

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERÍA DE MINAS ESCUELA PROFESIONAL DE INGENIERÍA DE MINAS

EVALUACIÓN GEOMECÁNICA EN EL MÉTODO DE MINADO POR GRADINES INVERTIDOS EN LA UNIDAD SAN ANTONIO - CORPORACIÓN MINERA ANANEA S.A.

TESIS

PRESENTADA POR:

ALEX CONCEPCIÓN CURO MOSTAJO

PARA OPTAR EL TÍTULO PROFESIONAL DE: INGENIERO DE MINAS

PUNO - PERÚ

2019

Universidad Nacional del Altiplano

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE INGENIERÍA DE MINAS

ESCUELA PROFESIONAL DE INGENIERÍA DE MINAS

EVALUACIÓN GEOMECÁNICA EN EL MÉTODO DE MINADO POR GRADINES INVERTIDOS EN LA UNIDAD SAN ANTONIO - CORPORACIÓN MINERA ANANEA S.A.

TESIS PRESENTADA POR:

ALEX CONCEPCIÓN CURO MOSTAJO

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO DE MINAS

APROBADA POR EL JURADO REVISOR CONFORMADO POR:

:

:

•

PRESIDENTE

PRIMER MIEMBRO

Ing. ESTEBAN AQUINO ALANOCA

Dr. JORGE GABRIEL DURANT BRODEN

SEGUNDO MIEMBRO

M.Sc. LUCIO RAÚI MAMANI BARRAZA

DIRECTOR / ASESOR

Dr. JUAN MAYHUA PALOMINO

ÁREA: Ingeniería de Minas **TEMA:** Mecánica de rocas, geomecánica y geotecnia

DEDICATORIA

A Dios por darme todas las fortalezas y salud para logra mis objetivos y metas, además de su infinita bondad y amor.

> A mi compañera, cómplice, quien está en los mejores momentos, quien cuando pienso dar un paso atrás, me impulsa a seguir y conseguir mis metas, Roxana.

A mis queridos padres, Concepción y Dionisia, por darme la vida, creer en mí y apoyarme, enseñarme a luchar con amor y energía para conseguir mis metas, gracias por darme una carrera para el futuro, todo esto se los debo a ustedes.

> Y a mis seres de luz, Alessandra y Cristina, que con cariño y entusiasmo me motivó a la realización de este trabajo.

AGRADECIMIENTOS

- A Dios nuestro señor, por ser mi guía y compañía en cada momento a lo largo de mi carrera.
- A los docentes de la Escuela Profesional de Ingeniería de Minas, que nos han impartido sus conocimientos, experiencias.
- A la Universidad Nacional del Altiplano Puno, Alma Mater que me ha acogido durante todos los años de mi formación académica profesional.
- También deseo expresar mi más sentido agradecimiento a todas aquellas personas que directa o indirectamente han colaborado y contribuido con su apoyo, comentarios, sugerencia y ayuda en el desarrollo de esta tesis.

ÍNDICE GENERAL

Pág.

RESUMEN	
	20

CAPÍTULO I

INTRODUCCIÓN

1.1.	IDENTIFICACIÓN DEL PROBLEMA	21
1.2.	FORMULACIÓN DEL PROBLEMA	22
1.3.	PREGUNTA GENERAL	22
1.4.	PREGUNTAS ESPECÍFICAS	22
1.5.	OBJETIVOS DE LA INVESTIGACIÓN	23
	1.5.1. Objetivo general	23
	1.5.2. Objetivos específicos	23
1.6.	JUSTIFICACIÓN DE LA INVESTIGACIÓN	23
1.7.	DELIMITACIÓN DEL ÁREA DE INVESTIGACIÓN	24
1.8.	UBICACIÓN DEL PROYECTO	24
	1.8.1. Ubicación Política	24
	1.8.2. Ubicación Geográfica	24
	1.8.3. Accesibilidad a la mina	

CAPÍTULO II

REVISIÓN DE LITERATURA

2.1.	ANTECEDENTES DE LA INVESTIGACIÓN	. 27
2.2.	BASES TEÓRICAS	. 31
	2.2.1. Basados en clasificaciones geomecánicas empíricas	. 31
	2.2.2. Clasificación de Bieniawski (RMR)	. 31

	2.2.3. Clasificación de Barton (Q)	36
	2.2.4. Prediseño de sostenimientos a partir del índice Q	44
	2.2.5. Máxima tamaño de excavación sin fortificación	45
	2.2.6. Índice de resistencia geológica GSI	45
	2.2.6.1.Correlación GSI, RMR y Q	48
2.3.	CRITERIOS DE FALLA	49
	2.3.1. Criterio de Rotura no Lineal de Hoek y Brown	49
	2.3.2. Criterio de rotura lineal de Mohr-Coulomb	53
	2.3.3. Criterio de rotura de Barton y Bandis	55
2.4.	PROPIEDADES FÍSICO-MECÁNICAS DEL MACIZO ROCOSO	55
	2.4.1. Porosidad eficaz	56
	2.4.2. Peso unitario y densidad	56
	2.4.3. Permeabilidad	57
	2.4.4. Resistencia a la compresión simple	57
2.5.	ESTADO TENSIONAL DEL MACIZO ROCOSO	58
	2.5.1. El estado tensional natural	59
	2.5.2. Tensiones gravitacionales elásticas	60
2.6.	ESTABILIDAD DE LAS EXCAVACIONES	63
	2.6.1. Factores que controlan la estabilidad de las excavaciones	63
2.7.	ANÁLISIS DE ESTABILIDAD POR MÉTODOS EMPÍRICOS	64
	2.7.1. Metodología empírica de Pakalnis	64
	2.7.2. Metodología empírica de Mathews	66
2.8.	ESTABILIDAD CONTROLADA POR ESTRUCTURAS	76
	2.8.1. Análisis de cuñas	76
2.9.	ANÁLISIS DE ESTABILIDAD POR MÉTODO NUMÉRICO	77

	2.9.1. Estabilidad controlada por esfuerzos	78
2.10.	GENERALIDADES DE EXPLOTACIÓN	79
	2.10.1. Características del yacimiento	79
	2.10.2. Labores en el método de gradines invertidos	80
	2.10.3. Explotación por gradines invertidos	80
2.11.	DEFINICIONES CONCEPTUALES	82
2.12.	FORMULACIÓN DE HIPÓTESIS	88
	2.12.1. Hipótesis general	88
	2.12.2. Hipótesis especifica	88

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1.	DISEÑO METODOLÓGICO
3.2.	POBLACIÓN Y MUESTRA
	3.2.1. Población
	3.2.2. Muestra
3.3.	VARIABLES
3.4.	OPERACIONALIZACIÓN DE VARIABLES91
3.5.	TÉCNICAS DE RECOLECCIÓN DE DATOS
	3.5.1. Investigaciones de campo
	3.5.2. Trabajo de gabinete
	3.5.3. Técnicas e instrumentos de recolección de datos
	3.5.4. Técnicas para el procesamiento de la información
	3.5.5. Revisión, recopilación y elaboración de informaciones preliminares 94
3.6.	CARACTERIZACIÓN DE LA MASA ROCOSA94
	3.6.1. Mapeos geotécnicos

	3.6.2. Aspectos litológicos
	3.6.3. Discontinuidades
	3.6.4. Caracterización de las discontinuidades102
	3.6.5. Caracterización de la masa rocosa104
3.7.	CLASIFICACIÓN GEOMECÁNICA DE LA MASA ROCOSA 109
	3.7.1. Clasificación geomecánica RMR110
	3.7.2. Clasificación geomecánica Q111
	3.7.3. Índice de resistencia geológica GSI 112
3.8.	ZONIFICACIÓN GEOMECÁNICA DE LA MASA ROCOSA 113
3.9.	RESISTENCIA DE LA ROCA114
	3.9.1. Resistencia de la roca intacta
	3.9.2. Propiedades físicas de la roca intacta
	3.9.3. Resistencia de las discontinuidades
3.10.	RESISTENCIA DE LA MASA ROCOSA 118
	3.10.1. Criterio de Falla de Hoek-Brown Aplicado a la Estabilidad118
3.11.	ESFUERZOS IN-SITU
3.12.	DIMENSIONAMIENTO DE LOS TAJOS124
	3.12.1. Dimensionamiento mediante el índice Q de Barton 124
3.13.	ANÁLISIS DE ESTABILIDAD POR MÉTODOS EMPÍRICOS 125
	3.13.1 Método de análisis de estabilidad de Pakalnis de los tajos 126
	3.13.2 Método gráfico de análisis de estabilidad de los tajos 126
3.14.	ANÁLISIS DE ESTABILIDAD POR MÉTODOS NUMÉRICOS 135
	3.14.1. Estabilidad controlada por esfuerzos
3.15.	ESTABILIDAD ESTRUCTURALMENTE CONTROLADOS 137
	3.15.1. Análisis de estabilidad de cuñas137

3.16.	TIEMPO DE AUTOSOSTENIMIENTO139
3.17.	SOSTENIMIENTO CON EL ÍNDICE DE BARTON (Q) 140
	CAPÍTULO IV
	RESULTADOS Y DISCUSIÓN
4.1.	CARACTERIZACIÓN DE LA MASA ROCOSA 143
4.2.	CLASIFICACIÓN GEOMECÁNICA DE LA MASA ROCOSA 145
4.3.	ZONIFICACIÓN GEOMECÁNICA DE LA MASA ROCOSA146
4.4.	PROPIEDADES FÍSICO MECÁNICAS DE LA ROCA146
	4.4.1. Resistencia de la roca intacta con Martillo Schmidt
	4.4.2. La resistencia con ensayos en laboratorio de mecánica de rocas 147
	4.4.3. Propiedades físicas de la roca intacta
	4.4.4. Resistencia de las discontinuidades
4.5.	RESULTADOS DE RESISTENCIA DE LA MASA ROCOSA148
4.6.	ESFUERZOS IN-SITU
4.7.	DIMENSIONAMIENTO MEDIANTE Q BARTON
4.8.	ESTABILIDAD POR MÉTODOS EMPÍRICOS
	4.8.1. Discusión de análisis de estabilidad de Pakalnis
	4.8.2. Discusión del método gráfico de análisis de estabilidad151
4.9.	ESTABILIDAD POR MÉTODOS NUMÉRICOS
	4.9.1. Discusión de estabilidad controlada por esfuerzos
4.10.	ESTABILIDAD CONTROLADA POR ESTRUCTURAS
	4.10.1. Discusión de estabilidad controlada por estructuras
4.11.	TIEMPO DE AUTOSOSTENIMIENTO
4.12.	DISEÑO DE SOSTENIMIENTO153
4 13	RESULTADOS PARA EL DIMENSIONAMIENTO 154

CONCLUSIONES	
RECOMENDACIONES	
REFERENCIAS	
ANEXOS	

ÍNDICE DE FIGURAS

Pág.

Figura 1:	Ubicación geográfica de la unidad San Antonio25
Figura 2:	Sistema de clasificación GSI
Figura 3:	Índice de resistencia geológica en macizos rocosos estratificados47
Figura 4:	Criterio de Hoek-Brown y criterio equivalente de Mohr-Coulomb
Figura 5:	Criterio de Hoek y Brown
Figura 6:	Factor de alteración del criterio de rotura de Hoek & Brown
Figura 7:	Criterio generalizado de Hoek - Brown en condición no disturbada53
Figura 8:	Representación de la envolvente de Mohr-Coulomb54
Figura 9:	Gráficos de estado tensional antes de la excavación
Figura 10:	Gráfico de estado tensional después de la excavación
Figura 11.	Estado tensional de las tres magnitudes
Figura 12:	Mediciones de esfuerzos verticales en proyectos de ingeniería
Figura 13:	Relación del esfuerzo horizontal al vertical para diferentes módulos 62
Figura 14:	Relación del esfuerzo horizontal al vertical
Figura 15:	Definición de span de Pakalnis
Figura 16:	Curva de diseño de excavaciones
Figura 17:	Factor de Esfuerzo en la Roca, A
Figura 18:	Factor Orientación de Juntas, B
Figura 19:	Factor de Ajuste Gravitatorio, C70
Figura 20:	Radio Hidráulico (RH)71
Figura 21:	Gráfico de estabilidad72
Figura 22:	Probabilidad de estabilidad73
Figura 23:	Probabilidad de falla74

Figura 24:	Probabilidad de falla mayor75
Figura 25:	Cuñas generadas por la abertura y discontinuidades
Figura 26.	Componentes de labores en el área de investigación
Figura 27:	Diagrama estereográfico compósito de dispersión de polos
Figura 28:	Diagrama estereográfico compósito de contornos
Figura 29:	Diagrama estereográfico de compósito de círculos máximos
Figura 30:	Diagrama de roseta del compósito de discontinuidades
Figura 31:	Diagrama de polos, contornos y círculos máximos de estructuras 100
Figura 32:	Diagrama de polos, contornos y círculos máximos de estructuras 102
Figura 33:	Histograma del espaciado de las discontinuidades105
Figura 34:	Histograma de las medidas de persistencia de las estructuras 105
Figura 35:	Histograma de la apertura de las discontinuidades106
Figura 36:	Histograma de la rugosidad de las estructuras107
Figura 37:	Histograma de los tipos y dimensiones de rellenos 108
Figura 38:	Histograma de grados de meteorización de las juntas 108
Figura 39:	Histograma de la presencia de agua109
Figura 40:	Polígono de frecuencias normalizada de la clasificación RMR111
Figura 41:	Polígono de frecuencias normalizada de la clasificación Q 112
Figura 42:	Polígono de frecuencias normalizada de la clasificación GSI 113
Figura 43:	Zoneamiento del área de investigación114
Figura 44:	Polígono de frecuencias normalizado con el martillo Schmidt115
Figura 45:	Resistencia de la masa rocosa
Figura 46:	Mediciones de esfuerzos verticales en proyectos de ingeniería122
Figura 47:	Análisis de estabilidad por método de Pakalnis126
Figura 48:	Curva para la estimación de esfuerzo inducido de Stewart y Forsyth 128

Figura 49:	Grafico para determinar el factor A	29
Figura 50:	Grafico para determinar el factor B 13	30
Figura 51.	Cálculo según la orientación de las paredes	31
Figura 52:	Análisis de estabilidad de las paredes de la excavación	32
Figura 53:	Probabilidad de estabilidad de los tajeos	33
Figura 54:	Probabilidad de falla de los tajeos	34
Figura 55:	Factor de seguridad para ancho de 8 metros13	35
Figura 56:	Factor de seguridad para ancho de 4 metros13	36
Figura 57:	Zona más crítica del área de estudio13	37
Figura 58:	Combinación de sistemas de discontinuidades13	38
Figura 59:	Análisis de cuñas del tajeo13	38
Figura 60:	Tiempo de autosostenimiento de los Tajeos	39
Figura 61:	Diseño de sostenimiento según Barton	41

ÍNDICE DE TABLAS

Pág.

Tabla 1:	Acceso a la mina
Tabla 2:	Clases de roca según el valor del RMR
Tabla 3:	Clasificación Geomecánica de Bieniawski 1989
Tabla 4:	Corrección por orientación de las juntas de Bieniawski 1989
Tabla 5:	Orientación de las diaclasas de Bieniawski 1989
Tabla 6:	Clasificación y características de Bieniawski 1989
Tabla 7:	Guía para valorar el estado de las discontinuidades según
	Bieniawski 1989
Tabla 8:	Calidad del testigo "RQD" en la clasificación Q de Barton
Tabla 9:	Valoración del índice de diaclasado Jn en la clasificación Q de Barton 38
Tabla 10:	Valoración del índice de rugosidad Jr de las discontinuidades
Tabla 11:	Valoración del índice de alteración de las discontinuidades Ja 40
Tabla 12:	Factor de reducción por la presencia de agua
Tabla 13:	Valoración de las condiciones tensionales de la roca (SRF)
Tabla 14:	Puntuación de la clasificación Q de Barton
Tabla 15:	Valores del índice ESR de la clasificación de Barton45
Tabla 16:	Tipos de Macizo rocoso según GSI
Tabla 17:	Características del manto mineralizado
Tabla 18:	Dimensiones de las labores
Tabla 19:	Operacionalización de variables
Tabla 20:	Resistencia compresiva no confinada de la roca intacta116
Tabla 21:	Resultados de los ensayos de compresión triaxial de la roca intacta 116

Tabla 22:	Ensayos de propiedades físicas117
Tabla 23:	Resultados de ensayos de corte directo en discontinuidades 118
Tabla 24:	Promedio de parámetros de la roca intacta
Tabla 25:	Promedios de datos de la resistencia del macizo rocoso121
Tabla 26:	Parámetros para el análisis del método gráfico de estabilidad127
Tabla 27:	Radio hidráulico del techo de los tajeos
Tabla 28:	Cálculo de parámetros para el dimensionamiento 128
Tabla 29:	Resumen de los parámetros calculados131
Tabla 30:	Resumen del número de estabilidad de las paredes del tajeo 132
Tabla 31:	Sistemas de discontinuidades del macizo rocoso que generan cuñas 137
Tabla 32:	Resultado de sistemas de discontinuidades del área de investigación 143
Tabla 33:	Rango de la clasificación de la masa rocosa145
Tabla 34:	Promedio de la clasificación geomecánica de la masa rocosa145
Tabla 35:	Zonificación geomecánica de la masa rocosa146
Tabla 36:	Resultados de los promedios de ensayos con el martillo Schmidt146
Tabla 37:	Resistencia compresiva no confinada de la roca intacta147
Tabla 38:	Resultados de los ensayos de compresión triaxial de la roca intacta 147
Tabla 39:	Resultados de los ensayos de propiedades físicas147
Tabla 40:	Resultados de ensayos de corte directo en discontinuidades148
Tabla 41:	Las propiedades de resistencia de la masa rocosa
Tabla 42:	Calculo de parámetros geomecánicos149
Tabla 43:	Dimensionamiento de tajeos sin sostenimiento de los tajeos
Tabla 44:	Estabilidad por Pakalnis de los tajeos dimensionados150
Tabla 45:	Estabilidad por el método gráfico de los tajeos dimensionados 151
Tabla 46:	Probabilidad de estabilidad y falla de los tajeos dimensionados

No olvide citar esta tesis

Tabla 47:	Factor de seguridad de los tajos	152
Tabla 48:	Resumen de cuñas inestables	152
Tabla 49:	Tiempo de autosostenimiento del dimensionamiento de los tajeos	153
Tabla 50:	Tipo de sostenimiento de los tajeos dimensionados	153
Tabla 51:	Comparación de resultados de los tajeos dimensionados	155

ÍNDICE DE ACRÓNIMOS

Q	: Clasificación geomecánica modificada por Barton
GSI	: Índice geológico de resistencia
RMR	: Calificación de la masa rocosa
RQD	: Índice de calidad de roca
ISRM	:Sociedad Internacional de Mecánica de Rocas
SRF	:Factor de Reducción por Tensiones
JCS	: Resistencia a compresión simple de la capa superficial de la roca (MPa)
JRC	:Coeficiente de rugosidad de las juntas o estructuras
R	:Índice de rebote
UCS	: Resistencia a la compresión uniaxial
FS	: Factor de seguridad
σ_1	: Esfuerzo principal efectivo mayor
σ_3	: Esfuerzo principal efectivo menor
mi	: Constante de roca intacta
mb	:Valor de reducido de la constante del material mi
s y a	: Constante del macizo rocoso
γ	: Peso específico de la roca (kN/m3)

Universidad Nacional del Altiplano

- c : Coeficiente de cohesión
- **Em** : Módulo de Young
- **D** : Factor de disturbancia

RESUMEN

En la Unidad Operativa San Antonio, el método de explotación subterráneo es el de gradines invertidos, la dimensión de las cámaras de los tajos es de 9 metros de ancho y 1.8 metros de altura. El objetivo de la investigación es dimensionar los tajeos por métodos empíricos de la clasificación geomecánica y ser corroborados por los análisis de estabilidad por métodos empíricos, numéricos y estructuralmente controlados del macizo rocoso para conocer factor de seguridad, como método de comprobación. Sin embargo, las dimensiones de los tajeos se desarrollaban de manera empírica sin ninguna evaluación geomecánica, era la manera tradicional de establecer un dimensionamiento de los tajeos, lo que se obtenía después de varios años de explotación del yacimiento. En el presente trabajo de investigación se dimensiono los tajeos, para un índice Q de 1 el ancho es de 4 metros y para un índice Q de 5.8 el ancho es de 8 metros, ambos sin sostenimiento. De acuerdo al análisis de estabilidad por el método Pakalnis es potencialmente inestable y estable, según Mathews es estable, En el análisis de estabilidad por esfuerzos el factor de seguridad mínimo es de 0.95. En el análisis controlado por estructuras la mayoría de las cuñas son estables. Para ambos criterios se soportará con sostenimiento ocasional, estos resultados nos permitieron comprobar los resultados y establecer una operación segura y así no afectará la integridad física del personal, equipos y otros.

Palabras Clave: Clasificación geomecánica, dimensionamiento empírico, estabilidad de la masa rocosa.

ABSTRACT

In the San Antonio Operating Unit, the underground exploitation method is that of inverted gradins, the width of the chambers of the stopings is 9 meters and 1.8 meters high. The objective of the research is to measure the stopin by empirical methods of geomechanical classification and to be corroborated by the stability analysis by empirical, numerical and structurally controlled methods of the rock mass to know the safety factor, as a verification method. However, the dimensions of the stopings were developed empirically without any geomechanical evaluation, it was the traditional way of establishing a sizing of the stopings, which was obtained after several years of exploitation of the deposit. In the present work is to measure the stopin, for a Q index of 1 the width is of 4 meters and for a Q index of 5.8 the width is of 8 meters, both without support. For the analysis of stability by the Pakalnis method is potentially unstable and stable, according to Mathews is stable. In the stress stability analysis, the minimum safety factor is 0.95. In the structure controlled analysis, most wedges are stable and a wedge is unstable. For both criteria it will be supported with occasional support; the results allowed us to verify the data and establish a safe operation and thus not affect the physical integrity of personnel, equipment and others.

Keywords: Geomechanical classification, Empirical dimensioning, Stability of the rock mass.

CAPÍTULO I

INTRODUCCIÓN

1.1. IDENTIFICACIÓN DEL PROBLEMA

En la actualidad la caída de rocas es uno de los grandes problemas en minas subterráneas que vienen ocasionando grandes pérdidas mortales y de daño a los equipos y herramientas. Las fatalidades de varias vidas humanas en los yacimientos subterráneos que se encuentran en los principales países productores de minerales en minas subterráneas como Canadá, Australia, China y Sudáfrica, por el mal dimensionamiento y caracterización de macizos rocosos que generaron como consecuencia inestabilidad de la masa rocosa con la consecuencia de lesiones y accidentes fatales y daños al proceso de minado.

En la Unidad Operativa San Antonio - Corporación Minera Ananea S.A, se trata de una mina subterránea con mantos auríferos que varían de 0.05 m - 0.30 m de potencia que produce oro con leyes de 12 g/TM, el método de explotación subterráneo es el de "Gradines invertidos en mantos auríferos", la dimensión de las cámaras de los tajeos es de 9 metros de ancho.

Si continuasen las operaciones con el dimensionamiento experimental, sin ningún estudio previo, las consecuencias serían catastróficas y peor aún si hay eventos de subsidencia o movimientos sísmicos generando más incidencia de accidentes por caída de rocas causando accidentes mortales.

La presente tesis consiste en un estudio de evaluación geomecánica para el dimensionamiento de los tajeos y como método de comprobación se determina el análisis de estabilidad por métodos empíricos, y estructuralmente controlados, debido a

que ambas metodologías tienen ciertas limitaciones, se utiliza el modelamiento numérico para complementar el dimensionamiento para que a posterior no se tenga consecuencias fatales.

1.2. FORMULACIÓN DEL PROBLEMA

Con la presente investigación pretendemos dar respuesta a las siguientes interrogantes.

1.3. PREGUNTA GENERAL

- ¿Cómo es el dimensionamiento de tajos mediante la clasificación geomecánica y el análisis de estabilidad del macizo rocoso en el método de minado por gradines invertidos en mantos auríferos en la unidad San Antonio - Corporación Minera Ananea S.A.?

1.4. PREGUNTAS ESPECÍFICAS

- ¿Cuál es la clasificación geomecánica y el análisis de estabilidad del macizo rocoso en el método de minado por gradines invertidos en mantos auríferos en la unidad San Antonio - Corporación Minera Ananea S.A.?
- ¿Cuál es el dimensionamiento de tajos en el método de minado por gradines invertidos en mantos auríferos en la unidad San Antonio - Corporación Minera Ananea S.A.?

1.5. OBJETIVOS DE LA INVESTIGACIÓN

1.5.1. Objetivo general

Dimensionar los tajos mediante la clasificación geomecánica y el análisis de estabilidad del macizo rocoso en el método de minado por gradines invertidos en mantos auríferos en la unidad San Antonio - Corporación Minera Ananea S.A.

1.5.2. Objetivos específicos

- Determinar la clasificación geomecánica y el análisis de estabilidad del macizo rocoso en el método de minado por gradines invertidos en mantos auríferos en la unidad San Antonio - Corporación Minera Ananea S.A.
- Dimensionar los tajos en el método de minado por gradines invertidos en mantos auríferos en la unidad San Antonio - Corporación Minera Ananea S.A.

1.6. JUSTIFICACIÓN DE LA INVESTIGACIÓN

En la unidad San Antonio - Corporación Minera Ananea S.A, sus operaciones de minado son el método de minado subterráneo por gradines invertidos y es necesario conocer la dimensión de la cámara del tajo basándose en la clasificación geomecánica.

Dada los accidentes mortales por inestabilidad de la masa rocosa que ocurre en todas las operaciones de Corporación Minera Ananea S.A. por eso la justificación de determinar la estabilidad de los tajeos dimensionados el cual permitirá conocer el grado de estabilidad, factor de seguridad, zona de estabilidad y posible mecanismo de falla del macizo rocoso para determinar sección más conveniente para la estabilidad del techo y recomendar si requiere un diseño de sostenimiento para los tajeos dimensionados y evitando de esta manera la inestabilidad de los tajeos.

Debido a lo antes expuesto es fundamental un adecuado análisis que incluya: dimensionamiento, obtención de la clasificación geomecánicas, análisis de estabilidad de los tajeos del macizo rocoso. Con el fin de aplicar modelos numéricos, empíricos que cumplan un análisis de estabilidad para el método. Ya que ella contribuirá a la reducción de riesgos laborales por caída de rocas y su importancia recae en dar seguridad al personal y al proceso de minado de manera eficaz y segura.

1.7. DELIMITACIÓN DEL ÁREA DE INVESTIGACIÓN

Las limitaciones para ejecutar el presente trabajo de investigación se centran en el personal de apoyo requerido con conocimiento de geomecánica y la disponibilidad económica y de material para logística sin embargo subsanar estas limitaciones con una adecuada capacitación al personal que acompañarán el proceso de obtención de datos de campo para aplicar la caracterización del macizo rocoso para el análisis de estabilidad de las labores en la Unidad San Antonio - Corporación Minera Ananea S.A.

1.8. UBICACIÓN DEL PROYECTO

1.8.1. Ubicación Política

La unidad San Antonio – Corporación Minera Ananea S.A, se encuentran dentro de la jurisdicción del distrito de Ananea, Provincia de San Antonio de Putina, Región Puno, República del Perú.

1.8.2. Ubicación Geográfica

Se ubican en el extremo Sur Oriental del Perú, al Nor este de la Región Puno, en el extremo sur de la cordillera oriental de los andes, dentro de la cordillera Carabaya en la zona Nor oriental de la meseta del Collao.

Las Operaciones de la Unidad San Antonio - Corporación minera Ananea S.A. se ubican dentro de la concesión Ana María N° 1, en el paraje La Rinconada, entre el nevado Ananea y el cerro San Francisco, en el sector denominado San Antonio, a 4900 m.s.n.m. Con coordenadas geográficas de Latitud sur: -14°37′26" y Latitud oeste: -69° 26′48".

Figura 1: Ubicación geográfica de la unidad San Antonio.

1.8.3. Accesibilidad a la mina

Desde la capital de la República - Lima, se accede mediante vía terrestre y aérea, hasta la ciudad de Juliaca y desde la capital de la Región Puno, se accede a la mina siguiendo las rutas PE-34A y PE-34G de la red vial nacional, y el empalme con la ruta 27, siendo la ruta más accesible, comercial y transitada la que se presenta en la siguiente tabla.

Origen	Destino	Km	Tipo	Tipo			
Puno	Juliaca	45	Asfalto	60 Minutos			
Juliaca	Putina	91.8	Asfalto	65 Minutos			
Putina	Ananea	65.3	Asfalto	55 Minutos			
Ananea	Rinconada	7	Trocha	33 Minutos			
Distancia total Puno-Mina Rinconada = 209 Kilómetros							
Tiempo aproximado de viaje = 3 Horas							

Tabla 1: Acceso a la mina.

FUENTE: Elaboración propia.

CAPÍTULO II

REVISIÓN DE LITERATURA

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

Rojas (2008) indica que se debe de establecer una metodología de aplicación de la geomecánica al minado subterráneo, el que se deberá realizar en la siguiente secuencia: Mapeo geotécnicos, caracterización de la masa rocosa, clasificación geomecánica de la masa rocosa, zonificación geomecánica de la masa rocosa, propiedades físico mecánicas de la roca, condiciones de presencia de agua, condiciones de esfuerzos in-situ, con esta información básica y utilizando herramientas de cálculo se podrán conocer los esfuerzos inducidos por el minado y se podrá establecer un adecuado análisis de estabilidad de las excavaciones subterráneas y plantear alternativas para el minado subterráneo como la forma, tamaño y orientación de las excavaciones y en general de los componentes estructurales asociados al minado.

Pantaleón y Carbajal (2017) indica que al evaluar la situación actual de la mina subterránea Under Mining SAC, cuyo método de minado es de taladros largos (secuencial-ascendente), realizar la evaluación geomecánica, desarrollar la caracterización y clasificación del macizo rocoso; el dimensionamiento de los tajeos, evaluar la estabilidad de los mismos y replantear las nuevas dimensiones para evitar y controlar la sobre-excavación; evaluar la secuencia de minado propuesta por el área de planeamiento de la mina y plantear la nueva secuencia que garantice la estabilidad y permita la recuperación efectiva de los tajeos y pilares del cuerpo mineralizado; y optimización del relleno en pasta mediante la evaluación de su resistencia a través del

tiempo y plantear recomendaciones para garantizar la recuperación de los tajeos secundarios.

Rodríguez (2003) la valoración del macizo rocoso mediante los índices RMR lo consideran de calidad media tipo III, si bien el índice Q lo enmarca dentro del tipo malo. El SRC obtenido engloba este tipo de macizo pizarroso dentro de la roca muy mala de clase V. En caso de excavaciones subterráneas se propone sostenimiento con bulonado sistemático, mallazo en clave y hastiales. Los problemas geotécnicos de las pizarras ante los distintos tipos de explotaciones (a cielo abierto o subterráneo) están notablemente condicionadas por la disposición de la anisotropía principal con respecto al eje de las obras, requiriendo la utilización de distintas medidas correctoras de consolidación y sostenimiento.

Correa (2012) menciona sobre los mecanismos de inestabilidad se encuentra tres condiciones naturales que dan lugar a la perdida de resistencia del macizo rocoso como.

- Orientación desfavorable de las discontinuidades.
- Orientación desfavorable de las tensiones con respecto a eje de la labor.
- Flujo de agua hacia el interior de la excavación atreves de fracturas.

Estas condiciones están directamente relacionadas con los factores geológicos, estructura, discontinuidades, resistencia de la matriz rocosa, con condiciones hidrológicas y estado tensional, para el dimensionamiento de los paneles a explotar y de los soportes se utilizaron métodos empíricos y métodos analíticos que son de uso amplio en la minería como:

Chura (2015) indica: el RMR-89 de Bieniawski, da como resultado una calidad de tipo III, roca regular en pizarra y calidad buena tipo II en cuarcita, el dominio

estructural de la caracterización geomecánica en ambas calidades de rocas se muestra es un mecanismo de falla de tipo cuña, debido a un comportamiento de discontinuidades de dos a tres familias presentes.

Los valores del índice Q de Barton, están muy estrechamente relaciona a la calidad de roca, sugiriendo el tipo de sostenimiento a utilizar, el cual da como resultado aplicar un sostenimiento por refuerzo activo de pernos de anclaje con longitudes de 1.8 metros (6 pies), a un espaciado que interactúan entre 1.5 a 3 metros, empernados de forma puntual o sistemática sin refuerzo de concreto lanzado.

Menciona que el comportamiento de los parámetros geomecánicos, está directamente relacionado a los planos de fracturamiento; que constituye los principales sistemas de discontinuidades dominantes están caracterizados por dos familias y un aleatorio, que en la mayoría de los casos se encuentra paralelo a la estratificación, cuya separación han sido rellenados por fragmentos de roca, arcilla limo y óxidos que son invadidos por la presencia del agua para emigrar a otras estructuras.

Givera (2013) indica: El uso de la ciencia relacionada al material rocoso que comprende la geología y geomecánica (modelo geológico, modelo estructural del macizo rocoso, modelo hidrológico y el modelo geotécnico), jugaron un rol importante desde la concepción del proyecto, ejecución, desgaste, acondicionamiento, de la chimenea como "ore pass", cuya evaluación es positivo en la medida que se tomó todas las precauciones referente a la ingeniería del macizo rocoso.

Sumiri (2013) las características estructurales del macizo rocoso tienen bastante incidencia en el tiempo de auto soporte y el tipo de soporte que requiere la excavación subterránea ya sea en avance o explotación.

29

El tiempo de auto-soporte es muy corto de 10-12 horas a mas, dependiendo de los valores de RMR y Q está en un plazo para ejecutar el soporte sea activo o pasivo debido a que el macizo rocoso en la mina es de calidad regular de mala calidad.

Albarracín (2000) en cuyas conclusiones indica:

- De acuerdo a los datos tomados en campo y mediante la utilización del software
 Dips se determinaron dos familias de discontinuidades en el macizo, las cuales
 se pueden observar en los diagramas de polos, frecuencias y rosetas.
- Según las clasificaciones RMR, Q, y el índice de calidad de la roca RQD, las propiedades geomecánicas del macizo tienden a ser de mala calidad.

Maday (2001) en cuyas conclusiones indica:

- Los resultados del estudio del agrietamiento de los macizos rocosos muestran que un gran porcentaje de ellos se presentan agrietados, lo que se relaciona a las formas preponderantes en que se manifiesta la pérdida de su estabilidad y el mecanismo de actuación de la presión.
- Como resultado de la evaluación de la estabilidad de los macizos rocosos según su calidad y estabilidad se obtiene que predominan los macizos de calidad regular, aunque en diferentes sectores y obras se presentan macizos en mal estado, lo que es condicionado además de los problemas estructurales, por el deterioro que ellos han sufrido por efectos del agua, la erosión y la atmósfera subterránea.
 - Se obtienen un grupo de criterios geomecánicos estructurales que pueden ser aplicados para el diseño de excavaciones y obras subterráneas, fundamentando su empleo.

No olvide citar esta tesis

2.2. BASES TEÓRICAS

2.2.1. Basados en clasificaciones geomecánicas empíricas

Durante las etapas de factibilidad y diseño preliminar de un proyecto, cuando se tiene muy poca información detallada sobre la masa rocosa y sus esfuerzos y sobre las características hidrológicas, el uso de un esquema de clasificación de la masa rocosa puede ser considerablemente beneficioso. En el caso más simple, esto puede involucrar la utilización de un esquema de clasificación como un chequeo para asegurar que toda la información relevante ha sido considerada (Hoek, Kaiser, y Bawden, 2000).

2.2.2. Clasificación de Bieniawski (RMR)

El sistema de clasificación Rock Mass Rating o sistema RMR (valoración del macizo rocoso), fue desarrollado por Bieniawski durante los años 1972-73, y ha sido modificado en 1976 y 1979, en base a más de 300 casos reales de túneles, cavernas, taludes y cimentaciones. Actualmente se usa la edición de 1989, que coincide sustancialmente con la de 1979.

Para determinar el índice RMR de calidad de la roca se hace uso de los seis parámetros del terreno:

- La resistencia a compresión simple del material
- El RQD (Rock Quality Designation)
- El espaciamiento de las discontinuidades
- El estado de las juntas

La presencia de agua

La orientación de las discontinuidades

El RMR se obtiene como suma de unas puntuaciones que corresponden a los valores de cada uno de los seis parámetros enumerados. El valor del RMR oscila entre 0 - 100 y es mayor cuanto mejor es la calidad de la roca. Bieniawski distingue cinco tipos o clases de roca según el valor del RMR (Bieniawski, 1989).

Tipo de roca	Rango RMR	Calidad según RMR
Ι	81-100	Muy Buena
II	61-80	Buena
III	41-60	Media
IV	21-40	Mala
V	0-20	Muy Mala

Tabla 2: Clases de roca según el valor del RMR.

FUENTE: Bieniawski, (1989).

En las tablas adjuntas se indican los criterios de valoración utilizados para los distintos parámetros. Hay que hacer las siguientes consideraciones:

- **Resistencia de la roca:** Tiene una valoración máxima de 15 puntos, y puede utilizarse como criterio el resultado del Ensayo de Resistencia a Compresión Simple (en laboratorio) o bien el Ensayo de Carga Puntual (Point Load). En campo puede obtenerse como aproximación a partir del rebote del esclerómetro (martillo Schmidt) o con unas tablas semicuantitativas empíricas en función del golpeo del martillo de geólogo.
- RQD: Tiene una valoración máxima de 20 puntos. Se denomina RQD de un cierto tramo de un sondeo a la relación en tanto por ciento entre la suma de las longitudes de los trozos de testigo mayores de 10 cm y la longitud total del sondeo.

- **Separación entre juntas:** Tiene una valoración máxima de 20 puntos. El parámetro considerado es la separación en metros entre juntas de la principal familia de diaclasas de la roca.
- **Estado de las diaclasas:** Es el parámetro que más influye, con una valoración máxima de 30 puntos. Pueden aplicarse los criterios generales de la Tabla 3 o bien aplicar la tabla 7, en la que el estado de las diaclasas se descompone en otros cinco parámetros: persistencia, apertura, rugosidad, relleno y alteración de la junta.
- Presencia de agua: La valoración máxima es de 15 puntos. La tabla 3 ofrece tres posibles criterios de valoración: estado general, caudal cada 10 metros de túnel y relación entre la presión del agua y la tensión principal mayor en la roca.
 - **Orientación de las juntas:** Este parámetro tiene una valoración negativa, y oscila para túneles entre 0 y -12 puntos. En función del buzamiento de la familia de diaclasas y de su rumbo en relación con el eje del túnel (paralelo o perpendicular), se establece una clasificación de la discontinuidad en cinco tipos: desde Muy Favorable hasta Muy Desfavorable.

Según el tipo se aplica la puntuación especificada en la tabla 3, Para cada clase de roca, Bieniawski propone una cuantía de sostenimiento y un método de excavación. Esta tabla es aplicable a túneles excavados en roca mediante perforación y voladura, con anchura o vano comprendido entre 5 y 10 metros (Bieniawski,1989).

Tabla 3: Clasificación Geomecánica de Bieniawski 1989.

1	Resistenci Ensayo a de la carga roca sana puntual (MPa)		>10	4-10	2-4	1-2	
		Compr simple	>250	100-250	50-100	25-50	1- < 5 1
	Valora	ción	15	12	7	4	2 1 0
2	RQI)	90-100	75-90	50-75	25-50	<25
2	Valora	ción	20	17	13	8	3
3	3 Separación juntas		>2 m	0.6-2 m	0.2-0.6 m	0.06- 0.2m	<0.06 m
	Valoración		20	15	10	8	5
4	4 Estado diaclasas		Muy rugosas Discontinua s Borde sano y duro	Ligeram . rugosas e<1mm Borde duro	Ligeram . rugosas e<1mm Bordes blandos	Rellenos e<5 mm Abiertas Continua s	Rellenos blandos e>5 mm Continua s
	Valora	ción	30	25	20	10	0
5	Presencia de agua	Caudal en 10m	Nulo	<10 l/min	10-25 l/min	25-125 l/min	>125 l/min
	uc agua	tunei	0	0-0.1	0.1-0.2	0.2-0.5	>0.5
		Estado	Seco	Ligeram Húmedo	Húmedo	Goteando	Fluyend 0
	Valoración		15	10	7	4	0

FUENTE: Bieniawski, (1989).

Dirección y		Muy	Favorable	Medio	Desfavorable	Muy
buzamiento		lavorable				desfavorable
Valoración	Túneles	0	-2	-5	-10	-12
para	Cimentación	0	-2	-7	-15	-25
_	Taludes	0	-5	-25	-50	-60

Tabla 4: Corrección por orientación de las juntas de Bieniawski 1989.

FUENTE: Bieniawski, (1989).

Tabla 5: Orientación de las diaclasas de Bieniawski 1989.

Dirección	perpendicular	al eje del	Dirección paralela al eje del túnel	Buzamiento. 0 - 20°	
Exc. a favor Exc. contra buzamiento			ontra buzamiento		Cualquier dirección
Buz.>45°	Buzamien: 20-45°	Buz.>45°	Buzamien: 20-45°	Buzamien: 20-45°	
Muy favorable	Favorable	Medio	Desfavorable	Medio	Desfavorable

FUENTE: Bieniawski, (1989).

CLASE	Ι	II	III	IV	V
CALIDAD	Muy buena	Buena	Media	Mala	Muy mala
RMR	81-100	61-80	41-60	21-40	0-20
Tiempo de estabilidad y longitud del vano	10 años 5 metros	6 meses 8 metros	1 semana 5 metros	10 horas 2.5 metros	30 minutos 1 metro
Cohesión (MPa)	>0.4	0.3-0.4	0.2-0.3	0.1-0.2	<0.1
Rozamiento	>45°	35-45°	25-35°	15-25°	15°
Tiempo de estabilidad y longitud del vano Cohesión (MPa) Rozamiento	10 años 5 metros >0.4 >45°	6 meses 8 metros 0.3-0.4 35-45°	1 semana 5 metros 0.2-0.3 25-35°	10 horas 2.5 metros 0.1-0.2 15-25°	30 minutos metro <0.1 15°

FUENTE: Bieniawski, (1989)

PARAMÉTRO		VAL	ORACIÓN		
Persistencia	<1 m	1-3 m	3-10 m	10-20 m	>20 m
	6	4	2	1	0
Apertura	Nada	<0.1 mm	0.1-1.0 mm	1-5 mm	>5 mm
	6	5	4	1	0
Rugosidad	Muy rugosa	Rugosa	Ligeramente Rugosa	Ondulada	Suave
	6	5	3	1	0
	Ninguno	Rellen	o duro	Relleno	blando
Relleno		<5 mm	>5 mm	<5 mm	>5 mm
	6	4	2	2	0
Alteración	Inalterado	Ligeramente Alterado	Moderadam. alterado	Muy alterado	Descom puesto
	6	5	3	1	0

Tabla 7: Guía para valorar el estado de las discontinuidades según Bieniawski 1989.

FUENTE: Bieniawski, (1989).

2.2.3. Clasificación de Barton (Q)

El Sistema Q o Clasificación de Barton fue desarrollado en Noruega en 1974, del Instituto Geotécnico Noruego. Se basó su estudio en el análisis de cientos de casos de túneles construidos principalmente en Escandinavia.

La Clasificación de Barton asigna a cada terreno un índice de calidad Q, tanto mayor cuanto mejor es la calidad de la roca. Su variación no es lineal como la del RMR, sino exponencial y oscila entre Q=0.001 para terrenos muy malos y Q=1000 para terrenos muy buenos.

$$Q = \left(\frac{RQD}{Jn}\right) \left(\frac{Jr}{Ja}\right) \left(\frac{Jw}{SRF}\right)$$

Donde cada parámetro representa lo siguiente:

- RQD es el índice (Rock Quality Designation) es decir, la relación en tanto por ciento entre la suma de longitudes de testigo de un sondeo mayores de 10 cm y la longitud total. Barton indica que basta tomar el RQD en incrementos de 5 en 5, y que como mínimo tomar RQD=10.
- Jn varía entre 0.5 y 20, y depende del número de familias de juntas que hay en el macizo.
- Jr varía entre 1 y 4, y depende de la rugosidad de las juntas.
- Ja varía entre 0.75 y 20, y depende del grado de alteración de las paredes de las juntas de la roca.
- Jw varía entre 0.05 y 1, dependiendo de la presencia de agua en el túnel.
- SRF son las iniciales de Stress Reduction Factor y depende del estado tensional de la roca que atraviesa el túnel. Para la obtención de cada uno de los cinco últimos parámetros, Barton aporta unas tablas donde se obtienen los valores correspondientes en función de descripciones generales del macizo rocoso.

De esta forma los diferentes cocientes tienen una significación especial:

- (RQD/Jn), indica el tamaño de bloque.
- (Jr /Ja), la resistencia al corte entre los bloques.
- (Jw/SRF), la influencia del estado tensional, de difícil interpretación.

A continuación se indica el modo de valorar los diferentes parámetros (Barton, 1974).

No olvide citar esta tesis

Tabla 8: Calidad del testigo "RQD" en la clasificación Q de Barton.

А	Muy mala	0-25
В	Mala	25-50
С	Media	50-75
D	Buena	75-90
E	Excelente	90-100

Notas: Cuando se obtienen valores del RQD inferiores o iguales a 10, se toma un valor de 10 para calcular el índice Q.

Los intervalos de 5 unidades para el RQD, es decir, 100, 95,90, etc. tienen suficiente precisión.

FUENTE: Barton, Lien y Lunde, (1974).

Tabla 9: Valoración del índice de diaclasado Jn en la clasificación Q de Barton.

А	Roca masiva, sin diaclasar o con fisuración escasa	0,5 - 1,0
В	Una familia de diaclasas	2
С	Una familia y algunas diaclasas aleatorias	3
D	Dos familias de diaclasas	4
E	Dos familias y algunas diaclasas aleatorias	6
F	Tres familias de diaclasas	9
G	Tres familias y algunas diaclasas aleatorias	12
Н		15
J	Cuatro o mas familias, diaciasas aleatorias, roca muy fracturada,	20
	Roca triturada, terrosa	

Notas:En intersecciones de túneles se utiliza la expresión (3Jn) En las bocas de los túneles se utiliza la expresión (2Jn)

Tabla 10: Valoración del índice de rugosidad Jr de las discontinuidades.

Contacto entre las dos caras de la discontinuidad.

Contacto entre las dos caras de la discontinuidad ante un desplazamiento cortante

A B	Diaclasas discontinuas Diaclasas onduladas, rugosas o irregulares	4 3
С	Diaclasas onduladas, lisas	2
D	Diaclasas onduladas, perfectamente lisas	1,5
E	Diaclasas planas, rugosas o irregulares	1,5
F	Diaclasas planas, lisas	1,0
G	Diaclasas planas, perfectamente lisas	0,5

Nota s:

Las descripciones se refieren a caracterizaciones a pequeña escala y escala intermedia, por este orden.

No existe contacto entre las caras de la discontinuidad ante un desplazamiento

- H Zona que contiene minerales arcillosos con un espesor 1,0 suficiente para impedir el contacto de las caras de la discontinuidad.
- J Zona arenosa, de gravas o triturada con un espesor suficiente 1,0 para impedir el contacto entre las dos caras de la discontinuidad.

Nota

s: Si el espaciado de la principal familia de discontinuidades es superior a 3m. se debe aumentar el índice Jr en una unidad.

En el caso de diaclasas planas perfectamente lisas que presenten lineaciones, y que dichas lineaciones estén orientadas según la dirección de mínima resistencia, se puede utilizar el valor Jr = 0.5

Tabla 11: Val	loración del í	ndice de alter	ación de las	discontinuidades Ja	ı.
					••

		9	Ja
Con	tacto entre los planos de la discontinuidad (sin minerales de relleno	interi	nedio)
А	Discontinuidad cerrada, dura, sin reblandecimientos, impermeable, cuarzo	-	0,75
В	Planos de discontinuidad inalterados, superficies ligeramente manchadas	25 °-	1,0
С	Planos de discontinuidades ligeramente alterados. Presentan minerales no reblandecibles, partículas arenosas, roca desintegrada libre de arcillas, etc.	25 °-	2,0
D	Recubrimientos de arcillas limosas o arenosas. Fracción pequeña de arcilla (no blanda)	35 20 °-	3,0
E	Recubrimientos de arcillas blandas o de baja fricción, es decir, caolinita o mica. También clorita, talco, yeso, grafito, etc., y pequeñas cantidades de arcillas expansivas	8°- 16	4,0
Con infe	atacto entre los planos de la discontinuidad ante un desplazamiento o rior a 10 cm (minerales de relleno en pequeños espesores)	ortan	te
F	Partículas arenosas, roca desintegrada libre de arcilla, etc.	25 °-	4,0
G	Fuertemente sobreconsolidados, con rellenos de minerales arcillosos no blandos (continuos, pero con espesores inferiores a 5mm)	16 °-	6,0
Н	Sobreconsolidación media a baja, con reblandecimiento, rellenos de minerales arcillosos (continuos, pero de espesores inferiores a 5mm)	24 12 °-	8,0
J	Rellenos de arcillas expansivas, es decir, tipo montmorillonita (continuos, pero con espesores inferiores a 5mm). El valor de Ja depende del porcentaje de partículas con tamaños similares	16 6°- 12	8-12
No cort	a los de las arcillas expansivas. se produce contacto entre los planos de la discontinuidad ante un de ante (rellenos de mineral de gran espesor)	splaza	amiento
K,L M	, Zonas o bandas de roca desintegrada o triturada y arcillas (ver G,H, y J para las descripción de las condiciones de las arcillas)	6°-	6,8 ó 8- 12
N	Zonas o bandas de arcillas limosas o arenosas, con pequeñas	24 °	5.0
- 1	fracciones de arcillas no reblandecibles		-,-
O,P R	, Zonas o bandas continuas de arcilla, de espesor grueso (ver clases G H v L para la descripción de las condiciones de las	6°-	10,13 ó 13-20
	arcillas)	24	13-20

Los valores expresados para los parámetros Jr y Ja se aplican a las familias de diaclasas o discontinuidades que son menos favorables con relación a la estabilidad, tanto por la orientación de las mismas como por su resistencia al corte esta resistencia puede evaluarse mediante la expresión: (Jr /Ja).

		Presión de	Jw
		agua	
		(Kg/cm2)	
Α	Excavaciones secas o pequeñas afluencias, inferiores a 5 l/min, de forma localizada	<1	1,0
В	Afluencia a presión media, con lavado ocasional de los rellenos de las discontinuidades	1-2,5	0,66
C	Afluencia importante o presión alta en rocas competentes con discontinuidades sin relleno	2,5-10	0,5
D	Afluencia importante o presión alta, produciéndose un lavado considerable de los rellenos de las diaclasas	2,5-10	0,33
E	Afluencia excepcionalmente alta o presión elevada en el momento de realizar las voladuras, decreciendo con el tiempo	>10	0,2- 0,1
F	Afluencia excepcionalmente alta, o presión elevada de carácter persistente, sin disminución apreciable	>10	0,1- 0,05
Notas:			
Los va	lores de las clases C. D. E y F son meramente estin	nativos. Si se a	acometen

Tabla 12: Factor de reducción por la presencia de agua.

Los valores de las clases C, D, E y F son meramente estimativos. Si se acometen medidas de drenaje, puede incrementarse el valor Jw No se han considerado los problemas especiales derivados de la formación de hielo

(SRF)
roca
la
de
tensionales
condiciones
las
de
aloración
5
13:
Tabla

							SRF
as zonas débile	s intersectan a	la excavació	in, pudiendo prc	oducirse despr	endimientos de roca a n	nedida que la excavación del t	túnel va
lvalizaliuu A	Múltiples zo	mas débiles.	conteniendo arc	cilla o roca de	sintegrada químicament	te. roca de contorno muv	10
1	suelta (a cua	lquier profu	indidad)		L)
œ	Zonas débile excavación <	es aisladas, c < 50 m)	conteniendo arci	illa o roca desi	integrada químicamente	t (profundidad de la	5
۲.)	Zonas débile excavación >	es aisladas, c > 50m)	conteniendo arci	illa o roca desi	integrada químicamente	e (profundidad de la	2,5
0	Múltiples zo profundidad	mas de fract	uras en roca cor	npetente (libre	e de arcillas), roca de co	ontorno suelta (a cualquier	7,5
[1]	Zonas de fra	ctura aislada	as en roca comp	etente (libre d	e arcillas) (profundidad	l de excavación < 50 m)	5,0
۲.	Zonas de fra	ctura aisladi	as en roca comp	etente (libre d	e arcillas) (profundidad	l de excavación > 50 m)	2,5
J Vota: Se reducei a excavación.	Terreno suel 1 los valores ex	lto, diaclasas presados de	s abiertas, fuerte l SRF entre un 2	emente fractur 20-50% si las :	ado, en terrones, etc. (a zonas de fracturas solo é	cualquier profundidad) ejercen cierta influencia pero 1	5,0 no intersectan a
Rocas compete	ntes, problema	s tensionale	s en las rocas		ac/a1	<i>a0</i> /ac	SRF
H	Tensiones po abiertas	equeñas cer	ca de la superfic	cie, diaclasas	>200	<0,001	2,5
	Tensiones favorables	medias,	condiciones	tensionales	200-10	0,01-0,3	1

No olvide citar esta tesis

Х	Tensiones elevadas, estructura muy compacta. Normalmente favorable para la estabilidad, puede ser desfavorable para la estabilidad de los hastiales	10-5	0,3-0,4	0,5-2
L	Lajamiento moderado de la roca después de 1 hora	5-3	0,5-0,65	5-50
Μ	en rocas masıvas Lajamiento y estallido de la roca después de algunos	3-2	0,65-1	50-200
Z	Estallidos violentos de la roca (deformación explosiva) y deformaciones dinámicas inmediatas	$\langle 2$	>1	200-400
Notas:Si se comp 0.75ac: si a1/a3>1	en rocas masivas ueba la existencia de campos tensionales fuertemente ar 0. se tomará el valor 0.5 ac. ac es resistencia a compresi	nisótropos: cuando 5 <al íón simnle. a1 v a3 son l</al 	/a3<10, se disminuye el par as tensiones principales ma	rámetro ac hasta vor v menor v a0
es la tensión tange En los casos en lo SRF entre 2,5 y 5	ncial máxima, estimada a partir de la teoría de la elastic s que la profundidad de la clave del túnel es menor que l unidades (véase clase H)	idad. la anchura de la excavao	ción, se sugiere aumentar el	valor del factor
Rocas deformable	s: flujo plástico de roca incompetente sometida a altas p	rresiones litostáticas	a0 /ac	SRF
0	Presión de deformación baja		1-5	5-10
Ρ	Presión de deformación alta		>5	10-20
R	Presión de expansión baja			5-10
S	Presión de expansión alta	16		10-15
$Q = (RQD/Jn) (J_1)$	/Ja) (Jw/SRF)			

FUENTE: Barton, Lien y Lunde, (1974).

No olvide citar esta tesis

43

Como resultado el índice Q puede valorarse como:

Intervalo	Descripción o calidad	
0,001 - 0,01	Roca excepcionalmente mala	
0,01 - 0,1	Roca extremadamente mala	
0,1 '1	Roca muy mala	
1 - 4	Roca mala	
4 - 10	Roca media	
10 - 40	Roca buena	
40 - 100	Roca muy buena	
100 - 400	Roca extremadamente buena	
400 - 1000	Roca excepcionalmente buena	

Tabla 14: Puntuación de la clasificación Q de Barton.

FUENTE: Barton, Lien y Lunde, (1974).

2.2.4. Prediseño de sostenimientos a partir del índice Q

En relación al valor del índice Q para los requerimientos en la estabilidad y soporte de las excavaciones subterráneas, (Barton, 1974), define un parámetro adicional a la que llamaron la dimensión equivalente (De), de las excavaciones.

$$De = \frac{luz, \ diametro \ o \ altura \ de \ la \ excavacion \ (m)}{ESR}$$

El valor de ESR se relaciona con el uso previsto de la excavación y para el grado de seguridad que se exige del sistema de soporte instalado para mantener la estabilidad de la excavación (Barton, 1988).

Tabla 15: Valores del índice ESR de la clasificación de Barton.

	Tipo de excavación	ESR
А	Labores mineras de carácter temporal	2-5
B	Galerías mineras permanentes, túneles de centrales hidroeléctricas (excluyendo las galerías de alta presión), túneles piloto, galerías de avance en grandes excavaciones, cámaras de compensación hidroeléctrica	1,6-2,0
С	Cavernas de almacenamiento, plantas de tratamiento de aguas, túneles de carreteras secundarias y de ferrocarril, túneles de acceso.	1,2 – 1,3
D	Centrales eléctricas subterráneas, túneles de carreteras primarias y de ferrocarril, refugios subterráneos para defensa civil, emboquilles e intersecciones de túneles.	0,9 – 1,1
E	Centrales nucleares subterráneas, estaciones de ferrocarril, instalaciones públicas y deportivas, fábricas, túneles para tuberías principales de gas.	0,5 - 0,8

FUENTE: Barton, (1988).

2.2.5. Máxima tamaño de excavación sin fortificación

Barton también da una orientación sobre otros parámetros de diseño del sostenimiento como, por ejemplo, la longitud de pase o máximo tamaño sin sostener, según el caso que puede mantenerse estable sin sostenimiento.

ancho maximo =
$$2 \times ESR \times Q^{0.4}$$

2.2.6. Índice de resistencia geológica GSI

El GSI (Geological Strength Index), como un sistema de caracterización basado más en observaciones geológicas y menos en números. Posteriormente la clasificación fue refinada, Se fundamenta en una cuidadosa observación del macizo rocoso, esencialmente cualitativa, donde se tienen en cuenta características como litología, estructura y condición de las superficies de discontinuidad, tanto en afloramientos como en cortes de excavación y testigos de sondeos. Así, considera dos aspectos fundamentales que son el grado y tipo de fragmentación y las

condiciones de las superficies de discontinuidad, sistema de clasificación GSI

(Marinos y Hoek, 2000).

CARACTERISTICAS DEL MACIZO ROCOSO SEGUN GSI MODIFICADO Se boso en lo contidod de frocturos por metro líneol , medidos insitu con un flexometro. lo molo voloduro ofecto esto condicion. Lo resistencia se determina golpenado o indentando la roco con und picoto , se tomo en cuento lo rugosidod , alteracion de poredes y relieno de los discontinuídodes. RMR (89 SECO) La descripción cualitativa del macizo rocoso en función del grado de fracturamiento (condición de discontinuídades y mase rocose) Se escoien con un intervalo de valores que se hon relecionado el indice RMR. en condiciones secas sin ningun (ipo de correcciones.	MUY BUENA (EXTREMADAMNETE RESISTENTE, FRESCA) Superfice de las discontinuidades muy rucosas e inalteradas, cerradas. (re > 250 mpd) (se astilla con colpes de picota)	BUENA (MUY RESISTENTE, LEVEMENTE ALTERADA) DISCONTINUIDADES RUCCOSAS, LEV. ALTERADA, MANCHAS DE OXIDACION, LIGER, ABERTA, (RC 100 A 250 MPd) (YE ROMPE CON VARIOS COLIPES DE PICOTA)	REGULAR (RESISTENCTE Y LEVENTE ALTERADA) Discontinuidades lisas, moderadamente alterada, Luceramente ablertas. (re 50 a 100 mPa) (se rompe con uno 0 dos colpes de piccida)	POBRE (MODERADAMENTE REST. MODERADAM, ALTER.) Superfice plitica o con estructones, muy alterada relitend compacto o con fracaentos de roca (re 25 a 50 mpd) - (se indenta superficialmente)	MUY POBRE (BLANDA, MUY ALTERADA) Suffericie Plu. Da y estirkoda, MUY Abieria con Relleno de Archlas Blandas. (Re < 25 MPo) (se discrega d'indemia profundamente)
LEVEMENTE FRACTURADA. TRES A MENOS SISTEMAS DE DISCONTINUIDADES MUY ESPACIADAS ENTRE SI. (ROD 75 - 90) (2 A 6 FRACT. POR METRO) (ROD = 115 - 3.3 Jr.)	95 L # /M B	90	80 76 L I IX	LF/P	LP/M P
MODERADAMENTE FRACTURADA. MUY BIEN TRABADA, NO DISTURBADA, BLOQUES CUBICOS FORMADOS POR TRES SISTEMAS DE DISCON- TINUIDADES ORTOGONALES. (ROD 50 - 75) (B A 12 FRACT, POR METRO)	F IM B	•/8	. IK	F IP	° 46 ₽ IN /8
MUY FRACTURADA. MODERADAMENTE TRABADA, PARCIALMENTE DISTURBADA, BLOQUES ANGULOSOS FORMADOS POR CUATRO O MAS SISTEMAS DE DISCON- TINUIDADES, (ROD 23 - 50) (12 A 20 FRACT POR METRO)	M P /M B	M # /B	M P/R	M P/P	30 M P / M P
INTENSAMENTE FRACTURADA, PLEGAMIENTO Y FALLAMIENTO, CON MUCHAS DISCON- TINUIDADES INTERCEPTADAS FORMANDO BLOQUES ANGULOSOS O IRREGULARES, (ROD 0 - 25) (MAS DE 20 FRACT. POR METRO)	1 F /M B	5/5 17/8 4/5	1918	19/9	26 17 18 P
TRITURADA O BRECHADA, LIGERAMENTE TRABADA, MASA ROCOSA EXTREMADAMENTE ROTA CON UNA MEZCLA DE FRAGMENTOS FACILMENTE DISGREGABLES, ANGULOSOS Y REDONDEADOS. (SIN ROD)	T/M B	T / B	35 T IR	тр	т /м р

Figura 2: Sistema de clasificación GSI.

FUENTE: Marinos y Hoek, (2000).

INDICE DE RESISTENCIA GEOLOGICA MACIZOS ROCOSOSO ESTRATIFICADOS HETEROGENEOS (Marinos & Hoek (2000)) En base a una descripción de la litología, la estructura del macizo y la condición de las estructuras (especialmente los planos de estratificación), seleccione una zona en la tabla. Ubique en esa zona la posición correpondiente a la condición de las estructuras y estime el valor medio de GSZ. NO tra- te de ser dermasiado preciso. De hocho, el considerar 33 ≤ GSZ ≤ 37 es más realista que suponer GST = 35. Nole que esta tabla NO es aplicable a problemas con control estructural. Si hay estruc- turas desfavorablemente orientadas ellas controlarán el comportamiento del macizo rocoso. En a- quellos casos en que la resistencia al corte de las estructuras podría ser afectada por la humedas deberá considerarse la eventual presencia de agua. Esto puede hacerse "desplazando hacia la de- recha" el rango estimado para GSZ para condiciones regular, mala o muy mala de las estructuras. La presión del agua no se considera al evaluar el GSZ (análisis en esfuerzos efectivos). COMPOSICION Y ESTRUCTURA DEL MACIZO ROCOSO	MUY BUENA Muy rugosas, superficies frescas o no Meteorizadas,	BUENA Rugosas, superficies algo meteorizadas.	REGULAR Lisas, superficies moderadamente me- teorizadas y tateradas.	MAL.A Muy lisas, ocasionalmente pulidas, con pátinas compactas o relienos con frag- mentos angulosos.	MUY MALA Muy lisas y pulidas o de superficies muy meteorizadas, y con pátinas o relienos de arcilla blanda.
A. Estratos gruesos de arenisca de mucha blocosidad. El efecto de posibles pátinas pelíti- cas en los planos de estratificación se ve minimizado por el confinamiento del macizo ro- coso; sin embargo, en túneles poco profundos y/o taludes, estos planos de estratificación pueden generar inestabilidades controladas estructuralemente.	70	A			20
B. Arenisca con lentes delgados de limolita.	60	В	с, р,	=	
C, D, E y G: Pueden estar más o menos plegados que lo indicado, pero esto no al- tera su resistencia. Si presentan deforma- ción tectónica, falamientos y pérididas de continuidad, cambie estas categorias a F y H.	50 40	[]	30	ŧ	10
G. Esquistos limosos o arcillosos no perturba- cos, con o sin intercala- ciones de estratos del- gados de arenisca.	N/A	N/A	g	н	
Indica deformación por tectonismo.					

Figura 3: Índice de resistencia geológica en macizos rocosos estratificados.

FUENTE: Marinos y Hoek, (2000).

Clase	Calidad de Macizo	Valor de GSI	
V	Muy mala	$0 \le GSI \le 20$	
IV	Mala	$20 < GSI \leq 40$	
III	Regular	$40 < GSI \leq 60$	
II	Buena	$60 < GSI \leq 80$	
Ι	Muy buena	$80 < GSI \le 100$	

Tabla 16: Tipos de Macizo rocoso según GSI.

FUENTE: Marinos y Hoek, (2000).

Respecto al uso del índice GSI para la caracterización geotécnica el macizo rocoso es conveniente indicar lo siguiente:

- a) No es aplicable a aquellos casos en que el comportamiento del macizo rocoso presenta un claro control estructural.
- b) No considera la resistencia en compresión uniaxial de la roca.
- c) No considera el espaciamiento entre las estructuras, ya que éste está implícitamente incluido al evaluar la blocosidad del macizo rocoso.
- d) El índice GSI debe definirse en un rango y no como un valor específico.

2.2.6.1.Correlación GSI, RMR y Q

El índice GSI puede estimarse en base al índice Q, suponiendo que el macizo rocoso está seco y el estado tensional es moderado, con lo que los parámetros Jw = 1 y SRF = 1. El valor resultante del índice Q' se relaciona con el índice GSI de la siguiente formula:

$$GSI = 9\ln Q' + 44$$

Además, es posible establecer una relación del GSI con el caso del RMR de1989, la que ha sido establecida de manera empírica. Si el rating de la condición de aguas es de 15 y el de la orientación de discontinuidades es de 0, se puede observar, siempre de forma aproximada, que se cumple la siguiente igualdad:

$$GSI = RMR_{89} - 5$$

Existen diversas correlaciones entre las clasificaciones de RMR y el índice Q, la más utilizada es la propuesta por Bieniawski. Con esta correlación de Bieniawski de 1989.

$$RMR = 9\ln Q + 44$$

No olvide citar esta tesis

Despejando encontramos el valor de Q:

$$Q = e^{\frac{(RMR-44)}{9}}$$

2.3. CRITERIOS DE FALLA

2.3.1. Criterio de Rotura no Lineal de Hoek y Brown

El criterio de rotura de Hoek y Brown en su versión original fue introducida en el 1980. Desde entonces su uso se ha generalizado en el ámbito de la mecánica de rocas. El criterio ha sufrido varias modificaciones, así como la introducción de nuevos parámetros para definir el estado del material, y nuevas propuestas para obtener la caracterización del macizo, la última en 2002. Se trata de un criterio no lineal, puramente empírico, que permite valorar, de manera sencilla, la rotura de un medio rocoso mediante la introducción de las principales características geológicas y geotécnicas (Hoek, Carranza y Corkum, 2002).

Figura 4: Criterio de Hoek-Brown y criterio equivalente de Mohr-Coulomb.

FUENTE: Hoek, Carranza y Corkum, (2002).

Figura 5: Criterio de Hoek y Brown.

FUENTE: Hoek, Carranza y Corkum, (2002).

El criterio propuesto por Hoek y Brown de 1980 presenta una envolvente de falla curva de tipo cóncava como la que se ve en la figura 6.

Para esto se recomienda emplear el criterio generalizado de Hoek-Brown del 2002, con lo que la resistencia del macizo rocoso puede evaluarse como:

$$\sigma'_{1} = \sigma'_{3} + \sigma_{ci} \left(m_{b} \frac{\sigma'_{3}}{\sigma_{ci}} + s \right)^{a}$$

 σ'_1 es el esfuerzo principal mayor en la envolvente de falla.

 σ'_3 es el esfuerzo principal menor en la envolvente de falla.

 σ_{ci} es la resistencia a la compresión uniaxial de la roca intacta.

*m*_b, es el valor de la constante de Hoek-Brown para el macizo rocoso,

No olvide citar esta tesis

s y a son constantes que dependen de las características del macizo que están dadas por:

$$m_b = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right)$$
$$s = \exp\left(\frac{GSI - 100}{9 - 3D}\right)$$
$$a = \frac{1}{2} + \frac{1}{6}\left(e^{\frac{-GSI}{15}} - e^{\frac{-20}{3}}\right)$$

El criterio también permite realizar una estimación de la resistencia a la compresión uniaxial del macizo rocoso UCS_{rm}. Tomando el confinamiento σ'_3 igual a 0 se tiene que:

$$\sigma_{c} = \sigma_{ci} \cdot s^{a}$$
$$\sigma_{t} = -\frac{s\sigma_{ci}}{m_{b}}$$

Donde *mi* es el valor del parámetro para la roca "intacta", GSI es el índice de resistencia geológica del macizo rocoso y D es un factor que considera la perturbación que producen en el macizo rocoso el desconfinamiento y las voladuras. En la figura 6 se presentan algunas guías para evaluar D. σ_c es el esfuerzo a la compresión uniaxial de la masa rocosa, σ_t es el esfuerzo a la traccióny en la figura 5 se presenta un resumen del criterio generalizado de Hoek - Brown en condición no disturbada.

Universidad Nacional del Altiplano

Apariencia del macizo rocoso	Descripción del macizo rocoso	Valor D sugerido
	Excelente calidad de voladura controlada o excavación con tuneladora, TBM, con resultados de alteración mínima del macizo rocoso confinado circundante al túnel.	D=0
	Excavación mecánica o manual en macizos rocosos de mala calidad (sin voladuras) con una alteración mínima en el macizo circundante. Cuando aparezcan problemas de deformación en el piso durante el avance. la alteración puede ser severa a menos que se coloquen una contrabóveda temporal, tal como se muestra en la figura.	D=0 D=0.5 No invert
	Voladura de muy mala calidad en un túnel en roca competente con daños locales severos, extendiéndose 2 o 3m en el macizo rocoso circundante.	D=0.8
	Pequeñas voladuras en taludes de ingeniería civil dan lugar a pequeños daños al macizo rocoso, particularmente si se usan voladuras de contorno como se muestra en el lado izquierdo de la fotografía. Sin embargo la liberación de tensión resulta en alguna alteración.	D=0.7 Good blasting D=1.0 Poor blasting
	Los taludes en las grandes minas a cielo abierto sufren alteraciones significativas debido a las grandes voladuras de producción y también debido a la relajación de tensiones al retirar el estéril de recubrimiento. En algunas rocas blandas la excavación puede llevarse a cabo mediante el ripado y empuje con tractores de orugas y el grado de afección a los taludes será menor.	D=1.0 Production blasting D=0.7 Mechanical excavation

Figura 6: Factor de alteración del criterio de rotura de Hoek y Brown.

FUENTE: Hoek, Carranza y Corkum, (2002).

CRITERIO GENERALIZADO DE HOEK BROWN $\sigma_1 = \sigma_3 + \sigma_c (m_b (\sigma_3) \sigma_c) + s)^c$ $\sigma_1 = esfuerzo efectivo principal máximo en la falla \sigma_3 = esfuerzo efectivo principal mínimo en la falla \sigma_c = resistencia compresiva uniaxial de las piezas roca intacta. mb y a son las constante de la composición, estructura y condiciones superficiales de la masa rocosa ESTRUCTURA $	S CONDICION DE LA SUPERFICIE	Nuy buena Nuy rugosa, superficie no intemperizada.	Buena rugosa, superficie ligeramente intemperizadas y manchadas.	REGULAR Lisa, superficies moderadamente intemperizadas o alteradas.	MALA Espejo de falla, superficies muy intemperizadas con cobertura compacta o relieno que contiene fragmentos rocosos angulares.	MUY MALA Espejo de falla, superficies altamente Intemperizadas con cobertura o relleno de arcilla suave.
BLOQUEADA - Muy bien entrelazado masa rocosa no disturbada consistente de bloques cúbicos formados por tres sistemas de discontinuidades ortogonales.	m _b /m _i s a Em V GSI	0.60 0.190 0.5 75000 0.2 85	0.40 0.062 0.5 40,000 0.2 75	0.26 0.015 0.5 20,000 0.25 62	0.16 0.003 0.5 9,000 0.25 48	0.08 0.0004 0.5 3,600 0.25 34
MUY BLOQUEADO - entrelazado Masa rocosa parcialmente disturbada, con bloques angulares de varias caras formados por cuatre o más sistemas de discontinuidades.	m _b /m _i s a Em v GSI	0.40 0.062 0.5 40,000 6.2 75	0.29 0.021 0.5 24,000 0.25 65	0.16 0.003 0.5 9,000 0.25 48	0.1 0.001 0.5 5,000 0.25 38	0.07 0 0.53 2,500 0.3 25
BLOQUEADA/SEAMY - plegada y fallada con intersección de muchas discontinuidades, formando bloques angulares.	m _b .im, s Em v GSI	0.24 0.012 0.5 18,000 0.25 60	0.17 0.004 0.5 10,000 0.25 50	0.12 0.001 0.5 6,000 0.25 40	0.08 0 0.5 3,000 0.3 30	0.06 0 0.55 2,000 0.3 20
TRITURADA - pobremente entrelazada masa rocosa severamente fracturada, con bioques angulares y redondeados.	m _b /m _i s Em v GSI	0.17 0.004 0.5 10,000 0.25 50	0.12 0.001 0.5 6,000 0.25 40	0.08 0 0.5 3,000 0.3 30	0.06 0 0.55 2,000 0.3 20	0.04 0 0.60 1,000 0.3 10
Nota 1: El módulo de deformación in - situ Em es calculado a partir de la relación propuesta por Serafim y Pereira (1993) Las unidades de Em están en Mpa.						

Figura 7: Criterio generalizado de Hoek - Brown en condición no disturbada. FUENTE: Hoek, Carranza y Corkum, (2002).

Este criterio de falla es uno de los más aceptados actualmente, y se utiliza en conjunto con programas de modelamiento numérico para calcular la resistencia de la roca o factores de seguridad.

2.3.2. Criterio de rotura lineal de Mohr-Coulomb

El criterio de rotura de Mohr-Coulomb, introducido por primera vez por Coulomb en el año 1973, inicialmente pensado para el estudio en suelos, es un criterio de rotura lineal.

No olvide citar esta tesis

Generalmente para el caso del criterio de Mohr-Coulomb, se define el criterio de rotura en función de la tensión tangencial y la tensión normal en un plano ver figura 8 en este caso la superficie de fluencia es de la forma τ =f (σ). La expresión matemática de dicha ecuación es:

 $\tau = c + \sigma_n tan\varphi$

Dónde:

- "*c*" es la cohesión, una constante que representa la tensión cortante que puede ser resistida sin que haya ninguna tensión normal aplicada.
- " ϕ " es el ángulo de fricción.
- " τ " es la tensión tangencial que actúa en el plano de rotura.
- " σ_n " es la tensión normal que actúa en el plano de rotura.

Figura 8: Representación de la envolvente de Mohr-Coulomb.

FUENTE: Flores y Karzulovic, (2003).

2.3.3. Criterio de rotura de Barton y Bandis

Para evaluar la estabilidad de los macizos rocosos, cuyo comportamiento es gobernado por sus discontinuidades, utilizando el criterio de rotura de Barton y Bandis. Existen muchos métodos y/o criterios para cuantificar los parámetros de resistencia corte de las discontinuidades, una de ellas es la relación entre el ángulo de fricción total $(\varphi + t)$, la resistencia de la roca y la presión normal, quien definió la siguiente ecuación empírica (Hoek, 2002).

$$\tau = \sigma \tan \left[\phi + JRCLog_{10}(\frac{JS}{\sigma_n}) \right]$$

Dónde:

- JRC Coeficiente de rugosidad de la junta.
- JCS Resistencia a la compresión de la roca en la superficie de la fractura.
- σ_n Esfuerzo normal efectivo.

2.4. PROPIEDADES FÍSICO-MECÁNICAS DEL MACIZO ROCOSO

Existen una serie de parámetros que se emplean para la identificación y descripción cuantitativa de las propiedades básicas de las rocas y permiten, así mismo, establecer una primera clasificación con fines geotécnicos. Estas propiedades, denominadas propiedades índices, serán las que determinen en primera instancia, junto con la composición mineralógica, las propiedades y el comportamiento mecánico de la matriz rocosa (Gonzales, 2002).

2.4.1. Porosidad eficaz

Es la relación entre el volumen de poros interconectados y el volumen de la muestra. Puede obtenerse a través de los pesos secos (Wseco) y saturado (Wsat) de la muestra:

$$n_e = \frac{(W_{sat} - w_{seco})}{\gamma_w V}$$

En las rocas es frecuente que los poros no estén interconectados, por lo que la porosidad real será mayor que la eficaz (Gonzales, 2002) el índice de poros se define como la relación entre el volumen ocupado por huecos (V_v) y el volumen ocupado por las partículas sólidas (V_{sol}) :

$$e = \frac{V_{v}}{V_{sol}}$$

2.4.2. Peso unitario y densidad

El peso unitario de una roca (γ), es definida como la relación entre el peso (W) y el volumen total (V_T) de la muestra:

$$\gamma = \frac{W}{V_t}$$

La densidad de una roca (ρ), es definida como la relación entre la masa (M) y el volumen total (v_T) de la roca:

$$\rho = \frac{M}{V_t}$$

2.4.3. Permeabilidad

Es la capacidad de transmitir agua de una roca. La mayoría de las rocas presentan permeabilidades bajas o muy bajas. La filtración y el flujo del agua a través de la matriz rocosa se producen a través de los poros o fisuras, dependiendo la permeabilidad de la interconexión entre ellos y de otros factores como el grado de meteorización, la anisotropía o el estado de esfuerzos a que está sometido el material.

La permeabilidad de una roca se mide por el coeficiente de permeabilidad o de conductividad hidráulica k, que se expresa en m/s, cm/s o m/día:

$$k = K\left(\frac{\gamma_w}{\mu}\right)$$

Donde K es la permeabilidad intrínseca (dependiente únicamente de las características del medio físico), γ_w es el peso específico del agua μ es la viscosidad del agua (Gonzales, 2002).

2.4.4. Resistencia a la compresión simple

Es el máximo esfuerzo que soporta la roca sometida a compresión uniaxial, determinada sobre una probeta cilindrica sin confinar en laboratorio, viene dada por:

$$\sigma_c = \frac{F_c}{A}$$

Dónde:

- Fc Fuerza compresiva aplicada.

- A Area de la sección de la probeta donde se aplica la carga.

- σ_c Resistencia uniaxial de la roca.

2.5. ESTADO TENSIONAL DEL MACIZO ROCOSO

En cualquier excavación subterránea que se desee realizar, el macizo rocoso estará sometido a un estado de esfuerzos in-situ previo a la realización de la excavación. El estado de esfuerzos una vez realizada la excavación, será el resultado del estado de esfuerzos inicial (in-situ) más el estado de esfuerzos inducidos por la excavación o el minado. Por ello, los esfuerzos in-situ constituyen unos de los factores importantes que condicionan las estabilidades de la masa rocosa de las excavaciones subterráneas y los esfuerzos in-situ dependen de una serie de factores como la topografía de la superficie, la erosión, los esfuerzos tectónicos residuales, el efecto de las discontinuidades y otros. Para determinar la orientación y la magnitud de los esfuerzos in-situ, lo más recomendable es realizar mediciones in-situ. Para ello hay varias técnicas de medición como: el de liberación de esfuerzos ejemplo la técnica del "overcoring" utilizando celdas triaxiales CSIRO tipo Hollow Inclusión, el de restauración de esfuerzos ejemplo la técnica del gato plano" - "Flat Jack" y otros ejemplo el hidrofracturamiento (Hoek ,2006).

Figura 9: Gráficos de estado tensional antes de la excavación.

FUENTE: Elaboración propia.

Repositorio Institucional UNA-PUNO

Figura 10: Gráfico de estado tensional después de la excavación. FUENTE: Elaboración propia.

2.5.1. El estado tensional natural

La tensión natural en un punto de la corteza terrestre en un momento determinado de su historia geológica depende de una serie de fuerzas de distinto origen y carácter entre otras los macizos rocosos en profundidad se encuentran sometidos a tensiones debidas al peso de los materiales suprayacentes.

El campó tensional es una magnitud tensorial. Para expresarlo habrá que dar bien el campo tensor completo o bien tres orientaciones y tres magnitudes (σ_1 , σ_2 y σ_3) (Hoek, Kaiser y Bawden, 2000).

Figura 11. Estado tensional de las tres magnitudes.

FUENTE: Elaboración propia.

2.5.2. Tensiones gravitacionales elásticas

La tensión vertical en un punto cualquiera de la corteza terrestre tendría una magnitud equivalente a la originada por el peso de los materiales suprayacentes y por tanto.

$$\sigma_v = \rho \cdot g \cdot h$$

Para propósitos de analizar los esfuerzos y las deformaciones alrededor de las excavaciones subterráneas, se tiene esfuerzo vertical a partir del criterio de carga litostática ver figura 12 (Hoek, 2006).

Figura 12: Mediciones de esfuerzos verticales en proyectos de ingeniería. FUENTE: Hoek y B**r**own, (1980).

Factor K

Sheroy (1994) desarrollo un modelo de distribución de tensiones termo-elástico a escala terrestre. Con el obtuvo una ecuación sencilla que permite estimar la relación de tenciones K:

$$k = 0.25 + 7E(GPa)\left(0.001 + \frac{1}{h(m)}\right)$$

Representación de los resultados que se obtendrían con esta fórmula para distintos valores coherentes del módulo elástico horizontal en los siguientes gráficos. Estos resultados son en general coherentes con los datos reales. Por ello algunos autores han aceptado esta formulación como punto de partida para la estimación del coeficiente K. La constante "k" (relación de los esfuerzos horizontal a vertical) para determinar

esfuerzo in-situ horizontal, fue estimada utilizando el criterio de (Sheorey, 1994) ver figura 13.

Figura 13: Relación del esfuerzo horizontal al vertical para diferentes módulos.

FUENTE: Sheorey (1994).

Figura 14: Relación del esfuerzo horizontal al vertical.

FUENTE: Sheorey, (1994).

Universidad Nacional del Altiplano

2.6. ESTABILIDAD DE LAS EXCAVACIONES

Los análisis de estabilidad involucraron la investigación de los posibles mecanismos de falla de la masa rocosa circundante a las excavaciones, tomando en cuenta la geometría de estas últimas, el arreglo estructural de la masa rocosa, las características de resistencia de la misma y la influencia de los esfuerzos y se resumen en dos categorías:

- Las estructuralmente controladas o conducidas por la gravedad.
- Las controladas por la resistencia de la masa rocosa o conducidas por los esfuerzos.

Para cada caso será necesario utilizar el modelo matemático que se adapte a las condiciones encontradas.

Las técnicas analíticas utilizadas en los diseños están basadas en la comparación de las resistencias disponibles y los esfuerzos actuantes (Factor de Seguridad); de esta comparación nacerán decisiones importantes para establecer las mejores alternativas en cuanto a la forma y al tamaño de las excavaciones y/o en cuanto a la provisión del soporte, refuerzo y/o mejoramiento de las propiedades físico-mecánicas de la masa rocosa bajo consideración (Hoek, 2002).

2.6.1. Factores que controlan la estabilidad de las excavaciones

Hay dos grupos de factores que controlan la estabilidad de las excavaciones asociadas al minado subterráneo de los yacimientos minerales. El primer grupo corresponde a factores pre-existentes a la excavación y el segundo grupo a factores posteriores a la excavación.

Los factores pre-existentes a la excavación son:

- Las características del medio geológico.
- El comportamiento mecánico del medio geológico.
- Los esfuerzos in-situ.

Los factores posteriores a la excavación son:

- Los esfuerzos inducidos por el minado.
- La forma, dimensionamiento y orientación de las excavaciones.
- El carácter dinámico de las excavaciones por el avance del minado.

Estos factores a su vez conforman la data y condicionan la metodología de aplicación de la geomecánica al minado subterráneo (Hoek, Kaiser y Bawden, 2000).

2.7. ANÁLISIS DE ESTABILIDAD POR MÉTODOS EMPÍRICOS

Estos métodos se basan en experiencias previas observadas en diferentes minas, formando una base de datos robusta y asumiendo un comportamiento similar a esta información previa.

2.7.1. Metodología empírica de Pakalnis

La abertura crítica (critical span) se define como el diámetro del círculo mayor que se puede dibujar dentro de los bordes de la excavación expuesta (techo). Esta abertura expuesta es contrastada con la calidad de la roca inmediata del techo para establecer la condición de estabilidad.

La abertura de diseño se refiere a la abertura sin sostenimiento y/o aberturas con sostenimiento local (pernos sistemáticos de 1.8m de longitud con una malla de 1.2m por

1.2m.), el valor de RMR es el sugerido por Bieniawski, con una corrección de menos 10 puntos, si hay presencia de discontinuidades de buzamiento menor a 30 grados. La condición de estabilidad se clasifica según las siguientes tres categorías (Pakalnis, 2002).

Excavaciones estables

- No se presentan caída de roca del techo.
- No se observan deformaciones en el techo de la excavación.
- No se han instalado cantidades importantes de sostenimiento.

Excavaciones potencialmente inestables

- Requieren de sostenimiento adicional para prevenir las fallas potenciales del macizo rocoso.
- Deformaciones hacia el interior del techo.
- Se requiere de trabajos de sostenimiento frecuentes.

Excavaciones inestables

- El área ha colapsado
- La zona de falla por encima del techo de la excavación es aproximadamente 0.5 veces el ancho de la excavación.
- El sostenimiento no fue efectivo para controlar la inestabilidad.

Figura 15: Definición de span de Pakalnis.

FUENTE: Pakalnis, (2002).

Figura 16: Curva de diseño de excavaciones.

FUENTE: Pakalnis, (2002).

2.7.2. Metodología empírica de Mathews

Existen distintos tipos de excavaciones subterráneas tales como: tajeos, chimeneas, túneles mineros, túneles de carreteras, cavernas para almacenamiento de residuos nucleares, etc. Para la ejecución de cualquiera de estas obras es necesario

contar con métodos de diseño que se adapten a diferentes contextos geomecánicos y que cuenten con cierto grado de confiabilidad dependiendo del uso.

El método gráfico de estabilidad fue desarrollado por Potvin, basado en el análisis de más de 350 casos históricos recolectados de minas subterráneas canadienses, toma en cuenta los principales factores de influencia del diseño de tajeos. La información sobre el arreglo estructural y resistencia de la masa rocosa, los esfuerzos alrededor de la excavación, y el tamaño, forma y orientación de la excavación, es utilizada para determinar si el tajeo será estable sin sostenimiento, o con sostenimiento, o inestable aún con sostenimiento (Potvin, 1988).

Para realizar la estimación según el método de Mathews de 1981, se deben calcular dos valores, el número de estabilidad de Mathews N, que representa la capacidad de la roca de mantenerse estable bajo ciertas condiciones de esfuerzos y el radio hidráulico Rh (Shape Factor S), que considera la forma de la excavación. En este método, el número N define el eje Y del gráfico de estabilidad y corresponde a una medida de calidad de la roca en torno al caserón y a ajustes que toman en consideración los esfuerzos inducidos como también la orientación de la excavación. El cálculo de estabilidad se realiza para superficies individuales de la excavación; 4 cajas laterales y techo.

El método de Mathews de 1981, utiliza un valor modificado del sistema Q, denominado Q', para caracterizar la calidad del macizo rocoso. En el parámetro de reducción por agua y el factor de reducción por esfuerzos son ambos iguales a 1. La calidad de la roca queda definida por (Mathews, 1980):

$$Q' = \left(\frac{RQD}{Jn}\right) \left(\frac{Jr}{Ja}\right)$$

Dónde:

RQD = Índice de calidad de la roca

- Jn = Número de sets de descontinuidades
- Jr = Rugosidad de las discontinuidades
- Ja = Alteración de las discontinuidades

El número de estabilidad de Mathews se determina mediante el ajuste del valor de Q' por los esfuerzos inducidos, orientación de discontinuidades y la orientación de las superficies de la excavación. Este número queda definido como:

$$N = Q' \times A \times B \times C$$

Dónde:

- A = Factor de esfuerzos en la roca
- B = Factor de ajuste por la orientación de las estructuras
- C = Factor de orientación de las superficies

Cada uno de estos factores se obtiene de las figuras que se encuentran a continuación:

Figura 17: Factor de Esfuerzo en la Roca, A.

FUENTE: Potvin, (1988).

Figura 18: Factor orientación de juntas, B.

FUENTE: Potvin, (1988).

Figura 19: Factor de ajuste gravitatorio, C.

FUENTE: Potvin, (1988).

El factor de forma o radio hidráulico S o Rh, para el techo del tajeo bajo consideración, se obtiene dividiendo el "área de la pared" entre el "perímetro de la pared".

$$Rh = \frac{\text{Área}_{pared}}{\text{Perímetro}_{pared}}$$

Figura 20: Radio Hidráulico (RH).

FUENTE: Potvin (1988).

Usando los valores del número de estabilidad N', y el radio hidráulico S, se puede estimar la estabilidad de un tajeo para unas dimensiones dadas a partir del "Gráfico de Estabilidad" mostrado en la figura 21.

FUENTE: Potvin (1988).

FUENTE: Mawdesley, (2001).

No olvide citar esta tesis

Figura 23: Probabilidad de falla.

FUENTE: Mawdesley, (2001).

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

FUENTE: Mawdesley, (2001).

No olvide citar esta tesis

2.8. ESTABILIDAD CONTROLADA POR ESTRUCTURAS

La geometría tridimensional de las excavaciones en relación a la distribución espacial de las discontinuidades (fallas, diaclasas, Foliación, etc.), las cuales constituyen planos de debilidad, influyen sobre las condiciones de estabilidad. A este tipo de estabilidad se le denomina "estabilidad estructuralmente controlada". Los planos de debilidad, pueden formar bloques rocosos de diferentes geometrías en el techo y en las paredes de la excavación, presentando libertad para descolgarse, rotar o deslizar.

2.8.1. Análisis de cuñas

La herramienta de cálculo para este tipo de análisis de estabilidad estructuralmente controlada, fue el programa de computo UNWEDGE Versión 3.004 de Rocscience Inc. (2004). Mediante esta evaluación, se tiene una apreciación detallada de la forma y dimensiones de las cuñas con posibilidades de generar inestabilidad y con qué elementos cualitativos y cuantitativos de sostenimiento se puede llegar a la estabilización ver en la figura 25 (Hoek, 2002).

Figura 25: Cuñas generadas por la abertura y discontinuidades. FUENTE: Elaboración propia.

2.9. ANÁLISIS DE ESTABILIDAD POR MÉTODO NUMÉRICO

En la práctica, en minas subterráneas los ingenieros geomecánicos estiman la resistencia del macizo rocoso mediante el módulo de deformación, usando el criterio de (Hoek y Brown, 1980) o simplemente ajustando algunos de los parámetros de la roca intacta, que luego son usados como parámetros de entrada en el modelamiento numérico.

Esta práctica se presenta como la forma más adecuada para el cálculo de esfuerzos en las minas explotadas, debido a las dimensiones y complejidad de la geometría, que hacen imposible obtener cálculos directos de los esfuerzos inducidos por las excavaciones. Por otra parte, la estimación de la respuesta del macizo a estos esfuerzos inducidos se vuelve complicada, debido a que los parámetros de resistencia de la roca no son fáciles de determinar.

La precisión de las predicciones hechas utilizando modelamiento numérico está estrictamente limitada por la variabilidad natural de los esfuerzos pre-minería, litología, propiedades de deformación y resistencia. Esto sucede debido a que estos modelos suponen una roca homogénea y sin discontinuidades, lo que claramente no es una representación real del problema. Esto se debe tener en consideración al momento de interpretar los resultados obtenidos, que naturalmente, tendrán una diferencia con mediciones reales, pero a grandes rasgos debiera ser una aproximación razonable.

Una de las desventajas de utilizar modelamiento numérico, especialmente cuando se pretende obtener un resultado general, es que el modelo se construye con un conjunto de información específica del lugar estudiado.

2.9.1. Estabilidad controlada por esfuerzos

Una herramienta útil corresponde a los modelos de elementos finitos (FEM) que es posible analizar con la ayuda de software. En este caso, Phase2 8.0 es capaz de analizar los problemas propuestos, calculando esfuerzos internos en la roca y en los materiales de soporte, deformaciones en roca y soporte, zonas de plastificación o fluencia de materiales.

La herramienta de cálculo utilizada para este análisis fue el programa de computo Phase2 desarrollado por Rocscience. Este es un programa de elementos finitos elasto-plástico bidimensional, para el cálculo de esfuerzos y desplazamientos alrededor de excavaciones subterráneas y para la estimación del sostenimiento, que puede ser utilizado para solucionar un amplio rango de problemas de la ingeniería minera, geotécnica y civil.

Para los cálculos se determina mediante los métodos numéricos, hay dos formas: continua y discontinua, de enfocar el cálculo de los esfuerzos y las deformaciones de una mina, sin olvidar que la masa rocosa tiene discontinuidades estructurales. Los métodos continuos consideran a la masa rocosa como un medio continúo cruzado por discontinuidades, y los métodos discontinuos como conjunto de bloques individuales.

En los modelos continuos, el comportamiento de la masa rocosa puede ser modelado por medio de ecuaciones diferenciales de la mecánica de los medios continuos, siendo posible también analizar terrenos con discontinuidades estructurales (fallas, estratos, diaclasas, y otros tipos de discontinuidades). Gran parte de los modelos numéricos geomecánicos pertenecen a este dominio. Los modelos continuos se dividen a su vez en: métodos diferenciales y métodos integrales. En el primer caso están por ejemplo los métodos de los elementos finitos y de las diferencias finitas. En el segundo

No olvide citar esta tesis

caso están por ejemplo los métodos de elementos de contorno, integrales de contorno y desplazamiento continuo (Hoek y Brown, 1980).

2.10. GENERALIDADES DE EXPLOTACIÓN

El método de explotación subterráneo es el de "Gradines invertidos en mantos auríferos", método es una variante de corte relleno ascendente.

Este método de explotación se aplica en yacimientos en los cuales el buzamiento de las vetas o mantos estén entre los 20° y 40°, es decir se aplica para desarrollos mineros de forma horizontal con poca inclinación. Para la realización de este método de explotación se ejecutan en primer lugar labores de exploración, desarrollo y seguidas de labores de preparación, después se ejecutan los frentes de tajeos de mineral, culminando el ciclo con las quiebras de las circas de mineral y limpieza del desmonte.

2.10.1. Características del yacimiento

La zona de investigación en el método de minado por gradines invertidos en la unidad San Antonio, en el que se desarrolla la investigación se tiene las siguientes características mostrados en la siguiente tabla 17:

Características del manto mineralizado	
Potencia	10 cm
Rumbo	80 SE
Buzamiento	22 SW
Forma	Tabular
Tipo de roca	Pizarra

FUENTE: Elaboración propia.

2.10.2. Labores en el método de gradines invertidos

Dato	Tajeo (m)	Galería (m)	Inclinado (m)	Subnivel (m)	Cortada (m)
Ancho (m)	9	3.5	3.5	3.5	3.5
Alto (m)	1.8	2.4	1.8	1.8	2.4
Largo (m)	10	-			

Tabla 18: Dimensiones de las labores.

FUENTE: Elaboración propia.

- Galería principal de extracción paralelo al rumbo del manto
- Inclinados paralelos al buzamiento del manto con una.
- Subniveles paralelos al rumbo de manto.
- Inclinados intermedios paralelos al buzamiento del manto.
- Tajeos en gradines invertidos paralelos al rumbo del manto.

2.10.3. Explotación por gradines invertidos

Primero: se realiza una galería base y una galería superior con rumbo de manto con una gradiente de 0.05 % esto es fundamental para el método.

Segundo: se genera inclinados paralelos al buzamiento del manto hasta comunicar de la galería inferior a la galería superior la distancia entre los inclinados es de 60 m.

Tercero: se genera luego los subniveles paralelos al rumbo del manto conectando estos a los inclinados y dejando un pilar con respecto a la galería base de 5.0 m.

Cuarto: a la mitad de los subniveles se genera in inclinado intermedio paralelo al buzamiento del manto, esto servirá para generar los tajos en gradines invertidos.

Quinto: se genera los tajeos en gradines invertidos a partir de los inclinados intermedios hasta comunicar a los inclinados de ambas alas del tajeo y esto se repetirá hasta terminar de minar el bloque comunicando a la galería superior.

Sexto: el acarreo se realizará en la galería base con locomotoras de 2 TM con carros mineros U35 y la limpieza de los tajeos es con winches de arrastre de 25 Hp. Hasta los inclinados principales y de estas a las tolvas.

Este método de explotación está adecuado para los trabajos de la zona, y se aplica en las zonas donde las labores de exploración confirmen leyes favorables de mineral, ver figura 26.

En los planos topográficos del 1 al 3, se muestran de manera gráfica el método de minado y los planos de la unidad minera.

Figura 26. Componentes de labores en el área de investigación.

FUENTE: Elaboración propia.

2.11. DEFINICIONES CONCEPTUALES

Tajeo o cámaras

Corte o excavación de un sector de una mina subterránea o excavación subterránea por donde se lleva una explotación gradual e equilibrada de un deposito mineral sea en veta, manto o masivo, las cámaras pueden ser simétricas o asimétricas dependiendo de la regularidad de la mineralización, la altura está en función de la potencia del material a minarse y en gran parte de la geomecánica de las rocas en la que se va practicar la excavación.

Cualquier excavación de una mina subterránea diferente a las labores de desarrollo y preparación de destinados a la explotación resultan los espacios vacíos ala que genéricamente se les denomina el concepto de cámaras subterráneas (Jorda,2013).

Esfuerzos

Son las fuerzas que aparecen inevitablemente alrededor de cualquier excavación subterránea y son las responsables de provocar los deslizamientos y desprendimientos de las rocas en una labor minera (Gonzales, 2002).

Geomecánica

Es la ciencia teórica y aplicada que se encarga del estudio del comportamiento mecánico de la roca y de las fuerzas inducidas como resultado de una excavación subterránea, dando una solución más favorable al problema de sostenimiento en las labores mineras (Gonzales, 2002).

Roca intacta

Son cuerpos continuos formados por asociaciones de una o varias especies minerales. Por sus propiedades pueden ser: Homogéneos o Heterogéneos e Isótropos o Anisotrópicos (Jorda, 2013).

Caracterización geológica

La caracterización geológica es la descripción de macizo rocoso donde se conocen los parámetros básicos de la roca y las discontinuidades, así como la estructura del macizo rocoso (Gonzales, 2002).

Resistencia a compresión simple

Es llamada también resistencia uniaxial y se define como el esfuerzo máximo que soporta la roca sometida a compresión uniaxial, la cual se determina a través de una probeta cilíndrica sin confinar en el laboratorio (Gonzales, 2002).

Factor de seguridad

El factor de seguridad es una medida determinística de la relación entre las fuerzas (capacidad) y las fuerzas impulsoras (demanda), del sistema en su entorno considerado. El factor de seguridad es el criterio más básico de diseño aceptado en la ingeniería, el factor de seguridad de la estructura se define como:

$$FS = \frac{C}{D}$$

C = Capacidad de soporte de carga del sistema

D = Fuerzas actuantes o demanda sobre el sistema

Y si falla se supone que ocurre cuando FS es menor que 1. El valor del factor de seguridad, que se considera aceptable para un diseño, generalmente se establece a partir de la experiencia previa de diseños exitosos. Un factor de seguridad de 1.1 - 1.5 generalmente se consideraría adecuado para una apertura temporal de la mina, mientras que un valor de 1.5 a 2.0 puede ser requerido para una excavación permanente como una estación de trituración subterránea (Gonzales, 2002).

Discontinuidad

Es cualquier plano de origen mecánico o sedimentario que independiza o separa los bloques de matriz rocosa en un macizo rocoso. Una discontinuidad es una superficie del macizo rocoso que está abierta o puede abrirse fácilmente a causa de tenciones inducidas por la excavación. Las superficies de discontinuidad aparecen durante la formación de la roca (planos de estratificación, laminación, foliación, disyunción, etc.) o posteriormente por causas tectónicas (esquistosidad, pizarrosidad y las fracturas: fallas y las diaclasas estas últimas denominadas vulgarmente "juntas" (Jorda, 2013).

Orientación

Es la posición de la discontinuidad en el espacio y comúnmente es descrito por la dirección de buzamiento y el buzamiento de la línea de máxima pendiente en el plano de la discontinuidad (Jorda, 2013).

Meteorización

Denominada también intemperización, está relacionada con la modificación que sufre la superficie de la roca o en sus proximidades, debido a la acción de agentes atmosféricos. El grado de la meteorización dependerá de las condiciones climatológicas,

morfológicas y la composición de la masa rocosa. La meteorización se divide en meteorización física, química y biológica (Jorda, 2013).

Alteración

La alteración de la roca o más propiamente dicha, alteración hidrotermal, se produce por la ascensión de fluidos o gases magmáticos a altas temperaturas a través de fracturas o zonas de falla (Jorda, 2013).

Espaciamiento

Distancia perpendicular entre dos discontinuidades adyacentes, normalmente se refiere al espaciamiento medio de una familia de discontinuidades (Jorda, 2013).

Persistencia

Es la extensión en área o tamaño de una discontinuidad. Cuanto menor sea la persistencia, la masa rocosa será más estable y cuanto mayor sea ésta, será menos estable (Jorda, 2013).

Apertura

Es la separación entre los labios de las discontinuidades (Jorda, 2013).

Rugosidad

Es la aspereza o irregularidad de la superficie de la discontinuidad. Cuanta menor rugosidad tenga una discontinuidad, la masa rocosa será menos competente y cuanto mayor sea ésta, la masa rocosa será más competente (Jorda, 2013).

No olvide citar esta tesis

Relleno

Material que separa las paredes de una discontinuidad, normalmente más débil que la roca matriz (Jorda, 2013).

Mecánica de rocas

Una definición comúnmente aceptada de mecánica de rocas propuesta por el comité americano de esta disciplina en 1974 sería: "Mecánica de rocas es la ciencia teórica y aplicada que estudia el comportamiento de mecánico de las rocas y los macizos rocosos (Jorda, 2013).

Resistencia de la discontinuidad

Resistencia a la compresión de la superficie de discontinuidad, puede ser más baja que la resistencia de la roca matriz a causa de la meteorización de la misma (Gonzales, 2002).

Orientación

Posición de la discontinuidad en el espacio, definida por la dirección del buzamiento y el buzamiento de la línea de máxima pendiente en el plano de la discontinuidad (Hoek, 2006).

Fallas

Son fracturas que han tenido desplazamiento. Éstas son estructuras menores que se presentan en áreas locales de la mina o estructuras muy importantes que pueden atravesar toda la mina (Jorda, 2013).

Diaclasas

También denominadas juntas, son fracturas que no han tenido desplazamiento y las que más comúnmente se presentan en la masa rocosa (Jorda, 2013).

Venillas

Son rellenos de las fracturas con otros materiales (Velazques, 2010).

Diques

Son intrusiones de roca ígnea de forma tabular, que se presentan generalmente empinadas o verticales (Velazques, 2010).

Estabilidad

Del verbo estabilizar; en minería, significa dar permanencia firme y constante a las excavaciones subterráneas y a los taludes de labores a cielo abierto. Se logra estabilidad en labores subterráneas, utilizando métodos de sostenimiento con soporte metálico, de madera o con relleno, con pernos, malla y otros elementos que fortifique la labor minera (Jorda, 2013).

Calidad de macizo rocoso

Las labores mineras subterráneas y superficiales, cuyos componentes son estructuras complejas; para ejecutar dichas labores mineras, es necesario poseer el máximo conocimiento del macizo rocoso. Es un requisito básico y fundamental que todo trabajador de mina debe conocer su ambiente de trabajo, esto implica el conocimiento de la calidad de la roca y la manera de contrarrestar su potencial riesgo de desprendimiento.

Roca

La roca es un conjunto de sustancias minerales formados diversos materiales como cristales o granos de uno o más minerales, constituye la parte sólida de la tierra y otros cuerpos planetarios. En la tierra el manto y la corteza están hechos de roca (Jorda, 2013).

Masa rocosa

La masa rocosa, es el medio in-situ que contiene diferentes tipos de discontinuidades como diaclasas, estratos, fallas y otros rasgos estructurales. Dependiendo de cómo se presenten estas discontinuidades o rasgos estructurales dentro de la masa rocosa, ésta tendrá un determinado comportamiento frente a las operaciones de minado (Jorda, 2013).

2.12. FORMULACIÓN DE HIPÓTESIS

2.12.1. Hipótesis general

Las clasificaciones geomecánicas y la estabilidad del macizo rocoso nos permitirá el dimensionamiento más conveniente de los tajeos en el método de minado por gradines invertidos en mantos auríferos en la unidad San Antonio - Corporación Minera Ananea S.A.

2.12.2. Hipótesis especifica

- La clasificación geomecánica y estabilidad del macizó rocoso dependerá de la condición de las discontinuidades, orientación de las discontinuidades, esfuerzos in situ, resistencia de la masa rocosa en el método de minado por gradines

invertidos en mantos auríferos en la unidad San Antonio - Corporación Minera Ananea S.A.

 Es posible determinar la dimensión más conveniente de los tajos considerando el nivel de estabilidad de la masa rocosa por diferentes métodos, en el método de minado por gradines invertidos en mantos auríferos en la unidad San Antonio -Corporación Minera Ananea S.A.

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1. DISEÑO METODOLÓGICO

El trabajo de investigación es de tipo experimental descriptiva ya que se manipula variables geométricas a modo de buscar el adecuado dimensionamiento de los tajeos basándose en la clasificación geomecánica y estabilidad de la masa rocosa disturbada, Mediante el estudio de fórmulas empíricas vistas anteriormente en el capítulo II, se correlaciona la dimensión de las cámaras de los tajeos, estudiando su comportamiento frente a las propiedades de la evaluación geomecánica de la roca confinante, para obtener un factor de estabilidad o de seguridad que seleccione la geometría más efectiva, respecto a la variable independiente (X) es la causa referido a la clasificación geomecánica del macizo rocoso, y la variable dependiente (Y) es el efecto referido a dimensionamiento y estabilidad de tajos de la unidad San Antonio - Corporación Minera Ananea S.A.

La presente investigación es dominada evaluación geomecánica en el método de minado por gradines invertidos en la unidad San Antonio - Corporación Minera Ananea S.A. Así, para que sea posible atender los objetivos anteriormente descritos, serán cumplidos los siguientes pasos.

3.2. POBLACIÓN Y MUESTRA

3.2.1. Población

La población estuvo constituida por las superficies visibles del macizo rocoso en interior mina, que permitieron determinar las características de la misma, desde el punto de vista geomecánico.

3.2.2. Muestra

Como muestra principal representativa fue del tipo universo muestral tomados en el campo y obtenidos mediante un muestreo sistemático del macizo rocoso; así como, las pruebas geomecánicas realizadas, en lugares donde se ejecutan las labores mineras de desarrollo, preparación y explotación de la Mina.

3.3. VARIABLES

Variable independiente (V.I.)

Clasificación geomecánica y estabilidad del macizo rocoso en el método de minado por gradines invertidos en mantos auríferos en la unidad San Antonio -Corporación Minera Ananea S.A.

Variable dependiente (V.D.)

Dimensionamiento de tajos en el método de minado por gradines invertidos en mantos auríferos en la unidad San Antonio - Corporación Minera Ananea S.A.

3.4. OPERACIONALIZACIÓN DE VARIABLES

Tabla 19:	Ope	racional	ización	de	variables.
-----------	-----	----------	---------	----	------------

Variables	Indicadores	Categorías	Índices
V.I.	Clasificación	Zoneamiento geomecánico	RMR
	del macizo rocoso		Q
			GSI
	Estabilidad	Factor de seguridad	Adimensional
V.D	Dimensión	Distancia	Metro

FUENTE: Elaboración propia.

3.5. TÉCNICAS DE RECOLECCIÓN DE DATOS

3.5.1. Investigaciones de campo

Las investigaciones de campo constituyen la parte más esencial de los estudios geológicos, estructurales y geotécnicos necesarios para el análisis de estabilidad de excavaciones subterráneas. De ellos se obtienen los parámetros y propiedades que definen las condiciones del macizo rocoso.

Para el presente estudio se realizaron los siguientes trabajos de campo:

- Reconocimiento geológico-geomorfológico de la zona.
- Mapeo geotécnico de exposiciones rocosas subterráneas.
- Ensayos in-situ de impacto con el martillo Schmidt de dureza para estimar la resistencia compresiva de la roca.
- Recopilación de información adicional (planos, informes, etc.), de interés para el estudio.

3.5.2. Trabajo de gabinete

- Revisión de literatura especializada e información concerniente a los trabajos geomecánicos.
- Procesamiento y análisis de la información registrada en el mapeo geotécnico:
 aplicación de técnicas estereográficas y estadística convencional.
- Evaluación de las propiedades físico-mecánicas de la roca intacta, discontinuidades y masa rocosa.

- Clasificación geomecánica de la masa rocosa, a partir de la información procesada del mapeo geotécnico.
- Zonificación geomecánica.
- Evaluación de sobre análisis de estabilidad (agua subterránea, esfuerzos).
- Máximo dimensionamiento considerando el factor de estabilidad
- Redacción de la tesis.

3.5.3. Técnicas e instrumentos de recolección de datos

Los instrumentos para la recolección de datos, que se realizara en la caracterización geomecánica del macizo rocoso y correlación, son los siguientes:

- Brújula marca Brunton.
- Distanciometro marca Leika.
- Esclerómetro marca Proeti.
- Flexo metro milimétrico marca Tools.
- Picsa.
- Wincha de 50 m.
- Tableros acrílicos A4.
- Formatos de registro.
- Planos topográficos.
- Ábacos y tablas.
- Libretas de campo.

3.5.4. Técnicas para el procesamiento de la información

Los datos de la caracterización estructural y geomecánicos fueron almacenados en el software Microsoft Excel, algunos de los datos de caracterización fueron expresados en polígonos de frecuencia normalizados en el software Minitab v.17.0 y expresados en histogramas, los datos relacionados con la orientación de las discontinuidades se realizaron con la utilización del software Dips v.6.0 y para el análisis de estabilidad controlado por estructuras se utilizó el software Unwedge 3.0. y para el análisis de estabilidad controlada por esfuerzos se utilizó con el software Phases 8.0. El cual nos dará un cálculo del factor de seguridad de las excavaciones subterráneas.

3.5.5. Revisión, recopilación y elaboración de informaciones preliminares

Fue hecha una revisión bibliográfica para tener una visión del estado del conocimiento en relación a las metodologías de caracterización geológica, caracterización estructural, caracterización de macizos rocosos, ensayos de campo y laboratorio, estabilidad de las excavaciones, dimensionamiento de las excavaciones. Con los cuales se elaboraron informes preliminares relacionados al trabajo de investigación.

3.6. CARACTERIZACIÓN DE LA MASA ROCOSA

3.6.1. Mapeos geotécnicos

Se realizaron mapeos en 40 celdas o estaciones de medición para los parámetros geomecánicos de observación y medición de esta tesis para cubrir toda el área de investigación en el método de minado por gradines invertidos en mantos auríferos. En los Anexos 01 Mapeos geomecánicos de la masa rocosa se presentan algunos de los

resultados de los mapeos rellenados y en los planos geomecánicos Planos del 4 al 6, se muestran todas las estaciones geomecánicas de la zona de estudio.

3.6.2. Aspectos litológicos

Se presentan rocas metamórficas principalmente por pizarras con intercalaciones de cuarcitas, cortando a estas rocas se observa la presencia de rocas intrusivas conformadas por diques.

La mineralización está relacionada al relleno de las foliaciones instruidas por el dique y se presentan generalmente formando mantos y también algunas vetas. La orientación de estas estructuras es concordante con la orientación de las unidades litoestratigráficas (S80E, 20°-23°SW), ver plano estructural del plano 4.

3.6.3. Discontinuidades

Para la distribución de discontinuidades, el procesamiento de los datos de buzamiento y dirección de buzamiento se realizó mediante técnicas de proyección estereográfica, utilizando la versión avanzada del programa de computo DIPS 6.0 (2004) de Rocscience.

Los resultados del mapeo estructural de la zona de investigación de los sistemas de discontinuidades estructurales se muestran en los planos estructurales (planos 4 y 5).

Discontinuidades en general

En la zona de investigación en el método de minado por gradines invertidos. Se incluyen a los diferentes tipos de discontinuidades registradas de los diferentes componentes como son Galerías, Inclinados, Subniveles y principalmente los tajeos como son: Foliación, mantos, diaclasas, fallas, fallas de contacto, vetillas, etc. Los

resultados del procesamiento de datos con el programa DIPS Versión 6.0, se presentan en las figuras 27, 28, 29 y 30 respectivamente los diagramas estereográficos de dispersión de polos, contornos y círculos máximos, y el diagrama de roseta. En la figura 24 se muestra el compósito de dispersión de polos el 35 % corresponden a foliación, el 30 % a diaclasas o fracturas, el 25 % a fallas, el 8 % a Vetillas y el resto a otros tipos de discontinuidades de la figura 28 de el diagrama estereográfico compósito de contornos de la zona de investigación de los tajeos del método de minado por gradines invertidos.

Figura 27: Diagrama estereográfico compósito de dispersión de polos.

FUENTE: Elaboración propia.

Figura 28: Diagrama estereográfico compósito de contornos.

FUENTE: Elaboración propia.

Figura 29: Diagrama estereográfico de compósito de círculos máximos.

FUENTE: Elaboración propia.

Figura 30: Diagrama de roseta del compósito de discontinuidades. FUENTE: Elaboración propia.

De la figura 29 de los diagramas estereográficos de compósito de círculos máximos de las discontinuidades y de la figura 30, del diagrama de roseta del compósito de discontinuidades estructurales se dan los siguientes sistemas de discontinuidades o familias de juntas, en el que están marcadamente bien definidos de cinco sistemas típicos de discontinuidades estructurales de un compósito de las 40 estaciones geomecánicas:

Sistema 1.- De importancia y dominante, conformado principalmente por foliación. Tiene dirección de buzamiento promedio de 190° y buzamiento promedio de 22°. Expresado en rumbo y buzamiento: S80°E y 22°SW.

Sistema 2.- Sigue de importancia, conformado mayormente por diaclasas y fracturas. Y en menor grado paralelo este las fallas. Tiene dirección de buzamiento

promedio de 67° y buzamiento promedio de 74°. Expresado en rumbo y buzamiento: N23°W y 74°NE.

Sistema 3.- También de importancia, conformado principalmente por diaclasas, fracturas y fallas y otros tipos de discontinuidades. Tiene dirección de buzamiento promedio de 324° y buzamiento promedio de 80°. Expresado en rumbo y buzamiento: N54°E y 80°NW.

Sistema 4.- Conformado principalmente por diaclasas, fracturas. Tiene dirección de buzamiento promedio de 130° y buzamiento promedio de 64°. Expresado en rumbo y buzamiento: N40°E y 64°SE.

Sistema 5.- También de importancia, conformado principalmente Fracturas y Diaclasas. Tiene dirección de buzamiento promedio de 177° y buzamiento promedio de 79°. Expresado en rumbo y buzamiento: N87°E y 79°SE.

Estructuras mayores

Las estructuras mayores más importantes son los sistemas de fallas, en la figura 32 se muestra el diagrama de polos, de contornos y de círculos máximos de estas estructuras estas pertenecen al sistema 2,3 y 4. Estas discontinuidades estructurales deberán ser consideradas como estructuras particulares en el modelamiento.

Sistema 2.- Las fallas paralelas a los diques pertenecen prácticamente al Sistema 2, las denominadas Falla San Andrés, Falla Chabuca con cinemática normal en este estudio se tiene a la Falla Carmen y Falla Esperanza. Tiene dirección de buzamiento promedio de 50° y buzamiento promedio de 50°. Expresado en rumbo y buzamiento: N40°W y 50°NE.

Sistema 3.- En este sistema están definidas las Fallas NE, Falla Lunar con cinemática normal y en este caso de estudio es la Falla San Francisco y Tiene dirección de buzamiento promedio de 324° y buzamiento promedio de 80°. Expresado en rumbo y buzamiento: N54°E y 80°NW.

Sistema 4.- Con dirección de buzamiento promedio de 130° y buzamiento promedio de 60°. Expresado en rumbo y buzamiento: N50°E y 60°SE. En este sistema se presenta fallas de menor continuidad.

Figura 31: Diagrama de polos, contornos y círculos máximos de estructuras. FUENTE: Elaboración propia.

Las estructuras mayores más importantes del área de estudio, Falla Carmen y Falla Esperanza y se muestran en los planos estructurales (planos 4 y 5). Estas pertenecen al Sistema 2 de discontinuidades estructurales y deberán ser consideradas como estructuras particulares en el modelamiento geomecánico. El Sistema 3, en general presenta las Falla San Francisco de importancia para el modelamiento por la potencia de estas en algunas zonas llegan a los 1 metro. y el Sistema 4 estas son fallas

perpenticulares al Sistema 2 de poca potencia 10 cm. Pero deberá ser considerado como factor influyente.

Estructuras menores

Como estructuras menores aquí se agrupan principalmente por foliación, diaclasas, vetillas, fracturas presentes en toda el área de estudio. En la figura 32, se muestra el diagrama estereográfico de polos, de contornos y de círculos máximos de las 40 estaciones geomecánicas. Se puede apreciar en este caso, que están muy bien definidos cinco sistemas típicos de discontinuidades estructurales menores.

Sistema 1.- Tiene dirección de buzamiento promedio de 190° y buzamiento promedio de 22°. Expresado en rumbo y buzamiento: S80°E y 22°SW precedentemente definido para el compósito foliación.

Sistema 2.- Conformado mayormente por diaclasas y fracturas. Tiene dirección de buzamiento promedio de 67° y buzamiento promedio de 74°. Expresado en rumbo y buzamiento: N23°W y 74°NE.

Sistema 3.- Conformado principalmente por diaclasas, fracturas y fallas y otros tipos de discontinuidades. Tiene dirección de buzamiento promedio de 324° y buzamiento promedio de 80°. Expresado en rumbo y buzamiento: N54°E y 80°NW.

Sistema 4.- Conformado principalmente por diaclasas, fracturas. Tiene dirección de buzamiento promedio de 130° y buzamiento promedio de 64°. Expresado en rumbo y buzamiento: N40°E y 64°SE.

Sistema 5.- Tiene dirección de buzamiento promedio de 177° y buzamiento promedio de 79°. Expresado en rumbo y buzamiento: N87°E y 79°SE. Conformado principalmente Fracturas y Diaclasas.

Figura 32: Diagrama de polos, contornos y círculos máximos de estructuras.

FUENTE: Elaboración propia.

3.6.4. Caracterización de las discontinuidades

Las características estructurales de las discontinuidades se han establecido mediante análisis estadístico de la información registrada en los mapeos geomecánicos se muestran en el Anexo 1 de Mapeos geomecánicos de la masa rocosa, la que se trató de compatibilizar con las observaciones in-situ. Según esto, las siguientes son las principales características estructurales de las discontinuidades identificadas como sistemas de estructuras geológicas:

Foliación, Estas discontinuidades por lo general presentan espaciamientos de 5 cm a 60 cm, persistencias de más de 20 m, aperturas menores a 1 mm, paredes ligeras a moderadamente rugosas, en la mayoría sin rellenos con espesores generalmente menores de 1 mm, en ciertos casos algo mayores llegando hasta 1 cm, sanas a ligeramente intemperizadas y condiciones de agua subterránea de secas a húmedas.

Fallas, Las fallas del Sistema 2 tienen espaciamientos por lo general de más 200 m, en las pizarras y cuarcitas. La persistencia es de cientos de metros y en algunos casos miles de metros. Las Falla San Andrés, Falla Carmen, Falla Esperanza y Falla Tentadora, de este sistema tienen carácter regional, estas estructuras son favorables a las filtraciones de agua subterránea, puesto que se observa en algunas de ellas condiciones de goteo y están rellenadas con materiales de brechas, panizo, mineral, cuarzo. Las fallas del Sistema 3,4 y 5 tienen apertura de 0.10 m a 2 m, la persistencia en estas fallas es menor que la del Sistema 2. En general, estas estructuras principales están en muchas de ellas no rellenadas y otras con relleno con materiales de brechas, panizo, mineral, carbonatos, sulfatos y materiales oxidados, con espesores mayormente entre 0.10 y 2 m. Las superficies de las caras son lisas a ligeramente rugosas. Estas estructuras son favorables a las filtraciones de agua subterránea, puesto que se observa en algunas de ellas condiciones de agua subterránea, puesto que se observa en algunas.

Diaclasas, Estas discontinuidades se presentan generalmente asociadas a los sistemas de fallas. Tienen espaciamientos generalmente de 0.10 a 60 cm; persistencias de 10 a 20 m; aperturas < 5 mm; paredes ligeramente rugosas a lisas; con aperturas cerradas con espesores generalmente < 1 mm; superficies sanas a ligeramente alteradas; y condiciones de agua subterránea secas.

Vetillas, pertenecen al Sistema 4, con una continuidad de más de 20 m y espaciados variables 0.10 a 50 m y ligeramente onduladas con relleno de cuarzo con aperturas de 5cm y condiciones de agua secas.

Manto, Es el dominio estructural más importante, que sirvió de base para realizar la zona de investigación. Tiene la característica de tener una orientación de 70 a

80°SE y un buzamiento de 22 hacia el SW y tiene la formación de tener una interrelación de cuarcita, pizarra.

3.6.5. Caracterización de la masa rocosa

Para la caracterización del macizo rocoso se realizó en todas las labores mineras como son los Tajeos, Inclinados, Subniveles, Galerías del método de minado por gradines invertidos para su estadística de los datos y se realizó histogramas y polígonos de frecuencia normalizados con el programa Minitab 17.0, de acuerdo a la data obtenida de los Anexos 1 Mapeos geomecánicos de la masa rocosa, de los datos que existen de las fichas de estaciones geomecánicas. Los valores tomados para la realización de los histogramas fueron realizados según la frecuencia en la cual estos valores se presentan en las fichas geomecánicas con relación a distintos intervalos ya estandarizados por la ISRM de cada uno de los parámetros que caracterizan a las estructuras como; espaciado, persistencia, rugosidad, apertura, relleno, presencia de agua en discontinuidades y la resistencia de las paredes de las discontinuidades.

Espaciamiento

Se presenta un histograma en la figura 33, con los espaciados de todas las discontinuidades caracterizadas en las fichas geomecánicas del área de investigación, en mayor ocurrencia las describimos con un espaciado moderado dentro de un intervalo de 0.20 a 0.60 m, y en segundo lugar el espaciado 0.06 a 0.2 m, tomamos en consideración que estos espaciados limitan bloques de tamaño medio que podrían ocasionar problemas de desprendimiento de bancos.

Figura 33: Histograma del espaciado de las discontinuidades. FUENTE: Elaboración propia.

Persistencia

La persistencia de las estructuras se presenta un histograma en la figura 34, de mayor frecuencia corresponden a una persistencia media en un intervalo de 10 a 20 m de longitud, siendo estas medidas de importancia considerable para la determinación de los tamaños de bloque a caer más frecuentes. La presencia de persistencias mayores de > 20 m. es mayormente de la foliación de las rocas y otras estructuras como las fallas.

Figura 34: Histograma de las medidas de persistencia de las estructuras.

FUENTE: Elaboración propia.

Apertura

La figura 35 se presenta un histograma de las aperturas de todas las discontinuidades caracterizadas en las estaciones geomecánicas. En la cual la frecuencia de apertura para los diferentes intervalos dados en las estructuras presentes es cerrada de la foliación y diaclasas y en segundo grado con aperturas de 1 a 5 mm, y en menor grado principalmente por fallas y fracturas con aperturas mayores a 5 mm.

Figura 35: Histograma de la apertura de las discontinuidades.

FUENTE: Elaboración propia.

Rugosidad

La figura 36 nos presenta un histograma de la rugosidad. Las superficies ligeramente rugosas tienen mayor ocurrencia y en segundo lugar las superficies rugosas en todos los sistemas de discontinuidad, teniendo también superficies lisas y espejo de falla en algunas discontinuidades esto en menor medida.

Figura 36: Histograma de la rugosidad de las estructuras.

FUENTE: Elaboración propia.

Este parámetro es muy importante por la estabilidad estructural del macizo rocoso presente en las excavaciones. Relacionándose a dos parámetros de estabilidad, el ángulo de fricción y la cohesión.

Relleno

En el área de estudio predomina los rellenos limpios o nada de relleno como se aprecia en el histograma de relleno en la figura 37, en el segundo rango están los rellenos duros menores a 5 mm, conformado principalmente por las vetillas y otras discontinuidades no dejando de considerar en algunas juntas rellenos blandos mayores a 5 milímetros que generan más problemas de estabilidad en la excavación principalmente por fallas y fracturas.

También es importante recordar que como los rellenos se encuentran en las aperturas de las discontinuidades, cuando no existe apertura no hay presencia de relleno alguno y estas estarán en relación al número de aperturas cerradas presentes en el área.

Figura 37: Histograma de los tipos y dimensiones de rellenos.

FUENTE: Elaboración propia.

Meteorización

Se presenta un histograma de la figura 38, con los valores de meteorización de juntas de todas las discontinuidades caracterizadas en las fichas geomecánicas, estas presentan alteraciones en las superficies de las discontinuidades de mayor frecuencia sanas o grado I, en segundo grado II en el cual las caras de las juntas están manchadas, por otra parte, algunas juntas también se encuentran en un grado de alteración III que corresponde a superficies moderadamente meteorizadas.

Figura 38: Histograma de grados de meteorización de las juntas.

FUENTE: Elaboración propia.

Agua

Consideramos ligeramente húmedas y en algunos casos son secas. El Histograma de frecuencias de la figura 39, Nos muestra las condiciones de presencia de agua en las excavaciones, siendo las condiciones presentes de ligeramente húmedo secas las que predominan en mayor cantidad.

Figura 39: Histograma de la presencia de agua.

FUENTE: Elaboración propia.

3.7. CLASIFICACIÓN GEOMECÁNICA DE LA MASA ROCOSA

Para la clasificación por métodos empíricos del macizo rocoso se utilizaron los criterios de clasificación geomecánica RMR de Bieniawski de 1989 y el Sistema Q de Barton de 1974 y Adicionalmente, se usó el GSI de Hoek y Marinos del 2000, para estimar las propiedades de resistencia del macizo rocoso.

En el Anexo 1 Mapeos geomecánicos de la masa rocosa se muestra la data y el cálculo de la clasificación geomecánicas por métodos empíricos y en el plano 6, se muestran las estaciones geomecánicas de la zona de estudio.

La resistencia compresiva de la roca intacta, fueron obtenidos conforme a los procedimientos señalados según las normas ISRM. El RQD de la roca fueron obtenidos mediante el registro lineal de discontinuidades, utilizando la relación propuesta por (Priest y Hudson, 1976), teniendo como parámetro de entrada el fracturamiento por metro lineal.

$$RQD = 100 \times e^{-0.1\lambda} \times (0.1\lambda + 1)$$

Dónde:

 $\lambda =$ Nro. De Fisuras / metro = 7

$$RQD = 100 \times e^{-0.1X7} \times (0.1X7 + 1)$$

 $ROD = 84\%$

Los resultados del cálculo del RQD se presentan en los mapeos de campo en el Anexo 1 Mapeos geomecánicos de la masa rocosa dando un promedio de 84 % para el caso de estudio.

3.7.1. Clasificación geomecánica RMR

Los resultados obtenidos de los valores de RMR obtenidos de las 40 estaciones geomecánicas se muestran en el Anexo 1 Mapeos geomecánicos de la masa rocosa y en plano 6. Toda el área de estudio se resumen en un análisis estadístico en la figura 40, de la gran cantidad de datos ejecutados in-situ en las diferentes estaciones geomecánicas, da un valor más representativo de toda el área de estudio.

Figura 40: Polígono de frecuencias normalizada de la clasificación RMR. FUENTE: Elaboración propia.

Se presentan en un polígono de frecuencias normalizado, este representa que nuestros valores de RMR, teniendo como promedio un RMR igual a 55 y una desviación estándar de 4.9 siendo este poco variable y representa mejor el compósito del área de estudio.

3.7.2. Clasificación geomecánica Q

En el análisis estadístico en la figura 41 se resumen los resultados obtenidos de los valores de Q obtenidos de las 40 estaciones geomecánicas en algunos casos se usó la correlación con respecto al RMR y se muestran en el Anexo 1 Mapeos geomecánicos de la masa rocosa, se presentan en un polígono de frecuencias normalizado, este representa

que nuestros valores de Q, teniendo como promedio de Q igual a 4 y una desviación estándar de 1.5.

Figura 41: Polígono de frecuencias normalizada de la clasificación Q. FUENTE: Elaboración propia.

3.7.3. Índice de resistencia geológica GSI

El dato se obtuvo por la evaluación en situ con las cartillas del GSI y también se obtuvieron con relación al RMR, para lo cual se consideró la recomendación de (Hoek, 2006), donde el GSI = RMR – 5. Los resultados obtenidos de los valores de GSI obtenidos de la correlación con el RMR están en el Anexos 1 Mapeos geomecánicos de la masa rocosa y plano 6, y en la figura 42, se presentan en un polígono de frecuencias normalizado, este representa que nuestros valores de GSI teniendo como promedio un GSI igual a 50 con desviación estándar 6.0 siendo esta medianamente variable con un mínimo de 37 y un máximo de 60 para un intervalo de confianza de 95 %.

Figura 42: Polígono de frecuencias normalizada de la clasificación GSI. FUENTE: Elaboración propia.

3.8. ZONIFICACIÓN GEOMECÁNICA DE LA MASA ROCOSA

Para la aplicación racional de los diferentes métodos de cálculo de la mecánica de rocas, es necesario que la masa rocosa bajo estudio esté dividida en áreas de características estructurales y mecánicas similares, Por ello, es práctica común para el análisis de excavaciones subterráneas delimitar el área de estudio en zonas geomecánicas o dominios estructurales.

Como los principales tipos de rocas son la pizarra con intercalaciones de cuarcita. Luego hay una zonificación geomecánica o dominio estructural. Este es el criterio de la zonificación geomecánica adoptado para el presente caso de estudio. Con las consideraciones dadas, se ha hecho una zonificación tridimensional del área de

estudio se muestra en el plano 6, la zonificación o dominio geomecánico en las y en la

figura 43 se muestra el zoneamiento o dominio geomecánico de tipo III.

Figura 43: Zoneamiento del área de investigación.

FUENTE: Elaboración propia.

3.9. RESISTENCIA DE LA ROCA

3.9.1. Resistencia de la roca intacta

Los valores de σ c fueron obtenidos mediante los siguientes procedimientos:

- Ensayos in-situ de impacto con el martillo Schmidt de dureza y martillo de Geólogo, durante los trabajos de mapeo geotécnico de exposiciones rocosas subterráneas, siguiendo las normas ISRM.
- Ensayos de laboratorios de reportes pasados.

Universidad Nacional del Altiplano

Ensayos con el Martillo Schmidt

En el Anexo 1 Mapeos geomecánicos de la masa rocosa se muestran los datos obtenidos y se han realizado ensayos con el Martillo Schmidt, a fin de estimar la resistencia compresiva uniaxial de la roca intacta. De los datos obtenidos de la gran cantidad de ensayos ejecutados in-situ en las diferentes estaciones geomecánicas, da un valor más representativo de toda el área de estudio ver figura 44.

Figura 44: Polígono de frecuencias normalizado con el martillo Schmidt.

FUENTE: Elaboración propia.

Los resultados obtenidos de los ensayos de compresión uniaxial en toda la zona de estudio se presentan en un polígono de frecuencias normalizado, con un mínimo de 70 MPa y un máximo de 100 MPa y teniendo como valor promedio de la resistencia a la compresión simple 85 MPa, con una desviación estándar de 6.92 es decir existe poca variabilidad con los valores obtenidos de la toma de muestra, esto determina que hay poca varianza en el macizo rocoso.

Ensayos en laboratorio de mecánica de rocas

En estudios pasados se realizarán ensayos de compresión uniaxial en el Laboratorio de Mecánica de Rocas. En la tabla 20 se presenta los resultados de los ensayos de laboratorio referidos a la resistencia compresiva no confinada de las rocas intactas involucradas en el área estudio.

Tabla 20: Resistencia compresiva no confinada de la roca intacta.

Muestra	Litología	σc (MPa)
M-1	Pizarras - Cuarcita	88
M-2	Pizarras - Cuarcitas	85

FUENTE: Reportes pasados CMASA.

Estudios pasados, para lo cual se realizaron ensayos de compresión triaxial de esta fuente de información se ha extraído los datos que se presentan en la siguiente tabla 21.

Tabla 21: Resultados de los ensayos de compresión triaxial de la roca intacta.

				Cohesión	Angulo de fricción
Muestra	Ubicación	"mi"	σc (MPa)	(MPa)	(°)
Grupo 1	BM - C T	9.076	88	18.48	53.23
Grupo 2 M-2	BM –SA	6.636	65	13.42	45.12

FUENTE: Reportes pasados de CMASA.

Con los ensayos de compresión triaxial, se han obtenido además de la resistencia compresiva no confinada de la roca intacta, valores de la constante "m_i" del criterio de

falla de Hoek y Brown y los parámetros de resistencia al corte de Mohr Coulomb: cohesión y ángulo de fricción de la roca intacta.

3.9.2. Propiedades físicas de la roca intacta

Finalmente, como parte del conocimiento de las propiedades físicas de la roca intacta se llevaron a cabo también en laboratorio de mecánica de rocas los respectivos ensayos. Los resultados se presentan en la tabla 22.

 Tabla 22: Ensayos de propiedades físicas.

Muestra	Litología	Porosidad	Absorción	Densidad seca
		Aparente (%)	(%)	(g/cm3)
M-1	Pizarras	1.261	0.461	2.737
M-2	Cuarcitas	0.950	0.346	2.744

FUENTE: Reportes pasados CMASA.

3.9.3. Resistencia de las discontinuidades

Para el criterio de análisis de estabilidad controlado por discontinuidades es importante conocer las características de resistencia al corte de las discontinuidades, ya que éstas constituyen superficies de debilidad de la masa rocosa y por tanto planos potenciales de falla.

La resistencia al corte en este caso está regida por los parámetros de fricción y cohesión de los criterios de falla Mohr-Coulomb. Los parámetros fueron determinados mediante los ensayos de corte directo en laboratorio de mecánica de rocas.

Respecto a los ensayos de corte directo sobre discontinuidades, los resultados de estos son presentados y un resumen de los mismos en la tabla 23, donde se muestra la cohesión y ángulo de fricción de discontinuidades simuladas con corte paralelos a la foliación.

Muestra	Descripción	Cohesión (MPa)	Angulo de fricción
M-2	Cuarcitas	0.09	35.03
M-3	Pizarras	0.05	35.19
ELIENTE, Demontres mas	adaa CMASA		

 Tabla 23: Resultados de ensayos de corte directo en discontinuidades.

FUENTE: Reportes pasados CMASA.

3.10. RESISTENCIA DE LA MASA ROCOSA

Con el propósito de realizar el dimensionamiento y análisis de estabilidad de los tajeos, las propiedades de resistencia de la masa rocosa referidas a la compresión, tracción y parámetros de corte, y constantes elásticas, fueron estimadas aplicando el criterio de falla de Hoek y Brown, el cual está implementado en el programa de cómputo RockData Versión 3.0, se presentan los resultados de los cálculos.

3.10.1. Criterio de Falla de Hoek-Brown Aplicado a la Estabilidad

Donde σ'_1, σ'_3 son las tenciones efectivas axiales y de confinamiento principal respectivamente son los esfuerzos principales efectivos en la condición de falla, σ_{ci} es la resistencia en compresión uniaxial de la roca intacta, y m_b, s y a son parámetros que dependen de las características del macizo rocoso y cuyo cálculo se detalla más adelante:

$$\sigma'_{1} = \sigma'_{3} + \sigma_{ci} \left(m_{b} \frac{\sigma'_{3}}{\sigma_{ci}} + s \right)^{a}$$

Una vez definido los parámetros de entrada, se procede a determinar los factores del criterio de falla.

Los parámetros m_b , s y a, se calculan mediante las siguientes formulas aplicables a macizos rocosos disturbados y no disturbados donde el GSI es el índice geológico de resistencia, m_i es la constante de la roca intacta, la cual fue estimada

mediante los ensayos de compresión triaxial, D es un factor de daño que depende del grado de alteración al cual el macizo rocoso estaría expuesto por defecto de la voladura y relajación de las tensiones de campo. En la tabla 24 se muestran los parámetros.

Tabla 24: Promedio de parámetros de la roca intacta.

Tipo de roca	"mi"	GSI	σc (MPa)	D	Densidad seca (g/cm3)
III	9.076	50	85	0.2	2.737

FUENTE: Elaboración propia.

Calculando factor m_b :

$$m_b = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right)$$

$$m_b = 9.076 exp\left(\frac{50 - 100}{28 - 14 \times 0.2}\right)$$

$$m_b = 1.248$$

Calculando factor *s*:

$$s = exp\left(\frac{GSI - 100}{9 - 3D}\right)$$
$$s = exp\left(\frac{50 - 100}{9 - 3 \times 0.2}\right)$$
$$s = 0.0026$$

Calculando factor *a*:

$$a = \frac{1}{2} + \frac{1}{6} \left(e^{\frac{-50}{15}} - e^{\frac{-20}{3}} \right)$$

a = 0.506

El criterio también permite realizar una estimación de la resistencia a la compresión uniaxial del macizo rocoso UCS_{rm} y resistencia a la tracción del macizo rocoso σ_{trm} : tomando el confinamiento σ'_3 igual a 0 se tiene que:

Calculo dela resistencia a la compresión uniaxial del macizo rocoso UCS_{rm}:

 $\sigma_{c} = \sigma_{ci} \cdot s^{a}$ $\sigma_{c} = 85 \times 0.0026^{0.506}$ $\sigma_{c} = 4.188 MPa$

Cálculo dela resistencia a la tracción del macizo rocoso $\sigma_{t^{\rm rm}}$:

$$\sigma_t = -\frac{s\sigma_{ci}}{m_b}$$
$$\sigma_t = -\frac{0.0026 \times 85}{1.248}$$
$$\sigma_t = -0.1771 MPa$$

Cálculo para estimar la razón de Poisson del macizo rocoso, vm:

$$v_m = 0.4 - \frac{GSI^{0.7}}{100}$$
$$v_m = 0.4 - \frac{50^{0.7}}{100}$$

 $v_m = 0.24$

En figura 45, también se muestran los mismos resultados de los cálculos de la resistencia de la masa rocosa en el programa de cómputo RockData Versión 3.0.

Repositorio Institucional UNA-PUNO

Figura 45: Resistencia de la masa rocosa.

FUENTE: Elaboración propia.

Para ello se tomaron los valores promedios de calidad de la masa rocosa involucrada con el dominio estructural, del resultado se tiene el módulo de deformación de la masa rocosa "Emr" (GPa) es 8.297, la relación de Poisson de la masa rocosa "vmr"0.24, la cohesión de la masa rocosa "Cmr" (MPa) es 1.32 y el angulo de fricción de la masa rocosa "φmr" (°) 42.23, los cálculos se resumen en la tabla 25.

Tabla 25: Promedios de datos de la resistencia del macizo rocoso.

Dominio	m _b	a	S	Emr (GPa)	vmr	Cmr (MPa)	Φmr (°)
III	1.24	0.5	0.0026	8.297	0.24	1.32	42.23

FUENTE: Elaboración propia.

3.11. ESFUERZOS IN-SITU

Las zonas de investigación se encuentran a poca profundidad de 300 m, por lo que se espera que los esfuerzos in-situ serán de magnitud relativamente pequeños. Para propósitos de analizar los esfuerzos y las deformaciones alrededor de las excavaciones subterráneas, se ha estimado el esfuerzo vertical a partir del criterio de carga litostática (Hoek & Brown, 1980). Ver figura 46, considerando una sobrecarga rocosa de 300 m. y la constante de roca o material subreyacente es 0.027.

$$\sigma_{\rm v} = \boldsymbol{\rho} \cdot \mathbf{g} \cdot \mathbf{h}$$

Remplazando:

$$\sigma_v = 0.027x300$$
$$\sigma_v = 8.1$$

Según este criterio, el esfuerzo vertical in-situ resulta aproximadamente 8.1 MPa.

Figura 46: Mediciones de esfuerzos verticales en proyectos de ingeniería.

FUENTE: Hoek y Brown, (1980).

La constante "k" (relación de los esfuerzos horizontal a vertical) para determinar el esfuerzo in-situ horizontal, fue estimada utilizando el criterio de Sheorey, (1994). Considerando un módulo de deformación de 8.29 GPa para la pizarra con intercalaciones de cuarcitas.

$$k = 0.25 + 7E(GPa)\left(0.001 + \frac{1}{h(m)}\right)$$

Remplazando

$$k = 0.25 + 7 \times 8.29 \left(0.001 + \frac{1}{300} \right)$$

$$k = 0.5$$

Según esto k es aproximadamente = 0.5 y según la tectónica local o la cinemática normal el esfuerzo principal mayor es el esfuerzo vertical ver figura 47.

El esfuerzo horizontal (σh) se usó del criterio de Hoek (1995), se calcula el esfuerzo horizontal con la siguiente formula y el esfuerzo horizontal es de σ_h es de 4.05 MPa.

 $\sigma_{h} = k \times \gamma \times z$ $\sigma_{h} = 0.5 \times 0.027 \times 300$ $\sigma_{h} = 4.05$

En el lugar de estudio el factor de competencia es la relación de la resistencia compresiva uniaxial de la roca intacta / esfuerzo vertical es mayor de 10.4:

Factor de competencia =
$$\frac{UCS}{\sigma_V}$$

Factor de competencia = $\frac{85}{8.1}$
Factor de competencia = 10.4

3.12. DIMENSIONAMIENTO DE LOS TAJOS

Para determinar las dimensiones de los tajos, utilizamos aquí el método empírico de Q de Barton, método basado en el análisis de casos históricos recolectados de minas subterráneas fundamentalmente el criterio para determinar la dimensión del tajeo sin sostenimiento.

3.12.1. Dimensionamiento mediante el índice Q de Barton

Estas incluyen las labores asociadas al minado como los tajos, que son excavaciones temporales del tipo de ingreso de personal, el ESR es de 2 por un criterio conservador y el criterio correlacional entre las clasificaciones geomecánicas del índice RMR y el índice Q, la más utilizada es la propuesta por Bieniawski en 1989.

$$Q = e^{\frac{(RMR-44)}{9}}$$

Para un mínimo de RMR de 44:

$$Q = e^{\frac{(44-44)}{9}}$$
$$Q = 1$$

Para un maximo de RMR de 60:

$$Q = e^{\frac{(60-44)}{9}}$$
$$Q = 5.8$$

Repositorio Institucional UNA-PUNO

Calculo para el dimensionamiento con el Q mínimo:

ancho maxmo
$$= 2 \times ESR \times Q^{0.4}$$

ancho maximo = $2 \times 2 \times 1^{0.4}$

ancho maximo = 4 m

Calculo para el dimensionamiento con el Q máximo:

ancho maximo = $2 \times ESR \times Q^{0.4}$

ancho maximo = $2 \times 2 \times 5.8^{0.4}$

ancho maximo = 8 m

Las aberturas máximas calculadas corresponden a excavaciones sin sostenimiento sistemático para el caso del dimensionamiento máximo de los tajos.

3.13. ANÁLISIS DE ESTABILIDAD POR MÉTODOS EMPÍRICOS

Los métodos de estabilidad gráficos corresponden a una herramienta empírica de diseño en donde se relacionan el tamaño de la geometría excavada, la competencia del macizo rocoso y la estabilidad de la excavación.

3.13.1 Método de análisis de estabilidad de Pakalnis de los tajos

Figura 47: Análisis de estabilidad por método de Pakalnis. FUENTE: Elaboración propia.

Del ploteo de la figura 47, los tajeos para un dimensionamiento de 8 metros y para un índice RMR de 60 se presentan un nivel de estabilidad en zona estable y para un dimensionamiento de 4 metros para un RMR de 44 se presentan en potencialmente inestable.

3.13.2 Método gráfico de análisis de estabilidad de los tajos

La información sobre el arreglo estructural y resistencia de la masa rocosa, los esfuerzos alrededor de la excavación, y el tamaño, forma y orientación de la excavación, es utilizada para determinar si el tajeo dimensionado será estable o inestable.

Los análisis son para anchos de tajos de 8 metros y 4 metros, con longitudes de 10 metros para el método de gradines invertidos, a fin de observar si el diseño cae en la región "estable sin sostenimiento", o en la región "estable con sostenimiento opcional" o "estable con sostenimiento obligatorio", o en la región de "hundimiento" en la tabla 26 se muestran los parámetros para su cálculo.

Tabla 26: Parámetros para el análisis del método gráfico de estabilidad.

Datos	Parámetros
Profundidad	300 m
Peso específico	2.7 TM/m3
Esfuerzo vertical sv	8.1 Mpa
К	0.5
Esfuerzo horizontal	4.05 Mpa
UCS	85 Mpa
Q mínimo	1
Q máximo	5.8

FUENTE: Elaborado por el tesista.

En la tabla 27, se resume las dimensiones de las cámaras de los tajos.

Pared	Ancho (m)	Largo (m)	Área (m2)	Perímetro (m)	R H (m)
Techo	8.0	10.0	80.0	36.0	2.22
Techo	4.0	10.0	40.0	28.0	1.43

FUENTE: Elaboración propia.

El techo tiene radio hidráulico de 2.22 y 1.43, y son las más expuesta a la inestabilidad del macizo rocoso y será esto el caso del análisis de estabilidad de la cámara del tajeo.

Calculo de factor de esfuerzos en la roca A

Dónde:

De la figura 48. Stewart y Forsyth la relación de si/sv es 0.1.

Figura 48: Curva para la estimación de esfuerzo inducido de Stewart y Forsyth FUENTE: Elaboración propia.

En la tabla 28 se resume los datos para el cálculo del factor A

Datos	Datos	Q =5.8	Q =1	Dimensión
Altura	Н	1.8	1.8	m
Ancho	А	8.0	4.0	m
Relación	H/A	0.2	0.5	
Esfuerzo vertical	Sv	8.1	8.1	Mpa
Esfuerzo vertical	sh1	4.05	4.05	Mpa
Factor k	sh1/sv (k)	0.50	0.50	
Relación de Stewart y Forsyth	si/sv	0.1	0.1	
Esfuerzo inducido del techo	Si	0.81	0.81	Mpa
Relación	UCS/si	104.9	104.9	

Tabla 28: Cálculo de parámetros para el dimensionamiento.

FUENTE: Elaboración propia.

Figura 49: Grafico para determinar el factor A. FUENTE: Elaboración propia.

De la figura 49 se determina el factor A en función a la relación UCS/si es de 104.9 y como la relacion es mayor de 10 el factor A es de 1, de las paredes del techo para ambos dimensionamientos.

Calculo del factor B de ajuste por orientación de estructuras

De la figura 50 las discontinuidades más dominante es el Sistema 1, esto representa la foliación de la pizarra y cual tiene un angulo $\alpha = 0$, con respecta a la cara del tajeo de y según la figura el factor B, le corresponde el valor de 0.3 para ambos dimensionamientos.

Figura 50: Grafico para determinar el factor B.

FUENTE: Elaboración propia.

Cálculo del factor C factor de orientación de las paredes

La pared del techo del tajeo tiene una inclinación con respecto a la horizontal de

 30° y de la figura 51 o la formula se calcula el valor de C.

$$C = 8 - 6 \cos(Dip)$$
$$C = 8 - 6 \cos(30)$$
$$C = 2.8$$

El factor C resulta en 2.8 para los dos dimensionamientos

Figura 51. Cálculo según la orientación de las paredes. FUENTE: Elaboración propia.

En la tabla 29 se resumen el cálculo de los factores para el cálculo análisis de estabilidad de las paredes de la cámara del tajeo.

Tabla 29: Resumen de los parámetros calculados
--

Pared	Q	А	В	С
Techo	5.8	1.00	0.3	2.8
Techo	1	1.00	0.3	2.8

FUENTE: Elaboración propia.

Para el cálculo del número de estabilidad de las paredes del tajeo aplicamos la siguiente formula:

$$N = Q' \times A \times B \times C$$

Remplazando los factores de la pared techo:

$$N = 5.8 \times 1 \times 0.3 \times 2.8$$

$$N = 4.8$$

En la tabla 30, se resumen los cálculos para ambos dimensionamientos.

Pared	RH (m)	Q'	А	В	С	N°
Techo	2.2	5.8	1.00	0.3	2.8	4.88
Techo	1.4	1	1.00	0.3	2.8	0.84

Tabla 30: Resumen del número de estabilidad de las paredes del tajeo.

FUENTE: Elaboración propia.

De la tabla 34, el número de estabilidad para ambos dimensionamientos del techo es de 4.8 y 0.84, de los resultados interpolamos en la figura 52 de análisis de estabilidad de las paredes del tajeo.

Figura 52: Análisis de estabilidad de las paredes de la excavación.

FUENTE: Elaboración propia.

Del análisis de estabilidad de las paredes del tajeo y el techo se encuentra en una zona estable para ambos dimensionamientos.

Figura 53: Probabilidad de estabilidad de los tajeos.

FUENTE: Elaboración propia.

133

De la figura 53, se interpola y la probabilidad de estabilidad del tajeo una sección de 8 x 10 metros, es de más del 95% y para una sección

de 4x10 metros, la probabilidad de estabilidad es del 80%.

Figura 54: Probabilidad de falla de los tajeos.

FUENTE: Elaboración propia.

De la figura 54, de su interpolación el techo del tajeo la probabilidad de falla es menos del 10% y menos del 20% de ambos dimensionamientos.

3.14. ANÁLISIS DE ESTABILIDAD POR MÉTODOS NUMÉRICOS

3.14.1. Estabilidad controlada por esfuerzos

Se han efectuado análisis de esfuerzos y deformaciones mediante modelamiento numérico. Los datos de entrada para los programas de cómputo utilizados fueron: la geometría de las excavaciones y los parámetros de comportamiento mecánico de la masa rocosa para el análisis se determinará mediante el software Phase2 8.0.

Para el máximo dimensionamiento de los tajos sin sostenimiento, se analizó la estabilidad controlada por esfuerzo según el criterio del dimensionamiento de Q de Barton.

Para el caso del dimensionamiento de ancho 8 metros

Las salidas mostradas en la figura 55, corresponden a la sección transversal del dimensionamiento del tajeo de 8.0 metros de ancho y de alto de 1.8 metros.

Figura 55: Factor de seguridad para ancho de 8 metros.

FUENTE: Elaboración propia.

Universidad Nacional del Altiplano

Con el criterio del dimensionamiento según Q de Barton para los tajeos, mediante el análisis de estabilidad controlada por esfuerzos por medio de métodos numéricos, los factores de seguridad cerca de las paredes norte y sur son de 1.89 y 1.59 este factor indica que son estables, en cambio en la parte central del tajo el factor de seguridad es de 0.95 el cual indica posible falla del macizo rocoso o inestabilidad de la parte central del tajeo y la altura de la zona plástica es de 2.7 metros.

Para el caso del dimensionamiento de ancho 4 metros

Las salidas mostradas en la figura 56, corresponden a la sección transversal del dimensionamiento del tajeo de 4 metros de ancho y de alto de 1.8 metros.

Figura 56: Factor de seguridad para ancho de 4 metros. FUENTE: Elaboración propia.

Para anchos de 4 metros y un índice de Q de 1, los factores de seguridad cerca de las paredes norte y sur es de 1.58 este factor indica que son estables, en cambio en la parte central del tajo el factor de seguridad es de 0.95 el cual indica posible falla del macizo rocoso o inestabilidad de la parte central del tajeo y la altura de la zona plástica es de 1.7 metros.

3.15. ESTABILIDAD ESTRUCTURALMENTE CONTROLADOS

3.15.1. Análisis de estabilidad de cuñas

La información utilizada para el análisis fue la siguiente: distribución de las discontinuidades de estructuras más dominantes del área de investigación del macizo rocoso, espaciados de los sistemas de discontinuidades y resistencia al corte de las mismas, considerando las contribuciones friccional y cohesional de las discontinuidades.

En la figura 57, se muestra el escenario más desfavorable de intersección de discontinuidades y como se muestra en los planos estructurales:

Figura 57: Zona más crítica del área de estudio.

FUENTE: Elaboración propia.

En la tabla 31 se muestran el resultado de las discontinuidades para el análisis estabilidad estructuralmente controlado.

Tabla 31: Sistemas de discontinuidades del macizo rocoso que generan cuñas.

Labor	Sistema 1	Sistema 2	Sistema 3	Sistema 4
Tajeo	190°/22°	050°/74°	340°/80°	140°/60°

FUENTE: Elaboración propia.

Análisis de cuñas para anchos de 4 a 8 metros

Figura 58: Combinación de sistemas de discontinuidades.

FUENTE: Elaboración propia.

Para el caso del tajeo dimensionamiento, las cuñas más significativas ocurren y de estos se puede ver en la siguiente figura 59, las dimensiones del tajeo en sección trasversal es de ancho de 8 metros y alto de 1.8 metros.

Figura 59: Análisis de cuñas del tajeo.

FUENTE: Elaboración propia.

En la parte techo la cuña 8, con un volumen de 1.350 m3 y con un factor de seguridad (FS) de 0.618, el cual indica condiciones potencialmente inestables. Estas

cuñas podrían caer desde el techo, para la cuña 7 su factor de seguridad es de (FS) de 8.97 encontrándose en una zona estable.

En el dimensionamiento de los tajos hay una serie de otras cuñas menores de las demás combinaciones de sistemas de discontinuidades los cuales son estables, En relación al sostenimiento se deberá diseñar el sostenimiento para casos puntuales para las cuñas inestables.

3.16. TIEMPO DE AUTOSOSTENIMIENTO

El sistema RMR propuesto por Bieniawaski en 1984 presenta un ábaco ver figura 60, que correlaciona la abertura o ancho de la excavación (span o claro activo) con el tiempo de auto- sostenimiento (stand-up time). Según este ábaco, para el caso de los tajeos dimensionados con el criterio de Barton, tienen un rango de RMR de 44 - 60, se tiene un tiempo de auto sostenimiento que va de tres días a más de un mes.

Figura 60: Tiempo de autosostenimiento de los tajeos.

FUENTE: Bieniawaski (1989).

3.17. SOSTENIMIENTO CON EL ÍNDICE DE BARTON (Q)

Los requerimientos de sostenimiento para los dimensionamientos de los tajeos se presentan en la gráfica de Barton en la figura 61. En este se determina la dimensión equivalente, De, versus el valor de Q, quedando definidas las categorías de soporte en el gráfico considerando un ESR de un aproximado de 2, para los tajeos para una labor temporal.

Dimensión equivalente para anchos de 8 metros:

 $De = \frac{luz, \ diametro \ o \ altura \ de \ la \ excavacion \ (m)}{ESR}$ $De = \frac{8}{2}$ De = 4

Dimensión equivalente para anchos de 4 metros:

$$De = \frac{4}{2}$$

De = 2

Repositorio Institucional UNA-PUNO

FUENTE: Barton, Lien, y Lunde, (1974).

No olvide citar esta tesis

Repositorio Institucional UNA-PUNO

De la interpolación de la figura 61, se determina que no se requiere sostenimiento para ambos dimensionamiento.

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1. CARACTERIZACIÓN DE LA MASA ROCOSA

En la zona de investigación en el método de minado por gradines invertidos se presentan rocas metamórficas principalmente por pizarras con intercalaciones de cuarcitas, cortando a estas rocas se observa la presencia de rocas intrusivas conformadas por diques. Ver plano estructural, planos 4 y 5.

Se presentan típicamente cinco sistemas de discontinuidades estructurales. En la tabla 32 se resumen los resultados de los sistemas de discontinuidades o familias de juntas están muy bien desarrolladas en la roca pizarra con intercalaciones de cuarcitas.

Tabla 32: Resultado de sistemas de discontinuidades del área de investigación.

Sistema 1	Sistema 2	Sistema 3	Sistema 4	Sistema 5
S80°E/22°SW	N23°W/74°NE	N54°E/80°NW	N40°E/64°SE	N87°E/79°SE
100°/22°	157°/74°	54°/80°	40°/64°	87°/79°

FUENTE: Elaboración propia.

El Sistema 1 está como foliación mejor desarrollado en las rocas pizarras. El Sistema 2 se manifiesta de mayor importancia por presentar fallas paralelas al dique y vetas como son Falla Esperanza y Falla Carmen.

El rumbo de las discontinuidades del Sistema 3,4 y 5 se presenta aproximadamente perpendicular a los rumbos de las discontinuidades de los Sistemas 2. Los Sistemas 3 y 5 se presentan con buzamientos opuestos y se manifiesta con la Falla San Francisco.

Hasta aquí queda definido claramente el arreglo estructural de la masa rocosa. Esta información posteriormente será utilizada para evaluar la estabilidad de las excavaciones controladas por este arreglo estructural.

El resultado de la información registrada en el mapeo geomecánica del área de investigación, las siguientes son las principales características de los aspectos estructurales de las discontinuidades tanto mayores como menores:

Discontinuidades mayores (fallas)

Las fallas tienen espaciamientos por lo general de mayores a 200 m, La persistencia es de cientos de metros. Las Falla Esperanza, Falla San Francisco, tienen apertura de 0.10 m a 0.3 m, en general, estas estructuras principales están en muchas de ellas no rellenadas y otras con relleno con materiales de brechas, panizo, mineral, carbonatos, sulfatos y materiales oxidados, con espesores mayormente entre 0.10 y 0.3 m. Las superficies de las caras son lisas a ligeramente rugosas

Discontinuidades menores (foliación, Mantos)

Sus características estructurales son: espaciamientos comprendidos generalmente entre 6 y 60 cm, la persistencia es más de 20 m o incluso mayores, apertura variable menor a 1 mm, con paredes ligeramente rugosas, el relleno es suave con presencia de arcilla y en algunos tramos hay relleno duro, las paredes de las discontinuidades están ligeramente alteradas, con presencia de humedad y encontrándose en algunos casos con superficies secas a húmedas.

Discontinuidades menores (diaclasas, vetillas)

Estas discontinuidades se presentan generalmente asociadas a los sistemas de fallas tienen espaciamientos generalmente de 0.10 a 0.3 m y persistencias de 2 a 20 m
con aperturas < 5 mm y paredes ligeramente rugosas a lisas con espesores generalmente < 5 mm con superficies sanas a ligeramente alteradas y condiciones de agua subterránea secas y humedas.

4.2. CLASIFICACIÓN GEOMECÁNICA DE LA MASA ROCOSA

En la tabla 33 se resumen los resultados del análisis estadístico de las clasificaciones geomecánicas de las labores de la zona de investigación, resultando en clasificación de roca regular.

Tabla 33: Rango de la clasificación de la masa rocosa.

Zona	Rango de RMR	Rango de Q	Tipo de roca	Calidad de roca
San Antonio	44 - 60	1-5.8	III	Regular
ELIENTE: Eleborogión promis				

FUENTE: Elaboración propia.

En la siguiente tabla 34 se resumen los resultados de la media de las clasificaciones geomecánicas del área de investigación.

Tabla 34: Promedio de la clasificación geomecánica de la masa rocosa.

Tipo de roca	Promedio	Promedio	Promedio	Tipo de	Calidad de roca
	RMR	Q	GSI	Roca	
Piz. y Cua.	55.32	4.01	50	III	Regular

FUENTE: Elaboración propia.

En cuanto a las características de clasificación geomecánica de la pizarra con intercalaciones de cuarcita nos da un resultado de un tipo calidad de roca regular y por la cantidad de datos y su tratamiento estadístico representa mejor la calidad del macizo rocoso del área de investigación.

4.3. ZONIFICACIÓN GEOMECÁNICA DE LA MASA ROCOSA

Según los resultados del análisis de distribución de discontinuidades y los resultados de la clasificación de la masa rocosa, se muestra en el plano 6 de zonificación o dominio geomecánico, para la zonificación geomecánica y un resumen de toda la zona de estudio se muestran los mismos en la tabla 35.

Tabla 35: Zonificación geomecánica de la masa rocosa.

Dominio	Tipo de roca	Rango de RMR	Calidad rocosa
III	Pizarra y Cuarcitas	44-60	Regular

FUENTE: Elaboración propia.

El resultado es de una calidad rocosa de tipo regular y dominio geomecánico III, este resultado será fundamental para el dimensionamiento de tajeos.

4.4. PROPIEDADES FÍSICO MECÁNICAS DE LA ROCA

4.4.1. Resistencia de la roca intacta con Martillo Schmidt

Los resultados obtenidos del análisis estadístico de toda la data de los ensayos de compresión uniaxial con un mínimo de 70 MPa y un máximo de 100 MPa y teniendo como valor promedio de la resistencia a la compresión simple 85 MPa, con una desviación estándar de 6.92 es decir existe poca variabilidad con los valores obtenidos de la toma de muestra, esto determina que hay poca varianza en el macizo rocoso y resumen los resultados en la tabla 36, según el valor promedio consideramos que esta roca es dura.

Tabla 36: Resultados de los promedios de ensayos con el martillo Schmidt.

Zona	Litología	Rango IR	σc (MPa)
San Antonio	Pizarras y Cuarcitas	37	85

FUENTE: Elaboración propia.

4.4.2. La resistencia con ensayos en laboratorio de mecánica de rocas

En la tabla 37 y 38, se presenta un resumen de los resultados de los ensayos de laboratorio referidos a la resistencia compresiva no confinada de las rocas intactas involucradas en el área estudio.

Tabla	37:	Resis	stencia	compresiva	no confinada	de la	roca intacta.

Muestra	Litología	σc (MPa)
M-1	Pizarras - Cuarcita	88
M-2	Pizarras - Cuarcitas	85

FUENTE: Reportes pasados.

Tabla 38: Resultados de los ensayos de compresión triaxial de la roca intacta.

Muestra	Ubicación	"mi"	σ _c (MPa)	Cohesión	Angulo de
Grupo 1	BM - C T	9.076	85	18.48	53.23
FUENTE: Reportes pasados					

ENTE: Reportes pasados.

Todos estos parámetros para la roca intacta y que son utilizados para estimar los parámetros de resistencia de la masa rocosa y de estos resultados se puede representar en una roca de regular de resistencia.

4.4.3. Propiedades físicas de la roca intacta

En cuanto a estos resultados se resumen los resultados en la tabla 39 y fundamentalmente la densidad seca de la roca es 2.7 TM/M3.

 Tabla 39: Resultados de los ensayos de propiedades físicas.

Muestra	Litología	Porosidad	Absorción	Densidad seca
		Aparente (%)	(%)	(g/cm^3)
M-1	Pizarras	1.261	0.461	2.737
M-2	Cuarcitas	0.950	0.346	2.744

FUENTE: Reportes pasados.

4.4.4. Resistencia de las discontinuidades

Los resultados de estos son presentados y un resumen de los mismos en la tabla 40.

 Tabla 40: Resultados de ensayos de corte directo en discontinuidades.

Muestra	Descripción	Cohesión (MPa)	Angulo de fricción
M-2	Cuarcitas	0.09	35.03
M-3	Pizarras	0.05	35.19

FUENTE: Reporte pasados.

Los resultados indican una resistencia regular al corte de las discontinuidades, estos parámetros serán fundamentales para el dimensionamiento de tajeos en el análisis de estabilidad controlado por estructuras.

4.5. RESULTADOS DE RESISTENCIA DE LA MASA ROCOSA

Se presenta los resultados en la tabla 41.

Masa Rocosa	Pizarra-Cuarcita
Rango de RMR	44-60
GSI Promedio	50
Rango de Q	1-5.8
Resistencia compresiva uniaxial de la roca intacta "oc" (Mpa)	85
Constante "mi" de la roca intacta	9.07
Constante "mb" de la masa rocosa	1.24
Constante "s" de la masa rocosa	0.0026
Constante "a" de la masa rocosa	0.506
Resistencia compresiva uniaxial de la masa rocosa " σcmr " (MPa)	4.18
Resistencia a la tracción de la masa rocosa "otmr" (MPa)	-0.179
Módulo de deformación de la masa rocosa "Emr" (GPa)	8.297
Relación de Poisson de la masa rocosa "vmr"	0.24
Cohesión de la masa rocosa "Cmr" (MPa)	1.32
Angulo de fricción de la masa rocosa "omr" (°)	42.23

FUENTE: Elaboración propia.

La propiedad del macizo rocoso se determinó mediante el criterio de falla no lineal, criterio de falla generalizado de Hoek-Brown y criterio lineal de Mohr-Coulomb, los resultados como el módulo de Elasticidad y módulo de Poisson corresponde a un tipo de roca regular. Son parámetros importantes para el análisis de estabilidad controlada por esfuerzos.

4.6. ESFUERZOS IN-SITU

Los resultados se resumen en la tabla 42.

Tabla 42: Calculo de parámetros geomecánicos.

Macizo rocoso de Tajeos	Resultados
Litología	Pizarras y cuarcitas
Profundidad m. (z)	300
Constante de roca γ (MPa)	0.027
Módulo de deformación "Emr" (GPa)	8.297
Constante k	0.5
Esfuerzo vertical es de σ_{ν} (MPa)	8.1
Esfuerzo horizontal es de σ_h (MPa)	4.05

FUENTE: Elaboración propia.

De los parámetros lo cual indica que las condiciones de estabilidad de las excavaciones asociadas al minado, dependerán más del efecto de las discontinuidades o arreglo estructural de la masa rocosa y de los esfuerzos.

Por otro lado, el factor de competencia de 10.1 indica también la escasa necesidad de utilizar sostenimiento, lo cual se cumple en la práctica, ya que en esta zona se utiliza sostenimiento ocasional en las labores mineras.

4.7. DIMENSIONAMIENTO MEDIANTE Q BARTON

Los resultados se resumen en la tabla 43. El dimensionamiento de tajos se analiza sin usar sostenimiento mediante métodos empíricos para labores temporales.

Tabla 43: Dimensionamiento de tajeos sin sostenimiento de los tajeos.

Dominio	Q	ESR	Ancho máximo (m)	Altura (m)
III	1	2	4	1.8
III	5.8	2	8	1.8

FUENTE: Elaboración propia.

Las aberturas máximas mostradas en la tabla 43, corresponde a un dimensionamiento empírico del criterio del Q de Barton, el dimensionamiento calculado es de sin sostenimiento. Los resultados deberán ser validados y ajustados mediante al análisis de estabilidad por el método gráfico, análisis de estabilidad controlado por esfuerzos, análisis de estabilidad estructuralmente controlados.

4.8. ESTABILIDAD POR MÉTODOS EMPÍRICOS

4.8.1. Discusión de análisis de estabilidad de Pakalnis

De la interpolación del grafico de curva de diseño de aberturas, se presentan los resultados en la tabla 44.

Tabla 44:	Estabilidad	por	Pakalnis	de	los	tajeos	dimer	nsionad	los.

Dominio	RMR	Anchos (m)	Condición de estabilidad
III	44	4	Potencialmente inestable
III	60	8	Estable

FUENTE: Elaboración propia.

Del resultado para potencialmente inestable se deberá diseñar un tipo de sostenimiento y para el caso estable no se requiere sostenimiento y estos resultados deberán ser corroborados con los demás análisis.

4.8.2. Discusión del método gráfico de análisis de estabilidad

En la tabla 45, se presentan los resultados.

Pared	Sección (m)	RH (m)	N°	Q'	Condición de estabilidad	Dominio
Techo	8x10	2.2	4.88	5.8	Zona estable	III
Techo	4x10	1.4	0.84	1	Zona estable	III

Tabla 45: Estabilidad por el método gráfico de los tajeos dimensionados.

FUENTE: Elaboración propia.

Para los tajeos dimensionados se presentarán un nivel de estabilidad en zona estable, por lo que no se requerirá necesariamente de la aplicación de elementos de sostenimiento.

Tabla 46: Probabilidad de estabilidad y falla de los tajeos dimensionados.

Pared	RH (m)	N°	Q'	Estabilidad	Probabilidad de estabilidad	Probabilidad de falla
Techo	2.2	4.8	5.8	Zona estable	95%	0 %
Techo	1.4	0.84	1	Zona estable	80%	20 %

FUENTE: Elaboración propia.

En la tabla 46, se muestra el resumen de la probabilidad de estabilidad de los tajeos dimensionados es de más del 80 % y la probabilidad de falla es del 0% al 20%.

4.9. ESTABILIDAD POR MÉTODOS NUMÉRICOS

4.9.1. Discusión de estabilidad controlada por esfuerzos

Tabla 47: Factor de seguridad de los tajos.

Dominio	RMR	Q	Ancho (m)	Alto (m)	Rango F.S	Zona plástica (m)
III	44	1	4	1.8	0.95 – 1.58	1.4
III	60	5.8	8	1.8	0.95 – 1.87	2.7

FUENTE: Elaboración propia.

En la tabla 47, se resumen los resultados de factores de seguridad del techo del tajeo cerca de las paredes norte y sur es de 1.58 a 1.89 este factor indica que son estables y no requerirá sostenimiento, en cambio en la parte central del tajo el factor de seguridad es de 0.95 el cual indica posible falla del macizo rocoso o inestabilidad por lo que se requerirá necesariamente de la aplicación de elementos de sostenimiento y la altura de la zona plástica es de 1.4 a 2.7 metros.

4.10. ESTABILIDAD CONTROLADA POR ESTRUCTURAS

4.10.1. Discusión de estabilidad controlada por estructuras

Del análisis de la estabilidad de las excavaciones, controlada por el debilitamiento estructural de la masa rocosa circundante se resume en la tabla 48.

Ancho (m)	Alto (m)	Cuña	F.S	Volumen (m ³)
4-8	1.8	8	0.618	1.350

FUENTE: Elaboración propia.

Los factores de seguridad (FS) de 0.61, el cual indica condiciones potencialmente inestables. Estas cuñas en el tiempo podrían caer desde el techo y para las demás cuñas de las diferentes paredes los factores de seguridad son altos

encontrándose estas cuñas en una zona estable. Los factores influyentes de formación de cuñas Principales son el Sistema 1, Sistema 2 y Sistema 4. Para la estabilización de las cuñas inestables pueden ser mediante la utilización de diversos sistemas de sostenimiento por ejemplo puntales de seguridad o split set.

4.11. TIEMPO DE AUTOSOSTENIMIENTO

En la tabla 49, se muestra los resultados para los tajeos, con un tiempo de 3 días a 1 mes con el tiempo de auto- sostenimiento (stand-up time).

Tabla 49: Tiempo de autosostenimiento del dimensionamiento de los tajeos.

Dominio	Ancho (m)	RMR	Q	Tiempo de autosostenimiento
III	4	44	1	3 Días
III	8	60	5.8	1 Mes

FUENTE: Elaboración propia.

4.12. DISEÑO DE SOSTENIMIENTO

Dominio	Ancho (m)	Q	Pakalnis	Mathews	Numericos	Cuñas
III	4	SS	CS	SS	CS	SS
III	8	SS	SS	SS	CS	CS

Tabla 50: Tipo de sostenimiento de los tajeos dimensionados.

FUENTE: Elaboración propia.

De los resultados de la tabla 50, se resumen los requerimientos de sostenimiento según diferentes métodos al decir SS es de sin sostenimiento y CS es con sostenimiento, por eso la importancia de tener varios criterios de diseño de sostenimiento, en general la recomendación es de sin sostenimiento o con sostenimiento ocasional el cual deberá ser calibrado por el análisis in situ. Considerando además que el método de minado en el cual se dispondrá de desmonte para su rellenado de los tajeos y pilares por condiciones geológicas y de bajas leyes el cual influirá en el soporte global de los tajeos.

4.13. RESULTADOS PARA EL DIMENSIONAMIENTO

Con la presente investigación se ha logrado cumplir los objetivos presentados en la investigación.

El dimensionamiento de tajeos en la presente investigación, es realizado por método empírico usando el criterio de Q de Barton con el cual se dimensiona los tajos sin sostenimiento.

Para el caso de la clasificación geomecánica del macizo el macizo rocoso se ha detallado por estaciones geomecánicas considerando el índice RMR, Q y GSI para su Zoneamiento y diseño de dominio geomecánico del macizo rocoso.

Para el análisis de estabilidad de los tajeos dimensionados, se analizó mediante el criterio de análisis estabilidad empírica de Pakalnis, por el método gráfico estabilidad, análisis de estabilidad controlada por esfuerzo, análisis de estabilidad controlada por estructura, obteniendo resultados variables el cual han sido corroborados en situ y de manera confiable los criterios de estabilidad de la masa rocosa son estables, pero considerando sostenimiento ocasional de las cámaras de los tajos.

En la tabla 51, se resumen los resultados de la investigación.

Parámetros geomecánicos del macizo rocoso)	
RMR (Minimo-Maximo)	44	60
GSI (Promedio)	50	50
Q (Minimo-Maximo)	1	5.8
Resistencia a la compresión simple MPa	85	85
σcmr (MPa)	4.18	4.18
Módulo de deformación "Emr" (GPa)	8,297	8,297
Relación de Poisson "vmr"	0.24	0.24
Cohesión "Cmr" (MPa)	1.32	1.32
Angulo de fricción "ømr" (°)	41.87	41.87
Ancho máximo (m)	4	8
Largo (m)	10	10
Alto (m)	1.8	1.8
Factor de seguridad máximo	1.89	1.59
Factor de seguridad mínimo	0.95	0.95
Factor de seguridad mínima de cuña	0.618	0.618
Condición según método Pakalnis	Pot. Inestable	Estable
Numero de estabilidad	0.84	4.8
Radio hidráulico	1.4	2.2
Condición según método grafico	Estable	Estable
Probabilidad de estabilidad	80%	90%
Probabilidad de falla	20%	10%

Tabla 51: Comparación de resultados de los tajeos dimensionados.

FUENTE: Elaboración propia.

De los resultados, los métodos empíricos combinan la geometría de la excavación, la calidad del macizo rocoso y la resistencia de las discontinuidades, Debido a que estas metodologías tienen ciertas limitaciones, se utiliza el modelamiento numérico para corregirlas, complementar y corroborar los resultados para el dimensionamiento para el cual se realizó en esta investigación.

CONCLUSIONES

PRIMERA: En la investigación realizada para el dimensionamiento de tajeos se determinó mediante el criterio empírico de Q de Barton, el análisis de estabilidad de los tajeos dimensionados se realizó por métodos empíricos, numéricos y analíticos. Para el análisis por métodos empíricos se analizó por el método de estabilidad de Pakalnis y método de Mathews, para el análisis por métodos numéricos se analizó mediante el análisis de estabilidad controlada por los esfuerzos y adicionalmente se evaluó la estabilidad controlada por el arreglo estructural de la masa rocosa.

SEGUNDA: La clasificación geomecánica del tajeo tiene un rango de RMR de 44 - 60, Q tiene un rango de 1 - 5.8, la calidad del macizo rocoso es de tipo III o regular, la zonificación geomecánica del área de estudio se han establecido en el dominio geomecánico de tipo III, la estabilidad por el método de Pakalnis es de estable para anchos de 8 metro y potencialmente inestable para ancho de 4 metros y por el método de Mathews para ambos dimensionamientos el techo con se encuentra en zona estable, Para el caso del análisis de estabilidad controlada por esfuerzos para los dimensionamientos de los tajeos, los factores de seguridad son de 0.95 en la parte central a 1.89 en los hastiales. Para el caso de análisis de estabilidad controlado por estructuras de los tajeos en la cual la mayoría de cuñas son estables y una cuña presentan inestabilidades con factor de seguridad de a 0.6, para casos de techos inestables se colocará sostenimiento ocasional con Split set o puntales de seguridad. El tiempo de auto- sostenimiento (stand-up time) va de 3 días a más.

TERCERA: Para un índice RMR de 44 o Q de 1, el ancho máximo es de 4 metros, Para un índice RMR de 60 o Q de 5.8 o el ancho máximo es de 8 metros, para ambos dimensionamientos es sin sostenimiento según el método empírico de Q de Barton.

RECOMENDACIONES

PRIMERA: Para detectar movimientos de subsidencia de la estabilidad de la masa rocosa para el minado subterráneo es muy recomendable implementar el monitoreo topográfico y de convergencia. Los monitoreo de convergencias y monitoreo topográfico deben ubicarse estratégicamente la medición y control. Los cuáles serán herramientas útiles para detectar movimientos de la masa rocosa circundante a las excavaciones, siendo muy recomendable que se implemente este tipo de instrumentación y también servirán para contrastar los resultados para la zonificación estable para el diseño y dimensionamiento de los tajeos de este caso de investigación.

SEGUNDA: Se recomienda la siguiente secuencia para para la obtención de parámetros de la evaluación geomecánicos: mapeos geomecánicos, caracterización, clasificación geomecánica y zonificación geomecánica de la masa rocosa, definición de los parámetros de comportamiento mecánico de la roca intacta, de las discontinuidades y de la masa rocosa, evaluación de las condiciones de presencia del agua y de los esfuerzos in-situ, para establecer apropiados dimensionamientos de los tajeos y lograr condiciones adecuadas de análisis de estabilidad local y global del minado.

TERCERA: Para una adecuada clasificación geomecánica, análisis de estabilidad y dimensionamiento geomecánico es recomendable que Corporación Minera Ananea S.A. y en todas sus unidades mineras se implemente un programa geomecánico permanente, con personal capacitado que disponga de las herramientas mínimas necesarias.

REFERENCIAS

- Albarracín, O. Gómez, D. (2000). Caracterización y clasificación geomecánica del macizo rocoso del sector la sierra. Sogamoso, Boyacá, Colombia.
- Barton, Lien, y Lunde. (1974). Engineering Classification of Rock Masses for the Design of Tunnel Support. Canada: Rock Mechanics 6 (4)189-239.
- Barton, N. (1988). Rock Mass Classification and Tunnel Reinforcement Selection Using the Q, System, Rock. *Classification Systems for Engineering Purposes*, ASTM STP 984, Louis Kirkaldie, Ed., American Society for Testing and Materials, Philadelphia, 59-88.
- Barton, N. (2002). Some new Q-value correlations to assist in site characterisation and tunnel design. International journal of rock mechanics and mining sciences, 39(2), 185-216.
- Bieniawski,T. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. In New York, Estados Unidos: Editorial. New York.
- Chura, W. (2003). Caracterización geomecánica del macizo rocoso y su aplicación en el diseño de sostenimiento en labores de desarrollo de la unidad económica administrativa Ana María – la Rinconada. (Tesis de pregrado) - Universidad Nacional del Altiplano.
- Correa, J. (2012). Estudio para definir los parámetros geomecánicos de diseño de obras subterráneas en proyecto ubicado en Ponfilo Natera Zacatecas. (Tesis de pregrado). Universidad Nacional Autónoma de México, facultad de ingeniería.

- Flores, G, y Karzulovic, A. (2003). *Guías geotécnicas para una transición desde rajo abierto a minería subterránea*. Santiago de Chile: División Chuquicamata de Codelco.
- Givera, L. (2013). Aplicación de geomecánica en la construcción de chimeneas Raise Borer en la mina San Rafael. (Tesis de pregrado). Universidad Nacional del Altiplano, Puno.
- Gonzales de Vallejo, L. (2002). *Ingenieria Geológica* (2^{da} edición). Madrid, España: Pearson Education.
- Hoek, E. (2002). A brief history of the Hoek-Brown criterion. *Program:*" *RocLab*", *URL: Http://Www. Rockscience. Com*, 33(3), 1–7.
- Hoek, E., Carranza, C. y Corkum, B. (2002). Hoek-brown failure criterion 2002 edition. *Narms-Tac*, 267–273.
- Hoek, (2006). *Empirical estimation of rock mass modulus*. International journal of rock mechanics and mining sciences, *43*(2), 203-215.
- Hoek, E. y Brown, T. (1980). Underground Excavations in Rock. Institution of Mining and Metallurgy.
- Hoek, E., Kaiser, K. y Bawden, F. (2000). Support of Underground Excavations in Hard Rock. Canada, McGraw-Hill. 240 280.
- Jorda, L. (2013). *Clasificaciones Geomecánicas y Diseño Empírico de Sostenimiento*. Lima: Elite.

- Maday, C. (2001). Caracterización geomecánica de macizos rocosos en obras subterráneas de la región oriental del país. (Tesis de posgrado). Instituto Superior Minero Metalúrgico.
- Marinos, P. y Hoek, E. (2000). A geologically friendly tool for rock mass strength estimation. *Melbourne: Technomic Publishing Co.*
- Mathews, H. (1980). Prediction of stable excavation spans for mining at depths below 1,000 meters in hard rock. Canada Centre for Mineral and Energy Technology
- Mawdesley, R. (2001). Extending the Mathews stability graph for open stope design. Instn. Min. Metall.
- Pakalnis, R. (2002). Empirical design methods–UBC Geo-mechanics update. NARMS-TAC: Mining and Tunneling Innovation and Opportunity. Toronto.
- Potvin, Y. (1988). *Empirical open stope design in Canada*. The University of British Columbia.
- Pantaleón, J. y Carbajal, J. (2017). Evaluación geomecánica para el dimensionamiento, secuencia de minado y relleno de tajeos de una mina subterránea. (Tesis de pregrado). Pontificia Universidad Católica del Perú, Lima.
- Rodríguez, S. (2003). *Caracterización geomecánicos de materiales pizarrosos del sinclinal de truchas (León-Orense)*. (Tesis de posgrado). Universidad de Oviedo.
- Rojas, C. (2008). Geomecánica en el minado subterráneo caso mina condestable. (Tesis de posgrado). Universidad Nacional de Ingenieria.

- Sheorey, P. (1994). A theory for in situ stresses in isotropic and transversely isotropic rock. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, (págs. 23-34).
- Sumiri, A. (2013). *Aplicación de geomecánica en prevención de caída de rocas en corte y relleno ascendente*. (Tesis de pregrado). Universidad Nacional del Altiplano.
- Velazques, D. (2010). Evaluación del yacimiento Cumuni Santa Ana. (Tesis de pregrado). Universidad Nacional del Altiplano.

ANEXOS

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

									ESTA(NOI									
	FORMATC	DE MA	DEO GE	OMEC	ANICO	RMR,	0 > 0	10	L	-	# Fractimi	ROD (%)	PARAME TROS		S1	S2	83	S4	
									ц Ц		-	100	RUNENC DE FRACTURAS		46	8	\$	2	
					I						۲N	88	CONTADAS EN (ME		1.00	1.4	12	1.3	
Nombre del Pr	oy ecto:		SANANTONIO		2	itologia			Pizarra-Cuarcita		е	96	ES PACIANEENT O NECIOINI	×	0.063	0.18	0.5	٢	
Nivel:			4900								4	94	FRACT URAS / MET RO	R	16.0	6.71	4.17	1.54	
Labor			GAL 11								•	10	R* DE FRACT.AmS	٩٢	3	5	9	2	
E jecutado por.		8	LEX C. CURO MOSTAJI	0							8	88	INDICE DE CAUDAU DE LA ROOM	RQD (%)	62.6	88.7	93.4	98.9	83.4
Fecha:			28.05/2016								7	84	DONDE:					A.	ONEDO
											80	81	1-1/x RQD = 100	0 x e -0.1(A) (0.12+1)				
SISTEMA RA	MR										0	ш							1
PARÁMETROS				VALOF			RANGO			VALOR	ę	74		MARTIL	LO SCHMIDT (I	NDICE DE REBO	TE)		
Resistencia a I	la compresión uniaxial (MPa)			90.00	(B) (B)	20) 022-001	5 101-02 X	(1) (2) (2) (1)	(D)+ (1)5+ (2)62+	7	=	R	TRAMO	đ	8	J	٥	PROMEDI	0
RQD (%)				83.39	180 BL-08	(10) 08-52)	X 2075 (12	8 9-17	ŝ	15	12	00		89	54	45	40	43.00	
E on coloredore	the discontinuity of a fact								-	: •				1	f s			UD BY	
Compicton pe	s de discontinuidades (cm)				(T2) (12)	1913 WZ-4/1	X 0.2050 01	tot urpern V	NG MISTO >	'n	2 3	8 8		8	4	4	44	P 24	
			1000		Constant Sec.	Devicements		and second to be	100 000 0000 0000 00000		z i	8		10	41				
Familia	Buz.	D. Buz	E :	Perssencia	<pre><micre. 50<="" pre=""></micre.></pre>	1-3m Long. (4)	9	X 10-20m (1)	6 E R 0		9	DO 1		40	40	41	40	10.43	
S1	22	190	16	Abertura	Serate S	< D. Ammageri. 50	0.1-1.0mm C	1-5 mm (3)	G wy	م	10	63						41.88	T
\$2	48	36	2	Rugosidad	() ENDU IN	Rugous (6)	X us recert	() ()	Espelode tala (1)	e	17	40							
S3	82	340	3	Relieno	X Umplu (0)	Duos Smm (4)	Duros Smm	1 Burne + Smm 510	Brane + Smn (B)	9	18	48		ABREVIAL	URAS DE TIPO	S DE ESTRUCTU	IRAS		
S4	48	330	2	Atteración	× 6	Ug. hempe. 🕲	Nod Nampe.	Nur hempe. 20	Descompueste (1)	\$	10	\$	٩	SISTEMA DE DIAC	SLASA				
Agua subterrá	nea				Marco Cash K	Numedo CID	D option	(e) openo (e)	uto da	6	20	41	Fn	SISTEMADE FALL	AS				
Orientación					Rumbo porpord	Neular at ajo do ta	excension	Rurrito paratolo al eje	40 F		21	HE I	65	FOLIACIÓN					
					Direction con Duzamiento	Outoo Durato	contra el	excevecion	Buzamento Or-201		F	are	2	MICED EALLA					
					dollar.	1	-0	Rel 1	e del numbo	5	77	8	100	PLUGUE FALLER	o monutario o	- The second sec			
					ACC-OCF	Or 40* 40* 90*	Desfevorable h	UN Desfevorable Fie	Pr. Age Posteroreten		R	8	003	HESIS IENURA LA	N COMPRESION S				
					0	0	-10	45	-6 -10		24	31	ð	ESFUERZO VERTIC	CAL				Ι
						KINIKas (D.	ISICO) =			8	50	2							
						KMIK ₈₈ (C	orregido) =			47	R	17	RESISTENCIA	UE LA KOLA					
Condiciones s	ecas					RMR ^{as} (C	ondiciones 5	ecas)=		57	27	26	P oco competente	ncsvs	v s 8		Sv=0.027* h		
	JRC			RMR	100 . 81	80-01	60 - 41	40 - 21	20-0	I	28	23	Competencia Intermedia	8 < UCS/	Sv ≤ 15	Donder			
	(BARTON BANDIS)		7	DESCRIP CIOL	I MUYBUEN	II BUENA	III REGU	AR N MALA	V MUY MALA	1	29	21	Competencia Atta	ncs/sv	⇒ 1€	ż	-Attura litostatica		
5				8							gg	20				Ŵ	v= Estuerzo Vertical		
SISTEMA DL	CLASIFICACIÓN Q				10 C					AN AND AND AND AND AND AND AND AND AND A						0	027=Constante Univ	asa	
PARAMEROS					2			RANGO		VALOR									
RQD %						RQD		83	%	83				SKETC	H				
Número de dis	continuidades					ę		U		12	Sector Sector Sector			100 AL			Contraction of the second	and the second se	
Número de ruo	losidad					4		8		e	State of								100
Número de alte	aración					eľ		C		2	STATISTICS OF							いたちという	1
Número de agu	ua subterránea					M		A		1							The state	The state of the s	and
Factor de redu	scción de esfuerzos (estado ter	nsional)				SRF		ſ		2							Company of	いたのない	No. of Street, or other
a = (Rabl.	I,,) x (J, I J,) x (J, I SRF)								u u	5.19									and the second s
** 1)UO@ = 0	ALCON.								= .0	10.38		小田二							
									F.			No. Contraction	OX AN	and S					
2 UL 6 - 2 UL 0	44 -											ALC: TAN	800	3			Contraction of the second		ALC: NO
											Number of								
σ	1000-400	400-100	100-40	40-10	10-4.0	41.0	1.0.1	10,0-1,0	0.01-0.001	EF GIII AB	の日本								No.
DES CRIPCION	EXCEPCION/UMBATE BUENA	BUENA	MUY BUENA	BUENA	REGULAR	POBRE	MUY POBRE	POBRE	BATE POBRE										1 Port
										-									and
INDICE DE RE	SISTENCIA GEOLOGICA					GSI = RMR	10 - 2			52									
								VALORES		SIMBOLO	Contraction of the second			(
TABLA GEOM	E CANICA (GSI),						GSI	RMR	0	GSI				2					ton a
OBSEDVACION	NES						76	III - 24	61.6		Contraction of the second		A CONTRACTOR						
											States and		and the second s					の中国の日本の	
											Contraction of the second	- and -	and the second s	the second way	a Plant	A STATE OF	A STATE AND	State of the state	

Repositorio Institucional UNA-PUNO

Anexo 1: Mapeos geomecánicos de la masa rocosa.

		A Property and a property of the	and the second s	And the Shares	A STATE OF S	1947 - 1947	ш 	STACION	L							8
	FORMATC	DE MAP	EO GE	TOMEC	ANICO RMR, Q	I A GSI			& Fractim	R00 (%)	PARAMETROS		S1	S2	S3	S4
									-	10.01	NUMERO DE FRACTURAS		16	8		
									5	86	CONTADAS EN (m X		1.00	1.4		
Vombre del Proyec	to:		SAN ANTONIO		Litologia	Pizarra-C	uarcita		8	96	ESPACIMMENTO MEDIC(m)	×	0.063	0.18	- 0	
vivel:			4900						4	94	FRACTURAS / METRO	*	16.0	5.71		
abor:			GAL 11						ø	10	NP DE FRACTURS	N				
jecutado por:	6	M	EX C. CUR 0 MOSTA	00					9	88	INCIDE DE CALIDAD DEL A POCA.	RQD (%)	52.5	88.7	0	74
echa:			28/05/2016						н	84	DONDE:					PROMEDIO
and the second second					s				w	18	a =1/x RQD = 1(00 x e ^{-0.1(A.)} (0.	12+1)			
SISTEMA RMR									0	11						
PARÁMETROS				VALOR		RANGO		VALC	¢	74		MARTILLOS	SCHMIDT (INE	DICE DE REBOTE	(6	
Resistencia a la co	npresión uniaxial (MPa)			76.00	~250 (15 100-250 (12 X	50-100 Ø X 25-50	(6 252	<50 <10 6	E	70	TRAMO	×	8	U	a	PROMEDIO
(%) (b)				71.00	30-100 209 75-30 077 X	50-75 (13) 25-50	Q 25	0) 13	12	99		38	36	37	40	37.75
Espaciamiento de t	tiscontinuidades (cm)				×2m 200 X 05-2m 04 X	0.2-0.6h (10) 0.05-0.	3m @ <0060.	13	5	63		42	42	39	37	40.00
CONDICION DE DIS	CONTINUIDADES								4	65		38	41	37	40	39.00
Familia	Buz.	D. Buz	f/m	Persistencia	<ii>4 m kag. (b) 1-3 m karg. (b)</ii>	3-10h Ø X 10-20h	u 00 - 20 m	a 1	92	58		40	9E	41	37	38 00
S1	22	190	16	Abertura	X Certada @ 40.innapert @	0.1-1.0hm (8) 1-5 m	111 (Q) == 2111	a 6 1	16	53						69 BE
S2	48	35	S.	Rugosidad	Miry rigosa 🚯 Rigosa 🚯 🗙	Lg.ngsra @ lka	() Espejo	orata @ 3	21	66						
S3	82	340	10	Relleno	X Lingle Ø Droc5nm (§	DI ID+ SIIII (C) SI SI	< 6 nm (h) States	+5mm @ 6	\$2	8		ABREVIATURA	AS DE TIPOS	DE ESTRUCTUR	IAS	
S4	84	330	¢.	Alteración	Saua 🛞 X Lig. htmps. @	Notatinpe. @ Ny In	tenpe. @ Dercom	ipresta @ 5	\$	£43	D	SISTEMA DE DIACLAS	SA			
Agua subterránea					Sect (15) Himedo (10)	ngato () Goteo	(b) F(t))0	0 10	20	41	£	SISTEMADE FALLAS				
Orientación					Rumbo perpendicular al oje de la exca Direccion con al	avecton Rumbo para contra el exce	doto at eje de la Wadion		21	38	FO	FOLIACION				
					buzamiento buzam	itento (11)	Para Para Para Para Para Para Para Para	or-20* bependient	22	35	MF	MICRO FALLA				
						02 02 02	•	C- odmun teb	23	33	ncs	RESISTENCIA ALA CO	MPRESION SIN	MPLE		
					Muy Fevorable Fevorable Regular D	esfevorable Muy Desfevo	rable Regular De	tsfevorable.	24	31	õ	ESFUERZO VERTICAL				
					RMR ⁸⁹ (Basic	= (0;		53	35	20						
					RMR ₈₉ (Corre	egido) =		48	38	27	RESISTENCI	A DE LA ROCA				
condiciones secas					RMR'89 (Conc	diciones Secas)=		58	27	26	Poco competente	UCS/Sv ≤ 8			Sv=0.027* h	
	.IRC		-	RMR	10-01 80-01	60-41	40 - 21	20-0	8	23	Competencia Intermedia	8 < UCS/SV ≤	15	Donde:		
	(BARTON BANDIS)			DESCRIPCI	NI I NUTBUENA BUENA	III REGULAR	N MALA V		59	21	Competencia Alta	UCS/SV > 1:	5	h=A	Vitura litostatica	
2									æ	20			8	SV=	: Esfuerzo Vertical	
SISTEMA DE CL	ASIFICACION Q													0.0	27=Constante Univers	al
PARAMEROS						RA	NGO	VALC	æ							
ROD %					ROD		34 12	11				SKETCH				
Número de discont	inuidades				Ę		5	12								
Número de rugosia	ad				J.		B	8		-		- (- 9			
Número de alteraci	ón				Ja		C	2		i morane				200		202001.0K
Número de agua si	ibterr <i>å</i> nea				мL		đ	-		and the second s		i	(-	/		
Factor de reducció	n de esfuerzos (estado te	nsional)			SRF		ſ	2		and a second second second			+	1	- 83	- N 1160
$Q = (RQDIJ_n) \times$: (Jr 1 Ja) x (Jw1 SRF	C						Q = 4.4		· · · · · · · · · · · · · · · · · · ·	1	z		/		
a = (RQD/J,) × (J, .	(°f.							Q' = 8.85				*		1		(cos) 21 12
RMR = 9 Ln Q + 44		15	1							- 0.0220.H				1	LU LU	1
RMR' = 9 Ln Q' + 4													L	1		
ø	1000-400	400-100	100-43	40-10	10-4,0 41,0	1.0.1	21-0.01 0.	01-0.001		-N.010088				1		- N. 1115
DESCRIPCION EXC	EPCIONALMEMTE BUENA	EXTREMENAD AMENTE BUENA	MUYBUENA	BUENA	REGULAR POBRE	MUY POBRE EXTREM.	POBRE EXCL	TE POBRE	Ī			1	-02			
									Т	M				MAG	oger (0	Se G nieria Geoloxía
NDICE DE RESIST	ENCIA GEOLÓGICA				GSI = RMR'33 -	5		53	Т	1				Ingenier	is para Mineria	ndfanos o o
					L	VAL	ORES	SIMBC	10					AT MARK	MILINTO Ins. Also Caro Master TAA taa Ulina Carossi -	
TABLA GEOMECÁL	VICA (GSI),					S S S S S	AR II.	44 MEA	-	- N 0522009	- 45	15	21	OKA11	DAD has freely filone M. 30 y formation for d	e fulles
OBSERVACIONES						5			1					NRVA NRVA LAMBALI	Competentia Minute /	
									1			-	-	VIENA	11/06/2016	
									1				ĺ			

164

									L EST	ACION								
FOR	MATO	DE MAP	EO GI	EOMEC	ANICO	RMR.	0 v G	10			# Fractimi	R 00 (%)	PARAMETROS		S1	\$2	83	S4
						-			u	0.3	-	100	NUMERO DE FRACTURAS		12	00	8	ŝ
									1	>>	2	98	CONTADAS EN (m):		1.00	1.20	0.80	1.4
Nombre del Proyecto:			SAN ANTONIC		С Г	itologia		•	IZARRA - CUARCI	TA	60	96	ESPACIAMIENTO MEDIO(m)	×	0.08	0.15	0.10	0.28
Nivel:			4900			Itura litostatica (1		300		4	8	FRACTURAS / METRO	*	12.0	6.7	10.0	3.57143
Labor:			GAL 11			te / Sv			12.35		ъ	16	N° DE FRACTJMJ	٨٢	4	5	3	2
Ejecutado por:		ALE	EX C. CURO MOST	AJO							8	88	MOID DE CALIBAD DE LA ROCA	RQD (%)	66.3	85.6	73.6	95.0 80.1
Fecha:			1/06/2016		Г						2	84	DONDE:					PROMEDIO
					1						60	81	A-1/X ROD =	= 100 × e	-0.1(x)	(0.12+	1)	
SISTEMA RMR											.co	11					2	
PARÁMETROS				VALOR			RANGO			VALOR	10	74		MARTIL	LO SCHMDT (I	NDICE DE REBO	TE)	
Resistencia a la compresión u	niaxial (MPa)			100	>250 (15	X 100-250 (12)	50-100	7 25-60 F	5 (Up (2)20) (t	100 12	11	20	TRAMO	¥	8	υ	0	PROMEDIO
RQD (%)				80.10	90.100 (20)	(23) 05-92 X	B0-75 (1	9 22.60 Å	8) ×26	(3) 17	12	99		66	60	40	66	60
Espaciamiento de discontinuio	lades (cm)				>2m (30)	0.6.2 m (15)	0.2.08m (1)	9 X 0.06.0.2m (8)	1 X 4006m	R 7	13	83		4	42	88	43	41
CONDICION DE DISCONTINUI	ADES										М	59		66	60	42	43	48
Familia Buz.	-	/D. Buz	1/m	Persistencia	ctm tong. (6)	1-3 m Long. (4)	3-10m	2 × 10.20 m 0	1) >20 m	(0) 1	15	56		40	68	45	42	46
Fo 22		180	12	Abertura	Certada (6)	 40. 1mm aped. (6) 	0.1-1.0mm	4) X 1-5 mm (1) > 5mm	1	16	53						46
F 48		35	ŝ	Rugosidad	(g) esobru knyy	Regres (f)	X Lig rigosa	N Lies (1) Espeja de falla	(0) 3	11	49						
D 82		340	10	Relleno	Lingia (5)	Dure < 5mm (4)	Duros Smin (0 X Sume c mm 0	1) Suara 5 mm	1	18	46		ABREVIA	FURAS DE TIPO	DS DE ESTRUCTI	URAS	
F 48		330	\$	Alteración	Sana (5)	Ug. Interpe. (5)	X Modimente.	3) Muy Interpre. §	2) Descampuesta	(0) 3	18	43	a	SISTEMA DE DIA	CLASA			
Agua subterránea					Saco (15	K Hurrado (10)	Wejadio	7) Gotao (-	6) Flujo	(0) 10	92	41	u.	SISTEMA DE FALL	AS			
Orientación					Pitrano perpen	Dicutar at ope de la la	sxcavacion an contra el	Rumbo persebuto at ep	n de la		21	38	5	FOLIACION				
					Duccentration of	3	canoneoto	111	C Buzamia	oto and	22	35	MF	MICRO FALLA				
					NA NA	12 11		Art A	N2 a del rum	Q.	23	33	NCS	RESISTENCIA L	A COMPRESION	SIMPLE		
					Mux Ferorobie Fr	morabie foguer	Desterorable A	NY Destanties	regient Destavore	The Party of Contract of Contr	24	31	ŝ	ESPUERZO VERTI	CAL			
						RMR ₈₉ (Ba	sico) =			55	22	29						
						RMRas (Co	hrregido) =			50	92	27	RESISTENCIA	A DE LA ROCA				
Condiciones secas					2	RMR'a9 (C	ondiciones (secas)=		99	22	25	Poco competente	ncs/s	v ≤ 8		Sv=0.027* h	
JRC				RMR	100-81	80 - 61	60 - 4	40-21	1 20-0	-	26	23	Competencia Intermedia	8 < UCS/	Sv≤ 15	Donde:		
(BARTON B	ANDIS)		_	DESCRIPCIC	N I WIXBOBN	I BUENA	II REGU	AR IV MAL	WWARN A V	5	50	21	Competencia Alta	UCS/SV	r> 15	ž	=Altura Rostatica	
SISTEMD DE CLASIEICAC	O NOI										8	20				60 C	v= Esfuerzo Vertical 027=Constante Unive	
PARAMEROS								RANGO		VALOR	,					i		
ROD %						RQD		00	%	00				SKETC	H			
Número de discontinuidades						Ч	Custor	determine de discon	dimidados a mas	16			国際の時代の		State of the			
Número de rugosidad						4	0.0000	lisae Ondula	utise villa	2 0	-							
Número de alteración						Ы	o	northolog lightermore	ta altarada e	4	-							1×
Número de agua subterránea						wr	5	Seco				No.		A THE PARTY OF				
Factor de reducción de esfuer	zos (estado tens	sional)				SRF		Tensiones mode	eradas,	2								
$Q = (RQDIJ_n) \times (J_r I J_a)$	x (Jw/ SRF)								a	= 2.67								
a' = (Rab/J,) x (J, / J)									ö	= 5.33			Non-					
RMR = 9 Ln Q + 44		53																
RMR' = 9 Ln Q' + 44		59	•									-						
Q 100.4	00	400-100	100.40	40.10	10.4.0	4.1,0	1.0.1	0,1.0,01	0/01/0/00	PORPE		1						
DESCRIPCION EXCEPCIONALME	PMTE BUENA	EXIREMENDOMENTE BUENA	MUY BUENA	BUENA	REGULAR	POBRE	MUY POBRE	EXIMEMENAU/W POBRE	ENTE EXCEPCION ENTE POBI	RE	_		01			0		
	A Anna A									2	_		L		1			
INDICE DE RESISTENCIA GEC	DOGICA					GSI = RMR	6 - 2			66								
terri a construction de la const							100	VALORES	d	SIMBOLO								
TABLA GEOMECANICA (GSI).	*						55	49.5 - III	2.67	MF/R								
OBSERVACIONES																		
ANUOVIN											-							

165

	the state of the state								74101	NO								
	FORM	1ATO DE N	MAPEO G	EOMEC	ANICO	RMR, C	2 V GSI		l		# Fractfml	RQD (%)	PARAMETROS		S1	S2	S3	S4
Name Name <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Ľ</th><th></th><th></th><th>100</th><th>NUMERO DE FRACTURAS</th><th></th><th>12</th><th>8</th><th>8</th><th></th></th<>									Ľ			100	NUMERO DE FRACTURAS		12	8	8	
minimum minimum <t< td=""><td>Nombre del Provecto:</td><td></td><td>SAN ANTONIO</td><td></td><td>Г</td><td>tologia</td><td></td><td></td><td>PIZARRA</td><td>T</td><td></td><td>8</td><td>ESPACIMULENTO MEDICIM)</td><td>×</td><td>0.08</td><td>0.15</td><td>0.10</td><td></td></t<>	Nombre del Provecto:		SAN ANTONIO		Г	tologia			PIZARRA	T		8	ESPACIMULENTO MEDICIM)	×	0.08	0.15	0.10	
metric metric<	Nivel:		4900			tura litostatica (h)			200		4	8	FRACTURAS / METRO	×	12.0	6.7	10.0	
Biology Constrained <	Labor:		GAL			c / Sv			14.81		sc)	10	AP. DE FRACT.Am 3	Ŋ	4	5	3	
$ \begin{array}{ $	Ejecutado por:		ALEX C. CURO MOST	1AJO							9	88	INDICE DE CALIDAD DELA, ROCA	RQD (%)	66.3	85.6	73.6	75.
International Internat	Fecha:		28/05/2017							<u> </u>	7	84	DONDE:					PROMEDIC
International method Internati					8							18	A -I/X ROD -	= 100 ×	e -0.1(1)	(0.12+	,	
mining mining<	SISTEMA RMR										o	F						
Image: constrained by the co	PARÁMETROS			VALOR			RANGO			VALOR	\$	74		MARTI	LO SCHMIDT (NDICE DE REBC	(TE)	
Image: constrained by the co	Resistencia a la compresión un	axial (MPa)		80	\$0 05Z×	100-250 (12)	K 50-100 ()	25-60 (\$	-25(2) <5(1) <1(3)	~	F	70	TRAMO	A	ω	U	0	PROMEDIO
Transmission Transmission<	RQD (%)	24 - 1996 - 14		75	90-100 (2G)	K 16-00 (1)	€I) 92-09	2560	-26 (1)	17	12	88		86	98	40	42	39
Construction Construction<	Espaciamiento de discontinuida	des (cm)			89 47	0,6-2 m (19)	K 02-0.00 (10)	X 0.05-0.3h 6)	< 0.06m	6	13	63		42	42	38	43	41
Image Image <th< td=""><td>CONDICION DE DISCONTINUID</td><td>DES</td><td>1100</td><td>00.00</td><td></td><td>100</td><td></td><td>and another pro-</td><td></td><td>2</td><td>4</td><td>69</td><td></td><td>38</td><td>41</td><td>42</td><td>43</td><td>41</td></th<>	CONDICION DE DISCONTINUID	DES	1100	00.00		100		and another pro-		2	4	69		38	41	42	43	41
Image: block Image: block <thi< td=""><td>Familia Buz.</td><td>.0.Bu</td><td>t t</td><td>Persistencia</td><td> th big. fermine fermine</td><td>6-2m Long. (6)</td><td>3-10h @</td><td>X 10.20m ()</td><td>6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td></td><td>\$5 ž</td><td>89</td><td></td><td>40</td><td>34</td><td>45</td><td>42</td><td>40</td></thi<>	Familia Buz.	.0.Bu	t t	Persistencia	 th big. fermine fermine	6-2m Long. (6)	3-10h @	X 10.20m ()	6 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		\$5 ž	89		40	34	45	42	40
1 1		101	21	Rinosidad	Biv nosa	Biocca 60	f lbringe		Ereela de talla		2 12	4						
Image:	- c	ec W2	e É	Relleno	(impti	Droc-Gnm (6)	DIO-Shin Q	X Grave - 6 nm (1)	State - Smn @	-	8	84		ABREVIA	TURAS DE TIP	IS DE ESTRUCT	URAS	
quantational main dim <	2 9	310	2 10	Atteración	8 BIS	(10. intempe. (3.)	f Not a timpe. @	Hry is Enge. @	Desompresta ()	4	\$	43	D	SISTEMA DE DIA	CLASA			
Outch Image: second secon	Aqua subterránea	2	,		80	f Himeda (0)	() openal	Gotto (6	Filja (f)	ę	8	14	<u>،</u> س	SISTEMADE FAL	TAS			
Image: state in the s	Orientación				Rumbo perpen	licular al aje de la exe	avecton Rue	the paratelo at eje de			21	38	Fo	FOLIACION				
Image: line of the state of the st					Direction con Duzamiento	et Direccio	n contra el Dienta	excervacion	Buzamiento 0*-20*	1	1 8	35	ME	MICROFALLA				
No. No. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0.</td> <td>EN D</td> <td>e del rumbo</td> <td>ι γ</td> <td>ន</td> <td></td> <td>ncs</td> <td>RESISTENCIAAL</td> <td>A COMPRESION</td> <td>SIMPLE</td> <td></td> <td></td>							-0.	EN D	e del rumbo	ι γ	ន		ncs	RESISTENCIAAL	A COMPRESION	SIMPLE		
Mile disclol Mile disclol<					Muy Favorable Fa	Or Also also 900 Or Also Also 900 Or Also Also 900	200-454 Desferorable Muy	Atr 90 20 20 20 20 10 20	46e Desfevorable		24	31	Sv	ESFUER ZO VERT.	ICAL			
Indext Indext (Contringio)= Index (Contringio)= Indext (Contringio)= <td></td> <td></td> <td></td> <td></td> <td>5</td> <td>RMR₈₉ (Basi</td> <td>co] =</td> <td></td> <td></td> <td>52</td> <td>ß</td> <td>20</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					5	RMR ₈₉ (Basi	co] =			52	ß	20						
Conditional and the conditional of conditional sectors						RMR89 (Cor	regido) =			47	28	27	RESISTENCI	A DE LA ROCA				
Image: marked balance	C ondiciones secas					RMR'89 (Cot	Idiciones Set	as)=		57	n	26	Poco competente	NCS/E	Sv ≤ 8		Sv=0.027* h	
Inditition Inditition <thinditition< th=""> Inditition Indititi</thinditition<>	JRC			RMR	103 - 81	80-61	60-41	45 - 21	20.0		38	23	Competencia Intermedia	8 < UCS,	(Sv = 15	Donde:		
SETTION DE CLASIFICIONO Enclorement Description Description <thdescription< td=""><td>(BARTON BA.</td><td>[8]0</td><td>7</td><td>DESCRIPCIC</td><td>N I MUYBUEN</td><td>I BUENA</td><td>III REDULAR</td><td>N MALA</td><td>V MUY MALA</td><td></td><td>29</td><td>21</td><td>Competencia Alta</td><td>UCS/S</td><td>v > 15</td><td>F</td><td>⊨Altura litostatica</td><td></td></thdescription<>	(BARTON BA.	[8]0	7	DESCRIPCIC	N I MUYBUEN	I BUENA	III REDULAR	N MALA	V MUY MALA		29	21	Competencia Alta	UCS/S	v > 15	F	⊨Altura litostatica	
Instruction				8							30	20				0	N= Estuerzo Vertical	
Non-control	SISTEMA DE CLASIFICACI	DN Q				F		00000								0	.027=Constante Univ	ersal
Image Image <th< td=""><td>PARAMERUS</td><td></td><td></td><td></td><td></td><td></td><td></td><td>ODNEN</td><td></td><td>VHLUK</td><td></td><td></td><td></td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td></td><td></td><td></td><td></td></th<>	PARAMERUS							ODNEN		VHLUK				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Immer of exerciting in the interference of exerciting in	RQD %					RQD .		75	8	75				SKET	EH			
Image: constrained of the co	Numero de discontinuidades					5	C uatro sist	emas de discontin.	uidades o mas	15								200
Munetion de activitation Munetion M	Numero de rugosidad					5 4		Lisas, Ondulada	<u>v</u>	e			E.E.		1		1	z 4
Encontraction of entercasive statiation (interfacional statistica) SNF Tensione moderatistic Intervision C = (RCDULU X (J, I, J) X (J, I) X (RT) Q = 2/3 Q = 2/3 Q = 2/3 Q = RODULU X (J, I, J) X (J, I) X	Numero de anua subterránea Nímero de anua subterránea					ol.	Supe	ficies ligeramente	alteradas	2					X			¢
Q = (RODUJJ) X (L, J, J) X (L, J) X	Factor de reducción de esfuerzo	s (estado tensional)				SRF		Seco aneionoe moderad	fae	- •			are					
Q = (a0004)4 X(4.1.1) Q = 1 Total Q = (a0004)4 X(4.1.1) Q = (a004)4 X(4.	$Q = (RQD/J_n) \times (J_r / J_n) \times$	(Jul SRF)							11 0	3.75								
RME = b In 0 + 4 56 RME = b In 0 + 44 56 RME = b In 0 + 44 56 Cl reade 9 + 10 141 22 Cl reade 9 + 10 141 22 13 Descension ExercisionAutrine Eleine Erretenonautrine Eleine Erretenonautrine Eleine 22 13 NUME E RESSIENCIA GEOLÓGICIA Istain a gilla VALORES TAININ - 5 13 NUME DE RESSIENCIA GEOLÓGICIA Istain a gilla VALORES TAIN 22 2 </td <td>q = (RQD/JL) × (JL / J2)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0. H</td> <td>7 50</td> <td>N' FLAND O</td> <td>an man and an</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	q = (RQD/JL) × (JL / J2)								0. H	7 50	N' FLAND O	an man and an					-	
RW = 9 LI 0 + 41 02 CM 0 - 00 - 00 0 - 00 - 00 0 - 10 - 1 0 - 1	RMR = 91n 0 + 44		56							001	1	AL IN THE PARTY		1	1			
Q 100-00 00-00 00-00 00-00 410 410 0.101 0.1001 22* 10 22* DESENTICIN EXPREMIANMENT MOY DERM 22* 10 22* 10 <t< td=""><td>RMR' = 9 Ln Q' + 44</td><td></td><td>62</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>- Same</td><td>-</td><td>1</td><td></td><td></td><td></td><td></td><td></td></t<>	RMR' = 9 Ln Q' + 44		62								- Same	-	1					
econrector Economularitati nor relevandanti Economularitati ec	0 1000-400	400-100	0 100-40	40:10	10-4,0	4.1,8	1.0.1	0,1-0,01	1.00,010,0			/	F					
NUNCE DE RESISTENCIA CECLÓGICA CSI = RMR1, - 5 S2 NUNCE DE RESISTENCIA CECLÓGICA CSI = RMR1, - 5 19 13 VALORES Samation 13 VALORES Samation 14BLA GEOMECÁNICA (GSI), CSI VALORES 00SEREVICIONES S2 -4 M NACUMA S2 -4 M	DESCRIPCION EXCEPCIONALMEN	TE BUENA EXTREMENAD. BUENA	AMENTE MUYBUEN	9 BUENA	REQULAR	POBRE	MUY POBRE	EXTREMENADAMEN POBRE	TE EXCEPCIONALM EMTE POBRE	KEGULAH	1		/	[+0]	8.28		K	
NUNCE DE FESSTEVICA GEOLOGICA GSI RARYI, - 5 S2 S2 I III I <td></td> <td></td> <td></td> <td>0 0</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>/</td> <td>*</td> <td>a</td> <td></td> <td></td> <td></td>				0 0	2								/	*	a			
TABLA GEORE CAINE A (GS), MINR Q GSI WILDER 1G TABLA GEORE CAINE A (GS), GSI RMIR Q GSI RMIR Q GSI NULORES NULORES NULORES NULORES NULORES NULORES NULORES 1 MIR Q GSI NULORES NULORES 22 2 4 MIR NULORES NULORINA 22 2 2 4 MIR NULORINA NULORINA 22 2 <t< td=""><td>INDICE DE RESISTENCIA GEOL</td><td>ÓGICA</td><td></td><td></td><td></td><td>GSI = RMR'₃₅</td><td>- 5</td><td></td><td></td><td>52</td><td></td><td></td><td>1</td><td></td><td></td><td>+</td><td></td><td></td></t<>	INDICE DE RESISTENCIA GEOL	ÓGICA				GSI = RMR' ₃₅	- 5			52			1			+		
Trata Georeconica (GSI), Trata Georeconica (GSI), Gesenvaciones Nucuen								VALORES		SIMBOLO						19		J.
OBSERVACIONES OBSERVACIONES OBSERVACIONES OBSERVACIONES OBSERVACIONES	TABLA GEOMECANICA (GSI),						52 52	40 40	a 4	GSI MF/R	1			K				
	OBSERVACIONES											1						
	NING UNA													1	/			

									ESTA	CION								
	FORMATC	DE MA	PEO GI	EOMEC	ANICO	RMR.	Q V GS		1		# Fractimi	ROD (%)	PARAMETROS		S1	S2	S3	S4
						•			Ц	02		100	NUMERO DE FRACTURAS		12	8		
Nombre del Prov	ecto:		SAN ANTONIO		Γ	tologia		PIZ	ZARRA-CUARCITA		2 2	8 98	CONTRUES EN (m): ESPACIAMIENTO MEDIONIO	×	0.08	0.15		
Nivel:			4900			ltura litostatica (†			300		4	56	FRACTURAS / METRO	x	12.0	6.7		
Labor:			GAL 11			c / Sv			9:88		e	91	IF DE FRACT/m3	~	4	ŝ		
Ejecutado por:			ALEX C. CURO MOST	OLA'	ı L						9	88	HUKE BE CALIDAD DE LA ROCA	RQD (%)	66.3	85.6		75.9
Fecha:			2/06/2016								7	84	DONDE:					PROMEDIO
											60	81	A-1/X ROD =	= 100 × 6	-0.1(A.)	(0.1 λ +	1)	
SISTEMA RMF	~										6	77						
PARÁMETROS				VALOR.			RANGO			VALOR	10	74		MARTIL	LO SCHMDT (NDICE DE REBO	TE)	
Resistencia a la	compresión unlaxial (MPa)			08	(54) 0524	100.250 (12)	X 50100 (7)	(e) (e)	(1985) 11 (1985)	1 1	11	70	TRAMO	A	8	υ	D	PROMEDIO
RQD (%)				76	90.100 (20)	K 76.40 (17)	60.76 [13]	98 00 98	-38 (3) 17	12	99		37	8	40	42	39
Espaciamiento d	le discontinuidades (cm)				×2m (20)	0.6-2 m (15)	X 0.2.05m (10)	X 0.06-0.2m (8)	< 0.03m (6,	6	13	63		42	42	38	43	41
CONDICION DE L	DISCONTINUIDADES										14	-68		38	41	42	43	41
Familia	Buz.	/D. Buz	f/m	Persistencia	<tmlmg (6)<="" td=""><td>1-3 m Long. (4)</td><td>3:10m (2)</td><td>X 10.20m [1]</td><td>×20 m 2</td><td>•</td><td>15</td><td>95</td><td></td><td>40</td><td>¥</td><td>45</td><td>42</td><td>40</td></tmlmg>	1-3 m Long. (4)	3:10m (2)	X 10.20m [1]	×20 m 2	•	15	95		40	¥	45	42	40
Fo	23	170	12	Abertura	Cerrada (6)	(3) finan apent (5)	0.1-1.0mm (4)	X 1-5 mm [1]	> 6 mm 2	•	16	23						40
Ŀ	40	35	5	Rugosidad	May rugosa (B)	Rugosa (5)	X Lig ragosa (3)	X Lisa (1)	Espejo de falla ()	2	21	49						
٩	75	340	10	Relleno	Lmpia (6)	Duro < Semi (4)	Duros 6mm (2)	X Suare < 5 mm (1)	Susce > 5 mm (۵ ۲	18	46		ABREVIA	TURAS DE TIPO	DS DE ESTRUCTI	JRAS	
Q	48	310	5	Alteración	Sana (6)	K Lig. Intempe. (5)	X Mod Intempe. (3)	Muy Intempe. (2)	() etsenduotseg	4	19	43	D	SISTEMA DE DIAN	CLASA			
Agua subterráne					Sec.0 (15)	Humedie (10)	X Mate (7)	Goleo (4)	Fluja I	7	20	41	ii.	SISTEMA DE FALL	LAS			
Orlentación					Foumbo perpen	at Directs	axcevacion Ra	umbo parateto al eje i axcavecion	die Ia		21	38	FD	FOLIACION				
					Postermente	-	amiento	d Ind	Duzamianh Origor	4	22	35	MF	MICRO FALLA				
						62		(hr.)	BZ e cled scents	?	23	33	INCS	RESISTENCIA L	A COMPRESION	SIMPLE		
					Ntuy Ferorable Fe	vorsbie Regular	Destavorable Mu	y Destavorable Re	rguier Destevorab	ر <u>لار</u>	24	31	Sv	ESPUERZO VERTI-	ICAL			
						RMR ₈₉ (Ba:	sico) =			49	25	29						
						RMR89 (Cc	hrregido) =			44	26	27	RESISTENCIA	A DE LA ROCA				
Condiciones sec	as		8	2000	3	RMR'89 (Co	andiciones Se	icas)=	8	57	27	26	Poco competente	ucs/s/	v ≤ 8		Sv=0.027* h	
	JRC			RMR	100.81	80-61	60 - 41	40.21	20-0	=	26	23	Competencia Intermedia	8 < UCS/	Sv ≤ 15	Donde:		
	(BART ON BANDIS)		-	DESCRIPCI	N I WUY BUENY	II BUENA	III REGULA	R IV MALA	V MUY MAL.		29	21	Competencia Alta	UCS/Sv	/>15	ž ·	=Altura Ikostatica	
SISTEMA DE C	1 ASIFICACION O										30	70				<i>n</i> c	v= Estuerzo Vertical 027=Constante Univer	al a
PARAMEROS								RANGO		VALOR								
RQD %						RQD		76	%	76				SKETC	H			
Número de disco	intinuidades					٩	Cliatro sis	temas de disconti	mildades o mas	5 S								
Número de rugo:	sidad					Ļ		Lisas. Ondulad	as	e e								
Número de altera	ación					Ъ	Supe	ufficies ligeramente	e alteradas	2	- 4	Canal and a second s						
Número de agua	subterránea					w		seco		-				4	L		A L	
Factor de reducc	lión de esfuerzos (estado te.	nsional)				SRF		Tensiones moden	adas,	2				+	5			
$Q = (RQDI_n)$	1 x (J, / J _a) x (J _w / SRF	1							= 0	3.80			2	1				
a = (RaDIJa) x (.	(cri'r								ď.	7.59			1053					
RMR = 9 Ln Q + 4	14		56											A.S.				
RMR' = 9 Ln Q' +	-44		62										-	1				
σ	1000-400	400-100	100-40	40.10	10.4,0	4.1,0	1.0.1	0,0,0,01	0,01.0,001	DECHLAD			-					
DESCRIPCION E	XCEPCIONALMEMTE BUENA	EXTREMENAD AMENTL BUENA	MUY BUENA	A BUENA	REGULAR	POERE	MUY POBRE	EXTREMENADAME POBRE	NTE EXCEPCIONA. EMTE POBRI	W								
NDICE DE DEGIS	STENCIA GEOLÓGICA					inter inter	1			69								
										0100110								
TABLA GEOMEC	ÁNICA (GSI)						GSI	RMR	a	GSI								
BICONTONIO	9						52	44	4	MF/R								
NINGUNA	8													i				A STATE

Universidad Nacional del Altiplano

Anexo 2: Imágenes representativas del área de investigación.

Foto 1: Bocamina de la Unidad San Antonio

Foto 2: Estación geomecánica por celdas.

Universidad Nacional del Altiplano

Foto 3: Toma de datos con brújula.

Foto 4: Marcando el buzamiento del sistema principal.

Universidad Nacional del Altiplano

Foto 5: Oro nativo en el manto 11.

Foto 6: Falla con cinemática normal

Universidad Nacional del Altiplano

Foto 7: Caracterización geomecánica de la falla.

Foto 8: Cuñas generadas por las discontinuidades.

Repositorio Institucional UNA-PUNO

Foto 9: Pilar ocasional por leyes bajas.

Foto 10: Sostenimiento ocasional en la parte central del tajeo.

Repositorio Institucional UNA-PUNO

Universidad Nacional del Altiplano

Foto 11: Cámara de tajeo dimensionado de ancho de 8 metros.