. Herramientas para generar la geometría 2D. Fuente: Elaboración propia.

Primero, se debe cargar la imagen de fondo visual que se exportó en el procedimiento de importación del Modelo Digital de Terreno (DEM). Luego se procede a digitalizar el área de nuestra malla con la herramienta 2D Flow Área (Tools), para esto se debe tener cuidado de estar dentro la imagen de fondo referencial, si el área se encuentra fuera, este reportará un error que no se tiene datos de terreno para parte de área. A continuación, se asigna el tamaño de celda con la herramienta 2D Flow Área, para el área de estudio se ha definido un tamaño de celda de 10 metros, valor que se encuentra relacionado a las dimensiones de las secciones del río (Ver figura 38). Pero además se empleó Breaklines (líneas de quiebres) para delimitar el cauce de río y se fue añadiendo puntos haciendo que la malla se vuelva más fina de 2 metros para poder tener mejores


resultados. Ya que cuanto menor es el tamaño de la celda se tiene mejores resultados,

pero un mayor tiempo de proceso.

2D Flow Area: ar Connections and R	ea eferences to this 2D F	low Area	↓ ↑ → Storage → Krea
BCLine: aguas ar	iba <u>BCLine</u>	aguas abajo	
Defaullt Manning's r	Value:	0,04	20 Flow Area Computation Points
Edit Lan	Cover to Manning's i	n	Mesh contains: 32044 cells
Cell Volume Filter To	l (0=OFF)(m):	0,003	min cell = $76, 96 (m2)$
Cell Minimum Surfac	e Area Fraction (0=O	FF):0,01	Generate Computation Points on Regular Interval with All Breakines
Face Profile Filter T	i (0=OFF)(m):	0,003	Enforce Selected Breaklines (and internal Connections)
Face Area-Elev Filter Tol (0=OFF)(m):         0,003           Face Conveyance Tol Ratio (min=0.0001):         0,02		0,003	View/Edit Computation Points
		: 0,02	
Face Laminar Depth	(0=OFF)(m):	0,06	
GIS Outline	Force Mesh Re	computation	Cancel
	2D Flow Comput Spacing Spacing Shift Ge Shift Rig	Area Gen tation Poin DX = DY = enerated F ght =	It Spacing
	Shift Up	) =	0
	Genera	ate Points	in 2D Flow Area Cancel

Figura 37. Configuración de los parámetros para creación de la malla 2D.

Fuente: Elaboración propia



Figura 38. Malla generada en HEC RAS 2D.



#### 3.5.3. Asignación de condiciones de borde y datos de flujo.

El modelo bidimensional de HEC-RAS permite asignar las condiciones de contorno alrededor de cualquier punto del DEM. La modelación se realizó bajo las condiciones de flujo inestable empleado los valores del hidrograma de caudales para diferentes periodos de retorno.

Dentro de la ventana Geometric Data, se digitalizó por medio de una polilínea el contorno dentro del DEM por donde ingresa el flujo y por donde sale dentro del área del DEM (Ver figura 39) mediante la herramienta SA/2D.

Hay que señalar que se debe asignar condiciones de salida en los lugares donde puede presentar problemas de acumulación del flujo, en caso de que el área del DEM sea limitada.



Figura 39. Líneas de condiciones de borde de entrada y salida de flujo

Fuente: Elaboración propia



Luego se procede a generar los datos de flujo, para ello se define y abre la ventana Unsteady Flow Data, donde se puede observar que se encuentran los nombres con lo que se asignaron las condiciones de borde.

Unsteady Flow Dat	ta - flujo4		– 🗆 X	
e Options Help				
scription :			🗘 Apply Data	
oundary Conditions	Initial Conditions			
	Boundary Co	ndition Types		
Stage Hydrograph	Flow Hydrograph	Stage/Flow Hydr.	Rating Curve	
Normal Depth	Lateral Inflow Hydr.	Uniform Lateral Inflow	Groundwater Interflow	
T.S. Gate Openings	Elev Controlled Gates	Navigation Dams	IB Stage/Flow	
Rules	Precipitation	ONDICION DE		
Add Boundary Contarton Location				
Add RS	Add SA/2D Flow Area	Add SA Connection	Add Pump Station	
Hou to th			naar anp seadorrin	
, add to m	Select Location in table then se	elect Boundary Condition Ty	pe	
River	Select Location in table then se Reach RS	elect Boundary Condition Ty	pe	
River	Select Location in table then se Reach RS	elect Boundary Condition Ty Boundary Condition CONDICION DE SALIDA	pe	
River Storage/2D Flow A	Select Location in table then se Reach RS	elect Boundary Condition Ty Boundary Condition CONDICION DE SALIDA Boundary Condition	pe	
River Storage/2D Flow A	Select Location in table then se Reach RS reas e: aguas arriba	elect Boundary Condition Ty Boundary Condition CONDICION DE SALIDA Boundary Condition Flow Hydrograph	pe	

Figura 40. Asignación de parámetros hidráulicos para el modelamiento en 2D. Fuente: Elaboración propia

Para la condición de ingreso de flujo con el nombre "AREA DE ESTUDIO BCLine: AGUAS ARRIBA" se selecciona la opción Flow Hydrograph, en este se introduce las condiciones de borde como son: los datos del hidrograma de caudales máximos para un diferentes periodos de retorno y el valor de pendiente de entrada que es de 0.08 m/m.



Flow Hydrograph				
SA: area BCLine: aguas arriba				
Read from DSS before simulation     Select DSS file and Path				
Files				
File:				
Path: J				
-				
<ul> <li>Enter Table</li> <li>Calant/Entry the Data's Starting Time</li> </ul>	Defenses	ata time interval: 1 Hour		
Use Simulation Time: Data	· 22NOV2019 Time 0:00	)		
C Fixed Start Times Date	160CT2019	2		
So Fixed Start Time: Date	: [100012013] fille: [0.00	5		
No. Ordinates Interpolate Missin	g Values Del Row Ins R	ow		
	Hydrograph Data			
Date	Simulation Time	Flow		
	(hours)	(m3/s)		
1 21Nov2019 2400	1 21Nov2019 2400 00:00 0,			
2 22Nov2019 0100	01:00	48,6		
3 22Nov2019 0200	02:00	72,2		
4 22Nov2019 0300	03:00	84,1		
5 22Nov2019 0400	04:00	91,7		
6 22Nov2019 0500	05:00	97,5		
7 22Nov2019 0600	06:00	125,1		
8 22Nov2019 0700	07:00	178,7		
9 22Nov2019 0800	08:00	238,3		
10 22Nov2019 0900	09:00	295,8		
11 22Nov2019 1000	10:00	350,7		
12 22Nov2019 1100	11:00	95,9		
13 22Nov2019 1200	13 22Nov2019 1200 12:00 19,1			
14 22Nov2019 1300	14 22Nov2019 1300 13:00			
15 22Nov2019 1400	14:00	0,2 🔻		
Time Step Adjustment Options ("Critical" boundary conditions) Monitor this hydrograph for adjustments to computational time step Max Change in Flow (without changing time step):				
Min Flow: Multiplier:	EG Slope for distributing f	low along BC Line:		
,	Plot Data	OK Cancel		



Fuente: Elaboración propia.

Para la condición de salida de flujo con el nombre "AREA DE ESTUDIO BCLine:

AGUAS ABAJO" se selecciona la opción, Normal Depth, en este se introduce el valor

de pendiente de salida (Ver figura 46), que se determina en las secciones más próximas,

o sea donde se da el tramo más accidentado, siendo dicho valor 0.08 m/m.

Normal Depth Downstream Boundary		
SA: area BCLine: aguas abajo		
Friction Slope:	þ,08	
2D Flow Area Boundary Condition Parameters Compute separate water surface elevation per face along BC Line Compute single water surface for entire BC Line		
	OK Cancel	

Figura 42. Condiciones de pendiente de salida de flujo



#### 3.5.4. Análisis de la modelación

Para ejecutar la modelación en flujo no permanente es necesario seguir los criterios hidráulicos correspondientes como es el de la condición de Courant, el cual permite indicar el intervalo computacional de cálculo de modelación, que en este caso es de 1 minuto ya que con tiempos mayores el programa generaba errores. El intervalo de salida del hidrograma puede coincidir con el intervalo de salida

★     Unsteady Flow Analysis     >       File     Options     Help	<		
Plan : Plan 03 Short ID: 21			
Geometry File : geometria3	]		
Simulation Time Window       Starting Date:       22NOV2019       Ending Date:       25NOV2019       Ending Time:       0:00			
Computation Settings         Computation Interval:         1 Minute         Mapping Output Interval:         1 Hour         DSS Output Filename:         g: \proy cabanillas_ok \proy_3.dss			
Compute			

#### Figura 43. Ventana de análisis de modelación

Finalmente se procede a realizar la modelación según los parámetros requeridos, en cuanto a precisión y tiempo de intervalo de reporte de mapas de inundación, reportando una secuencia de mapas del suceso de inundación.



## **CAPITULO IV**

# **RESULTADOS Y DISCUSIÓN**

#### 4.1.RESULTADOS DEL MODELAMIENTO HIDROLÓGICO

#### 4.1.1. Parámetros geomorfológicos de la cuenca:

En la tabla 20 se muestran los resultados de los parámetros geomorfológicos de la cuenca obtenidos de las características topográficas y de relieve, obteniendo un índice de compacidad (Kc) de 1.3, por lo que podemos deducir que es una cuenca casi redonda u oval redonda.

Parámetros	Cuenca Coata Puente	
	Cabanillas	
Área (km ² )	2774,00	
Perímetro (km)	23,98	
Longitud cauce Lc (km)	124,73	
Longitud Máxima Cuenca Lm (km)	80,31	
Ancho Promedio Cuenca Ap (km)	55,37	
Índice de Compacidad (Kc)	1,30	
Factor de Forma (Ff)	0,43	
Radio de Elongación (Re)	0,74	
Radio de Circularidad (Rc)	60,62	

Tabla 20. Parámetros de forma de la cuenca Coata.

Tabla 21. Parámetros de relieve de la cuenca Coata.

	Cuenca Coata
Parámetros	Puente Cabanillas
Altitud máxima (msnm)	5,393,57
Altitud mínima (msnm)	3,877,49
Altitud media (msnm)	4,750,00
Scuenca (%)	1,89
Scauce (%)	1,22
Índice de Pendiente de Cuenca (Ip)	0,11

Fuente: Elaboración propia.



#### 4.1.2. Parámetros hidrológicos de la cuenca.

En la tabla 22: Se muestra los resultados de las características hidrológicas de la cuenca en estudio.

	Cuenca Coata
Parámetros	Puente Cabanillas
Fórmula de Kirpich (h)	12,58
Fórmula de Giandotti (h)	10,25
Fórmula de U.S. Hathaway (h)	7,65
Promedio (h)	10,16

Tabla 22. Parámetros de relieve de la cuenca Coata.

Fuente: Elaboración propia.

# 4.1.3. Tratamiento de la información meteorológica – identificación de valores atípicos (outliers).

El tratamiento de la información meteorológica – identificación de valores atípicos (Outlier), consistió en la evaluación en base a los datos de precipitaciones máximas 24horas anuales de las estaciones Quillisani, Jarpaña, Santa Lucia, Cabanillas y Lagunillas. Realizando la prueba de datos dudosos mediante los valores estadísticos de Grubbs y Beck, obteniendo el umbral de datos dudosos altos y bajos, que posteriormente fueron evaluados. Por lo que se obtuvo datos confiables para el estudio, estos resultados se reflejan en la tabla 23, 24, 25, 26 y 27.



4 9 0	Pmáx 24h	Obsonwooión
Ano	( <b>mm</b> )	Observation
1964	28,0	Confiable
1965	35,4	Confiable
1966	25,7	Confiable
1967	27,2	Confiable
1968	37,5	Confiable
1969	43,3	Confiable
1970	44,3	Confiable
1971	33,4	Confiable
1972	46,9	Confiable
1973	31,1	Confiable
1974	34,3	Confiable
1975	30,3	Confiable
1976	37,5	Confiable
1977	25,4	Confiable
1978	39,0	Confiable
1979	33,1	Confiable
1980	46,3	Confiable
1981	41,4	Confiable
1982	28,0	Confiable
1983	17,0	Confiable
1984	46,0	Confiable
1985	48,4	Confiable
1986	43,9	Confiable
1987	19,9	Confiable
1988	24,3	Confiable

Tabla 23. Análisis de valores atípicos – estación Qu	uillisani.
------------------------------------------------------	------------



Fuente: Elaboración Propia.



En la tabla 24 se refleja los resultados de la prueba de datos dudosos mediante los valores estadísticos de Grubbs y Beck, obteniendo el umbral de datos dudosos altos y bajos, que posteriormente fueron evaluados. Por lo que se obtuvo datos confiables para la estación Jarpaña.

Año	Pmáx 24h (mm)	Observación
1964	32,5	Confiable
1965	51,0	Confiable
1966	26,0	Confiable
1967	43,5	Confiable
1968	25,0	Confiable
1969	39,3	Confiable
1970	40,0	Confiable
1971	35,8	Confiable
1972	43,3	Confiable
1973	30,7	Confiable
1974	37,2	Confiable
1975	36,0	Confiable
1976	35,2	Confiable
1977	27,0	Confiable
1978	34,0	Confiable
1979	31,8	Confiable
1980	32,5	Confiable

Tabla 24. Análisis de valores atípicos – estación Jarpaña.



Fuente: Elaboración Propia.



En la tabla 25 se refleja los resultados de la prueba de datos dudosos mediante los valores estadísticos de Grubbs y Beck, obteniendo el umbral de datos dudosos altos y bajos, que posteriormente fueron evaluados. Por lo que se obtuvo datos confiables para la estación Santa Lucia.

Año	Pmáx 24h (mm)	Observación
1966	41,3	Confiable
1967	53,5	Confiable
1968	52,9	Confiable
1969	40,5	Confiable
1970	54,3	Confiable
1971	44,5	Confiable
1972	47,6	Confiable
1973	51,4	Confiable
1974	80,6	Confiable
1975	54,3	Confiable
1976	86,7	Confiable
1977	50,1	Confiable
1978	28,4	Confiable
1979	28,2	Confiable
1980	31,5	Confiable
1981	29,5	Confiable
1982	22,6	Confiable
1983	24,1	Confiable
1985	28.3	Confiable
1986	36,2	Confiable
1987	31,0	Confiable
1988	33,8	Confiable
1989	34,1	Confiable
1990	30,8	Confiable
1991	17,5	Confiable
2001	52,4	Confiable
2002	30,9	Confiable
2003	40,9	Confiable
2004	25,3	Confiable
2005	50,0	Confiable
2006	38,0	Confiable
2007	21,6	Confiable
2008	35,8	Confiable
2009	24,7	Confiable
2010	19,9	Confiable
2011	23,5	Confiable
2012	20,2	Confiable

Tabla 25. Análisis de valores atípicos – estación Santa Lucia.







En la tabla 26 se refleja los resultados de la prueba de datos dudosos mediante los valores estadísticos de Grubbs y Beck, obteniendo el umbral de datos dudosos altos y bajos, que posteriormente fueron evaluados. Por lo que se obtuvo datos confiables para la estación Cabanillas.

Año	Pmáx 24h (mm)	Observación
1964	22,0	Confiable
1965	27,8	Confiable
1966	25,0	Confiable
1967	31,2	Confiable
1968	22,2	Confiable
1969	27,2	Confiable
1970	24,0	Confiable
1971	30,8	Confiable
1972	31,8	Confiable
1973	40,0	Confiable
1974	43,6	Confiable
1975	36,0	Confiable
1976	38,2	Confiable
1977	36,7	Confiable
1978	25,9	Confiable
1979	31,8	Confiable
1980	33,2	Confiable
1981	26,2	Confiable

Tabla 26. Análisis de valores atípicos – estación Cabanillas



1982	13,4	Confiable
1983	21,0	Confiable
1984	28,2	Confiable
1985	20,5	Confiable
1986	54,2	Confiable
1987	29,0	Confiable
1988	46,0	Confiable
1989	29,5	Confiable
1990	31,0	Confiable
1991	20,2	Confiable
1992	21,2	Confiable
1993	53,4	Confiable
1994	54,6	Confiable
1995	15,5	Confiable
1996	42,7	Confiable
1997	44,6	Confiable
1998	39,5	Confiable
1999	34,9	Confiable
2000	31,6	Confiable
2001	44,2	Confiable
2002	30,5	Confiable
2003	42,3	Confiable
2004	29,6	Confiable
2005	66,0	Confiable
2006	35,2	Confiable
2007	46,4	Confiable
2008	44,1	Confiable
2009	35,6	Confiable
2010	27,3	Confiable
2011	68,7	Confiable
2012	32,6	Confiable
2013	54,3	Confiable
2014	33,0	Confiable





En la tabla 27 se refleja los resultados de la prueba de datos dudosos mediante los valores estadísticos de Grubbs y Beck, Por lo que se obtuvo datos confiables para la estación Lagunillas.

· ~		
Año	Pmáx 24h (mm)	Observación
1964	28,0	Confiable
1965	53,6	Confiable
1966	35,9	Confiable
1967	32,9	Confiable
1968	26,2	Confiable
1969	27,9	Confiable
1970	35,8	Confiable
1971	28,9	Confiable
1972	31,8	Confiable
1973	58,9	Confiable
1974	46,2	Confiable
1975	31,1	Confiable
1976	56,4	Confiable
1977	26,4	Confiable
1978	26,7	Confiable
1979	38,6	Confiable
1980	29.3	Confiable
1981	28,7	Confiable
1982	42,4	Confiable
1983	37,6	Confiable
1984	40,3	Confiable
1985	35,4	Confiable
1986	35,8	Confiable
1987	38,2	Confiable
1988	22,4	Confiable
1989	32,8	Confiable
1990	30,3	Confiable
1991	33,9	Confiable
1992	28,6	Confiable
1993	34,7	Confiable
1994	29,3	Confiable
1995	23,3	Confiable
1996	37,3	Confiable
1997	25.,3	Confiable
1998	35,2	Confiable
1999	42,0	Confiable
2000	24,1	Confiable
2001	52,4	Confiable
2002	30.9	Confiable
2003	40.9	Confiable
2004	25.3	Confiable
2005	50,0	Confiable

Tabla 27. Análisis de valores atípicos – estación Lagunillas





Fuente: Elaboración propia

#### 4.1.4. Distribución de probabilidad:

Se tomaron valores de precipitación máxima 24 horas anuales, de las estaciones en estudio. A partir de los cuales se realizó el análisis de distribución de probabilidad mediante el software HYFRAN con los métodos exponencial (1), GEV (2), Gumbell (3), Weibull (4), Halphen Gamma (5), Normal (6), Lognormal (7), Lognormal 3 parámetros (8), Gamma (9), Gamma generalizada (10), Gamma Inversa (11), Pearson Tipo III (12) y Log Pearson tipo III (13), para periodos de retorno 10, 20, 50, 100, 200 y 500años. Los resultados se muestran en la tabla 28, 29, 30, 31 y 32.

En la tabla 28, se muestra las precipitaciones máximas 24 horas para periodos de retorno de 10, 20, 50, 100, 200 y 500años de la estación Quillisani, según las distribuciones de probabilidades donde se pudo observar que las precipitaciones que se ajustan más a la realidad es la distribución de probabilidad Log Pearson Tipo III.



Tabla 28.	Precipitación máxima de 24 horas para diferentes tiempos de retorno según
	cada distribución de probabilidades – estación Quillisani.

Periodo													
de	1	2	3	4	5	6	7	8	9	10	11	12	13
retorno													
Tr(años)							ХТ	(mm)					
1000	145,00	34,50	61,10	45,80	60,30	48,20	81,60	66,70	53,50	53,00	128,00	35,00	34,90
500	131,00	34,40	57,30	44,70	57,30	46,70	75,30	61,50	51,20	52,40	111,00	35,00	34,90
200	113,00	34,40	52,30	43,00	53,20	44,60	67,10	54,90	48,00	51,40	92,10	34,90	35,00
100	98,90	34,30	48,50	41,70	50,00	42,80	61,10	50,20	45,50	50,50	79,30	34,70	35,00
50	85,00	34,20	44,70	40,10	46,60	40,90	55,00	45,60	42,80	49,50	67,60	34,50	34,90
20	66,60	33,90	39,60	37,70	41,80	38,00	47,10	39,80	39,00	47,70	53,90	34,00	34,70
10	52,70	33,30	35,70	35,40	37,80	35,50	41,00	35,50	35,80	45,80	44,50	33,40	34,20

Fuente: Elaboración propia.



Figura 44. Distribución de probabilidades – estación Quillisani

Fuente: Elaboración propia.

En la tabla 29, se muestra las precipitaciones máximas 24 horas para periodos de retorno de 10, 20, 50, 100, 200 y 500 años de la estación Jarpaña, según las distribuciones de probabilidades donde se pudo observar que las precipitaciones que se ajustan más a la realidad es la distribución de probabilidad normal.



Periodo													
de	1	2	3	4	5	6	7	8	9	10	11	12	13
retorno													
Tr(años)							ХТ	(mm)					
1000	74,80	40,50	52,40	41,40	45,80	44,60	48,00	47,30	46,20	42,30	48,40	42,20	43,10
500	69,70	40,30	50,10	40,90	44,70	43,70	46,60	45,90	45,10	41,70	46,90	41,60	42,40
200	63,00	39,90	47,10	40,20	43,20	42,50	44,70	44,10	43,50	40,90	44,90	40,80	41,50
100	58,00	39,50	44,80	39,60	41,90	41,40	43,20	42,70	42,20	40,10	43,30	40,10	40,60
50	52,90	39,00	42,50	38,90	40,60	40,30	41,60	41,20	40,90	39,30	41,60	39,30	39,70
20	46,20	38,00	39,50	37,70	38,60	38,50	39,30	39,00	38,90	38,00	39,20	38,00	38,20
10	41,10	36,90	37,10	36,70	37,00	37,00	37,40	37,20	37,10	36,80	37,20	36,80	36,80

**Tabla 29.** Precipitación máxima de 24 horas para diferentes tiempos de retorno segúncada distribución de probabilidades – estación Jarpaña.

Fuente: Elaboración Propia.



Figura 45. Distribución de probabilidades – estación Jarpaña.

Fuente: Elaboración propia.



En la tabla 30, se muestra las precipitaciones máximas 24 horas para periodos de retorno de 10, 20, 50, 100, 200 y 500 años de la estación Santa Lucía, según las distribuciones de probabilidades donde se pudo observar que las precipitaciones que se ajustan más a la realidad es la distribución de probabilidad Pearson Tipo III.

 Tabla 30. Precipitación máxima de 24 horas para diferentes tiempos de retorno según cada distribución de probabilidades – estación Santa Lucia

<b>D</b> • 1													
Periodo													
de	1	2	3	4	5	6	7	8	9	10	11	12	13
retorno													
Tr(años)							ХТ	(mm)					
1000	72,20	34,30	45,20	34,80	39,30	37,50	41,90	39,00	39,50	35,90	43,30	36,00	36,90
500	66,60	34,00	42,90	34,20	38,20	36,60	40,30	37,90	38,30	35,20	41,40	35,40	36,20
200	59,20	33,50	39,90	33,50	36,50	35,30	38,20	36,30	36,70	34,30	39,00	34,40	35,00
100	53,60	33,00	37,70	32,80	35,20	34,30	36,60	35,00	35,30	33,50	37,10	33,50	34,10
50	48,00	32,30	35,40	32,00	33,80	33,10	34,80	33,70	33,90	32,50	35,20	32,60	33,00
20	40,60	31,20	32,40	30,80	31,70	31,40	32,40	31,70	31,80	31,10	32,50	31,10	31,40
10	35,00	29,90	30,00	29,60	30,00	29,90	30,40	30,00	30,00	29,80	30,30	29,80	29,80

Fuente: Elaboración propia







En la tabla 31, se muestra las precipitaciones máximas 24 horas para periodos de retorno de 10, 20, 50, 100, 200 y 500 años de la estación Cabanillas, según las distribuciones de probabilidades donde se pudo observar que las precipitaciones que se ajustan más a la realidad es la distribución de probabilidad Normal.

 Tabla 31. Precipitación máxima de 24 horas para diferentes tiempos de retorno según cada distribución de probabilidades – estación Cabanillas

Periodo													
de	1	2	3	4	5	6	7	8	9	10	11	12	13
retorno													
Tr(años)							XT	(mm)					
1000	79,30	28,80	42,70	32,50	37,90	34,90	41,70	40,80	37,20	29,60	44,80	30,10	30,10
500	72,50	28,70	40,40	31,90	36,60	34,10	39,90	38,90	36,00	29,40	42,40	29,80	29,90
200	63,70	28,50	37,40	31,10	34,80	32,80	37,40	36,30	34,30	29,00	39,30	29,40	29,60
100	56,90	28,40	35,10	30,40	33,30	31,70	35,50	34,40	32,90	28,60	36,90	29,00	29,20
50	50,20	28,10	32,90	29,60	31,80	30,60	33,50	32,40	31,40	28,20	34,50	28,50	28,80
20	41,30	27,60	29,80	28,30	29,60	28,90	30,70	29,70	29,30	27,40	31,20	27,70	27,90
10	34,60	26,80	27,50	27,10	27,70	27,40	28,40	27,50	27,50	26,70	28,60	26,80	27,00

Fuente. Elaboración propia.



Fuente: Elaboración propia.



En la tabla 32, se muestra las precipitaciones máximas 24 horas para periodos de retorno de 10, 20, 50, 100, 200 y 500 años de la estación Lagunillas, según las distribuciones de probabilidades donde se pudo observar que las precipitaciones que se ajustan más a la realidad es la distribución de probabilidad Log Normal.

 Tabla 32. Precipitación máxima de 24 horas para diferentes tiempos de retorno según cada distribución de probabilidades – estación Lagunillas

Periodo													
de	1	2	3	4	5	6	7	8	9	10	11	12	13
retorno													
Tr(años)							XT	(mm)					
1000	54,90	31,20	37,80	31,50	34,00	33,50	34,70	35,10	34,10	32,30	34,80	32,10	32,20
500	51,50	31,10	36,50	31,30	33,40	33,10	34,00	34,40	33,50	31,90	34,10	31,80	31,90
200	47,10	30,90	34,90	30,90	32,60	32,40	33,10	33,40	32,70	31,50	33,20	31,40	31,50
100	43,80	30,70	33,70	30,60	32,00	31,80	32,40	32,60	32,10	31,10	32,40	31,10	31,10
50	40,50	30,40	32,40	30,30	31,30	31,20	31,60	31,70	31,40	30,60	31,60	30,60	30,70
20	36,10	29,90	30,80	29,70	30,30	30,30	30,50	30,50	30,40	29,90	30,50	29,90	30,00
10	32,80	29,40	29,50	29,10	29,40	29,40	29,60	29,50	29,50	29,30	29,50	29,30	29,30

Fuente: Elaboración propia.





Fuente: Elaboración propia.



#### 4.1.5. Determinación de las curvas IDF, según el método de Dick Peschke.

Los resultados obtenidos sobre la curva intensidad duración y frecuencia, para las diferentes estaciones, con periodos de retorno de 10, 20, 50, 100, 200 y 500 años, son como se detalla a continuación.

## ESTACIÓN QUILLISANI

En la tabla 33, 34 y Figura 49, se muestran resultados de la precipitación máximas, intensidad y curva IDF para los periodos de retorno en estudio como son: 10, 20, 50, 100, 200 y 500 años.

Tabla 33. Precipitación máxima para distintas duraciones y tiempos de retorno.

			Precip	oitación	máxim	a total r	epresen	tativa						
					<b>Pd</b> (1	mm)								
Periodo de	Pmáx24h	Duración												
retorno			(min)											
Tr(años)	(mm)	60	120	180	240	300	360	420	480	540	600			
500	34,90	15,77	18,75	20,75	22,30	23,58	24,68	25,65	26,52	27,31	28,04			
200	35,00	15,81	18,80	20,81	22,36	23,65	24,75	25,72	26,59	27,39	28,12			
100	35,00	15,81	18,80	20,81	22,36	23,65	24,75	25,72	26,59	27,39	28,12			
50	34,90	15,77	18,75	20,75	22,30	23,58	24,68	25,65	26,52	27,31	28,04			
20	34,70	15,68	18,64	20,63	22,17	23,44	24,54	25,50	26,37	27,15	27,88			
10	34,20	15,45	18,38	20,34	21,85	23,11	24,18	25,13	25,99	26,76	27,48			

Fuente: Elaboración Propia

<b>Fabla 34.</b> Intensidad para distintas	duraciones y tiempos de retorno
--------------------------------------------	---------------------------------

		Intensidad representativa (mm/h)												
Periodo de retorno		Duración (min)												
Tr(años)	60	120	180	240	300	360	420	480	540	600				
500	15,77	9,38	6,92	5,57	4,72	4,11	3,66	3,31	3,03	2,80				
200	15,81	9,40	6,94	5,59	4,73	4,12	3,67	3,32	3,04	2,81				
100	15,81	9,40	6,94	5,59	4,73	4,12	3,67	3,32	3,04	2,81				
50	15,77	9,38	6,92	5,57	4,72	4,11	3,66	3,31	3,03	2,80				
20	15,68	9,32	6,88	5,54	4,69	4,09	3,64	3,30	3,02	2,79				
10	15,45	9,19	6,78	5,46	4,62	4,03	3,59	3,25	2,97	2,75				

Fuente: Elaboración propia.





Figura 49. Resultado de la curva IDF

Fuente: Elaboración propia.

Se detalla los coeficientes que componen las ecuaciones de las curvas IDF para

cada uno de los tiempos de retorno:

Tabla 35. Valores de las constantes de la ecuación para las curvas IDF.

	TR	a	b
	500	729,5288	0,75
	200	676,9326	0,75
	100	635,0504	0,75
	50	591,2203	0,75
	20	529,858	0,75
	10	478,2358	0,75
_			

Fuente: Elaboración propia

#### Estación Jarpaña

En la tabla 36, 37 y figura 50, se muestran resultados de la precipitación máximas, intensidad y curva IDF para los periodos de retorno en estudio como son: 10, 20, 50, 100,

200 y 500 años.

Tabla 36. Precipitación máxima para distintas duraciones y tiempos de retorno.

	Precipitación máxima total representativa Pd (mm)										
Periodo de	Pmáx24h										
Tr(años)	(mm)	60	120	180	240	300	360	420	480	540	600
500	43,70	19,74	23,48	25,98	27,92	29,52	30,90	32,11	33,20	34,20	35,11
200	42,50	19,20	22,83	25,27	27,16	28,71	30,05	31,23	32,29	33,26	34,15
100	41,40	18,70	22,24	24,62	26,45	27,97	29,27	30,42	31,46	32,40	33,26
50	40,30	18,21	21,65	23,96	25,75	27,23	28,50	29,62	30,62	31,54	32,38
20	38,50	17,39	20,69	22,89	24,60	26,01	27,22	28,29	29,25	30,13	30,93
10	37,00	16,72	19,88	22,00	23,64	25,00	26,16	27,19	28,11	28,95	29,73



			Inte	nsidad 1 (m	represen m/h)	itativa				
Periodo de retorno	Duración (min)									
Tr(años)	60	120	180	240	300	360	420	480	540	600
500	19,74	11,74	8,66	6,98	5,90	5,15	4,59	4,15	3,80	3,51
200	19,20	11,42	8,42	6,79	5,74	5,01	4,46	4,04	3,70	3,41
100	18,70	11,12	8,21	6,61	5,59	4,88	4,35	3,93	3,60	3,33
50	18,21	10,83	7,99	6,44	5,45	4,75	4,23	3,83	3,50	3,24
20	17,39	10,34	7,63	6,15	5,20	4,54	4,04	3,66	3,35	3,09
0	16,72	9,94	7,33	5,91	5,00	4,36	3,88	3,51	3,22	2,97

Fuente: Elaboración propia.



Figura 50. Resultados de la curva IDF

Fuente: Elaboración propia.

Tabla 38. Valores de las constantes de la ecuación para las curvas IDF.

TR	а	b
500	651,6085	0,75
200	613,6224	0,75
100	584,4022	0,75
50	553,2341	0,75
20	507,456	0,75
10	470,4438	0,75

Fuente: Elaboración propia

#### Estación Santa Lucia.

En la tabla 39, 40 y figura 51, se muestran resultados de la precipitación máximas, intensidad y curva IDF para los periodos de retorno en estudio como son: 10, 20, 50, 100, 200 y 500 años.



Precipitación máxima total representativa Pd (mm)											
Periodo de retorno	Pmáx24h		Duración (min)								
Tr(años)	( <b>mm</b> )	60	120	180	240	300	360	420	480	540	600
500	36,60	16,54	19,66	21,76	23,39	24,73	25,88	26,90	27,81	28,64	29,41
200	35,30	15,95	18,97	20,99	22,55	23,85	24,96	25,94	26,82	27,62	28,36
100	34,30	15,50	18,43	20,39	21,92	23,17	24,25	25,21	26,06	26,84	27,56
50	33,10	14,95	17,78	19,68	21,15	22,36	23,41	24,32	25,15	25,90	26,59
20	31,40	14,19	16,87	18,67	20,06	21,21	22,20	23,08	23,86	24,57	25,23
10	29,90	13,51	16,06	17,78	19,10	20,20	21,14	21,97	22,72	23,40	24,02

**Tabla 39.** Precipitación máxima para distintas duraciones y tiempos de retorno.

Fuente: Elaboración propia.

Tabla 40. Intensidad para distintas duraciones y tiempos de retorno

Intensidad representativa (mm/h)										
Periodo de retorno	Duración (min)									
Tr(años)	60	120	180	240	300	360	420	480	540	600
500	16,54	9,83	7,25	5,85	4,95	4,31	3,84	3,48	3,18	2,94
200	15,95	9,48	7,00	5,64	4,77	4,16	3,71	3,35	3,07	2,84
100	15,50	9,21	6,80	5,48	4,63	4,04	3,60	3,26	2,98	2,76
50	14,95	8,89	6,56	5,29	4,47	3,90	3,47	3,14	2,88	2,66
20	14,19	8,44	6,22	5,02	4,24	3,70	3,30	2,98	2,73	2,52
10	13,51	8,03	5,93	4,78	4,04	3,52	3,14	2,84	2,60	2,40

Fuente: Elaboración propia



Figura 51. Resultados de la curva IDF



TR	а	b
500	911,6675	0,75
200	837,6432	0,75
100	779,203	0,75
50	717,8408	0,75
20	632,1284	0,75
10	562,0002	0,75

Tabla 41. Valores de las constantes de la ecuación para las curvas IDF.

Fuente: Elaboración propia.

#### Estación Cabanillas

En la tabla 42, 43 y figura 52, se muestran resultados de la precipitación máximas, intensidad y curva IDF para los periodos de retorno en estudio como son: 10, 20, 50, 100, 200 y 500 años.

Tabla 42. Precipitación máxima para distintas duraciones y tiempos de retorno.

	Precipitación máxima total representativa Pd (mm)										
Periodo de retorno	Pmáx24h		Duración (min)								
Tr(años)	(mm)	60	120	180	240	300	360	420	480	540	600
500	34,10	15,41	18,32	20,28	21,79	23,04	24,11	25,06	25,91	26,68	27,40
200	32,80	14,82	17,62	19,50	20,96	22,16	23,19	24,10	24,92	25,67	26,35
100	31,70	14,32	17,03	18,85	20,25	21,42	22,42	23,30	24,09	24,81	25,47
50	30,60	13,83	16,44	18,19	19,55	20,67	21,64	22,49	23,25	23,95	24,58
20	28,90	13,06	15,53	17,18	18,47	19,52	20,44	21,24	21,96	22,62	23,22
10	27,40	12,38	14,72	16,29	17,51	18,51	19,37	20,14	20,82	21,44	2,01

Fuente: Elaboración propia.

		Inten	sidad r	epresei	ntativa	(mm/h)				
Periodo de retorno	Duración (min)									
Tr(años)	60	120	180	240	300	360	420	480	540	600
500	15,41	9,16	6,76	5,45	4,61	4,02	3,58	3,24	2,96	2,74
200	14,82	8,81	6,50	5,24	4,43	3,87	3,44	3,12	2,85	2,64
100	14,32	8,52	6,28	5,06	4,28	3,74	3,33	3,01	2,76	2,55
50	13,83	8,22	6,06	4,89	4,13	3,61	3,21	2,91	2,66	2,46
20	13,06	7,76	5,73	4,62	3,90	3,41	3,03	2,74	2,51	2,32
10	12,38	7,36	5,43	4,38	3,70	3,23	2,88	2,60	2,38	2,20

Fuente: Elaboración propia.





Figura 52. Resultados de la curva IDF

Fuente: Elaboración propia.

Tabla 44. Valores de las constantes de la ecuación para las curvas IDF.

TR	a	b
500	755,8269	0,75
200	699,3347	0,75
100	655,5045	0,75
50	608,7523	0,75
20	543,4941	0,75
10	562,0002	0,75

Fuente: Elaboración propia.

#### Estación Lagunillas

En la tabla 45, 46 y figura 53, se muestran resultados de la precipitación máximas,

intensidad y curva IDF para los periodos de retorno en estudio como son: 10, 20, 50, 100,

200 y 500 años.

Fabla 45. Precipitación	máxima para distintas	s duraciones y tiempos	de retorno.
-------------------------	-----------------------	------------------------	-------------

	Precipitación máxima total representativa Pd (mm)										
Periodo de retorno	Pmáx24h		Duración (min)								
Tr(años)	( <b>mm</b> )	60	120	180	240	300	360	420	480	540	600
500	33,10	14,95	17,78	19,68	21,15	22,36	23,41	24,32	25,15	25,90	26,59
200	32,40	14,64	17,41	19,27	20,70	21,89	22,91	23,81	24,62	25,35	26,03
100	31,80	14,37	17,09	18,91	20,32	21,48	22,49	23,37	24,16	24,88	25,55
50	31,20	14,10	16,76	18,55	19,94	21,08	22,06	22,93	23,71	24,42	25,07
20	30,30	13,69	16,28	18,02	19,36	20,47	21,43	22,27	23,02	23,71	24,34
10	29,40	13,28	15,80	17,48	18,78	19,86	20,79	21,61	22,34	23,01	23,62



		Ι	ntensid	ad repi (mm/ł	resenta 1)	tiva				
Periodo de retorno	_	Duración (min)								
Tr(años)	60	120	180	240	300	360	420	480	540	600
500	14,95	8,89	6,56	5,29	4,47	3,90	3,47	3,14	2,88	2,66
200	14,64	8,70	6,42	5,18	4,38	3,82	3,40	3,08	2,82	2,60
100	14,37	8,54	6,30	5,08	4,30	3,75	3,34	3,02	2,76	2,55
50	14,10	8,38	6,18	4,98	4,22	3,68	3,28	2,96	2,71	2,51
20	13,69	8,14	6,01	4,84	4,09	3,57	3,18	2,88	2,63	2,43
10	13,28	7,90	5,83	4,70	3,97	3,46	3,09	2,79	2,56	2,36

#### Tabla 46. Intensidad para distintas duraciones y tiempos de retorno

Fuente: Elaboración propia.



#### Figura 53. Resultados de la curva IDF

Fuente: Elaboración propia.

		-
TR	а	b
500	632,1284	0,75
200	595,1163	0,75
100	564,9222	0,75
50	533,7541	0,75
20	489,9239	0,75
10	451,9377	0,75

Tabla 47. Valores de las constantes de la ecuación para las curvas IDF

Fuente: Elaboración propia.



#### 4.1.6. Hietogramas de diseño – método del bloque alterno.

Los resultados de hietogramas de diseño indican que:

## ESTACIÓN QUILLISANI.

 En la tabla 48, en los periodos de retorno 10 años se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 15,45 mm/h respectivamente.

TR = 10		Ecuación II	)	$\Delta t = 60$	
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	15,45	15,45	15,45	0,78	0,78
120	9,19	18,38	2,92	0,95	0,95
180	6,78	20,34	1,96	1,25	1,25
240	5,46	21,85	1,52	1,96	1,96
300	4,62	23,11	1,25	15,45	15,45
360	4,03	24,18	1,08	2,92	2,92
420	3,59	25,13	0,95	1,52	1,52
480	3,25	25,99	0,85	1,08	1,08
540	2,97	26,76	0,78	0,85	0,85

Tabla 48. Hietogramas para TR 10 años, estación Quillisani.





 En la tabla 49, en el periodo de retorno 20 años se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 15,68 mm/h respectivamente.

TR = 20		Ecuación ID	)	$\Delta t$ = 60	
d (min)	l (mm/h)	P (mm)	ΔΡ	ΔP (ordenado)	l (mm/h)
60	15,68	15,68	15,68	0,79	0,79
120	9,32	18,64	2,97	0,96	0,96
180	6,88	20,63	1,99	1,27	1,27
240	5,54	22,17	1,54	1,99	1,99
300	4,69	23,44	1,27	15,68	15,68
360	4,09	24,54	1,09	2,97	2,97
420	3,64	25,50	0,96	1,54	1,54
480	3,30	26,37	0,87	1,09	1,09
540	3,02	27,15	0,79	0,87	0,87

Tabla 49. Hietogramas para TR 20 años, estación Quillisani.



 En la tabla 50, en el periodo de retorno 50 años se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 15,77 mm/h respectivamente.



TR = 50		Ecuación II	)	$\Delta t = 60$	
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	15,77	15,77	15,77	0,79	0,79
120	9,38	18,75	2,98	0,97	0,97
180	6,92	20,75	2,00	1,28	1,28
240	5,57	22,30	1,55	2,00	2,00
300	4,72	23,58	1,28	15,77	15,77
360	4,11	24,68	1,10	2,98	2,98
420	3,66	25,65	0,97	1,55	1,55
480	3,31	26,52	0,87	1,10	1,10
540	3,03	27,31	0,79	0,87	0,87

Tabla 50.	Hietogramas	para TR 50 ai	ños, estación (	Quillisani.
-----------	-------------	---------------	-----------------	-------------



 En la tabla 51, en el periodo de retorno 100 años se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 15,81 mm/h respectivamente.

TR = 100	Ecuación ID			$\Delta t$ = 60		
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)	
60	15,81	15,81	15,81	0,79	0,79	
120	9,40	18,80	2,99	0,97	0,97	
180	6,94	20,81	2,01	1,28	1,28	
240	5,59	22,36	1,55	2,01	2,01	
300	4,73	23,65	1,28	15,81	15,81	
360	4,12	24,75	1,10	2,99	2,99	
420	3,67	25,72	0,97	1,55	1,55	
480	3,32	26,59	0,87	1,10	1,10	
540	3,04	27,39	0,79	0,87	0,87	

Tabla 51. Hietogramas para TR 100 años, estación Quillisani.





 En la tabla 52, en el periodo de retorno 200 años se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 15,81 mm/h respectivamente.

TR = 200		Ecuación II	)	$\Delta t$ = 60		
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)	
60	15,81	15,81	15,81	0,79	0,79	
120	9,40	18,80	2,99	0,97	0,97	
180	6,94	20,81	2,01	1,28	1,28	
240	5,59	22,36	1,55	2,01	2,01	
300	4,73	23,65	1,28	15,81	15,81	
360	4,12	24,75	1,10	2,99	2,99	
420	3,67	25,72	0,97	1,55	1,55	
480	3,32	26,59	0,87	1,10	1,10	
540	3.04	27.39	0.79	0.87	0.87	

Tabla 52. Hietogramas para TR 200 años, estación Quillisani.





En la tabla 53, en el periodo de retorno 500 años se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 15,77 mm/h respectivamente.

TR = 500		Ecuación II	)	$\Delta t$ = 60	
d (min)	l (mm/h)	P (mm)	ΔΡ	ΔP (ordenado)	l (mm/h)
60	15,77	15,77	15,77	0,79	0,79
120	9,38	18,75	2,98	0,97	0,97
180	6,92	20,75	2,00	1,28	1,28
240	5,57	22,30	1,55	2,00	2,00
300	4,72	23,58	1,28	15,77	15,77
360	4,11	24,68	1,10	2,98	2,98
420	3,66	25,65	0,97	1,55	1,55
480	3,31	26,52	0,87	1,10	1,10
540	3,03	27,31	0,79	0,87	0,87

Tabla 53. Hietogramas para TR 500 años, estación Quillisani.



#### Estación Jarpaña.

 En la tabla 54, en el periodo de retorno 10 años en la estación Jarpaña se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 16.63 mm/h respectivamente.



TR = 10		Ecuación II	)	$\Delta t$ = 60	
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	16,63	16,63	16,63	0,84	0,84
120	9,89	19,77	3,15	1,02	1,02
180	7,29	21,88	2,11	1,35	1,35
240	5,88	23,51	1,63	2,11	2,11
300	4,97	24,86	1,35	16,63	16,63
360	4,34	26,02	1,16	3,15	3,15
420	3,86	27,04	1,02	1,63	1,63
480	3,50	27,96	0,92	1,16	1,16
540	3,20	28,80	0,84	0,92	0,92

Tabla 54.	Hietogramas	para TR	10 años,	estación J	arpaña.
-----------	-------------	---------	----------	------------	---------



 En la tabla 55, en el periodo de retorno 20 años en la estación Jarpaña se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 17,17 mm/h respectivamente.

TR = 20	Ecuación ID		$\Delta t$ = 60		
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	17,17	17,17	17,17	0,86	0,86
120	10,21	20,42	3,25	1,06	1,06
180	7,53	22,59	2,18	1,39	1,39
240	6,07	24,28	1,68	2,18	2,18
300	5,13	25,67	1,39	17,17	17,17
360	4,48	26,87	1,20	3,25	3,25
420	3,99	27,93	1,06	1,68	1,68
480	3,61	28,87	0,95	1,20	1,20
540	3,30	29,74	0,86	0,95	0,95

Tabla 55. Hietogramas para TR 20 años, estación Jarpaña.





 En la tabla 56, en el periodo de retorno 50 años en la estación Jarpaña se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 17,76 mm/h respectivamente.

TR = 50	Ecuación ID			$\Delta t = 60$	
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	17,76	17,76	17,76	0,89	0,89
120	10,56	21,12	3,36	1,09	1,09
180	7,79	23,37	2,25	1,44	1,44
240	6,28	25,11	1,74	2,25	2,25
300	5,31	26,55	1,44	17,76	17,76
360	4,63	27,79	1,24	3,36	3,36
420	4,13	28,88	1,09	1,74	1,74
480	3,73	29,86	0,98	1,24	1,24
540	3,42	30,75	0,89	0,98	0,98

Tabla 56. Hietogramas para TR 50 años, estación Jarpaña.





En la tabla 57, en el periodo de retorno 100 años en la estación Jarpaña se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 18,12 mm/h respectivamente.

TR = 100	Ecuación ID		$\Delta t$ = 60		
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	18,12	18,12	18,12	0,91	0,91
120	10,77	21,55	3,43	1,11	1,11
180	7,95	23,84	2,30	1,47	1,47
240	6,41	25,62	1,78	2,30	2,30
300	5,42	27,09	1,47	18,12	18,12
360	4,73	28,35	1,26	3,43	3,43
420	4,21	29,47	1,11	1,78	1,78
480	3,81	30,47	1,00	1,26	1,26
540	3,49	31,38	0,91	1,00	1,00

Tabla 57. Hietogramas para TR 100 años, estación Jarpaña.



 En la tabla 58, en el periodo de retorno 200 años en la estación Jarpaña se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 18,43 mm/h respectivamente.



TR = 200	Ecuación ID		$\Delta t$ = 60		
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	18,43	18,43	18,43	0,93	0,93
120	10,96	21,92	3,49	1,13	1,13
180	8,09	24,26	2,34	1,50	1,50
240	6,52	26,07	1,81	2,34	2,34
300	5,51	27,56	1,50	18,43	18,43
360	4,81	28,85	1,29	3,49	3,49
420	4,28	29,98	1,13	1,81	1,81
480	3,88	31,00	1,02	1,29	1,29
540	3,55	31,93	0,93	1,02	1,02

Tabla 58.	Hietogramas	para TR 200	años,	estación	Jarpaña.
-----------	-------------	-------------	-------	----------	----------



 En la tabla 59, en el periodo de retorno 500 años en la estación Jarpaña se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 18,79 mm/h respectivamente

TR = 500		Ecuación II	)	$\Delta t$ = 60		
d (min)	I (mm/h)	P (mm)	ΔP	ΔP (ordenado)	I (mm/h)	
60	18,79	18,79	18,79	0,94	0,94	
120	11,18	22,35	3,56	1,16	1,16	
180	8,25	24,74	2,38	1,52	1,52	
240	6,65	26,58	1,84	2,38	2,38	
300	5,62	28,10	1,52	18,79	18,79	
360	4,90	29,42	1,31	3,56	3,56	
420	4,37	30,57	1,16	1,84	1,84	
480	3,95	31,61	1,04	1,31	1,31	
540	3,62	32,55	0,94	1,04	1,04	

- Tabla 59. Hietogramas de diseño para TR 500 años, estación Jarpaña.





#### Estación Santa Lucia.

En la tabla 60, en el periodo de retorno 10 años en la estación Santa Lucía se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 13,46 mm/h respectivamente

Tabla 60. Hietogramas de diseño para TR 10 años, estación Santa Lucia.

TR = 10	Ecuación ID		$\Delta t$ = 60		
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	13,46	13,46	13,46	0,68	0,68
120	8,01	16,01	2,55	0,83	0,83
180	5,91	17,72	1,71	1,09	1,09
240	4,76	19,04	1,32	1,71	1,71
300	4,03	20,13	1,09	13,46	13,46
360	3,51	21,07	0,94	2,55	2,55
420	3,13	21,90	0,83	1,32	1,32
480	2,83	22,64	0,74	0,94	0,94
540	2,59	23,32	0,68	0,74	0,74




En la tabla 61, en el periodo de retorno 20 años en la estación Santa Lucía se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 14,05 mm/h respectivamente

TR = 20		Ecuación II	D $\Delta t = 60$		
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	14,05	14,05	14,05	0,71	0,71
120	8,35	16,71	2,66	0,86	0,86
180	6,16	18,49	1,78	1,14	1,14
240	4,97	19,87	1,38	1,78	1,78
300	4,20	21,01	1,14	14,05	14,05
360	3,67	21,99	0,98	2,66	2,66
420	3,27	22,86	0,86	1,38	1,38
480	2,95	23,63	0,78	0,98	0,98
5/10	2 70	2/ 3/	0.71	0.78	0.78

Tabla 61. Hietogramas de diseño para TR 20 años, estación Santa Lucia.





En la tabla 62, en el periodo de retorno 50 años en la estación Santa Lucía se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 14,73 mm/h respectivamente

TR = 50		Ecuación II	)	$\Delta t = 60$	
d (min)	I (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	14,73	14,73	14,73	0,74	0,74
120	8,76	17,52	2,79	0,91	0,91
180	6,46	19,38	1,87	1,20	1,20
240	5,21	20,83	1,45	1,87	1,87
300	4,40	22,02	1,20	14,73	14,73
360	3,84	23,05	1,03	2,79	2,79
420	3,42	23,96	0,91	1,45	1,45
480	3,10	24,77	0,81	1,03	1,03
540	2,83	25,51	0,74	0,81	0,81

Tabla 62. Hietogramas de diseño para TR 50 años, estación Santa Lucia.



En la tabla 63, en el periodo de retorno 100 años en la estación Santa Lucía se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 15,14 mm/h respectivamente



TR = 100		Ecuación II	)	$\Delta t$ = 60		
d (min)	I (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)	
60	15,14	15,14	15,14	0,76	0,76	
120	9,00	18,00	2,86	0,93	0,93	
180	6,64	19,92	1,92	1,23	1,23	
240	5,35	21,40	1,49	1,92	1,92	
300	4,53	22,63	1,23	15,14	15,14	
360	3,95	23,69	1,06	2,86	2,86	
420	3,52	24,62	0,93	1,49	1,49	
480	3,18	25,45	0.84	1,06	1,06	
540	2.91	26.22	0.76	0.84	0.84	

Tabla 63. Hietogramas de diseño para TR 100 años, estación Santa Lucia.



En la tabla 64, en el periodo de retorno 200 años en la estación Santa Lucía se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 15,54 mm/h respectivamente

TR = 200		Ecuación ID $\Delta t = 60$			
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	15,54	15,54	15,54	0,78	0,78
120	9,24	18,48	2,94	0,96	0,96
180	6,82	20,45	1,97	1,26	1,26
240	5,49	21,98	1,53	1,97	1,97
300	4,65	23,24	1,26	15,54	15,54
360	4,05	24,32	1,08	2,94	2,94
420	3,61	25,28	0,96	1,53	1,53
480	3,27	26,14	0,86	1,08	1,08
540	2,99	26,92	0,78	0,86	0,86

Tabla 64. Hietogramas de diseño para TR 200 años, estación Santa Lucia.





En la tabla 65, en el periodo de retorno 500 años en la estación Santa Lucía se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 15,99 mm/h respectivamente

TR = 500		Ecuación ID $\Delta t = 60$			
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	15,99	15,99	15,99	0,80	0,80
120	9,51	19,02	3,03	0,98	0,98
180	7,02	21,05	2,03	1,30	1,30
240	5,65	22,62	1,57	2,03	2,03
300	4,78	23,92	1,30	15,99	15,99
360	4,17	25,03	1,12	3,03	3,03
420	3,72	26,02	0,98	1,57	1,57
480	3,36	26,90	0,88	1,12	1,12
540	3,08	27,70	0,80	0,88	0,88

Tabla 65. Hietogramas de diseño para TR 500 años, estación Santa Lucia.





## Estación Cabanillas.

En la tabla 66, en el periodo de retorno 10 años en la estación Cabanillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 12,11 mm/h respectivamente.

TR = 10		Ecuación II	ón ID $\Delta t = 60$		
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	12,11	12,11	12,11	0,61	0,61
120	7,20	14,40	2,29	0,74	0,74
180	5,31	15,94	1,54	0,98	0,98
240	4,28	17,12	1,19	1,54	1,54
300	3,62	18,11	0,98	12,11	12,11
360	3,16	18,95	0,84	2,29	2,29
420	2,81	19,70	0,74	1,19	1,19
480	2,55	20,36	0,67	0,84	0,84
540	2,33	20,97	0,61	0,67	0,67

Tabla 66. Hietogramas de diseño para TR 10 años, estación Cabanillas.



En la tabla 67, en el periodo de retorno 20 años en la estación Cabanillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 12,51 mm/h respectivamente



TR = 20	Ecuación ID		Ecuación ID $\Delta t = 60$		
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	12,51	12,51	12,51	0,63	0,63
120	7,44	14,88	2,37	0,77	0,77
180	5,49	16,47	1,59	1,02	1,02
240	4,42	17,70	1,23	1,59	1,59
300	3,74	18,71	1,02	12,51	12,51
360	3,26	19,59	0,87	2,37	2,37
420	2,91	20,36	0,77	1,23	1,23
480	2,63	21,05	0,69	0,87	0,87
540	2,41	21,68	0,63	0,69	0,69

Tabla 67. Hietogramas de diseño para TR 20 años, estación Cabanillas.



En la tabla 68, en el periodo de retorno 50 años en la estación Cabanillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 12,88 mm/h respectivamente

TR = 50		Ecuación ID $\Delta t$ =		$\Delta t = 60$	= 60	
d (min)	I (mm/h)	P (mm)	ΔP	ΔP (ordenado)	I (mm/h)	
60	12,88	12,88	12,88	0,65	0,65	
120	7,66	15,31	2,44	0,79	0,79	
180	5,65	16,95	1,63	1,04	1,04	
240	4,55	18,21	1,26	1,63	1,63	
300	3,85	19,25	1,04	12,88	12,88	
360	3,36	20,15	0,90	2,44	2,44	
420	2,99	20,94	0,79	1,26	1,26	
480	2,71	21,66	0,71	0,90	0,90	
540	2,48	22,30	0,65	0,71	0,71	

Tabla 68. Hietogramas de diseño para TR 50 años, estación Cabanillas.





En la tabla 69, en el periodo de retorno 100 años en la estación Cabanillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 13,10 mm/h respectivamente

TR = 100	Ecuación ID		)	$\Delta t = 60$		
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	I (mm/h)	
60	13,10	13,10	13,10	0,66	0,66	
120	7,79	15,58	2,48	0,81	0,81	
180	5,75	17,24	1,66	1,06	1,06	
240	4,63	18,53	1,29	1,66	1,66	
300	3,92	19,59	1,06	13,10	13,10	
360	3,42	20,51	0,91	2,48	2,48	
420	3,04	21,31	0,81	1,29	1,29	
480	2,75	22,04	0,72	0,91	0,91	
540	2,52	22,69	0,66	0,72	0,72	

Tabla 69. Hietogramas de diseño para TR 100 años, estación Cabanillas.





En la tabla 70, en el periodo de retorno 200 años en la estación Cabanillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 13,28 mm/h respectivamente

TR = 200		Ecuación ID $\Delta t = 60$			
d (min)	I (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	13,28	13,28	13,28	0,67	0,67
120	7,90	15,80	2,51	0,82	0,82
180	5,83	17,48	1,69	1,08	1,08
240	4,70	18,78	1,30	1,69	1,69
300	3,97	19,86	1,08	13,28	13,28
360	3,46	20,79	0,93	2,51	2,51
420	3,09	21,61	0,82	1,30	1,30
480	2,79	22,34	0,73	0,93	0,93
540	2,56	23,01	0,67	0,73	0,73

Tabla 70. Hietogramas de diseño para TR 200 años, estación Cabanillas.



En la tabla 71, en el periodo de retorno 500 años en la estación Cabanillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 13,46 mm/h respectivamente



TR = 500	E(	00 Ecuación ID		$\Delta t = 60$	
d (min)	I (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	13,46	13,46	13,46	0,68	0,68
120	8,01	16,01	2,55	0,83	0,83
180	5,91	17,72	1,71	1,09	1,09
240	4,76	19,04	1,32	1,71	1,71
300	4,03	20,13	1,09	13,46	13,46
360	3,51	21,07	0,94	2,55	2,55
420	3,13	21,90	0,83	1,32	1,32
480	2,83	22,64	0,74	0,94	0,94
540	2,59	23,32	0,68	0,74	0,74





# Estación Lagunillas.

En la tabla 72, en el periodo de retorno 10 años en la estación Lagunillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 13,24 mm/h respectivamente



TR = 10		Ecuación II	)	$\Delta t$ = 60	
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	13,24	13,24	13,24	0,67	0,67
120	7,87	15,74	2,50	0,81	0,81
180	5,81	17,42	1,68	1,07	1,07
240	4,68	18,72	1,30	1,68	1,68
300	3,96	19,80	1,07	13,24	13,24
360	3,45	20,72	0,92	2,50	2,50
420	3,08	21,53	0,81	1,30	1,30
480	2,78	22,26	0,73	0,92	0,92
540	2.55	22.93	0.67	0.73	0.73

Tabla 72.	Hietogramas	de diseño	para TR	10 años.	estación	Lagunillas
	merogramas	ac ansento	para III	10 41100,	estaeron	Lagannas



En la tabla 73, en el periodo de retorno 20 años en la estación Lagunillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 13,51 mm/h respectivamente

TR = 20		Ecuación II	)	$\Delta t = 60$	
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	13,51	13,51	13,51	0,68	0,68
120	8,03	16,06	2,56	0,83	0,83
180	5,93	17,78	1,71	1,10	1,10
240	4,78	19,10	1,33	1,71	1,71
300	4,04	20,20	1,10	13,51	13,51
360	3,52	21,14	0,94	2,56	2,56
420	3,14	21,97	0,83	1,33	1,33
480	2,84	22,72	0,75	0,94	0,94
540	2,60	23,40	0,68	0,75	0,75

Tabla 73. Hietogramas de diseño para TR 20 años, estación Lagunillas.





En la tabla 74, en el periodo de retorno 50 años en la estación Lagunillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 13,83 mm/h respectivamente

TR = 50		Ecuación II	)	$\Delta t$ = 60	
d (min)	I (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	13,83	13,83	13,83	0,69	0,69
120	8,22	16,44	2,62	0,85	0,85
180	6,06	18,19	1,75	1,12	1,12
240	4,89	19,55	1,36	1,75	1,75
300	4,13	20,67	1,12	13,83	13,83
360	3,61	21,64	0,96	2,62	2,62
420	3,21	22,49	0,85	1,36	1,36
480	2,91	23,25	0,76	0,96	0,96
540	2,66	23.95	0,69	0.76	0.76

Tabla 74. Hietogramas de diseño para TR 50 años, estación Lagunillas.





En la tabla 75, en el periodo de retorno 100 años en la estación Lagunillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 14,05 mm/h respectivamente.

TR = 100		Ecuación ID	)	$\Delta t = 60$	
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	14,05	14,05	14,05	0,71	0,71
120	8,35	16,71	2,66	0,86	0,86
180	6,16	18,49	1,78	1,14	1,14
240	4,97	19,87	1,38	1,78	1,78
300	4,20	21,01	1,14	14,05	14,05
360	3,67	21,99	0,98	2,66	2,66
420	3,27	22,86	0,86	1,38	1,38
480	2,95	23,63	0,78	0,98	0,98
540	2,70	24,34	0,71	0,78	0,78

Tabla 75. Hietogramas de diseño para TR 100 años, estación Lagunillas.



En la tabla 76, en el periodo de retorno 200 años en la estación Lagunillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 14,19 mm/h respectivamente



TR = 200		Ecuación II	)	$\Delta t$ = 60	
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	14,19	14,19	14,19	0,71	0,71
120	8,44	16,87	2,68	0,87	0,87
180	6,22	18,67	1,80	1,15	1,15
240	5,02	20,06	1,39	1,80	1,80
300	4,24	21,21	1,15	14,19	14,19
360	3,70	22,20	0,99	2,68	2,68
420	3,30	23,08	0,87	1,39	1,39
480	2,98	23,86	0,78	0,99	0,99
540	2,73	24,57	0,71	0.78	0,78

Tabla 76 . Hietogramas de diseño para TR 200 años, estación Lagunillas.



En la tabla 77, en el periodo de retorno 500 años en la estación Lagunillas se muestra que en intensidad de duración de 60 min d(min), llega a una precipitación máxima de 14,37mm/h respectivamente

TR = 500		Ecuación II	)	$\Delta t$ = 60	
d (min)	l (mm/h)	P (mm)	ΔP	ΔP (ordenado)	l (mm/h)
60	14,37	14,37	14,37	0,72	0,72
120	8,54	17,09	2,72	0,88	0,88
180	6,30	18,91	1,82	1,17	1,17
240	5,08	20,32	1,41	1,82	1,82
300	4,30	21,48	1,17	14,37	14,37
360	3,75	22,49	1,00	2,72	2,72
420	3,34	23,37	0,88	1,41	1,41
480	3,02	24,16	0,79	1,00	1,00
540	2,76	24,88	0,72	0,79	0,79

Tabla 77. Hietogramas de diseño para TR 500 años, estación Lagunillas.





# 4.1.7. Caudales máximos para los periodos de retorno 10, 20, 50, 100, 200 y 500 años mediante el HEC – HMS.

El cálculo de los caudales máximos para los periodos de retorno de (10, 20, 50, 100, 200 y 500 años), se realizó a partir de los datos de precipitación máxima 24 horas de las estaciones cercanas al proyecto como son: estación Quillisani, Jarpaña, Santa Lucia, Cabanillas y Lagunillas, estos datos fueron procesados mediante el software Hyfran obteniendo datos de precipitaciones máximas para los periodos de retorno en estudio. Los cuales nos facilitaron el procesamiento en el software HEC-HMS, obteniendo resultados de caudales máximos, lo cual se muestra en la tabla 78 y figura 54.

	$O(m^3/s)$
TR (años)	Caudal de diseño (HEC-HMS)
10	350,70
20	376,20
50	405,00
100	423,80
200	441,40
500	462,00

**Tabla 78.** Caudales generados con el HEC-HMS en periodos de retorno de10, 20, 50, 100, 200 y 500años.





Figura 54. Caudales generados con el HEC-HMS

## 4.2.RESULTADOS DEL MODELAMIENTO HIDRÁULICO.

La modelación hidráulica nos permite obtener resultados de secciones transversales, valores de velocidades y tirantes máximos en el tramo de estudio que comprende desde el puente Cabanillas - hasta la bocatoma Cabanilla, obteniendo posteriormente los mapas de inundación.

#### 4.2.1. Secciones transversales.

En la figura 55 y 56 se puede observas las secciones transversales de la progresiva 0+050, obtenidas en campo y en el software HEC RAS 2D, donde existe una mínima diferencia en la sección del rio. En la visita a campo se pudo observar la acumulación de sedimentos en el cauce del río.











Figura 56. Sección transversal obtenidos mediante el HEC-RAS 2D. Fuente: HEC RAS 2D

En la figura 57 y 58 se puede observas la comparación de las secciones transversales de la progresiva 3+829, con datos obtenidas en campo y en el software HEC RAS, donde existe diferencia en la sección del río. Del mismo modo se observa acumulación de sedimentos en el cauce del río.



Figura 57. Sección transversal, datos tomados en campo progresiva 3+829 Fuente: Elaboración propia.







En la figura 59 y 60 se puede observas la comparación de las secciones transversales de la progresiva 6+950, con datos obtenidas en campo y en el software HEC RAS 2D, donde existe diferencia en la sección geométrica y la acumulación de sedimentos en el cauce del rio, ocasionando desbordamientos en épocas de avenidas.



Figura 59. Sección transversal mediante datos obtenidos en campo. Fuente: Elaboración propia







Fuente: HEC RAS 2D.

#### 4.2.2. Características hidráulicas de las secciones transversales.

En la tabla 79 y figura 61, se muestra los resultados del HEC-RAS 2D, pudiendo observar la velocidad y el número de Froude más elevado en el modelo, se presenta en la progresiva km 50+000, siendo de 3.57 m/s y 1.01 respectivamente.

River		Q	Min	W.S.	Crit	E.G.	E.G.	Vel	Flow	Тор	Froude	Max
sta	Profile	Total	Ch El	Elev	W.S.	Elev	Slope	Chnl	Área	Width	# Chl	Chi Dpth
		(m ³ /s)	( <b>m</b> )	( <b>m</b> )	( <b>m</b> )	( <b>m</b> )	(m/m)	(m/s)	(m ² )	( <b>m</b> )		( <b>m</b> )
6950	10 años	350,7	3894,9	3896,1	3896,12	3896,5	0,01619	2,66	133,6	197,9	0,97	1,27
6950	20 años	376,2	3894,9	3896,2	3896,16	3896,5	0,01578	2,71	141,2	199,2	0,97	1,31
6950	50 años	405	3894,9	3896,2	3896,2	3896,6	0,01546	2,77	149,2	200,5	0,96	1,35
6950	100 años	423,8	3894,9	3896,2	3896,22	3896,6	0,01542	2,82	153,9	201,3	0,97	1,37
6950	200 años	441,4	3894,9	3896,3	3896,25	3896,7	0,01502	2,84	159,4	202,2	0,96	1,4
6950	500 años	462,5	3894,9	3896,3	3896,28	3896,7	0,01472	2,87	165,3	203,1	0,95	1,43
5950	10 años	350,7	3891,2	3893,2	3893,23	3893,7	0,01648	2,99	117,7	131,8	1,01	2,04
5950	20 años	376,2	3891,2	3893,3	3893,27	3893,8	0,01618	3,05	123,6	132,4	1,00	2,08

**Tabla 79.** Características hidráulicas del tramo en estudio, Tr. 10, 20, 50, 100, 200 y500años.



	<b>5</b> 0 ~	10 7	0001.0	2002.2	2002.21	2002.0	0.01.601		100.1	100.0	1.01	0.10
5950	50 años	405	3891,2	3893,3	3893,31	3893,8	0,01631	3,15	129,1	132,9	1,01	2,12
5950	100 años	441,4	3891,2	3893,4	3893,38	3893,9	0,01561	3,21	138,1	133,8	1,00	2,16
5950	200 años	441,4	3891,2	3894,1		3894,3	0,0026	1,82	255,2	224,4	0,44	2,19
5950	500 años	462	3891,2	3893,4	3893,41	3894	0,01553	3,26	142,3	134,2	1,01	2,22
4950	10 años	350,7	3889	3890,6	3890,55	3890,9	0,01875	2,44	144,8	243,7	1,00	1,55
4950	20 años	376,2	3889	3890,6	3890,59	3890,9	0,01834	2,47	153,2	248,3	1,00	1,58
4950	50 años	405	3889	3890,6	3890,62	3890,9	0,01812	2,52	162	253,1	1,00	1,62
4950	100 años	423,8	3889	3890,6	3890,64	3891	0,01797	2,54	167,7	256,1	1,00	1,64
4950	200 años	441.4	3889	3890.7	3890.66	3891	0.018	2.57	172.5	258.6	1.00	1.66
4950	500 años	462	3889	3890.7	3890.69	3891	0.01783	2.6	178.7	261.8	1.00	1 68
1750	200 unos	102	2007	5670,7	2020,02	5071	0,01705	2,0	170,7	201,0	1,00	1,00
39/17	10 años	350.7	3887	3887 9	3887 86	3888 1	0.01905	23	150.3	270.8	1.00	0.86
39/17	20 años	376.2	3887	3887.9	3887.89	3888.2	0.01847	2,5	158.8	273	0.99	0.89
3047	20 años	405	3997	3887.0	3887.02	3000,2	0,01851	2,3+	156,0	273	1.00	0,02
2047	100 años	403	2007	2007,9	2007.04	2000,2	0,01862	2,41	100,4	274,9	1,00	0,92
2047	200 años	425,0	2007	2000	2007.05	2000,2	0,01002	2,45	171	270,1	1,00	0,94
3947	200  anos	441,4	3887	3888	3887,95	3888,3	0,01881	2,5	175	277,1	1,01	0,95
3947	500 anos	462	3887	3888	3887,95	3888,3	0,02082	2,62	1/4,4	211	1,06	0,95
2950	10 años	350,7	3883	3884,7	3884,66	3885,1	0,01659	2,92	123,4	150,8	1,00	1,66
2950	20 años	376,2	3883	3884,7	3884,7	3885,1	0,01607	2,97	130,2	151,3	0,99	1,7
2950	50 años	405	3883	3884,7	3884,74	3885,2	0,01618	3,06	135,9	151,7	1,00	1,74
2950	100 años	423,8	3883	3884,8	3884,77	3885,2	0,01599	3,1	140,3	152,1	1,00	1,77
2950	200 años	441,4	3883	3884,8	3884,8	3885,3	0,01573	3,14	144,6	152,4	1,00	1,8
2950	500 años	462	3883	3884,8	3884,83	3885,3	0,01536	3,17	149,9	152,8	0,99	1,83
1950	10 años	350,7	3881	3881,8	3881,76	3882,1	0,01749	2,74	131,7	182,3	1,01	0.79
1950	20 años	376,2	3881	3881,8	3881,8	3882,2	0,01722	2,8	138	182,3	1,01	0,83
1950	50 años	405	3881	3881,8	3881,84	3882,2	0,0169	2,87	145,1	182,4	1,00	0,87
1950	100 años	423,8	3881	3881,9	3881,86	3882,3	0,01676	2,91	149,5	182,4	1,01	0,89
1950	200 años	441,4	3881	3881,9	3881,88	3882,3	0,01663	2,95	153,6	182,5	1,01	0,91
1950	500 años	462	3881	3881,9	3881,91	3882,3	0,01654	2,99	158,2	182,5	1.01	0,94
				,	,	,	,	,	,	,	,	,
950	10 años	350,7	3877	3878,8	3878,79	3879,3	0,01582	3,16	115,4	122,3	1,00	1,79
950	20 años	376.2	3877	3878.9	3878.85	3879.3	0.01505	3.19	122.5	122.8	0.99	1.85
950	50 años	405	3877	3878.9	3878.91	3879.4	0.01463	3.25	129.4	123.3	0.98	1.91
950	100 años	423.8	3877	3878.9	3878.92	3879 5	0.01535	3 36	131.1	123.5	1.01	1.92
950	200 años	441.4	3877	3878.9	3878.94	3879 5	0.01587	3 44	133.1	123.6	1.03	1 94
950	200 años	462	3877	3870	3878.08	3870.6	0.01525	3.46	138.7	123,0	1,05	1.08
950	500 all08	402	50/1	5017	5070,70	5019,0	0,01525	5,40	130,7	124	1,01	1,70
450	10 años	350 7	3876	2877 7	3877 16	2877 6	0.01522	21	1170	107	0.00	1 15
430		550,7	2076	2077.2	2077.2	207777	0,01555	3,1 2,17	117,9	127	0,99	1,10
450	20  anos	376,2	38/6	38/7,2	38/1,2	38//,/	0,0152	3,17	123,5	127,3	0,99	1,2
450	50 años	405	3876	3877,3	3877,25	3877,8	0,01485	3,23	130,3	127,6	0,98	1,25



450	100 años	423,8	3876	3877,3	3877,28	3877,8	0,01494	3,29	133,8	127,8	0,99	1,28
450	200 años	441,4	3876	3877,3	3877,31	3877,8	0,01493	3,34	137,3	128	0,99	1,31
450	500 años	462	3876	3877,3	3877,34	3877,9	0,01475	3,38	141,8	128,2	0,99	1,34
50	10 años	350,7	3875	3876,4	3876,37	3877	0,01512	3,49	102,9	87,5	1,01	1,37
50	20 años	376,2	3875	3876,4	3876,43	3877,1	0,01483	3,56	108,2	88,12	1,01	1,43
50	50 años	405	3875	3876,5	3876,53	3877,1	0,01348	3,54	117,2	96,83	0,97	1,53
50	100 años	423,8	3875	3876,6	3876,6	3877,2	0,01259	3,52	124,1	107,8	0,94	1,6
50	20 años	441,4	3875	3876,7	3876,67	3877,3	0,01172	3,49	131,7	117,9	0,92	1,67
50	500 años	462	3875	3876,7	3876,73	3877,3	0,01128	3,48	139,5	128,8	0,9	1,73
-	T ( )		10									

Fuente: HEC-RAS

En las siguientes figuras se observa las secciones transversales y el nivel de agua por cada periodo de retorno del río Cabanillas.









**Figura 61.** Secciones transversales del río Cabanillas. Fuente: HEC RAS 2D



# 4.3. OBTENCIÓN DE MAPAS CON HEC RAS 2D.

Con los datos obtenidos del modelo hidrológico, coeficiente de Manning, se procedió a realizar la simulación hidráulica utilizando la ecuación de Saint-Venant en 2D del software HEC-RAS, para periodos de retorno 10, 20, 50, 100, 200 y 500 años. Se muestran mapas de profundidad de niveles de agua variación de tirante, velocidad al largo del río.

#### 4.3.1. Mapas de profundidad de nivel de agua.

El mapa de profundidad para el periodo de retorno de 10 años se presenta en la Figura 62, la información se expresa en un rango de colores donde el tirante varía de 0 - 3.24 m.



Figura 62. Mapa de profundidades del nivel de agua, TR 10 años.



La Figura 63 representa la variación de tirantes para el periodo de retorno de 20 años donde se observa que el agua ocupa mayor área en el margen derecho del río. Los valores del tirante para este periodo varían de 0 - 3.28 m.



Figura 63. Mapa de profundidades del nivel de agua, TR 20 años. Fuente: Elaboración propia.

En la figura 64, se representa la variación de tirantes para el periodo de retorno de 50 años donde se observa que el agua ocupa mayor área en el margen derecho del río. Los valores del tirante para este periodo varían de 0 - 3.31 m.





Figura 64. Mapa de profundidades del nivel de agua, TR 50 años Fuente: Elaboración propia

#### 4.3.2. Mapas de velocidades y flujos de agua

Los mapas de velocidad nos ayudarán a evaluar zonas de altas velocidades que originen esfuerzos de corte y por ende socavación del lecho natural. Además, con ayuda de las líneas de flujo se podrá conocer la trayectoria del mismo. El mapa de velocidades para el periodo de retorno de 10 años se presenta en la figura 65, donde se observa que el rango de velocidades va de 0 - 3,48 m/s,





Figura 65. Mapa de velocidades y líneas de flujo, TR 10 años

Fuente: Elaboración propia.

En la figura 66 se observa las zonas críticas de máxima velocidades para el período de 20 años. Los valores de velocidad encontrados para este periodo van de 0 - 3,55 m/s.



Figura 66. Mapa de velocidades y líneas de flujo, TR 20 años



Para el período de retorno de 50 años las velocidades se intensifican a lo largo del eje del río tal como lo muestra la figura 67, también se observa un ligero aumento de velocidad en la margen derecha del río. El rango de variación de velocidad para este periodo va de 0 - 3,55 m/s.



Figura 67. Mapa de velocidades y líneas de flujo, TR 50 años Fuente: Elaboración propia.

De acuerdo a la simulación hidráulica realizada se obtuvo que las velocidades máximas y profundidades para cada periodo de retorno (10, 20, 50, 100, 200 y 500 años) son como se detalla en la siguiente tabla:



TR (Años)	Velocidad (m/s)	Profundidad (m)	
10	3,48	3,24	
20	3,55	3,28	
50	3,55	3,31	
100	3,55	3,33	
200	3,60	3,36	
500	3,72	3,38	

**Tabla 79:** Resultados de velocidad y profundidades.

## 4.3.3. Mapas de inundación.

En la figura 68, se tiene los resultados de las áreas de inundación para un periodo de retorno de 10 años, donde se puede observar que las áreas de mayor afectación son áreas agrícolas y en menor cantidad de área urbana.



Figura 68. Mapa de inundación para un TR 10 años Fuente: Elaboración propia



Para el período de retorno de 20 años las áreas afectadas por la inundación se incrementan en el margen izquierdo los cuales son áreas de cultivos agrícolas y expansión urbana, tal como lo muestra la figura 69.



Figura 69. Mapa de inundación, TR 20 años.

La figura 70 presenta los predios inundados para el período de retorno de 50 años. En el margen derecho sigue, las áreas afectadas son los cultivos agrícolas, y en el margen izquierdo se observa que se afectó al área agrícola y expansión urbana, pues la topografía del río presenta pendientes muy bajas, y medias que limita el avance y expansión del agua.





Figura 70. Mapa de inundación, TR 50años.

En la tabla 81 se muestran las zonas críticas a ser inundadas en el periodo de retorno de 10 años.

Progresiva	Área de Inundación	Und	Margen
6+800 - 6+240	1,56	ha	Derecho
6+400 - 6+250	1,17	ha	Derecho
6+300 - 6+250	0,71	ha	Izquierdo
5+250 - 5+050	0,83	ha	Izquierdo
4+800 - 4+650	1,34	ha	Izquierdo
0+800 - 0+750	0,77	ha	Izquierdo
0+350 - 0+150	1,75	ha	Derecho
0+200 - 0+150	0,36	ha	Izquierdo

Tabla 80. Zonas críticas a ser inundadas para el TR 10 años

Fuente: Elaboración propia.

En la tabla 82, se muestra las zonas críticas a ser inundadas en el periodo de retorno de 20 años.



Progresiva	Área de Inundación	Und	Margen
6+950 - 6+900	0,49	ha	Derecho
6+800 - 6+450	1,65	ha	Derecho
6+400 - 6+250	1,82	ha	Derecho
6+300 - 6+250	0,8	ha	Izquierdo
5+250 - 5+050	0,85	ha	Izquierdo
4+800 - 4+600	1,42	ha	Izquierdo
0+800 - 0+750	0,78	ha	Izquierdo
0+380 - 0+150	1,77	ha	Derecho
0+200 - 0+150	0,36	ha	Izquierdo

<b>I abla 01.</b> Zulias citucas a sei illulluduas para er i K 20 al	Tabla 81	. Zonas crític	as a ser inui	ndadas para	el TR 20	) años
----------------------------------------------------------------------	----------	----------------	---------------	-------------	----------	--------

Fuente: Elaboración propia.

El análisis de la inundación, en cuanto a alturas de agua, y su efecto en los desbordes se evalúa mediante un rango de intensidad que posee a su vez intervalos de profundidad. Los niveles y rangos se muestran en la Tabla 83.

Nivel de Intensidad	Rango de Profundidad
Baja	<0.50m
Media	$0.50 \ m - 1.00 \ m$
Alta	1.00  m - 1.50  m
Muy Alta	>1.50m

Tabla 82. Niveles de intensidad de inundación

Fuente: (Cardich, 2017)

Con estos valores y conociendo la topografía del cauce sabremos la intensidad de inundación. Para TR 10 años existe un 1.52% de intensidad "media", 49,63% de intensidad "alta" y un 48,85% Intensidad "Muy alta", para el TR 20 años, existe un 1,53% de intensidad "media", 42,75% de intensidad "alta" y un 55,72% de intensidad "Muy alta", para el TR, 50 años 1,53% de intensidad "media", 38,17% de intensidad "alta" y un 60,30% de intensidad "Muy alta", para el TR 100 años existe 1,53% de intensidad "media", 35,11% de intensidad "alta" y un 63,36% de intensidad "Muy alta", para el TR 200 años, existe 1,53% de intensidad "media", 32,82% de intensidad "alta" y un 65,65%



de intensidad "Muy alta", para el TR 500 año, existe 0,76% de intensidad "media", 32,06% de intensidad "alta" y un 67,18% de intensidad "Muy alta",

Los valores de velocidad elevados se dan en las zonas descritas en la tabla 84, a lo largo del cauce del río.

Zona	Sección
1	Prog. km 5+700
2	Prog. km 0+850
3	Prog. km 5+700
4	Prog. km 0+050

Tabla 83. Zonas críticas de velocidades máximas

La zona 1 tiene un pico de velocidad es de 3,44 m/s, 3,51 m/s, 3,57 m/s, 3,63 m/s, 3,68 m/s y 3,70 m/s para los perfiles de 10, 20, 50, 100, 200 y 500 años respectivamente. En la zona 2 el mayor valor de velocidad es de 3,48 m/s para el perfil de 500 años, 3,16 m/s, 3,24 m/s, 3,29 m/s, 3,27 m/s para los perfiles de 10, 20, 50, 100, 200 años. La zona 3 registra un valor pico de 3,70 m/s para el perfil de 500 años, 3,44 m/s, 3,51 m/s, 3,57 m/s, 3,63 m/s y 3,68 m/s para los perfiles de 10, 20, 50, 100, 200 años. En la última zona los valores de velocidad más altos son 3.41 m/s, 3.48m/s, 3.46 m/s y 3.41 m/s, 3.35 m/s, 3.31 m/s, para las avenidas de 10, 20, 50, 100, 200 y 500 años. Estas zonas identificadas con valores pico de velocidad obedecen a desniveles altos en distancias cortas; es decir, el flujo incrementa su velocidad en un corto tiempo por lo que estas zonas de alta velocidad funcionan como "caídas". Las fronteras de inundación simulados también están cerca del límite de inundación real y tirantes observados en campo, sin embargo, se requiere un monitoreo sistémico como lo señala Yalcin (2018). Mejorar y agregar diques, así como proteger estructuras, puede minimizar la posibilidad de riesgo de inundación en áreas cercanas al curso de agua (Mohammed, 2019).



La integración de la profundidad y la velocidad generan zonas de peligrosidad, es por eso y como es de esperarse las zonas con mayor peligro son las que se mencionaron en el párrafo anterior. La combinación de estos dos parámetros sumados a la duración de la inundación tiene efectos importantes en los campos de cultivos, ya que si el agua permanece mucho tiempo se pierde más cosecha y es muy difícil recuperarla después. Ahora, esta investigación, apoyándose en sus resultados, estima un impacto muy grande de la inundación. Ya que los mapas se convierten en una herramienta educativa y de comunicación y debiendo estar disponible para el público, así como para las entidades de respuesta a emergencias a lo que contribuye esta investigación.



# **V. CONCLUSIONES**

Se obtuvo las áreas de inundación, velocidades máximas y tirantes máximos, a partir de los caudales generados por el modelo matemático HEC-HMS, los cuales fueron procesados para los periodos de retorno de 10, 20, 50, 100, 200 y 500 años.

- El modelo hidrológico HEC-HMS, es eficaz en la simulación de los eventos de máximas avenidas, obteniendo caudales máximos para los periodos de retorno como son: TR de 10 años 350,70 m³/s; TR de 20 años 376,20 m³/s, TR de 50 años 405,00 m³/s; TR de 100 años 423,80 m³/s; TR de 200 años 441,40 m³/s y TR de 500 años 462,00 m³/s.
- El modelo hidráulico HEC-RAS 2D, es eficiente en determinación de áreas de desbordamiento e inundación críticas en TR 10 y 20 años: Para el periodo de retorno de 10 años, en el margen derecho de la progresiva 6+800 hasta 6+240 se obtuvo 1,56 ha de inundación, en la progresiva 6+400 hasta 6+250 se obtuvo 1,17 ha. En el margen izquierdo en la progresiva 4+800 hasta 4+650 se obtuvo 1,34 ha de inundación, afectando a áreas agrícolas generando pérdidas de suelo, por consiguiente, pérdidas económicas. Del mismo modo se tiene afectación en áreas de expansión urbana en las progresivas 0+350 hasta 0+150 un área de 1,75 ha del margen derecho y en la progresiva 0+200 hasta 0+150 un área de 0,36 ha del margen izquierdo generando problemas para las construcciones futuras.

Para el tiempo de retorno de 20 años, en la progresiva 6+800 hasta 6+450 se obtuvo 1,65 ha de inundación, en la progresiva 6+400 hasta 6+250 se obtuvo 1,82 ha de inundación, en el margen izquierdo, en la progresiva 5+250 hasta 5+050 se obtuvo 0,85 ha, en la progresiva 4+800 hasta 4+600 se obtuvo 1,42 ha de inundación afectando áreas agrícolas, perdida de suelos por consiguiente pérdidas



económicas. Del mismo modo en la progresiva 0+350 hasta 0+150 con un área de 1,77 ha del margen derecho y en la progresiva 0+200 hasta 0+150 con un área de inundación de 0,36 ha del margen izquierdo donde se obtuvo áreas de inundación en áreas de expansión urbana generando malestar en la población creciente

 Los resultados obtenidos de la modelación hidrológica e hidráulica permitirán al Gobierno local (distrito de Cabanillas) específicamente en el sector Lizacia, tomar medidas de prevención ante los desbordamientos e inundaciones en zonas críticas.



# **VI. RECOMENDACIONES**

- Con los resultados obtenidos en la presente investigación se recomienda al Distrito de Cabanillas, considerar los cálculos de caudales y parámetros hidráulicos de máximas avenidas para la construcción de defensas ribereñas en zonas críticas de desbordamiento e inundación del sector Lizacia del río Cabanillas. A su vez integrar estas zonas de inundación en los estudios de vulnerabilidad de la cuenca del río Cabanillas.
- Se recomienda la construcción de diques de enrocado en el margen derecho e izquierdo del puente Cabanillas, la construcción de diques con rocas al volteo en las zonas críticas del tramo en estudio. Del mismo modo se recomienda realizar un plan de descolmatación del río por la acumulación de sedimentos.
- Se recomienda tomar en cuenta aspectos como el tiempo de cálculo (preparación y entrada de datos, y ejecución del modelo) y el coste económico de los datos espaciales, los cuales son elementos que pueden resultar decisivos a la hora de seleccionar el modelo a emplear. Dependiendo también del objetivo del estudio a realizar, características del cauce, tamaño del área a modelar y el grado de precisión que se requiera en los resultados.


## VII. REFERENCIAS BIBLIOGRÁFICAS

Aparicio, F. (1994). Fundamentos de Hidrología de Superficie.

- Ayala, J. (2014). Modelamiento Hidráulico Bidimensional, para la Determinación de planos de Inundación de Quillacollo. Cochabamba, Bolivia.
- Belizario, G. (2014). Impactos del cambio climático en la agricultura de la cuenca Ramis,
   Puno-Perú (Universidad Nacional del Altiplano). Retrieved from http://repositorio.unap.edu.pe/handle/UNAP/256
- Belizario, G. (2015). Efectos del cambio climático en la agricultura de la cuenca Ramis,
  Puno-Perú. *Rev. Investig. Altoandin.*, *17*(1), 47–52.
  https://doi.org/http://dx.doi.org/10.18271/ria.2015.77
- Brunner, G. A. C. of E. intitute for water R. H. E. C. (2016). *HEC-RAS River Analysis* System 2D Modelin User 's Manual Versión 5.0.
- Cardich, K. A. (2017). "MODELACIÓN DE MÁXIMAS AVENIDAS EN LA CUENCA DEL RÍO LURÍN UTILIZANDO MODELOS HIDROLÓGICO E HIDRÁULICO." Universidad Nacional Agraria la Molina.
- Cea, L., & Bladé, E. (2015). Modelización matemática en lecho fijo del flujo en ríos. Modelos 1D y 2D en régimen permanente y variable. *Grupo GIAMA*, 1–30.

Chereque, W. (1989). Hidrologia para estudiantes de ingenieria civil.

- Chow, V. te. (2004). Hidraulica De Canales Abiertos (Nomos S.A.; M. Suàrez, Ed.).
- Chow, V. Te, Maidment, D., & Mays, L. (1994). *Hidrologia Apliacada* (Nomos S.A.; S. Martha, Ed.). Santafè de Bogotà, Colombia.

- Fisher, R., & Tippet, L. (1928). *Limiting forms of the frequency distribution of the largest* or Smallest Member of a sample.
- Hurtado, E. (2017). Modelamiento hidràulico bidimensional del Rìo Rìmac en el sector Huachipa, tramo Km. 27+450 al Km. 28+525. Universidad Nacional Agraria la Molina.

IBER. (2015). Manual De Referencia Del MéDico. España.

Lluén, W. (2015). Aplicación de la nueva herramienta HEC RAS 5.0 para calculos bidimensionales del flujo de agua en Ríos. Escola técnica Superior d'Enginyeria de Camins, Canals i Ports UPC BARCELONATECH.

Lux, B. (2014). Conceptos básicos de Morfometría de Cuencas Hidrográficas. 8.

- M.T.C. (2011). "Manual de Carreteras Hidrología, Hidráulica y Drenaje." In *MINISTERIO DE TRANSPORTE Y COMUNICACIONES*. https://doi.org/10.1111/j.1752-1734.2009.01342.x
- Mamani, H. (2014). Modelamiento de màximas avenidas que generan riesgos de inundación en la ciudad de Ayaviri - Puno. Universidad Nacional Del Altiplano.
- Martínez, R., Martínez, A., & Hidalgo, A. (2017). Modelo bidimesional para flujo en aguas poco profundas : tratamiento con iber . (July).
- Molero, E. (2013). Modelación de Ríos con HEC-RAS y HEC-GeoRAS: Régimen permanente 1D (IX Edición).

Olaya, V. (2011). Sistema de Información Geongráfica. In Versión 1.0.

Robles, T. (2016). "IMPLEMENTACION DE MODELOS UNIDIMENSIONALES PARA LA SIMULACIÓN DEL FUNCIONAMIENTO HIDRÁULICO DE SISTEMAS DE



LAGUNAS Y CANALES." Universidad Nacional Autónoma de México.

- Rocha, A. (1998). Introduccion a la hidraúlica fluvial. In Universidad Nacional de Ingenieria. https://doi.org/10.1017/CBO9781107415324.004
- Rocha, A. (2007). Hidraulica de tuberias y canales. In *Susferrinmaquinas.Com.Ar* (Vol. 1). Lima Perù.
- Tito, Y. (2017). Modelamiento hidráulico del río Cañete sector puente Socsi altura puente colgante (9 km), con fines de diseño de defensas ribereñas. Universidad Nacional Agraria La Molina.
- vergara, M. (1993). *Tècnicas de Modelaciòn en Hidràulica* (Alfaomega,; E. Garcìa, Ed.). Mèxico.
- Villòn, M. (2007). Hidráulica de Canales (Editorial). Lima Perù.
- Zalina, M., Desa, M., Nguyen, V., & Kassim, A. (2002). Selecting a probability distribution for extreme rainfall series in Malaysia. (February). https://doi.org/10.2166/wst.2002.0028



## ANEXOS