

UNIVERSIDAD NACIONAL DEL ALTIPLANO

ESCUELA DE POSGRADO

DOCTORADO EN ESTADÍSTICA E INFORMÁTICA

TESIS

LA LONGITUD MEDIA DE PROPAGACIÓN POR LA ARISTA MÁS LARGA DE TRIANGULACIONES CONSTRUIDAS DESDE PUNTOS GENERADOS CON DISTRIBUCIONES PROBABILÍSTICAS

PRESENTADA POR:

OLIVER AMADEO VILCA HUAYTA

PARA OPTAR EL GRADO ACADÉMICO DE:

DOCTOR EN ESTADÍSTICA E INFORMÁTICA

PUNO, PERÚ

2019

UNIVERSIDAD NACIONAL DEL ALTERIANO ESCUELA DE POSGRADO

TESIS

LA LONGITUD MEDIA DE PROPAGACIÓN POR LA ARISTA MÁS LARGA DE TRIANGULACIONES CONSTRUIDAS DESDE PUNTOS GENERADOS CON DISTRIBUCIONES PROBABILÍSTICAS

PRESENTADA POR:

OLIVER AMADEO VILCA HUAYTA

PARA OPTAR EL GRADO ACADÉMICO DE:

DOCTOR EN ESTADÍSTICA E INFORMÁTICA

APROBADA POR EL SIGUIENTE JURADO:

PRESIDENTE

Dr. MARCO ANTONIO QUISPE BARRA

PRIMER MIEMBRO

Dr. IVAN DELGADO HUAYTA

SEGUNDO MIEMBRO

ASESOR DE TESIS

Dr. ALFREDO PE AYO CALATAYUD MENDOZA

D.Sc. ALEJANDRO APAZA TARQU

Puno, 17 de abril de 2019

ÁREA: Estadística e Informática.
 LÍNEA: Ingeniería Computacional y de Sistemas.
 TEMA: Triangulación de puntos con distribuciones probabilísticas.

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

DEDICATORIA

Dedico esta tesis principalmente a DIOS, nuestro padre celestial,

quien da la vida, salud, fuerza, conocimiento y sabiduría.

A mis padres y hermanos, por su sacrificio.

A mis compañeros de estudio y amigos.

A todos los que me apoyaron.

AGRADECIMIENTOS

- En primer lugar agradezco a los docentes de la Escuela de Posgrado de la Universidad Nacional del Altiplano por haberme inculcado sapiencia y conocimientos que fueron adquiridos en estos últimos años.
- A los miembros del jurado de la presente investigación, que recae en las personas del Dr. Marco Antonio Quispe Barra, Dr. Ivan Delgado Huayta, Dr. Alfredo Pelayo Calatayud Mendoza y D.Sc. Alejandro Apaza Tarqui.
- Finalmente a mis padres Cristín y Noemí. A mis hermanos Alfredo, Delma y Edwin. A mis familiares, amigos y colegas por el apoyo que me brindaron durante el desarrollo de la presente investigación.

Universidad Nacional del Altiplano

ÍNDICE GENERAL

Pá	g.
ICATORIA	i
ADECIMIENTOS	ii
CE GENERAL	iii
CE DE TABLAS	'ii
CE DE FIGURAS	ix
CE DE ANEXOS	xi
UMEN	ii
TRACT	iii
RODUCCIÓN	1

CAPÍTULO I

REVISIÓN DE LITERATURA

1.1.	Antece	dentes	3
1.2.	CGAL		6
	1.2.1.	CGAL - Estructura de datos de triangulación 2D	6
1.3.	Distrib	uciones de probabilidad	8
	1.3.1.	Distribución normal o de Gauss	8
	1.3.2.	Distribución Gamma	11
	1.3.3.	Distribución exponencial	12
	1.3.4.	Distribución de Erlang	13
	1.3.5.	Distribución normal multivariada	14
	1.3.6.	Distribución Normal Bivariada	14

CAPÍTULO II

PLANTEAMIENTO DEL PROBLEMA

2.1.	Planteamiento del problema	16
2.2.	Hipótesis	17

2.3.	2.2.1.	Hipótesis general	17
	2.2.2.	Hipótesis específicas	18
	Objetiv	/OS	18
	2.3.1.	Objetivo general	18
	2.3.2.	Objetivos específicos	18

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1.	Lugar	de estudio	 	19
3.2.	Poblac	ción y muestra	 	19
	3.2.1.	Población	 	19
	3.2.2.	Muestra	 	19
3.3.	Métod	do de investigación	 	20
	3.3.1.	Materiales y equipos	 	20
3.4.	Descri	ipción detallada de métodos por objetivos específicos	 	21

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1.	Progra	ma para calcular la longitud del LEPP	22
4.2.	Prueba	de aleatoridad y bondad de ajuste para los vértices generados según	
	cada di	istribución de probabilidad	25
	4.2.1.	Prueba de aleatoridad para los vértices generados con la distribu-	
		ción uniforme	26
	4.2.2.	Prueba de aleatoridad para los vértices generados con la distribu-	
		ción normal	28
	4.2.3.	Prueba de aleatoridad para los vértices generados con la distribu-	
		ción normal bivariada	28
	4.2.4.	Prueba de aleatoridad para los vértices generados con la distribu-	
		ción Gamma	30
	4.2.5.	Prueba de aleatoridad para los vértices generados con la distribu-	
		ción exponencial	32

4.3.	Longit	ud media del LEPP	33
4.4.	Longit	ud media del LEPP con la distribución uniforme	34
	4.4.1.	Prueba del supuesto de homogeneidad de varianzas	36
	4.4.2.	Prueba del supuesto de normalidad	37
	4.4.3.	Prueba del supuesto de independencia	38
	4.4.4.	Prueba de diferencia de medias para los grupos formados con la	
		distribución uniforme	38
4.5.	Longit	ud media del LEPP con la distribución normal o de Gauss	39
	4.5.1.	Prueba del supuesto de homogeneidad de varianzas	41
	4.5.2.	Prueba del supuesto de normalidad	42
	4.5.3.	Prueba del supuesto de independencia	43
	4.5.4.	Prueba de diferencia de medias para los grupos formados con la	
		distribución normal	43
4.6.	Longit	ud media del LEPP con la distribución normal bivariada	44
	4.6.1.	Prueba del supuesto de homogeneidad de varianzas	46
	4.6.2.	Prueba del supuesto de normalidad	47
	4.6.3.	Prueba del supuesto de independencia	48
	4.6.4.	Prueba de diferencia de medias para los grupos formados con la	
		distribución normal bivariada	48
4.7.	Longit	ud media del LEPP con la distribución Gamma	49
	4.7.1.	Prueba del supuesto de homogeneidad de varianzas	51
	4.7.2.	Prueba del supuesto de normalidad	52
	4.7.3.	Prueba del supuesto de independencia	53
	4.7.4.	Prueba de diferencia de medias para los grupos formados con la	
		distribución Gamma	53
4.8.	Longit	ud media del LEPP con la distribución exponencial	54
	4.8.1.	Prueba del supuesto de homogeneidad de varianzas	56
	4.8.2.	Prueba del supuesto de normalidad	57
	4.8.3.	Prueba del supuesto de independencia	58
	4.8.4.	Prueba de diferencia de medias para los grupos formados con la	
		distribución exponencial	58

Universid	lad
Nacional	del
Altiplano	

4.9.	. Prueba t de una muestra para los grupos de vértices generados según cada				
	distribución de probabilidad	59			
CONCL	USIONES	61			
RECOM	IENDACIONES	62			
BIBLIO	GRAFÍA	63			
ANEXC)S	65			

ÍNDICE DE TABLAS

Pág.

1		~ 7
1.	Prueba de rachas para los vertices de la distribución uniforme	27
2.	Prueba de rachas para los vértices de la distribución normal	29
3.	Prueba de rachas para los vértices de la distribución normal bivariada	30
4.	Prueba de rachas para los vértices de la distribución gamma	31
5.	Prueba de rachas para los vértices de la distribución exponencial	33
6.	Medias obtenidas para cada grupo de triangulaciones formados con la	
	función de distribucion uniforme	35
7.	Resultado de la prueba de Levene para los grupos formados con la función	
	de distribución uniforme	36
8.	Resultados de las pruebas de Shapiro-Wilk para los grupos formados con	
	la función de distribución uniforme	38
9.	Resultado resumen del análisis de varianza para los grupos formados con	
	la función de distribución uniforme	39
10.	Medias obtenidas para cada grupo de triangulaciones formados con la	
	función de distribucion normal	40
11.	Resultado de la prueba de Levene para los grupos formados con la función	
	de distribución normal	41
12.	Resultados de las pruebas de Shapiro-Wilk para los grupos formados con	
	la función de distribución normal	43
13.	Resultado resumen del análisis de varianza para los grupos formados con	
	la función de distribución normal	44
14.	Medias obtenidas para cada grupo de triangulaciones formados con la	
	función de distribucion normal bivariada	45
15.	Resultado de la prueba de Levene para los grupos formados con la función	
	de distribución normal bivariada	46
16.	Resultados de las pruebas de Shapiro-Wilk para los grupos formados con	
	la función de distribución normal bivariada	48

17.	Resultado resumen del análisis de varianza para los grupos formados con	
	la función de distribución normal bivariada	49
18.	Medias obtenidas para cada grupo de triangulaciones formados con la	
	función de distribucion Gamma	50
19.	Resultado de la prueba de Levene para los grupos formados con la función	
	de distribución Gamma	51
20.	Resultados de las pruebas de Shapiro-Wilk para los grupos formados con	
	la función de distribución Gamma	53
21.	Resultado resumen del análisis de varianza para los grupos formados con	
	la función de distribución Gamma	54
22.	Medias obtenidas para cada grupo de triangulaciones formados con la	
	función de distribucion exponencial	55
23.	Resultado de la prueba de Levene para los grupos formados con la función	
	de distribución exponencial	56
24.	Resultados de las pruebas de Shapiro-Wilk para los grupos formados con	
	la función de distribución exponencial	58
25.	Resultado resumen del análisis de varianza para los grupos formados con	
	la función de distribución exponencial	59
26.	Prueba t para los vértices de cada grupo y distribución	60

ÍNDICE DE FIGURAS

Pág.

1.	Función de densidad de probabilidad normal estandar	10
2.	Función de distribución acumulada normal estandar	10
3.	Función de densidad de probabilidad gamma.	12
4.	Función de densidad de probabilidad exponencial	13
5.	Función de distribución acumulada exponencial	13
6.	Nubes de puntos generada usando funciones de distribución.	23
7.	Nube de puntos generada con la función de distribución uniforme	34
8.	Gráfico de barras de las medias de los LEPP de cada grupo de	
	triangulaciones generadas con la distribución uniforme	36
9.	Gráfico de cajas de las medias del Lepp según grupos - formados con la	
	función de distribución uniforme	37
10.	Nube de puntos generada con la función de distribución normal.	39
11.	Gráfico de barras de las medias de los LEPP de cada grupo de	
	triangulaciones generadas con la distribución normal	41
12.	Gráfico de cajas de las medias del Lepp según grupos - formados con la	
	función de distribución normal	42
13.	Nube de puntos generada con la función de distribución normal bivariada.	44
14.	Gráfico de barras de las medias de los LEPP de cada grupo de	
	triangulaciones generadas con la distribución normal bivariada	46
15.	Gráfico de cajas de las medias del Lepp según grupos - formados con la	
	función de distribución normal bivariada	47
16.	Nube de puntos generada con la función de distribución Gamma.	49
17.	Gráfico de barras de las medias de los LEPP de cada grupo de	
	triangulaciones generadas con la distribución Gamma	51
18.	Gráfico de cajas de las medias del Lepp según grupos - formados con la	
	función de distribución Gamma	52
19.	Nube de puntos generada con la función de distribución exponencial	54

20.	Gráfico de barras de las medias de los LEPP de cada grupo de									
	triangulaciones generadas con la distribución exponencial									
21.	21. Gráfico de cajas de las medias del Lepp según grupos - formados con la									
	función de distribución exponencial	57								

ÍNDICE DE ANEXOS

					Pa	ág.
1. Programa en C++ para generar triangulaciones	 	 	 	 		67

RESUMEN

La tesis está enmarcada en el área de las mallas geométricas de triángulos, denominado también triangulaciones, específicamente en el proceso de refinamiento. Se estudia la longitud media de "la propagación por la arista más larga" (en inglés LEPP "Longest-Edge Propagation Path") de las triangulaciones, la propagación se emplea para el refinamiento de las mallas geométricas que son útiles en diferentes aplicaciones como los elementos finitos. El objetivo principal de esta tesis es calcular y evaluar la longitud media del LEPP de las triangulaciones construidas a partir los conjuntos de puntos generados con distribuciones probabilísticas. En la construcción de las triangulaciones, no se aplicó ningún algoritmo de mejoramiento u optimización para evitar sesgos. Luego de desarrollar el programa y efectuar las pruebas de hipótesis se concluyó que la longitud media del LEPP de las triangulaciones construidas desde los conjuntos de puntos (de tamaños: 10000, 20000, ..., 200000) generados con las distribuciones probabilísticas uniforme, normal, normal bivariada, Gamma y exponencial son menores que cuatro, en el nivel de significancia de 0.05, los resultados confirman el teorema de la longitud media del LEPP demostrado por Vilca Oliver a través de funciones generatrices y bajo ciertos supuestos. También se comprobó que las medias del LEPP no son iguales entre los grupos de cada distribución en el nivel de significancia de 0.05.

Palabras clave: arista, LEPP, malla, propagación, refinamiento y triangulación.

ABSTRACT

The thesis is framed in the area of the geometric meshes of triangles, also called triangulations, specifically in the process of refiniement. The average length of the LEPP ("Longest-Edge Propagation Path") of triangulations is studied, the propagation is used for the refinement of the geometric meshes that are useful in di erent applications such as finite elements. The main objective of this thesis is to calculate and evaluate the average length of the LEPP of triangulations constructed from the sets of points generated with probabilistic distributions. In the construction of the triangulations, no improvement algorithm was applied in order to avoid biases. After developing the program and carrying out the hypothesis tests, it was concluded that the average length of the LEPP of the triangulations constructed from the sets of points generated with the uniform, normal, normal bivariate, Gamma and exponential probabilistic distributions are less than four, at the level of significance of 0.05, the results confirm the theorem of the average length of the LEPP demonstrated by Vilca Oliver through generating functions and under certain assumptions. It was also found that the means of the LEPP are not equal between the groups of each distribution at the 0.05 level of significance.

Keywords: edge, LEPP, mesh, propagation, refinement and triangulation.

INTRODUCCIÓN

La tesis está enmarcada en el área de las mallas geométricas de triángulos, denominado también triangulaciones, específicamente en el proceso de refinamiento de las mismas. Se estudia la longitud media de "la propagación por la arista más larga" (en inglés LEPP: "Longest-Edge Propagation Path") de los triángulos que pertenecen a una malla geométrica. La propagación se emplea para el refinamiento de las mallas geométricas que son útiles en diferentes aplicaciones como los elementos finitos.

El presente trabajo de investigación tiene como objetivo principal calcular y evaluar la longitud media del LEPP de las triangulaciones construidas desde conjuntos de puntos generados con distribuciones probabilísticas como la distribución uniforme, la distribución normal, la distribución normal bivariada, la distribución Gamma y la distribución exponencial.

La parte inicial del trabajo consistió en el desarrollo de un programa para generar puntos aleatorio, para luego obtener las medias del LEPP, se desarrolló un programa en el cual se utilizó parte de la librería "2D Triangulation" del CGAL. En la construcción de las triangulaciones no se aplicó ningún algoritmo de mejoramiento u optimización para evitar sesgos.

Con los resultados obtenidos, primero se efectuó la prueba de aleatoriedad de rachas sobre los puntos, y adicionalmente para cada conjunto de puntos se realizó la prueba de bodad de ajuste de Kolmogorov-Smirnov. En la siguiente fase se realizó las pruebas de hipótesis sobre las medidas de las triangulaciones obtenidas: se hizo la prueba de hipótesis para diferencia medias con la finalidad de comprobar si las medias son estadísticamente iguales entre sí, y finalmente se hizo la prueba t para una muestra con la finalidad de comprobar si este valor es menor a una contante, es decir, el valor teórico de cuatro.

Este trabajo de tesis presenta los siguientes capítulos:

Capítulo 1, Revisión de literatura, se abordan las aspectos teóricos que sirven de sustento en la tesis. Se hace un breve repaso de los antecedentes y la librería CGAL. También se repasa la teoría de distribuciones de probabilidad.

Capítulo 2, Planteamiento del problema, se presenta el enfoque del problema, las hipótesis y objetivos de investigación.

Capítulo 3, Materiales y métodos, se detalla la población y muestra de la investigación, también se describe los métodos, uso de materiales, equipos e insumos.

Capítulo 4, Resultados y discusión, se explica los procedimientos y resultados obtenidos en la invetigación acompañado de las pruebas de hipótesis.

Finalmente se expone las conclusiones y recomendaciones, a las cuales se llegaron al terminar la presente investigación.

CAPÍTULO I

REVISIÓN DE LITERATURA

1.1. Antecedentes

El LEPP es un procedimiento necesario en varios algoritmos de refinamiento de mallas geométricas de triángulos en dos dimensiones (en el plano), por ejemplo, los algoritmos de refinamiento de mallas de Rivara que se basan en la bisección de triángulos por la arista más larga (Rivara, 1984; Rivara, 1997). También hay estudios sobre algoritmos que se basan en la división de triángulos en tres partes que tambíen se realiza por la arista más larga (Ángel Plaza, Falcón, Suárez & Abad, 2012), y la discusión y estudio del algoritmo Lepp-bisection en paralelo (Rodriguez & Rivara, 2013; Rivara, Rodriguez, Montenegro & Jorquera, 2012).

Por otro lado, también se introdujeron varios estudios del algoritmo de refinamiento de Delaunay basado en el circuncentro. Shewchuk (1997, 2002) desarrolló una mejora sobre los algoritmos de Ruppert (1995) y Chew (1993) produciendo triangulaciones con la mayoría de los ángulos mayores a 30, mientras que requieren ángulos restringidos mayores a 60. Los resultados se efectuaron en software denominado *Triangle* desarrollado por Shewchuk (1996) que está disponible en http://www.cs.cmu.edu/~quake/triangle.html, el cual fue desarrollado en el lenguaje C sirve para la construcción de triangulaciones Delaunay, triangulaciones Delaunay restringido, diagramas de Voronoi y mallas de triángulos de alta calidad (versión 1.6). Cabe destacar que la implementación de un algoritmo de refinamiento basado en el circuncentro es una tarea bastante engorrosa (Cheng, Dey & Shewchuk, 2012).

Rivara y Vemere (1996) en el artículo "Cost analysis of the longest-side (triangle bisection) refinement algorithm for triangulations" realizan un análisis geométrico del costo de tiempo de los procesos de triangulación mediante la bisección de triángulos por la arista más larga. Probaron para regiones de refinamiento circulares y rectangulares, lo que permitió concluir que es cierto para las regiones de refinamiento convexo en general. También incluyeron evidencia empírica, que está de acuerdo con la teoría.

También Suárez, Plaza y Carey (2003, 2005) efectuaron un estudio del LEPP, probaron que asintóticamente el camino de propagación se extiende en promedio a unos pocos triángulos vecinos adyacentes, incluyeron experimentos numéricos, que están de acuerdo con la teoría y exploraron otras características de la secuencia de la malla generada.

Rivara e Iribarren (1996) en el artículo "The 4-triangles longest-side Partition of Triangles and linear Refinement Algorithms" estudian las propiedades geométricas que resultan de la aplicación del algoritmo 4T-LE (partición de un triángulo por el lado más largo en 4 triángulos). Incluyen evidencia numérica que muestra que el comportamiento práctico de la partición en 4 triángulos está completamente de acuerdo con la teoría. Además, muestran que el costo de tiempo del algoritmo es lineal independientemente del tamaño de la triangulación.

En el trabajo de tesis de maestría "Estudio del refinamiento de mallas geométricas de triángulos rectángulos Isósceles" (Vilca, 2009) y en el artículo "Cálculo de la Longitud media de propagación del LEPP" (Vilca, Rivara & Gutierrez, 2010) se demostró que a longitud media de propagación del LEPP de un triángulo es igual a cuatro (estadística teórica), en el cual se utilizó funciones generatrices de probabilidad para la demostración y bajo ciertos supuestos. Por otro lado, no se efectuó una adecuada contrastación experimental (estadística experimental) del cálculo empírico de la longitud media de propagación del LEPP, habiéndose efectuado sobre triangulaciones optimizadas con el algoritmo Delaunay, del cual en la misma investigación se sugiere efectuar estudios sin la utilización del algoritmo de optimización de triangulaciones Delaunay. También no realizan ningún tipo de prueba de hipótesis estadística.

Gutierrez C., Gutierrez F. y Rivara (2007) describen las características de los triángulos y en consecuencia el comportamiento del método de bisección, también prueban que el

número de triángulos (no similares) generados en una malla obtenida por bisección iterativa está asintóticamente limitado por una función sub-exponencial en ciertos parámetros. En este caso los refinamientos son dentro de un triángulo la propagación es hacia el interior y no al exterior.

Plaza, Márquez, Moreno y Suárez (2009) presentan un nuevo esquema de refinamiento local para triangulaciones basadas en la trisección por el borde más largo, lo denominan algoritmo de refinamiento local de 7-triángulos por el borde más largo (7T-LE). Cada triángulo a refinar se subdivide en siete sub-triángulos esto mediante la determinación de su borde más largo. La conformidad de la nueva malla se garantiza mediante un criterio automático de inserción de puntos utilizando el gráfico orientado. Aclarando que el refinamiento es en el interior de un triángulo, es decir, la propagación es hacia el interior y no al exterior.

En el trabajo de tesis de maestría «Aplicación de los Algoritmos de Refinamiento LEPP en la Propagación de Grietas» (Azócar, 2007) se muestra una de las aplicaciones del refinamiento LEPP: en una pieza sujeta a cargas cíclicas o variables una grieta existente que no es crítica eventualmente se propagará cuasi-estáticamente o por fatiga, pudiendo llegar a un valor crítico. En trabajo interesa predecir el número de ciclos necesarios para llegar a un valor crítico, así como el camino que seguirá la grieta. Concluye que los algoritmos LEPP-Delaunay tienen un gran potencial en la simulación de la propagación de grietas, debido a que permiten modificar localmente la malla a medida que la grieta avanza, ahorrándose el costo computacional del mallado completo entre un paso y otro de la propagación. Para el manejo de las mallas el autor usa una herramienta interactiva basada en el algoritmo de Delaunay para obtener una malla inicial, y usa los algoritmos Lepp-Delaunay para modificar/refinar la malla localmente en la grieta, mejorando la precisión del cálculo.

Bedregal y Rivara (2014, 2013) trabajaron sobre el algoritmo de refinamiento por la arista más larga, y proporcionaron límites respecto a la propagación del refinamiento (vértices y triángulos insertados). Prueban que la aplicación iterativa del algoritmo reduce gradualmente la extensión promedio de la propagación por triángulo objetivo, tendiendo a afectar solo a dos triángulos. Finalmente incluyen resultados empíricos que están en

completo acuerdo con la teoría.

También Bedregal y Rivara (2015) en el artículo "New Results on LEPP-Delaunay Algorithm for Quality Triangulations" proporcionanan pruebas de terminación y de optimización de tamaño del algoritmo LEPP-Delaunay, para la generación de triangulaciones de calidad, de esta forma, dejan establecido que el algoritmo LEPP-Delaunay pertenece al conjunto de los buenos algoritmos de refinamiento Delaunay. Primero demuestran que el algoritmo no puede insertar puntos arbitrariamente cercanos entre sí. También muestran que el algoritmo termina, produciendo triangulaciones con ángulos internos mayores de 25.66 grados para geometrías con ángulos de entrada restringidos de al menos 30 grados.

1.2. CGAL

La librería de algoritmos de geometría computacional CGAL (en inglés: The Computational Geometry Algorithms Library https: //www.cgal.org) dirigido por el proyecto CGAL, es un proyecto de software que proporciona un acceso fácil a algoritmos geométricos eficientes y confiables en forma de una librería de C++. CGAL se utiliza en diversas áreas que requieren computación geométrica, como sistemas de información geográfico, diseño asistido por computadora, biología molecular, imágenes médicas, computación gráfica y robótica. Las librerías que se utilizan en este trabajo se atribuye principalmente a los siguientes autores: la librería "2D Triangulation" a (Yvinec, 2019) y "2D Triangulation Data Structure" a (Pion & Yvinec, 2019).

La biblioteca ofrece estructuras de datos y algoritmos como triangulaciones, diagramas de Voronoi, operaciones booleanas en polígonos y poliedros, procesamiento de conjuntos de puntos, arreglos de curvas, generación de malla de superficie y de volumen, procesamiento de geometría, formas alfa, algoritmos de envoltura convexa, reconstrucción de formas, árboles AABB y KD, etc.

1.2.1. CGAL - Estructura de datos de triangulación 2D

Una estructura de datos triangulación es una estructura de datos diseñada para manejar la representación de una triangulación bidimensional. El concepto de estructura de datos

triangulación se diseñó principalmente para servir como una estructura de datos para las clases de triangulación CGAL 2D que son triangulaciones incrustadas en un plano. Sin embargo, parece que el concepto es más general y puede usarse para cualquier superficie triangulada orientable sin límite, cualquiera que sea la dimensionalidad del espacio en el que está incrustada la triangulación.

1.2.1.1. Una estructura de datos basada en caras y vértices.

La representación de las triangulaciones 2D de CGAL se basa en caras y vértices, los bordes (aristas) se representan implícitamente solo a través de las relaciones de adyacencia entre dos caras.

La estructura de datos triangulación se puede ver como un contenedor para caras y vértices manteniendo la incidencia y las relaciones de adyacencia entre ellos.

Cada cara triangular da acceso a sus tres vértices incidentes y a sus tres caras adyacentes. Cada vértice da acceso a una de sus caras incidente y a través de esa cara a la lista circular de sus caras incidente.

Los tres vértices de una cara están indexados con 0, 1 y 2. Los vecinos de una cara también están indexados con 0,1,2 de tal forma que el vecino indexado por i es opuesto al vértice con el mismo índice. Las funciones ccw(i) y cw(i) calculan respectivamente i + 1 e i - 1 módulo 3.

Cada borde tiene dos representaciones implícitas: el borde de una cara f que se opone al vértice indexado i, se puede representar como un borde del vecino(i) de f.

El conjunto de caras mantenido por una estructura de datos triangulación 2D es tal que cada borde incide en dos caras. En otras palabras, el conjunto de caras mantenidas es topológicamente equivalente a una esfera triangular bidimensional.

El concepto de estructura de datos de triangulación

Un modelo de *TriangulationDataStructure_2* se puede ver como un contenedor para las caras y los vértices de la triangulación. Esta clase también es responsable de la integridad combinatoria de la triangulación. Esto significa que la estructura de datos

8

de triangulación mantiene una incidencia adecuada y las relaciones de adyacencia entre los vértices y caras de una triangulación mientras se realizan modificaciones combinatorias de la triangulación. El término modificación combinatoria se refiere a operaciones que no implican ningún conocimiento sobre la incrustación geométrica de la triangulación. Por ejemplo, la inserción de un nuevo vértice en una cara dada, o en un borde dado, la supresión de un vértice de grado tres, la inversión de dos aristas son ejemplos de operaciones combinatorias realizadas en el nivel de la estructura de datos.

CGAL proporciona la clase $Triangulation_data_structure_2 < Vb, Fb > como$ estructura de datos triangulación predeterminada.

Con el fin de proporcionar flexibilidad, la estructura de datos triangulación por defecto está parametrizada (templated) por dos parámetros que permanecen respectivamente para una clase base vértice y una clase base cara. Los conceptos: *TriangulationDSVertexBase_2* y *TriangulationDSFaceBase_2* describen los requisitos para las clases vértice y cara de una estructura de datos triangulación.

Este diseño le permite al usuario conectar la estructura de datos triangulación con sus propias clases vértice o caras ajustadas para su aplicación.

Como la adyacencia y la relación de incidencia se almacenan en vértices y caras, las clases vértice y cara deben conocer los tipos de manejadores en caras y vértices provistos por la estructura de datos triangulación. Por lo tanto, las clases vértice y cara deben ser modeladas por la estructura de datos triangulación. Debido a que la estructura de datos triangulación está modelada por las clases vértice y cara, esto induce una dependencia cíclica.

1.3. Distribuciones de probabilidad

1.3.1. Distribución normal o de Gauss

La distribución normal es una distribución de probabilidad ámpliamente utilizado y se aplica en todo tipo de disciplinas. La distribución normal también está involucrado cuando incrementa el número de muestras independientes de cualquier forma de

variable, como lo declara el teorema del límite central. Además, la distribución es simétrica y tiene forma de campana (Thomopoulos, 2018).

La distribución normal fue descrita por primera vez por el matemático francés de Moivre en 1733. El desarrollo de la distribución a menudo se atribuye a Gauss, quien aplicó la teoría a los movimientos de los cuerpos celestes (Forbes, Evans, Hastings & Peacock, 2011). La distribución se describe mediante dos parámetros, la media y la desviación estándar (ó media y varianza), una distribución particular es la distribución normal estándar que tiene una media igual a cero y una desviación estándar igual a uno.

La figura 1, muestra el gráfico de la función de distribución acumulada normal estandar, y la figura 2, ilustra la curva de la función de distribución acumulada normal estandar. Todos los gráficos de las de funciones son de elaboración propia, utilizando la librería ggplot2 de R (statistic).

Definición 1. Una variable aleatoria continua **x** se dice que tiene la distribución normal si su función de densidad de probabilidad está dado por:

$$f(x;\mu,\sigma) = \frac{1}{\sigma \ \overline{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \sigma > 0$$
(1-1)

Donde:

 μ es la media: $- < \mu < \sigma$ es la desviación estándar: $\sigma > 0$ e = 2.71828... (base de logaritmos naturales) π = 3.14159... (constante matemática)

En lugar de escribir la función completa cuando una variable está normalmente distribuida, es una convención escribir de la forma:

$$X = N(\mu, \sigma)$$
 (1-2)

Figura 1. Función de densidad de probabilidad normal estandar.

Definición 2. Sea **x** una variable aleatoria, la función de distribución acumulada normal F(x) es:

$$F(x) = P(X - x)$$

Es la integral de la función de densidad de probabilidad normal f(x) de - a **x**, es decir, el área bajo la curva a la izquierda de **x**.

$$F(x) = \frac{1}{\sigma \ 2\pi} \int_{-}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
 (1-3)

No hay una solución cerrada para la función de distribución acumulada normal.

Definición 3. Una variable aleatoria normal **z** se dice que es una variable aleatoria normal estándar, si su media es cero y su desviación estándar es uno. La función de densidad de probabilidad es:

$$f(z;0,1) = \frac{1}{2\pi} e^{-\frac{z^2}{2}}, \quad - < z <$$
(1-4)

La función de distribución acumulada es $P(Z = z) = \int^z f(y; 0, 1) dy$. La variable aleatoria normal estándar Z se denota mediante Z = N(0, 1).

1.3.2. Distribución Gamma

El grafico de una función de densidad de probabilidad normal tiene forma de campana y de este modo es simétrico. En varias circunstancias prácticas, la variable de interés para el investigador (experimentador) puede tener una distribución sesgada. Una familia de funciones de densidad de probabilidad que producen una amplia variedad de formas de distribución sesgada es la familia gamma. Para definir la familia de distribuciones gamma, se requiere introducir una función que juega un papel importante en varias ramas de la matemática (Devore & Berk, 2012).

Definición 4. Para z > 0 la función Gamma $\Gamma(z)$ esta definida por:

$$\Gamma(z) = \int_0^{\infty} x^{z-1} e^{-x} dx$$
(1-5)

La función Gamma $\Gamma(z)$ es una generalización de la noción de factorial, pues para enteros positivos n, $\Gamma(n) = (n - 1)!$.

Definición 5. Una variable aleatoria continua **x** se dice que tiene la distribución Gamma si su función de densidad de probabilidad esta dato por:

$$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta} & \text{Si x >0} \\ 0 & \text{En otro caso.} \end{cases}$$
(1-6)

Donde los parámetros α y β cumplen que $\alpha > 0$, y $\beta > 0$. La Distribución Gamma estándar tiene $\beta = 1$.

Figura 3. Función de densidad de probabilidad gamma.

1.3.3. Distribución exponencial

La familia de distribuciones exponenciales provee modelos de probabilidad que son ámpliamente utilizados en disciplinas de ingeniería y ciencias (Devore & Berk, 2012).

Definición 6. Una variable aleatoria continua **x** se dice que tiene la distribución exponencial con parámetro λ ($\lambda > 0$) si la función de densidad de probabilidad de X esta dado por:

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{Si x} & 0\\ 0 & \text{En otro caso.} \end{cases}$$
(1-7)

La función de densidad de probabilidad exponencial es un caso especial de la función de densidad de probabilidad gamma en el cual $\alpha = 1$ y β se reemplaza por $1/\lambda$ [algunos autores utilizan la forma $(1/\beta)e^{-x/\beta}$].

A diferencia de la función de densidad de probabilidad gamma, la función de densidad de probabilidad exponencial fácilmente puede ser integrada. En particular la función de distribución acumulada de **x** es:

$$F(x;\lambda) = \begin{cases} 1 - e^{-\lambda x} & \text{Si x} & \mathbf{0} \\ 0 & \text{Si x} < \mathbf{0} \end{cases}$$
(1-8)

Figura 4. Función de densidad de probabilidad exponencial.

La distribución exponencial se utiliza con frecuencia como un modelo para la distribución de tiempos entre la ocurrencia de eventos sucesivos, tales como los clientes que llegan a un centro de servicio o las llamadas que llegan a un panel de control. La razón de esto es que la distribución exponencial está estrechamente relacionada con el proceso de Poisson (Devore & Berk, 2012).

Figura 5. Función de distribución acumulada exponencial.

1.3.4. Distribución de Erlang

La variante de Erlang es la suma de un número de variables exponenciales. Fue desarrollado como la distribución del tiempo de espera y la longitud del mensaje en el tráfico telefónico. Si las duraciones de las llamadas individuales se distribuyen

exponencialmente, la duración de una sucesión de llamadas tiene una distribución de Erlang (Forbes *et al.*, 2011).

La variante de Erlang es una variante gamma con parámetros de forma c, un número entero. Los diagramas, las notas sobre la estimación de parámetros y las relaciones variantes para la variable gamma se aplican a la variante de Erlang (Forbes *et al.*, 2011).

1.3.5. Distribución normal multivariada

Miller (2014) define a la distribución multivariada o distribución conjunta como una distribución que involucra dos o más variables.

Una distribución normal multivariante, también llamada distribución gaussiana multivariante, es una generalización de la distribución normal unidimensional a dimensiones superiores.

Definición 7. Se dice que el vector **x** sigue una distribución normal multivariada si su función de densidad conjunta es de la forma:

$$f(x_1, \dots, x_k) = \frac{1}{\sqrt{(2\pi)^k / \Sigma}} e^{-\frac{1}{2}(x-\mu)^T - 1(x-\mu)}$$
(1-9)

Donde:

x es una matriz (vector) no singular, simétrica y positiva definida.

 $\Sigma/$ det Σ , es el determinante de Σ . Si $\Sigma/$ = 0, **x** tienen una distribución degenerada.

1.3.6. Distribución Normal Bivariada

Quizás el ejemplo más útil de una distribución conjunta es la bivariada normal (Devore & Berk, 2012).

Definición 8. La distribución normal bivariada es la distribución estadística con función de densidad de probabilidad:

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \frac{1}{1-\rho^2} e^{-\frac{z}{2(1-\rho^2)}}$$
(1-10)

Donde:

$$z \quad \frac{(x_1 - \mu_1)^2}{\sigma_1^2} - \frac{2\rho(x_1 - \mu_1)(x_2 - \mu_2)}{\sigma_1 \sigma_2} + \frac{(x_2 - \mu_2)^2}{\sigma_2^2},$$

y
$$\rho \quad cor(x_1, x_2) = \frac{V_{12}}{\sigma_1 \sigma_2}$$

es la correlación de x_1 y x_2 , y V_{12} es la covarianza.

La integración requerida para hacer cálculos bivariados de probabilidad normal es algo difícil. El código de computadora está disponible para calcular aproximadamente P(X < x, Y < y) utilizando la integración numérica, y algunos paquetes de software estadístico (por ejemplo, R, SAS, Stata) incluyen esta función (Devore & Berk, 2012).

CAPÍTULO II

PLANTEAMIENTO DEL PROBLEMA

2.1. Planteamiento del problema

Las triangulaciones en dos dimensiones (en el plano), conocido también como, mallas geométricas de triángulos, se emplean en muchas aplicaciones. En las cuales el refinamiento es un algoritmo de división de triángulos de una malla, es un proceso que se requiere en las triangulaciones, por ejemplo, en el uso de métodos de elementos finitos adaptativos para analizar fenómenos físicos modelados por ecuaciones diferenciales parciales.

Hay varios algoritmos de refinamientos de mallas, por ejemplo, algoritmos basados en el circuncentro y algoritmos basados en la bisección de triángulos. Uno de ellos es el desarrollado por Rivara que está basados en la bisección de triángulos por la mediana de la arista más larga de una secuencia calculada de triángulos, ésta secuencia se forma considerando la arista más larga de cada triángulo (Rivara, 1984, 1997; Gutierrez *et al.*, 2007; Rivara *et al.*, 2012; Bedregal & Rivara, 2014), en ellos se requiere encontrar el Camino de Propagación por la Arista más Larga (en inglés LEPP: Longest-Edge Propagation Path)1 para un triángulo inicial T_0 .

En relación a la longitud de programación del LEPP, Vilca (2009) efectuó el cálculo teórico de la longitud media de propagación del LEPP utilizando funciones generatrices

¹Para un determinado triángulo T_0 en una malla de triángulos conforme. El LEPP (T_0) es una lista ordenada de triángulos $T_0, T_1, \ldots, T_{n-1}, T_n$, tal que T_{i+1} es el vecino de T_i por la arista más larga de T_i para $i = 0, \ldots, n-1$; y donde la arista más larga del último triángulo T_n está en el borde de la triangulación, o bien los dos últimos triángulos comparten la misma arista más larga.

Universidad Nacional del Altiplano

de probabilidad, y demostró que la longitud media del LEPP es igual a 4 esto bajo ciertos supuestos de ocurrencia. Por lo tanto, en este proyecto se pretente calcular y confirmar empíricamente (con experimentos) dicha longitud mediante la obtención de medias de longitudes de los LEPPs de triangulaciones construidas sobre los distintos conjuntos de vértices generados aleatoriamente en el espacio de dos dimensiones utilizando algunas distribuciones de probabilidad.

Para tal fin, es preciso desarrollar un programa para generar las triangulaciones y obtener medias de ella, principalmente las medias de los LEPP. Los resultados se deben constrastar utilizando la estadística inferencial, específicamente el análisis de varianza, y justamente de esta invesitgación no hay estudios previos excepto el efectuado sobre un conjunto reducido de vértices y con la no justificada aplicación de la optimización Delaunay en la tesis de magíster de Vilca (2009). Es por esto que resulta relevante analizar esta temática.

En tal sentido la interrogante general de la investigación es:

¿La longitud empírica del LEPP de triangulaciones construidas sobre puntos generados con distribuciones probabilísticas es menor que cuatro?

Y las interrogantes específicas son:

- ¿Es posible crear triangulaciones en el espacio de dos dimensiones a partir de conjuntos de puntos generados con distribuciones probabilísticas que demuestren suficiente aleatoriedad?
- ¿La longitud media del LEPP de las triangulaciones construidas sobre los puntos generados con distribuciones probabilísticas son iguales para cada distribución?

2.2. Hipótesis

2.2.1. Hipótesis general

La longitud media del LEPP de las triangulaciones construidas de los conjuntos de puntos generados con distribuciones probabilísticas es menor que cuatro.

2.2.2. Hipótesis específicas

- Es posible crear triangulaciones en el espacio de dos dimensiones a partir de conjuntos de puntos generados con distribuciones probabilísticas que demuestren suficiente aleatoriedad.
- La longitud media del LEPP de las triangulaciones construidas sobre los conjuntos de puntos generados con distribuciones probabilísticas son iguales entre los grupos de cada distribución.

2.3. Objetivos

2.3.1. Objetivo general

Calcular y evaluar la longitud media del LEPP de las triangulaciones construidas de conjuntos de puntos generados con distribuciones probabilísticas.

2.3.2. Objetivos específicos

- Crear mallas de triángulos en el espacio de dos dimensiones a partir de conjuntos de puntos generados con distribuciones probabilísticas.
- Calcular la longitud media del LEPP de las triangulaciones construidas sobre puntos generados con distribuciones probabilísticas.

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1. Lugar de estudio

El lugar donde se realizó la investigación fue en la ciudad de Puno, perteneciente a la Región Puno (Perú), su ubicación es de 15 50 31.9 de Latitud Sur y 70 1 11.6 de Longitud Oeste del Meridiano de Greenwich con una altitud sobre el nivel del mar de 3825 msnm.

3.2. Población y muestra

3.2.1. Población

La población del presente estudio, comprende a todos los conjuntos de puntos en el espacios de dos dimensiones, y a partir de ellas se forman triangulaciones. Por lo tanto, es infinita.

3.2.2. Muestra

La muestra para el presente estudio es probabilística, conformado por los conjuntos de puntos generados en el espacio de dos dimensiones, generado con las funciones de distribución uniforme continua, distribución normal, distribución normal bivariada, distribución Gamma y la distribución exponencial. En cada distribución se considera puntos (vértices) con las siguientes catidades: 10000, 20000, 30000, ..., 200000.

3.3. Método de investigación

La presente investigación es cuantitativa y de corte transversal. Para el estudio de la longitud media y máxima del LEPP en triangulaciones se realizó el siguiente procedimiento:

- Generar conjuntos puntos aleatorios P_i en el espacio de dos dimensiones, utilizando la función de distribución normal, la distribución normal bivariada, la distribución Gamma y la distribución exponencial.
- Comprobar la aleatoriedad.
- Construir triangulaciones T_i a partir de cada conjunto de puntos P_i, utilizando un(os) algoritmo(s) de triangulación (no Delaunay).
- Calcular el LEPP y otras medidas de cada triangulación T_i .
- Calcular la longitud media, máxima y desviación estándar de los LEPP de T_i.
- Cálcular las aristas más largas de las secuencias LEPP de cada T_i .
- Efectuar el análisis de varianza (inferencia estadística).

El procedimiento descrito se aplicó para cada tamaños de muestras (10000, 20000, 30000, ..., 200000). Para cada tamaño de muestra se consideró repetir el experimento un número determinado de veces, es decir, cuarenta.

3.3.1. Materiales y equipos

Para los experimentos se utilizó una computadora de última generación.

Se empleó los siguientes lenguaje de desarrollo y software:

- Lenguaje C/C++. El compilador y entorno de desarrollo es gcc/g++ de un sistema operativo libre (Ubuntu 18.10).
- OpenGL: GLUT para Dev C++ y otros.

- Software R (http://www.r-project.org, software libre) para el procesamiento de datos.
 Con el IDE RStudio.
- LibreO ce.

3.4. Descripción detallada de métodos por objetivos específicos

Para la presente investigación se utilizó los siguientes métodos que se detallan a continuación por cada objetivo:

- Objetivo General: el cual es «calcular y evaluar la longitud media del LEPP de las triangulaciones construidas de conjuntos de puntos generados con distribuciones probabilísticas», en el cual se utiliza la prueba t de una muestra para los grupos de vértices generados según cada distribución de probabilidad, también se utiliza tablas descriptivas.
- Primer objetivo específico: «crear mallas de triángulos en el espacio de dos dimensiones a partir de conjuntos de puntos generados con distribuciones probabilísticas», para el mencionado objetivo específico se desarrolló un programa en C/C++ para generar puntos aleatorios en el espacio de dos dimensiones, y para las triangulaciones se empleó la librería de algoritmos de geometría computacional CGAL. También se utiliza la prueba de aleatoridad (rachas) y la prueba de bondad de ajuste de Kolmogorov-Smirnov para los vértices generados según cada distribución de probabilidad.
- Segundo objetivo específico: el cual es «calcular la longitud media del LEPP de las triangulaciones construidas sobre puntos generados con distribuciones probabilísticas», para dicho objetivo se utiliza la prueba de los supuestos que requiere el análisis de varianza, es decir, la prueba de homogeneidad de varianzas (prueba de Levene), la prueba de normalidad (prueba de Shapiro-Wilk) y la prueba de independencia, luego, se efectúa la prueba de diferencia de medias para los grupos. También se utiliza tablas descriptivas, gráficos de dispersión, gráficos de cajas y gráfico de barras.

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

La distribución se hará por suertes, tanto entre los grupos numerosos como entre los pequeños. — N 26:56 - BIBLIA DIOS HABLA HOY.

Para describir los resultados de la investigación, primero se explica el procedimiento y herramientas que se utilizaron, en segundo lugar, se desarrolla las pruebas de tres condiciones sobre los datos (supuestos del ANOVA) y finalmente se efectúa el análisis de varianza (ANOVA) y otras pruebas de hipótesis.

4.1. Programa para calcular la longitud del LEPP

Con la finalidad de obtener resultados del LEPP (principalmente de longitud de propagación), se implementó un programa en C++ para generar puntos (vértices) aleatorios en un espacio de dos dimensiones, se utilizó algunas de las distribuciones de probabilidad más conocidas:

- Distribución uniforme.
- Distribución normal o de Gauss.
- Distribución normal bivariada.
- Distribución Gamma.
- Distribución exponencial.

(a) Caso I: Distribución uniforme

(c) Caso III: Distribución normal bivariada

(e) Caso V: Distribución exponencial

Figura 6. Nubes de puntos generada usando funciones de distribución.

Cabe indicar, que para la distribución bivariada, se tuvo que considerar librerías y código adicional, en el programa 1 se detalla el código de la clase EigenMultivariateNormal que es una mejora efectuada por Emmanuel Benazera (2014) de la distribución normal multivariada (que utiliza la libreria C++11 y las matrices Eigen).

La figura 6, muestra las nubes de puntos generadas con las distibuciones seleccionadas, siendo cinco los casos sobre los cuales se estudiaran.

(b) Caso II: Distribución normal

(d) Caso IV: Distribución Gamma


```
Programa 1: Clase en C++ para generar puntos con la Distribución Bivariada
```

```
template <typename Scalar> class EigenMultivariateNormal
   {
2
     Matrix<Scalar,Dynamic,Dynamic> _covar;
3
     Matrix < Scalar, Dynamic, Dynamic > _transform;
4
     Matrix < Scalar, Dynamic, 1> _mean;
     internal::scalar_normal_dist_op<Scalar> randN;
6
     bool _use_cholesky;
7
     SelfAdjointEigenSolver<Matrix<Scalar,Dynamic,Dynamic>>_eigenSolver;
8
     public:
9
10
       EigenMultivariateNormal(const Matrix<Scalar,Dynamic,1>& mean,
         const Matrix < Scalar, Dynamic, Dynamic >& covar,
11
         const bool use_cholesky=false,
12
         const uint64_t &seed=std::mt19937::default_seed)
13
         : _use_cholesky(use_cholesky)
14
       {
15
          randN. seed(seed);
16
          setMean(mean);
17
          setCovar(covar);
18
       }
19
       void setMean(const Matrix<Scalar, Dynamic, 1>& mean)
20
       { _mean = mean; }
21
       void setCovar(const Matrix<Scalar, Dynamic, Dynamic>& covar)
22
       {
23
          _covar = covar;
24
         if (_use_cholesky)
25
         ł
26
           Eigen::LLT<Eigen::Matrix<Scalar,Dynamic,Dynamic>>
27
            chol Sol ver (_covar);
28
29
           if (cholSolver.info()==Eigen::Success)
30
            {
               _transform = cholSolver.matrixL();
31
            }
32
            else
33
            {
34
             throw std::runtime_error("Failed computing the Cholesky
35
             decomposition. Use solver instead");
36
            }
37
         }
38
         el se
39
40
         {
            _eigenSolver=SelfAdjointEigenSolver
41
              <Matrix<Scalar, Dynamic, Dynamic>>(_covar);
42
            _transform=_eigenSolver.eigenvectors()*_eigenSolver.
43
              eigenvalues().cwiseMax(0).cwiseSqrt().asDiagonal();
44
         }
45
       3
46
       Matrix < Scalar, Dynamic, -1> samples(int nn)
47
48
          return (_transform * Matrix <Scalar, Dynamic, -1>::
49
          NullaryExpr(_covar.rows(),nn,randN)).colwise() + _mean;
50
51
52
   };
      // end class EigenMultivariateNormal
```


Luego, utilizando la libreria CGAL (The Computational Geometry Algorithms Library https://www.cgal.org) se construyó triangulaciones para cada distribución y para cada tamaño de casos (cada caso según un número de puntos con el que se crea la malla), se utillizó las siguientes librerias: "2D Triangulation" (Yvinec, 2019) y "2D Triangulation Data Structure" (Pion & Yvinec, 2019). Después se implementó un programa para calcular y exportar las medias del LEPP y otras medidas, esto para cada tamaño de casos y para cada función de distribución. En el Anexo 1 se presenta el programa principal en C++ para generar la triangulación con la distribución normal bivariada (no incluye la rutina general del cálculo del Lepp).

Con los resultados de las medias del LEPP y el software estadístico R, se procedió a efectuar las inferencias estadísticas incluido las pruebas de hipótesis, la elaboración de las figuras, tablas y descripciones que corresponden.

4.2. Prueba de aleatoridad y bondad de ajuste para los vértices generados según cada distribución de probabilidad

La prueba de rachas para detectar aleatoriedad (en inglés: runs test for randomness), el número observado de rachas es el número de grupos de observaciones que están por encima o por debajo del criterio de comparación, K. Si el número de rachas observadas es sustancialmente mayor o menor que el número de rachas esperadas, es probable que los datos no estén en orden aleatorio (Triola, 2006). En consecuencia sirve para responder la siguiente pregunta: ¿los datos de muestra se generaron a partir de un proceso aleatorio?

Para determinar si el orden de un conjunto de vertices es aleatorio, se compara el valor de p con el nivel de significancia. Por lo general, un nivel de significancia (indicado como α ó alfa) de 0.01 es adecuado, y se utiliza en esta sección para efectuar la pruebas de rachas y también para la prueba de bodad de ajuste de Kolmogorov-Smirnov. Un nivel de significancia de 0.01 indica un riesgo de 1% de concluir que el orden de los datos no es aleatorio cuando en realidad es aleatorio. Por lo tanto, sin perder generalidad, las hipótesis estarían descritas de siguiente forma:

 H_0 : la secuencia de vértices fue generada de forma aleatoria.

 H_1 : la secuencia de vértices no fue generada de forma aleatoria.

La prueba de bodad de ajuste de Kolmogorov-Smirnov (en inglés Kolmogorov-Smirnov Goodness of Fit Test), es una prueba no paramétrica que comprueba si un conjunto de datos difiere sustancialmente de las expectativas teóricas (una distribución conocida), específicamente, compara una distribución generada por datos (la función de distribución empírica) con una distribución de probabilidad hipotética conocida, por ejemplo, la distribución normal (Ruppert, 2014; Stephens, 1992). Un nivel de significancia de 0.01 indica un riesgo de 1% de concluir que los datos no siguen la distribución especificada (por ejemplo la distribución normal) cuando el realidad siguen dicha distribución. La prueba de bondad de ajuste de Kolmogorov-Smirnov sirve debido a que en este trabajo se utilizan diferentes distribuciones y también para responder a la pregunta de si los datos provienen de una distribucón. Luego, sin perder generalidad, las hipótesis estarían descritas de siguiente forma:

- H_0 : Los datos provienen de la distribución especificada.
- H_1 : Al menos un valor no coincide con la distribución especificada.

Un valor de p pequeño se interpreta como evidencia de que la muestra no proviene de una distribución normal (Ruppert, 2014; Stephens, 1992), y en general la misma regla de decisión para las otras distribuciones.

4.2.1. Prueba de aleatoridad para los vértices generados con la distribución uniforme

Se planteó la siguiente hipótesis específica para efectuar la prueba de rachas sobre cada conjunto de vértices generados con la distribución uniforme:

- H₀: la secuencia de vértices de la distribución empírica uniforme fue generada de forma aleatoria.
- H₁: la secuencia de vértices de la distribución empírica uniforme no fue generada de forma aleatoria.

Tabla	1
Tublu	

Prueba de rachas para los vértices de la distribución uniforme									
Número de		Prueba c	le rachas		Prueba de	bodad de ajuste			
repetición	rachas x	p.valor x	rachas y	p.valor y	p.valor x	p.valor y			
1	5027	0.603	5001	1	0.2552	0.144			
2	5003	0.9681	5022	0.6745	0.9482	0.952			
3	4975	0.603	4998	0.9522	0.9746	0.8195			
4	4954	0.3472	5039	0.4472	0.0649	0.6484			
5	5083	0.101	4951	0.3173	0.0562	0.0117			
6	4997	0.9362	5062	0.2224	0.2938	0.7327			
7	4903	0.05	4970	0.5352	0.0561	0.2235			
8	5063	0.215	4998	0.9522	0.457	0.1335			
9	5042	0.4122	4983	0.7188	0.8659	0.7299			
10	4944	0.2543	4924	0.1235	0.3677	0.2878			
11	4960	0.4122	4910	0.0687	0.3234	0.5965			
12	5087	0.0854	5037	0.4715	0.7689	0.2576			
13	4960	0.4122	4970	0.5352	0.9381	0.4478			
14	4862	0.0054	4966	0.4839	0.8754	0.5372			
15	4992	0.8571	5018	0.7338	0.7967	0.6957			
16	5066	0.1936	5061	0.2301	0.523	0.067			
17	4987	0.7795	4988	0.7949	0.1044	0.067			
18	4987	0.7795	5001	1	0.2451	0.6177			
19	5047	0.3575	5088	0.0818	0.5476	0.4385			
20	4981	0.6891	4979	0.6599	0.5092	0.5261			
21	5082	0.1052	4977	0.6312	0.5428	0.4232			
22	4981	0.6891	4989	0.8103	0.8587	0.7159			
23	5035	0.4965	5020	0.7039	0.9107	0.6233			
24	5024	0.6455	4989	0.8103	0.2818	0.2328			
25	4968	0.5092	5055	0.2801	0.0027	0.7658			
26	5009	0.8729	5022	0.6745	0.812	0.1075			
27	5004	0.9522	4973	0.5755	0.7627	0.3723			
28	5050	0.3271	4972	0.5619	0.8318	0.9132			
29	5045	0.3788	4996	0.9203	0.9958	0.4109			
30	5020	0.7039	5011	0.8415	0.4308	0.8468			
31	4948	0.2891	4940	0.2224	0.4759	0.0515			
32	5096	0.0574	5031	0.5485	0.8319	0.1724			
33	4966	0.4839	4947	0.2801	0.2473	0.7975			
34	5056	0.2713	5144	0.0042	0.7037	0.2553			
35	5084	0.0969	5041	0.4237	0.0294	0.4896			
36	5007	0.9045	4929	0.1498	0.7004	0.9632			
37	5032	0.5352	5077	0.1285	0.7338	0.6607			
38	4986	0.7642	4948	0.2891	0.7117	0.8235			
39	4932	0.1676	5013	0.8103	0.2572	0.7903			
40	5001	1	4945	0.2627	0.8497	0.2315			

Se puede apreciar en la tabla 1, en las columnas de «prueba de rachas», que los valores de p son mayores que el nivel de significancia de 0.01, la decisión es no rechazar la hipótesis nula. Por lo tanto, no se tiene pruebas suficientes para concluir que el orden de los datos no es aleatorio, en decir, se concluye que los datos son aleatorios en el nivel de significancia de 0.01.

En la tabla 1, en las columnas de «prueba de bondad de ajuste» se observa que los valores de p son mayores que el nivel de significancia de 0.01, la decisión es no rechazar la hipótesis nula, es decir, no se tiene pruebas suficientes para concluir que el conjunto de vértices no siguen la distribución uniforme.

4.2.2. Prueba de aleatoridad para los vértices generados con la distribución normal

Se planteó la siguiente hipótesis específica para efectuar la prueba de rachas sobre cada conjunto de vértices generados con la distribución normal:

- H₀: la secuencia de vértices de la distribución empírica normal fue generada de forma aleatoria.
- H₁: la secuencia de vértices de la distribución empírica normal no fue generada de forma aleatoria.

Se puede apreciar en la tabla 2, en las columnas de **«prueba de rachas»**, que los valores de p son mayores que el nivel de significancia de 0.01, la decisión es no rechazar la hipótesis nula. Por lo tanto, no se tiene pruebas suficientes para concluir que el orden de los datos no es aleatorio, en decir, se concluye que los datos son aleatorios en el nivel de significancia de 0.01.

En la tabla 2, en las columnas de **«prueba de bondad de ajuste»** se observa que los valores de p son mayores que el nivel de significancia de 0.01, la decisión es no rechazar la hipótesis nula, es decir, no se tiene pruebas suficientes para concluir que el conjunto de vértices no siguen la distribución normal.

4.2.3. Prueba de aleatoridad para los vértices generados con la distribución normal bivariada

Se planteó la siguiente hipótesis específica para efectuar la prueba de rachas sobre cada conjunto de vértices generados con la distribución normal bivariada:

- H₀: la secuencia de vértices de la distribución empírica normal bivariada fue generada de forma aleatoria.
- H₁: la secuencia de vértices de la distribución empírica normal bivariada no fue generada de forma aleatoria.

Tabla 2

Universidad Nacional del Altiplano

Prueba de rachas para los vértices de la distribución normal									
Número de		Prueba c	le rachas		Prueba de	bodad de ajuste			
repetición	rachas x	p.valor x	rachas y	p.valor y	p.valor x	p.valor y			
1	4999	0.9681	5094	0.0629	0.0361	0.5998			
2	4965	0.4715	5001	1	0.0946	0.6751			
3	5038	0.4593	4966	0.4839	0.4653	0.8583			
4	4991	0.8415	4925	0.1285	0.7444	0.7008			
5	4998	0.9522	5034	0.5092	0.3537	0.6863			
6	5083	0.101	5040	0.4354	0.6367	0.8458			
7	4988	0.7949	4930	0.1556	0.1926	0.3193			
8	4972	0.5619	5081	0.1096	0.0381	0.5361			
9	5034	0.5092	5005	0.9362	0.2716	0.0402			
10	5009	0.8729	5010	0.8571	0.1618	0.334			
11	5014	0.7949	4964	0.4593	0.3299	0.2965			
12	5048	0.3472	4984	0.7338	0.0711	0.0658			
13	4931	0.1615	5001	1	0.4621	0.5005			
14	4960	0.4122	4923	0.1187	0.4188	0.4114			
15	5019	0.7188	4960	0.4122	0.5427	0.264			
16	5040	0.4354	5007	0.9045	0.6769	0.4285			
17	4962	0.4354	5031	0.5485	0.3253	0.8834			
18	5037	0.4715	4991	0.8415	0.4749	0.5735			
19	5101	0.0455	4947	0.2801	0.107	0.2618			
20	4961	0.4237	4983	0.7188	0.1179	0.9036			
21	5108	0.0323	4976	0.6171	0.5585	0.2961			
22	4947	0.2801	4945	0.2627	0.3719	0.9168			
23	5029	0.5755	4913	0.0784	0.7554	0.3735			
24	4913	0.0784	4937	0.2005	0.7711	0.4851			
25	5007	0.9045	5096	0.0574	0.9059	0.8323			
26	4943	0.246	4950	0.3077	0.6961	0.0681			
27	5002	0.984	5044	0.3898	0.6216	0.478			
28	4979	0.6599	5062	0.2224	0.9007	0.5614			
29	5052	0.3077	4994	0.8887	0.1694	0.4447			
30	4996	0.9203	4963	0.4472	0.904	0.4727			
31	5064	0.2076	4941	0.2301	0.5648	0.0093			
32	4927	0.1389	5008	0.8887	0.4805	0.3761			
33	5015	0.7795	4997	0.9362	0.8378	0.7299			
34	4965	0.4715	5024	0.6455	0.7588	0.4794			
35	4941	0.2301	5027	0.603	0.1162	0.3237			
36	4959	0.4009	5046	0.3681	0.7575	0.0252			
37	4945	0.2627	5087	0.0854	0.4273	0.2816			
38	5037	0.4715	5031	0.5485	0.4563	0./381			
39	4962	0.4354	5068	0.1802	0.2024	0.3192			
40	5007	0.9045	4895	0.034	0.5512	0.7035			

Se puede apreciar en la tabla 3, en las columnas de **«prueba de rachas»**, que los valores de p son mayores que el nivel de significancia de 0.01, la decisión es no rechazar la hipótesis nula. Por lo tanto, no se tiene pruebas suficientes para concluir que el orden de los datos no es aleatorio, en decir, se concluye que los datos son aleatorios en el nivel de significancia de 0.01.

En la tabla 3, en las columnas de **«prueba de bondad de ajuste»** se observa que los valores de p son mayores que el nivel de significancia de 0.01, la decisión es no rechazar la hipótesis nula, es decir, no se tiene pruebas suficientes para concluir que el conjunto de vértices no siguen la distribución normal bivariada.

Tabla 3

Prueba de	e rachas	para	los	Ve	értic	es de	e la	distri	ibuci	ón	nc	orn	na	11	biv	aria	da
		_									-						

Número de		Prueba c	le rachas	Prueba de bodad de ajuste		
repetición	rachas x	p.valor x	rachas y	p.valor y	p.valor x	p.valor y
1	4991	0.8571	4983	0.7338	0.9895	0.8186
2	5022	0.6454	4916	0.0968	0.2	0.4335
3	4971	0.5619	4986	0.7794	0.1155	0.183
4	5034	0.4838	5031	0.5221	0.6838	0.2952
5	5049	0.3172	5039	0.4236	0.5883	0.4866
6	5005	0.9045	4925	0.1388	0.1271	0.0351
7	4982	0.7338	5062	0.2076	0.4945	0.1076
8	5045	0.3575	5049	0.3172	0.461	0.2962
9	5006	0.9045	4865	0.0069	0.1786	0.0483
10	5043	0.368	4956	0.4007	0.1391	0.0308
11	4961	0.4591	4960	0.4471	0.4346	0.2659
12	5017	0.7338	5072	0.1498	0.6238	0.1925
13	4984	0.7641	4995	0.9362	0.5067	0.4435
14	4998	0.9681	5039	0.4353	0.307	0.5953
15	5055	0.2541	5054	0.2625	0.3024	0.0525
16	4963	0.4714	5059	0.23	0.1447	0.0216
17	5004	0.9362	4951	0.327	0.4829	0.7877
18	4985	0.8102	4991	0.9044	0.2395	0.1378
19	5001	0.984	5001	0.984	0.1095	0.105
20	4960	0.4122	4972	0.5619	0.1396	0.0462
21	5006	0.8886	5047	0.3369	0.2207	0.2415
22	4948	0.3076	4991	0.8728	0.4101	0.0546
23	4960	0.4353	4984	0.7641	0.2503	0.2476
24	5030	0.5091	4934	0.2075	0.444	0.2594
25	4996	0.9362	4970	0.5484	0.3527	0.2693
26	4891	0.0307	4964	0.4838	0.7639	0.278
27	5000	1	5018	0.7188	0.0703	0.0054
28	5056	0.2542	5080	0.1051	0.9879	0.1422
29	5018	0.7039	4957	0.4008	0.5014	0.0957
30	5037	0.4471	5005	0.9045	0.1992	0.3653
31	4941	0.2459	4929	0.1614	0.6286	0.4699
32	5088	0.075	5104	0.0357	0.1826	0.0425
33	4965	0.5091	4980	0.7188	0.2391	0.3615
34	4996	0.9362	4923	0.1235	0.329	0.091
35	4949	0.3269	5038	0.4235	0.2445	0.0358
36	5048	0.337	4997	0.9521	0.6159	0.3524
37	5040	0.4236	5019	0.7039	0.8453	0.1958
38	5091	0.0657	5030	0.5352	0.4287	0.6626
39	4918	0.1095	5003	0.9203	0.2153	0.4808
40	4968	0.5221	4946	0.2801	0.2624	0.2265

4.2.4. Prueba de aleatoridad para los vértices generados con la distribución Gamma

Se planteó la siguiente hipótesis específica para efectuar la prueba de rachas sobre cada conjunto de vértices generados con la distribución gamma:

- H₀: la secuencia de vértices de la distribución empírica gamma fue generada de forma aleatoria.
- *H*₁: la secuencia de vértices de la distribución empírica gamma no fue generada de

Universidad Nacional del Altiplano

forma aleatoria.

Tabla 4

Número de	Númoro do Prueha de rachas Prueha de bodad de ajuste								
repetición	rachas y	n valor v	rachas v	n valor v	n valor v	n valor v			
1	/023	0.1187	503/	0.5092	0.757	0.5182			
2	5036	0.4839	4879	0.0072	0.178	0.3312			
3	4944	0 2543	4980	0.6745	0.9677	0.2816			
4	5028	0.5892	5014	0 7949	0.8799	0 7256			
5	4952	0.3271	5046	0.3681	0.3995	0 2441			
6	5056	0.2713	5007	0.9045	0.3424	0.8899			
7	4920	0.1052	5012	0.8259	0.4393	0.8338			
8	5021	0.6891	4967	0.4965	0.5128	0.6063			
9	4926	0.1336	5069	0.1738	0.504	0.8824			
10	4998	0.9522	4983	0.7338	0.6375	0.9548			
11	5072	0.1556	5027	0.603	0.1279	0.0861			
12	4955	0.3575	5010	0.8571	0.4132	0.1105			
13	5013	0.8103	5014	0.7949	0.3637	0.0843			
14	5018	0.7338	5069	0.1738	0.0034	0.1701			
15	5104	0.0394	5018	0.7338	0.9191	0.4153			
16	5009	0.8729	5023	0.6599	0.9424	0.6196			
17	4940	0.2224	5061	0.2301	0.5329	0.7338			
18	4931	0.1615	5034	0.4964	0.5447	0.9868			
19	4970	0.5352	4976	0.6171	0.1227	0.6482			
20	4963	0.4472	4952	0.3271	0.6082	0.5914			
21	5087	0.0854	5012	0.8259	0.1421	0.5675			
22	4987	0.7795	5002	0.984	0.2901	0.5622			
23	4977	0.6312	4987	0.7795	0.8442	0.2108			
24	5076	0.1336	5013	0.8103	0.4353	0.8913			
25	4997	0.9362	4901	0.0455	0.5022	0.4343			
26	4982	0.7039	4958	0.3898	0.5194	0.4988			
27	5107	0.034	5048	0.3472	0.3166	0.0273			
28	4896	0.0357	5009	0.8729	0.2044	0.8219			
29	4985	0.749	4967	0.4965	0.8551	0.9329			
30	4999	0.9681	4934	0.1802	0.6395	0.2459			
31	5072	0.1556	4948	0.2891	0.7487	0.6931			
32	4982	0.7039	5033	0.5222	0.7305	0.0923			
33	5014	0.7949	5034	0.5092	0.857	0.6188			
34	4979	0.6599	4928	0.1443	0.4926	0.5448			
35	4943	0.246	4937	0.2005	0.415	0.869			
36	4980	0.6745	5096	0.0574	0.0844	0.7285			
37	4894	0.0323	5041	0.4237	0.6888	0.5015			
38	5004	0.9522	5003	0.9681	0.6155	0.8371			
39	5005	0.9362	5022	0.6745	0.4194	0.7107			
40	4989	0.8103	5079	0.1187	0.5075	0.9161			

Prueba de rachas para los vértices de la distribución gamma

Se puede apreciar en la tabla 4, en las columnas de **«prueba de rachas»**, que los valores de p son mayores que el nivel de significancia de 0.01, la decisión es no rechazar la hipótesis nula. Por lo tanto, no se tiene pruebas suficientes para concluir que el orden de los datos no es aleatorio, en decir, se concluye que los datos son aleatorios en el nivel de significancia de 0.01.

En la tabla 4, en las columnas de **«prueba de bondad de ajuste»** se observa que los valores de p son mayores que el nivel de significancia de 0.01, la decisión es no rechazar

la hipótesis nula, es decir, no se tiene pruebas suficientes para concluir que el conjunto de vértices no siguen la distribución gamma.

4.2.5. Prueba de aleatoridad para los vértices generados con la distribución exponencial

Se planteó la siguiente hipótesis específica para efectuar la prueba de rachas sobre cada conjunto de vértices generados con la distribución exponencial:

- H₀: la secuencia de vértices de la distribución empírica exponencial fue generada de forma aleatoria.
- H₁: la secuencia de vértices de la distribución empírica exponencial no fue generada de forma aleatoria.

Se puede apreciar en la tabla 5, en las columnas de **«prueba de rachas»**, que los valores de p son mayores que el nivel de significancia de 0.01, la decisión es no rechazar la hipótesis nula. Por lo tanto, no se tiene pruebas suficientes para concluir que el orden de los datos no es aleatorio, en decir, se concluye que los datos son aleatorios en el nivel de significancia de 0.01.

En la tabla 5, en las columnas de **«prueba de bondad de ajuste»** se observa que los valores de p son mayores que el nivel de significancia de 0.01, la decisión es no rechazar la hipótesis nula, es decir, no se tiene pruebas suficientes para concluir que el conjunto de vértices no siguen la distribución exponencial.

Tabla 5

Prueba de rachas para los vértices de la distribución exponencial									
Número de		Prueba c	le rachas		Prueba de	bodad de ajuste			
repetición	rachas x	p.valor x	rachas y	p.valor y	p.valor x	p.valor y			
1	4963	0.4472	4973	0.5755	0.2082	0.6398			
2	5045	0.3788	5025	0.6312	0.2214	0.6355			
3	5041	0.4237	5006	0.9203	0.1554	0.843			
4	5033	0.5222	4999	0.9681	0.2647	0.9701			
5	4973	0.5755	4898	0.0394	0.8905	0.9039			
6	4805	1e-04	5112	0.0264	0.3527	0.305			
7	5057	0.2627	5035	0.4965	0.7325	0.4881			
8	4922	0.1141	4987	0.7795	0.2148	0.1738			
9	4992	0.8571	4937	0.2005	0.2234	0.7459			
10	5094	0.0629	5044	0.3898	0.5104	0.8421			
11	5017	0.749	5090	0.0751	0.2656	0.7698			
12	4975	0.603	5061	0.2301	0.4665	0.2019			
13	4997	0.9362	4982	0.7039	0.0637	0.296			
14	5027	0.603	4952	0.3271	0.9221	0.545			
15	4986	0.7642	4886	0.0214	0.0744	0.9637			
16	4996	0.9203	5043	0.4009	0.0738	0.4069			
17	4980	0.6745	5001	1	0.2892	0.1904			
18	4931	0.1615	4981	0.6891	0.1264	0.857			
19	4931	0.1615	5007	0.9045	0.163	0.8114			
20	5052	0.3077	5023	0.6599	0.7782	0.3725			
21	5085	0.0929	4867	0.0074	0.8499	0.4214			
22	4962	0.4354	5005	0.9362	0.0955	0.7531			
23	4972	0.5619	4942	0.238	0.9602	0.086			
24	5029	0.5755	4905	0.0548	0.8008	0.564			
25	5026	0.6171	5039	0.4472	0.556	0.1131			
26	4945	0.2627	5041	0.4237	0.6785	0.6012			
27	5062	0.2224	4971	0.5485	0.6043	0.9446			
28	4948	0.2891	5090	0.0751	0.0949	0.5901			
29	4991	0.8415	5054	0.2891	0.7466	0.0188			
30	5008	0.8887	4991	0.8415	0.2046	0.407			
31	4966	0.4839	5017	0.749	0.1479	0.7764			
32	5003	0.9681	4924	0.1235	0.9866	0.3292			
33	5008	0.8887	4919	0.101	0.4738	0.9832			
34	4951	0.3173	5095	0.0601	0.8464	0.0922			
35	5037	0.4715	4976	0.6171	0.2001	0.5374			
36	4959	0.4009	4996	0.9203	0.12	0.4006			
37	5074	0.1443	4995	0.9045	0.0557	0.8168			
38	4953	0.337	5078	0.1235	0.7417	0.1807			
39	4984	0.7338	5002	0.984	0.8179	0.7817			
40	4986	0.7642	5090	0.0751	0.6526	0.2976			

4.3. Longitud media del LEPP

En esta sección se efectúa el análisis de la longitud media del LEPP obtenida de la triangulación de cada conjunto de vértices, es decir, desde nubes de puntos generados aleatoriamente con diferentes funciones de distribución. Se formaron grupos de vértices de diferentes tamaños, se inició con grupos de tamaño 10000 y los siguientes grupos fueron resultados de incrementos sucesivos de 10000 hasta llegar a 200000. Para cada tamaño de grupo (tamaño de caso) se repitió 40 veces el experimento con el objetivo de obtener resultados generales y evitar el incumplimiento de los supuestos del análisis de varianza. Luego, para cada grupo se obtuvo resúmenes de medias de triángulos: la longitud máxima

LEPP, la longitud media del LEPP, etc. Y con la finalidad de buscar resultados nuevos, es que, se generó nubes de vértices utilizando las siguientes distribuciones.

- Distribución uniforme.
- Distribución normal o de Gauss.
- Distribución normal bivariada.
- Distribución Gamma.
- Distribución exponencial.

Para cada distribución se hallaron y registraron los resultados (resúmenes de medias) para finalmente efectuar la comparación entre las medias de los Lepp utilizando el análisis de varianza y la estadística descriptiva. Para las pruebas en el análisis de varianza se utilizó un nivel de significancia del 0.05 y se empleó el software estadístico R con el que se efectuó las inferencias, elaboración de gráficos y estadística descriptiva.

4.4. Longitud media del LEPP con la distribución uniforme

Figura 7. Nube de puntos generada con la función de distribución uniforme.

No olvide citar esta tesis

La figura 7, muestra la nube de puntos obtenidos con la distribución uniforme. Para este caso en particular se utilizó 10000 vértices, que corresponde al menor de todos los tamaños de caso, si se agregan más vértices el gráfico se hace menos ilustrativo. La generación de puntos se repitió 40 veces para cada grupo.

Tabla 6

Medias	obtenidas	para	cada	grupo	de	triangulaciones	formados	con	la	función	de
distribu	cion unifor	те									

	Vértices	Med_triángulos	Med_cierre	Med_max_Lepp	Med_Lepp	Med_DeEs_Lepp
1	10000	19974.05	23.95	11	3.0485	0.0115
2	20000	39971.78	26.23	12	3.0512	0.0099
3	30000	59971.50	26.50	12	3.0561	0.0075
4	40000	79970.52	27.48	12	3.0587	0.0059
5	50000	99969.60	28.40	12	3.0590	0.0063
6	60000	119968.73	29.27	12	3.0597	0.0057
7	70000	139969.30	28.70	13	3.0607	0.0044
8	80000	159967.25	30.75	13	3.0619	0.0049
9	90000	179968.05	29.95	13	3.0626	0.0043
10	100000	199967.52	30.48	13	3.0629	0.0043
11	110000	219967.62	30.38	13	3.0637	0.0046
12	120000	239966.98	31.02	13	3.0645	0.0037
13	130000	259967.25	30.75	13	3.0641	0.0033
14	140000	279967.03	30.98	13	3.0648	0.0034
15	150000	299967.65	30.35	14	3.0650	0.0034
16	160000	319966.22	31.77	13	3.0652	0.0029
17	170000	339965.25	32.75	14	3.0662	0.0033
18	180000	359965.83	32.17	14	3.0662	0.0030
19	190000	379966.58	31.43	14	3.0664	0.0037
20	200000	399965.50	32.50	14	3.0661	0.0028

La tabla 6, está formada por 20 filas, cada una de ellas representa al resumen de medias obtenidas para cada **grupo** de experimentos generados con la distribución uniforme, cada grupo representa 40 experimentos (repeticiones) que se efectuaron a partir de un número de vértices, por ejemplo, la primera fila representa al grupo de triangulaciones construidas a partir de 10000 vértices. La columna «Vértices» indica el número de vértices utilizados en cada experimento del grupo, la siguiente columna «Med_triángulos» indica la media de triangulos que se obtuvo para el grupo, continúa la columna «Med_cierre» que indica la media de vértices que conforman el cierre convexo, luego «Med_max_Lepp» es la media de los máximos Lepp de los experiementos del grupo, en seguida «Med_Lepp» es la media de las longitudes de los LEPP del grupo y la última columna es la media de las desviaciones estándar de las longitudes de los LEPP del grupo. La media del Lepp permanece casi constante, salvo una diferencia a nivel de las centena, y las otras medias aumentan debido a que cada fila representa un grupo de mayor cantidad de vértices.

Figura 8. Gráfico de barras de las medias de los LEPP de cada grupo de triangulaciones generadas con la distribución uniforme

En la figura 8, se observa el gráfico de barras de las medias de los LEPP de cada grupo de triangulaciones generadas con la distribución uniforme. Se aprecia que las medias de los LEPP permanecen casi constante. Por lo tanto, es necesario efectuar una prueba de diferencia de medias conocido también como análisis de varianza (ANOVA), que prueba la hipótesis de que las medias de dos o más poblaciones son iguales. Previo a ello es necesario efectuar la prueba de los supuestos que requiere el análisis de varianza.

4.4.1. Prueba del supuesto de homogeneidad de varianzas

Se utilizó la prueba de Levene que es una prueba de estadística inferencial utilizada para evaluar la igualdad de las varianzas para una variable calculada para dos o más grupos.

Tabla 7

Resultado de la prueba de Levene para los grupos formados con la función de distribución uniforme

	Df	F value	Pr(>F)
group	19	10.58	0.0000
	780		

La tabla 7, proporciona el resultado de la prueba de Levene para los grupos formados con la función de distribución uniforme, donde, el valor de p es menor que el nivel de significancia de 0.05, el cual indica que no se cumple el supuesto de igualdad de

varianzas entre grupos formados con la distribución uniforme. La prueba de varianza constante es muy importante cuando el tamaño de las muestras son diferentes entre los grupos. En este caso, el tamaño de cada grupo es 40 (muestras de igual tamaño).

Figura 9. Gráfico de cajas de las medias del Lepp según grupos - formados con la función de distribución uniforme

Por otro lado, la figura 9, muestra el gráfico de cajas, en el cual se observa la variabilidad de los grupos, siendo mayor en los grupo que se formaron con menor cantidad de vértices y se va reduciendo en los grupos que fueron formados con mayor cantidad de vértices.

4.4.2. Prueba del supuesto de normalidad

Se utilizó la prueba de Shapiro-Wilk por grupos debido a que hay suficientes observaciones en cada grupo. En la tabla 8, de resultados de las pruebas de Shapiro-Wilk para los grupos formados con la función de distribución uniforme, se observa que, los valores de p son mayores que el nivel de significancia de 0.05, el cual indica que no hay indicios de que no se cumpla el supuesto de normalidad. Si uno o más grupos no pasara la prueba, no tiene importancia sustancial debido a que cuarenta como tamaño de cada grupo es suficiente.

Tabla 8

Resultados de las pruebas de Shapiro-Wilk para los grupos formados con la función de distribución uniforme

istribución unijornic									
	Grupo	W	P.value						
1	G010	0.97	0.39						
2	G020	0.97	0.40						
3	G030	0.96	0.18						
4	G040	0.97	0.42						
5	G050	0.96	0.23						
6	G060	0.99	0.94						
7	G070	0.93	0.02						
8	G080	0.98	0.61						
9	G090	0.98	0.67						
10	G100	0.99	0.99						
11	G110	0.96	0.22						
12	G120	0.97	0.28						
13	G130	0.99	0.88						
14	G140	0.95	0.11						
15	G150	0.97	0.50						
16	G160	0.97	0.30						
17	G170	0.98	0.56						
18	G180	0.96	0.17						
19	G190	0.96	0.18						
20	G200	0.98	0.55						

4.4.3. Prueba del supuesto de independencia

Independencia dentro de los grupos: la longitud media del Lepp de cada experimento es independiente de las otras, y la generación de vértices es aleatoria e independiente.

Independencia entre los grupos: en este caso se cumple debido a que la generación aleatoria de vértices es independiente para cada experimento y para cada grupo, del mismo modo, porque se conoce bien el algoritmo de obtención del Lepp.

4.4.4. Prueba de diferencia de medias para los grupos formados con la distribución uniforme

Se planteó la siguiente hipótesis específica para efectuar la prueba de igualdad de medias.

- H₀: todas las medias LEPP de los grupos formados con la distribución uniforme son iguales.
- *H_a*: por lo menos un par de medias LEPP formados con la distribución uniforme son distintos.

Tabla 9

Resultado resumen del análisis de varianza para los grupos formados con la función de distribución uniforme

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Grupo	19	0.02	0.00	33.34	0.0000
Residuals	780	0.02	0.00		

A continuación en la tabla 9, de resultado del análisis de varianza (ANOVA) para los grupos formados con la distribución uniforme, se observa un valor de p menor que el nivel de significancia de 0.05 para los grupos de la distribución uniforme, por lo tanto, se rechaza la hipótesis nula de igualdad de media incluso para el nivel de significancia de 0.001 y se concluye que hay diferencia significativa entre los grupos.

4.5. Longitud media del LEPP con la distribución normal o de Gauss

Figura 10. Nube de puntos generada con la función de distribución normal.

La figura 10, muestra la nube de puntos obtenidos con la distribución normal. Para este caso en particular se utilizó 10000 vértices, que corresponde al menor de todos los tamaños de caso, si se agregan más vértices el gráfico se hace menos ilustrativo. La generación de puntos se repitió 40 veces para cada grupo.

La tabla 10, está formada por 20 filas, cada una de ellas representa al resumen de medias

Tabla 10

Medias obtenidas para cada grupo de triangulaciones formados con la función de distribucion normal

	Vértices	Med_triángulos	Med_cierre	Med_max_Lepp	Med_Lepp	Med_DeEs_Lepp
1	10000	19984.78	13.22	11	3.0377	0.0114
2	20000	39983.38	14.62	12	3.0460	0.0072
3	30000	59983.53	14.47	12	3.0478	0.0082
4	40000	79983.27	14.72	12	3.0510	0.0057
5	50000	99982.95	15.05	13	3.0520	0.0062
6	60000	119983.70	14.30	13	3.0537	0.0044
7	70000	139982.27	15.72	13	3.0563	0.0052
8	80000	159982.38	15.62	13	3.0563	0.0049
9	90000	179982.48	15.53	13	3.0574	0.0038
10	100000	199982.62	15.38	13	3.0584	0.0038
11	110000	219981.62	16.38	13	3.0586	0.0037
12	120000	239982.23	15.78	13	3.0592	0.0033
13	130000	259982.48	15.53	13	3.0594	0.0038
14	140000	279982.58	15.43	13	3.0609	0.0031
15	150000	299982.05	15.95	13	3.0606	0.0029
16	160000	319981.72	16.27	13	3.0614	0.0035
17	170000	339982.35	15.65	13	3.0623	0.0039
18	180000	359981.80	16.20	14	3.0617	0.0025
19	190000	379981.90	16.10	13	3.0621	0.0033
20	200000	399981.22	16.77	14	3.0632	0.0036

obtenidas para cada **grupo** de experimentos generados con la distribución normal, cada grupo representa 40 experimentos (repeticiones) que se efectuaron a partir de un número de vértices, por ejemplo, la primera fila representa al grupo de triangulaciones construidas a partir de 10000 vértices. La columna «Vértices» indica el número de vértices utilizados en cada experimento del grupo, la siguiente columna «Med_triángulos» indica la media de triangulos que se obtuvo para el grupo, continúa la columna «Med_cierre» que indica la media de vértices que conforman el cierre convexo, luego «Med_max_Lepp» es la media de los máximos Lepp de los experiementos del grupo, en seguida «Med_Lepp» es la media de las longitudes de los LEPP del grupo y la última columna es la media de las desviaciones estándar de las longitudes de los LEPP del grupo. La media del Lepp permanece casi constante, salvo una diferencia a nivel de las centena, y las otras medias aumentan debido a que cada fila representa un grupo de mayor cantidad de vértices.

Figura 11. Gráfico de barras de las medias de los LEPP de cada grupo de triangulaciones generadas con la distribución normal

En la figura 11, se observa el gráfico de barras de las medias de los LEPP de cada grupo de triangulaciones generadas con la distribución normal. Se aprecia que las medias de los LEPP permanecen casi constante. Por lo tanto, es necesario efectuar una prueba de diferencia de medias conocido también como análisis de varianza (ANOVA), que prueba la hipótesis de que las medias de dos o más poblaciones son iguales. Previo a ello es necesario efectuar la prueba de los supuestos que requiere el análisis de varianza.

4.5.1. Prueba del supuesto de homogeneidad de varianzas

Se utilizó la prueba de Levene que es una prueba de estadística inferencial utilizada para evaluar la igualdad de las varianzas para una variable calculada para dos o más grupos.

Tabla 11

Resultado de la prueba de Levene para los grupos formados con la función de distribución normal

	Df	F value	Pr(>F)
group	19	12.90	0.0000
	780		

La tabla 11, proporciona el resultado de la prueba de Levene para los grupos formados con la función de distribución normal, donde, el valor de p es menor que el nivel de significancia de 0.05, el cual indica que no se cumple el supuesto de igualdad de

varianzas entre grupos formados con la distribución normal. La prueba de varianza constante es muy importante cuando el tamaño de las muestras son diferentes entre los grupos. En este caso, el tamaño de cada grupo es 40 (muestras de igual tamaño).

Figura 12. Gráfico de cajas de las medias del Lepp según grupos - formados con la función de distribución normal

Por otro lado, la figura 12, muestra el gráfico de cajas, en el cual se observa la variabilidad de los grupos, siendo mayor en los grupo que se formaron con menor cantidad de vértices y se va reduciendo en los grupos que fueron formados con mayor cantidad de vértices.

4.5.2. Prueba del supuesto de normalidad

Se utilizó la prueba de Shapiro-Wilk por grupos debido a que hay suficientes observaciones en cada grupo. En la tabla 12, de resultados de las pruebas de Shapiro-Wilk para los grupos formados con la función de distribución normal, se observa que, los valores de p son mayores que el nivel de significancia de 0.05, el cual indica que no hay indicios de que no se cumpla el supuesto de normalidad. Si uno o más grupos no pasara la prueba, no tiene importancia sustancial debido a que cuarenta como tamaño de cada grupo es suficiente.

Tabla 12

Resultados de las pruebas de Shapiro-Wilk para los grupos formados con la función de distribución normal

isinibileion normai								
Grupo	W	P.value						
G010	0.98	0.80						
G020	0.96	0.20						
G030	0.97	0.30						
G040	0.98	0.66						
G050	0.98	0.55						
G060	0.98	0.85						
G070	0.97	0.50						
G080	0.98	0.66						
G090	0.99	0.99						
G100	0.97	0.36						
G110	0.97	0.33						
G120	0.97	0.33						
G130	0.98	0.64						
G140	0.99	0.87						
G150	0.98	0.63						
G160	0.96	0.18						
G170	0.98	0.53						
G180	0.97	0.41						
G190	0.97	0.33						
G200	0.95	0.10						
	Grupo G010 G020 G030 G040 G050 G060 G070 G080 G070 G100 G110 G120 G120 G120 G120 G140 G150 G160 G170 G180 G190 G200	Grupo W G010 0.98 G020 0.96 G030 0.97 G040 0.98 G050 0.98 G070 0.97 G080 0.98 G070 0.97 G080 0.98 G090 0.99 G100 0.97 G120 0.97 G130 0.98 G140 0.99 G150 0.98 G160 0.96 G170 0.98 G180 0.97 G190 0.97 G120 0.96						

4.5.3. Prueba del supuesto de independencia

Independencia dentro de los grupos: la longitud media del Lepp de cada experimento es independiente de las otras, y la generación de vértices es aleatoria e independiente.

Independencia entre los grupos: en este caso se cumple debido a que la generación aleatoria de vértices es independiente para cada experimento y para cada grupo, del mismo modo, porque se conoce bien el algoritmo de obtención del Lepp.

4.5.4. Prueba de diferencia de medias para los grupos formados con la distribución normal

Se planteó la siguiente hipótesis específica para efectuar la prueba de igualdad de medias.

- H₀: todas las medias LEPP de los grupos formados con la distribución normal son iguales.
- *H_a*: por lo menos un par de medias LEPP formados con la distribución normal son distintos.

Tabla 13

Resultado resumen del análisis de varianza para los grupos formados con la función de distribución normal

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Grupo	19	0.03	0.00	64.88	0.0000
Residuals	780	0.02	0.00		

A continuación en la tabla 13, de resultado del análisis de varianza (ANOVA) para los grupos formados con la distribución normal, se observa un valor de p menor que el nivel de significancia de 0.05 para los grupos de la distribución normal, por lo tanto, se rechaza la hipótesis nula de igualdad de media incluso para el nivel de significancia de 0.001 y se concluye que hay diferencia significativa entre los grupos.

4.6. Longitud media del LEPP con la distribución normal bivariada

La figura 13, muestra la nube de puntos obtenidos con la distribución normal bivariada. Para este caso en particular se utilizó 10000 vértices, que corresponde al menor de todos los tamaños de caso, si se agregan más vértices el gráfico se hace menos ilustrativo. La generación de puntos se repitió 40 veces para cada grupo.

La tabla 14, está formada por 20 filas, cada una de ellas representa al resumen de medias obtenidas para cada **grupo** de experimentos generados con la distribución normal

Tabla 14

Medias	obtenidas	para	cada	grupo	de	triangulaciones	formados	con	la	función	de
distribu	cion norma	ıl biva	riada								

	Vértices	Med_triángulos	Med_cierre	Med_max_Lepp	Med_Lepp	Med_DeEs_Lepp
1	10000	19984.50	13.50	11	3.0467	0.0147
2	20000	39984.07	13.93	12	3.0498	0.0119
3	30000	59983.65	14.35	12	3.0521	0.0094
4	40000	79983.18	14.82	12	3.0561	0.0069
5	50000	99982.88	15.12	12	3.0575	0.0063
6	60000	119982.50	15.50	13	3.0593	0.0067
7	70000	139982.10	15.90	13	3.0592	0.0054
8	80000	159982.98	15.03	13	3.0604	0.0055
9	90000	179982.48	15.53	13	3.0630	0.0049
10	100000	199982.62	15.38	13	3.0618	0.0054
11	110000	219982.23	15.78	13	3.0622	0.0052
12	120000	239982.58	15.43	13	3.0628	0.0048
13	130000	259982.67	15.32	13	3.0650	0.0042
14	140000	279982.17	15.82	13	3.0630	0.0045
15	150000	299982.10	15.90	13	3.0644	0.0036
16	160000	319982.20	15.80	13	3.0640	0.0038
17	170000	339981.55	16.45	14	3.0657	0.0039
18	180000	359981.45	16.55	14	3.0651	0.0039
19	190000	379982.20	15.80	14	3.0644	0.0039
20	200000	399981.35	16.65	14	3.0661	0.0040

bivariada, cada grupo representa 40 experimentos (repeticiones) que se efectuaron a partir de un número de vértices, por ejemplo, la primera fila representa al grupo de triangulaciones construidas a partir de 10000 vértices. La columna «Vértices» indica el número de vértices utilizados en cada experimento del grupo, la siguiente columna «Med_triángulos» indica la media de triangulos que se obtuvo para el grupo, continúa la columna «Med_cierre» que indica la media de vértices que conforman el cierre convexo, luego «Med_max_Lepp» es la media de los máximos Lepp de los experiementos del grupo, en seguida «Med_Lepp» es la media de las longitudes de los LEPP del grupo y la última columna es la media de las desviaciones estándar de las longitudes de los LEPP del grupo y la última columna es la media a las desviaciones estándar de las longitudes de los LEPP del grupo. La media del Lepp permanece casi constante, salvo una diferencia a nivel de las centena, y las otras medias aumentan debido a que cada fila representa un grupo de mayor cantidad de vértices.

Figura 14. Gráfico de barras de las medias de los LEPP de cada grupo de triangulaciones generadas con la distribución normal bivariada

En la figura 14, se observa el gráfico de barras de las medias de los LEPP de cada grupo de triangulaciones generadas con la distribución normal bivariada. Se aprecia que las medias de los LEPP permanecen casi constante. Por lo tanto, es necesario efectuar una prueba de diferencia de medias conocido también como análisis de varianza (ANOVA), que prueba la hipótesis de que las medias de dos o más poblaciones son iguales. Previo a ello es necesario efectuar la prueba de los supuestos que requiere el análisis de varianza.

4.6.1. Prueba del supuesto de homogeneidad de varianzas

Se utilizó la prueba de Levene que es una prueba de estadística inferencial utilizada para evaluar la igualdad de las varianzas para una variable calculada para dos o más grupos.

Tabla 15

Resultado de la prueba de Levene para los grupos formados con la función de distribución normal bivariada

	Df	F value	Pr(>F)
group	19	12.92	0.0000
	780		

La tabla 15, proporciona el resultado de la prueba de Levene para los grupos formados con la función de distribución normal bivariada, donde, el valor de p es menor que el nivel de significancia de 0.05, el cual indica que no se cumple el supuesto de igualdad

de varianzas entre grupos formados con la distribución normal bivariada. La prueba de varianza constante es muy importante cuando el tamaño de las muestras son diferentes entre los grupos. En este caso, el tamaño de cada grupo es 40 (muestras de igual tamaño).

Figura 15. Gráfico de cajas de las medias del Lepp según grupos - formados con la función de distribución normal bivariada

Por otro lado, la figura 15, muestra el gráfico de cajas, en el cual se observa la variabilidad de los grupos, siendo mayor en los grupo que se formaron con menor cantidad de vértices y se va reduciendo en los grupos que fueron formados con mayor cantidad de vértices.

4.6.2. Prueba del supuesto de normalidad

Se utilizó la prueba de Shapiro-Wilk por grupos debido a que hay suficientes observaciones en cada grupo. En la tabla 16, de resultados de las pruebas de Shapiro-Wilk para los grupos formados con la función de distribución normal bivariada, se observa que, los valores de p son mayores que el nivel de significancia de 0.05, el cual indica que no hay indicios de que no se cumpla el supuesto de normalidad. Si uno o más grupos no pasara la prueba, no tiene importancia sustancial debido a que cuarenta como tamaño de cada grupo es suficiente.

Tabla 16

Resultados de las pruebas de Shapiro-Wilk para los grupos formados con la función de distribución normal bivariada

	Grupo	W	P.value
1	G010	0.97	0.50
2	G020	0.98	0.68
3	G030	0.98	0.60
4	G040	0.99	0.98
5	G050	0.99	1.00
6	G060	0.96	0.23
7	G070	0.97	0.45
8	G080	0.98	0.85
9	G090	0.98	0.57
10	G100	0.96	0.21
11	G110	0.98	0.75
12	G120	0.98	0.78
13	G130	0.96	0.18
14	G140	0.97	0.48
15	G150	0.99	0.97
16	G160	0.97	0.49
17	G170	0.98	0.69
18	G180	0.93	0.02
19	G190	0.97	0.33
20	G200	0.96	0.22

4.6.3. Prueba del supuesto de independencia

Independencia dentro de los grupos: la longitud media del Lepp de cada experimento es independiente de las otras, y la generación de vértices es aleatoria e independiente.

Independencia entre los grupos: en este caso se cumple debido a que la generación aleatoria de vértices es independiente para cada experimento y para cada grupo, del mismo modo, porque se conoce bien el algoritmo de obtención del Lepp.

4.6.4. Prueba de diferencia de medias para los grupos formados con la distribución normal bivariada

Se planteó la siguiente hipótesis específica para efectuar la prueba de igualdad de medias.

- H₀: todas las medias LEPP de los grupos formados con la distribución normal bivariada son iguales.
- *H_a*: por lo menos un par de medias LEPP formados con la distribución normal bivariada son distintos.

49

Tabla 17

Resultado resumen del análisis de varianza para los grupos formados con la función de distribución normal bivariada

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Grupo	19	0.02	0.00	27.70	0.0000
Residuals	780	0.03	0.00		

A continuación en la tabla 17, de resultado del análisis de varianza (ANOVA) para los grupos formados con la distribución normal bivariada, se observa un valor de p menor que el nivel de significancia de 0.05 para los grupos de la distribución normal bivariada, por lo tanto, se rechaza la hipótesis nula de igualdad de media incluso para el nivel de significancia de 0.001 y se concluye que hay diferencia significativa entre los grupos.

4.7. Longitud media del LEPP con la distribución Gamma

La figura 16, muestra la nube de puntos obtenidos con la distribución Gamma. Para este caso en particular se utilizó 10000 vértices, que corresponde al menor de todos los tamaños de caso, si se agregan más vértices el gráfico se hace menos ilustrativo. La generación de puntos se repitió 40 veces para cada grupo.

La tabla 18, está formada por 20 filas, cada una de ellas representa al resumen de medias obtenidas para cada **grupo** de experimentos generados con la distribución Gamma, cada

Tabla 18

Medias obtenidas para cada grupo de triangulaciones formados con la función de distribucion Gamma

	Vértices	Med_triángulos	Med_cierre	Med_max_Lepp	Med_Lepp	Med_DeEs_Lepp
1	10000	19981.80	16.20	11	3.0427	0.0144
2	20000	39981.18	16.82	12	3.0473	0.0098
3	30000	59980.97	17.02	12	3.0542	0.0069
4	40000	79979.85	18.15	12	3.0564	0.0065
5	50000	99980.43	17.57	12	3.0557	0.0054
6	60000	119978.95	19.05	13	3.0581	0.0049
7	70000	139979.70	18.30	13	3.0586	0.0053
8	80000	159978.38	19.62	13	3.0609	0.0047
9	90000	179978.83	19.18	13	3.0600	0.0039
10	100000	199979.10	18.90	13	3.0612	0.0043
11	110000	219978.67	19.32	13	3.0608	0.0041
12	120000	239979.00	19.00	13	3.0616	0.0036
13	130000	259978.38	19.62	13	3.0627	0.0043
14	140000	279978.75	19.25	13	3.0638	0.0038
15	150000	299977.92	20.07	13	3.0649	0.0042
16	160000	319977.90	20.10	14	3.0635	0.0035
17	170000	339978.47	19.52	14	3.0644	0.0035
18	180000	359977.65	20.35	13	3.0636	0.0037
19	190000	379977.92	20.07	13	3.0641	0.0034
20	200000	399977.88	20.12	14	3.0654	0.0040

grupo representa 40 experimentos (repeticiones) que se efectuaron a partir de un número de vértices, por ejemplo, la primera fila representa al grupo de triangulaciones construidas a partir de 10000 vértices. La columna «Vértices» indica el número de vértices utilizados en cada experimento del grupo, la siguiente columna «Med_triángulos» indica la media de triangulos que se obtuvo para el grupo, continúa la columna «Med_cierre» que indica la media de vértices que conforman el cierre convexo, luego «Med_max_Lepp» es la media de los máximos Lepp de los experiementos del grupo, en seguida «Med_Lepp» es la media de las longitudes de los LEPP del grupo y la última columna es la media de las desviaciones estándar de las longitudes de los LEPP del grupo. La media del Lepp permanece casi constante, salvo una diferencia a nivel de las centena, y las otras medias aumentan debido a que cada fila representa un grupo de mayor cantidad de vértices.

Figura 17. Gráfico de barras de las medias de los LEPP de cada grupo de triangulaciones generadas con la distribución Gamma

En la figura 17, se observa el gráfico de barras de las medias de los LEPP de cada grupo de triangulaciones generadas con la distribución Gamma. Se aprecia que las medias de los LEPP permanecen casi constante. Por lo tanto, es necesario efectuar una prueba de diferencia de medias conocido también como análisis de varianza (ANOVA), que prueba la hipótesis de que las medias de dos o más poblaciones son iguales. Previo a ello es necesario efectuar la prueba de los supuestos que requiere el análisis de varianza.

4.7.1. Prueba del supuesto de homogeneidad de varianzas

Se utilizó la prueba de Levene que es una prueba de estadística inferencial utilizada para evaluar la igualdad de las varianzas para una variable calculada para dos o más grupos.

Tabla 19

Resultado de la prueba de Levene para los grupos formados con la función de distribución Gamma

	Df	F value	Pr(>F)
group	19	14.66	0.0000
	780		

La tabla 19, proporciona el resultado de la prueba de Levene para los grupos formados con la función de distribución Gamma, donde, el valor de p es menor que el nivel de significancia de 0.05, el cual indica que no se cumple el supuesto de igualdad de

varianzas entre grupos formados con la distribución Gamma. La prueba de varianza constante es muy importante cuando el tamaño de las muestras son diferentes entre los grupos. En este caso, el tamaño de cada grupo es 40 (muestras de igual tamaño).

Figura 18. Gráfico de cajas de las medias del Lepp según grupos - formados con la función de distribución Gamma

Por otro lado, la figura 18, muestra el gráfico de cajas, en el cual se observa la variabilidad de los grupos, siendo mayor en los grupo que se formaron con menor cantidad de vértices y se va reduciendo en los grupos que fueron formados con mayor cantidad de vértices.

4.7.2. Prueba del supuesto de normalidad

Se utilizó la prueba de Shapiro-Wilk por grupos debido a que hay suficientes observaciones en cada grupo. En la tabla 20, de resultados de las pruebas de Shapiro-Wilk para los grupos formados con la función de distribución Gamma, se observa que, los valores de p son mayores que el nivel de significancia de 0.05, el cual indica que no hay indicios de que no se cumpla el supuesto de normalidad. Si uno o más grupos no pasara la prueba, no tiene importancia sustancial debido a que cuarenta como tamaño de cada grupo es suficiente.

Tabla 20

Resultados de las pruebas de Shapiro-Wilk para los grupos formados con la función de distribución Gamma

isiribución Gummu								
	Grupo	W	P.value					
1	G010	0.97	0.29					
2	G020	0.97	0.36					
3	G030	0.99	0.92					
4	G040	0.97	0.50					
5	G050	0.88	0.00					
6	G060	0.93	0.02					
7	G070	0.97	0.41					
8	G080	0.98	0.64					
9	G090	0.98	0.64					
10	G100	0.98	0.79					
11	G110	0.97	0.32					
12	G120	0.96	0.16					
13	G130	0.98	0.68					
14	G140	0.98	0.78					
15	G150	0.98	0.62					
16	G160	0.97	0.50					
17	G170	0.96	0.13					
18	G180	0.99	0.96					
19	G190	0.99	0.96					
20	G200	0.98	0.78					

4.7.3. Prueba del supuesto de independencia

Independencia dentro de los grupos: la longitud media del Lepp de cada experimento es independiente de las otras, y la generación de vértices es aleatoria e independiente.

Independencia entre los grupos: en este caso se cumple debido a que la generación aleatoria de vértices es independiente para cada experimento y para cada grupo, del mismo modo, porque se conoce bien el algoritmo de obtención del Lepp.

4.7.4. Prueba de diferencia de medias para los grupos formados con la distribución Gamma

Se planteó la siguiente hipótesis específica para efectuar la prueba de igualdad de medias.

- H₀: todas las medias LEPP de los grupos formados con la distribución Gamma son iguales.
- *H_a*: por lo menos un par de medias LEPP formados con la distribución Gamma son distintos.

Tabla 21

Resultado resumen del análisis de varianza para los grupos formados con la función de distribución Gamma

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Grupo	19	0.03	0.00	41.69	0.0000
Residuals	780	0.03	0.00		

A continuación en la tabla 21, de resultado del análisis de varianza (ANOVA) para los grupos formados con la distribución Gamma, se observa un valor de p menor que el nivel de significancia de 0.05 para los grupos de la distribución Gamma, por lo tanto, se rechaza la hipótesis nula de igualdad de media incluso para el nivel de significancia de 0.001 y se concluye que hay diferencia significativa entre los grupos.

4.8. Longitud media del LEPP con la distribución exponencial

La figura 19, muestra la nube de puntos obtenidos con la distribución exponencial. Para este caso en particular se utilizó 10000 vértices, que corresponde al menor de todos los tamaños de caso, si se agregan más vértices el gráfico se hace menos ilustrativo. La generación de puntos se repitió 40 veces para cada grupo.

La tabla 22, está formada por 20 filas, cada una de ellas representa al resumen de medias obtenidas para cada **grupo** de experimentos generados con la distribución exponencial,

Tabla 22

Medias	obtenidas	para	cada	grupo	de	triangulaciones	formados	con	la	función	de
distribu	cion expon	encial	!								

		1				
	Vértices	Med_triángulos	Med_cierre	Med_max_Lepp	Med_Lepp	Med_DeEs_Lepp
1	10000	19979.80	18.20	11	3.0452	0.0119
2	20000	39977.38	20.62	12	3.0540	0.0105
3	30000	59977.97	20.02	12	3.0563	0.0056
4	40000	79977.18	20.82	13	3.0608	0.0071
5	50000	99977.57	20.43	13	3.0605	0.0054
6	60000	119976.55	21.45	13	3.0623	0.0065
7	70000	139975.80	22.20	13	3.0633	0.0055
8	80000	159976.17	21.82	13	3.0631	0.0053
9	90000	179975.85	22.15	13	3.0631	0.0040
10	100000	199974.62	23.38	13	3.0648	0.0047
11	110000	219974.83	23.18	13	3.0642	0.0038
12	120000	239975.75	22.25	13	3.0670	0.0051
13	130000	259975.02	22.98	13	3.0671	0.0039
14	140000	279975.60	22.40	13	3.0671	0.0030
15	150000	299975.47	22.52	14	3.0669	0.0042
16	160000	319976.42	21.57	13	3.0666	0.0036
17	170000	339974.50	23.50	13	3.0667	0.0032
18	180000	359975.17	22.82	14	3.0671	0.0037
19	190000	379974.53	23.48	14	3.0671	0.0033
20	200000	399974.65	23.35	14	3.0684	0.0036

cada grupo representa 40 experimentos (repeticiones) que se efectuaron a partir de un número de vértices, por ejemplo, la primera fila representa al grupo de triangulaciones construidas a partir de 10000 vértices. La columna «Vértices» indica el número de vértices utilizados en cada experimento del grupo, la siguiente columna «Med_triángulos» indica la media de triangulos que se obtuvo para el grupo, continúa la columna «Med_cierre» que indica la media de vértices que conforman el cierre convexo, luego «Med_max_Lepp» es la media de los máximos Lepp de los experiementos del grupo, en seguida «Med_Lepp» es la media de las longitudes de los LEPP del grupo y la última columna es la media de las desviaciones estándar de las longitudes de los LEPP del grupo. La media del Lepp permanece casi constante, salvo una diferencia a nivel de las centena, y las otras medias aumentan debido a que cada fila representa un grupo de mayor cantidad de vértices.

Figura 20. Gráfico de barras de las medias de los LEPP de cada grupo de triangulaciones generadas con la distribución exponencial

En la figura 20, se observa el gráfico de barras de las medias de los LEPP de cada grupo de triangulaciones generadas con la distribución exponencial. Se aprecia que las medias de los LEPP permanecen casi constante. Por lo tanto, es necesario efectuar una prueba de diferencia de medias conocido también como análisis de varianza (ANOVA), que prueba la hipótesis de que las medias de dos o más poblaciones son iguales. Previo a ello es necesario efectuar la prueba de los supuestos que requiere el análisis de varianza.

4.8.1. Prueba del supuesto de homogeneidad de varianzas

Se utilizó la prueba de Levene que es una prueba de estadística inferencial utilizada para evaluar la igualdad de las varianzas para una variable calculada para dos o más grupos.

Tabla 23

Resultado de la prueba de Levene para los grupos formados con la función de distribución exponencial

	Df	F value	Pr(>F)
group	19	11.34	0.0000
	780		

La tabla 23, proporciona el resultado de la prueba de Levene para los grupos formados con la función de distribución exponencial, donde, el valor de p es menor que el nivel de significancia de 0.05, el cual indica que no se cumple el supuesto de igualdad de

varianzas entre grupos formados con la distribución exponencial. La prueba de varianza constante es muy importante cuando el tamaño de las muestras son diferentes entre los grupos. En este caso, el tamaño de cada grupo es 40 (muestras de igual tamaño).

Figura 21. Gráfico de cajas de las medias del Lepp según grupos - formados con la función de distribución exponencial

Por otro lado, la figura 21, muestra el gráfico de cajas, en el cual se observa la variabilidad de los grupos, siendo mayor en los grupo que se formaron con menor cantidad de vértices y se va reduciendo en los grupos que fueron formados con mayor cantidad de vértices.

4.8.2. Prueba del supuesto de normalidad

Se utilizó la prueba de Shapiro-Wilk por grupos debido a que hay suficientes observaciones en cada grupo. En la tabla 24, de resultados de las pruebas de Shapiro-Wilk para los grupos formados con la función de distribución exponencial, se observa que, los valores de p son mayores que el nivel de significancia de 0.05, el cual indica que no hay indicios de que no se cumpla el supuesto de normalidad. Si uno o más grupos no pasara la prueba, no tiene importancia sustancial debido a que cuarenta como tamaño de cada grupo es suficiente.

Tabla 24

Resultados de las pruebas de Shapiro-Wilk para los grupos formados con la función de distribución exponencial

isii ie iieieii enp eiieiieiii							
	Grupo	W	P.value				
1	G010	0.99	0.95				
2	G020	0.98	0.86				
3	G030	0.98	0.73				
4	G040	0.97	0.49				
5	G050	0.97	0.50				
6	G060	0.97	0.41				
7	G070	0.95	0.10				
8	G080	0.97	0.48				
9	G090	0.96	0.16				
10	G100	0.98	0.52				
11	G110	0.99	0.93				
12	G120	0.99	0.98				
13	G130	0.97	0.38				
14	G140	0.99	0.99				
15	G150	0.97	0.30				
16	G160	0.97	0.38				
17	G170	0.99	0.87				
18	G180	0.98	0.85				
19	G190	0.94	0.04				
20	G200	0.96	0.19				

4.8.3. Prueba del supuesto de independencia

Independencia dentro de los grupos: la longitud media del Lepp de cada experimento es independiente de las otras, y la generación de vértices es aleatoria e independiente.

Independencia entre los grupos: en este caso se cumple debido a que la generación aleatoria de vértices es independiente para cada experimento y para cada grupo, del mismo modo, porque se conoce bien el algoritmo de obtención del Lepp.

4.8.4. Prueba de diferencia de medias para los grupos formados con la distribución exponencial

Se planteó la siguiente hipótesis específica para efectuar la prueba de igualdad de medias.

- H₀: todas las medias LEPP de los grupos formados con la distribución exponencial son iguales.
- *H_a*: por lo menos un par de medias LEPP formados con la distribución exponencial son distintos.

Tabla 25

Resultado resumen del análisis de varianza para los grupos formados con la función de distribución exponencial

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Grupo	19	0.02	0.00	40.06	0.0000
Residuals	780	0.03	0.00		

A continuación en la tabla 25, de resultado del análisis de varianza (ANOVA) para los grupos formados con la distribución exponencial, se observa un valor de p menor que el nivel de significancia de 0.05 para los grupos de la distribución exponencial, por lo tanto, se rechaza la hipótesis nula de igualdad de media incluso para el nivel de significancia de 0.001 y se concluye que hay diferencia significativa entre los grupos.

4.9. Prueba t de una muestra para los grupos de vértices generados según cada distribución de probabilidad

Se planteó la siguiente hipótesis general para efectuar la prueba t sobre cada conjunto de vértices generados con cada distribución:

- H_0 : la longitud media del LEPP de las triangulaciones construidas de los conjuntos de puntos generados con distribuciones probabilísticas es igual a cuatro.
- H_1 : la longitud media del LEPP de las triangulaciones construidas de los conjuntos de puntos generados con distribuciones probabilísticas es menor que cuatro.

Prueba t para los vértices de cada grupo y distribución								
Número de vértices	D. uniforme	D. normal	D. n.bivariada	D. Gamma	D. exponencial			
	p.valor	p.valor	p.valor	p.valor	p.valor			
10000	6.0798e-77	9.4990e-74	2.5261e-77	8.3909e-73	2.8546e-73			
20000	2.2700e-79	2.2482e-80	5.3809e-85	2.3961e-76	1.3375e-79			
30000	5.8753e-84	9.2479e-88	1.0450e-82	3.1506e-80	1.9550e-85			
40000	5.7173e-88	5.8597e-89	1.2105e-88	2.0778e-85	1.5468e-86			
50000	5.6456e-87	4.7775e-91	2.0442e-87	6.1252e-87	1.1310e-89			
60000	9.5049e-89	5.1942e-92	3.5317e-93	6.1054e-86	3.0375e-91			
70000	7.9262e-93	1.9252e-89	2.4650e-90	1.4461e-89	5.2704e-90			
80000	4.6685e-91	4.9774e-92	3.7343e-91	3.1712e-89	9.7133e-92			
90000	3.2161e-93	2.1868e-92	1.1687e-95	3.8306e-91	3.7940e-95			
1e+05	1.8845e-93	4.0531e-93	1.8266e-95	2.0115e-89	3.3378e-93			
110000	2.5514e-92	6.5169e-94	8.3583e-96	5.0417e-90	5.4844e-94			
120000	5.6013e-96	1.2293e-93	7.5539e-98	1.4301e-91	2.5587e-96			
130000	1.1163e-97	2.5794e-93	2.5857e-95	1.3755e-93	2.5787e-93			
140000	3.6245e-97	4.6419e-93	9.7021e-99	1.5143e-92	1.7355e-95			
150000	1.6411e-97	2.2936e-97	2.6658e-100	1.7000e-96	9.1888e-94			
160000	8.1865e-100	4.0807e-101	4.9152e-97	1.9746e-95	1.0412e-96			
170000	1.0377e-97	1.1831e-99	7.3707e-95	8.0112e-95	5.1260e-97			
180000	1.3320e-99	6.8260e-98	1.7810e-102	4.8354e-95	5.0352e-96			
190000	1.1367e-95	2.2767e-99	7.4137e-98	9.3697e-95	1.8880e-97			
2e+05	2.6514e-100	6.7165e-100	2.6360e-96	1.6799e-94	1.0048e-94			

Tabla 26

Р

En la tabla 26, en las columnas que representan cada distribución y las filas que representan los distintos grupos, los valores de p son menores que el nivel de significancia de 0.05, la decisión es rechazar la hipótesis nula. Se tiene pruebas suficientes para concluir que la media del LEPP de los grupos es significativamente menor de 4 en el nivel de significancia de 0.05.

CONCLUSIONES

- La longitud media del LEPP de las triangulaciones construidas desde los conjuntos de puntos (de tamaño 10000, 20000, ..., 200000) generados con las distribuciones probabilísticas uniforme, normal, normal bivariada, Gamma y exponencial, son significativamente menores que cuatro, esto en el nivel de significancia de 0.05.
- Se desarrolló un programa para crear triangulaciones en el espacio de dos dimensiones y obtener estadísticas descriptivas del LEPP a partir de conjuntos de puntos generados con las siguientes distribuciones probabilísticas: uniforme, normal, normal bivariada, Gamma y exponencial.
- Los vértices que conforman conjuntos puntos (de tamaños 10000, 20000, ..., 200000) que fueron generados con las distribuciones probabilísticas uniforme, normal, normal bivariada, Gamma y exponencial, son aleatorios en el nivel de significancia de 0.01.
- La longitud media del LEPP de las triangulaciones construidas sobre los conjuntos de puntos (de tamaño 10000, 20000, ..., 200000) generados con las distribuciones probabilísticas uniforme, normal, normal bivariada, Gamma y exponencial, no son iguales entre los grupos de cada distribución, esto en el nivel de significancia de 0.05.

RECOMENDACIONES

Considerando la importancia teórica y práctica que tiene esta investigación y en función de los resultados obtenidos, se elaboraron las siguientes recomendaciones para los académicos y para quienes les es de interés:

- Efectuar un estudio de mayor amplitud, que incluya más conjuntos de puntos y la aplicación de los diferentes algoritmos de triangulación con la finalidad de comprobar si estos tienen efecto en la longitud media del LEPP.
- Se recomienda efectuar experimentos con las variaciones necesarias de los parámetros de las distribuciones utilizadas, también utilizar otras distribuciones si fuera el caso.
- Analizar con mayor detenimiento y buscar la razón del comportamiento de la media del LEPP.
- Extender los estudios expuestos en esta tesis al estudio en tres dimensiones, independientemente del posible uso de la librería "3D Triangulations" del CGAL.

BIBLIOGRAFÍA

- Ángel Plaza, Falcón, S., Suárez, J. P., & Abad, P. (2012). A local refinement algorithm for the longest-edge trisection of triangle meshes. *Mathematics and Computers in Simulation*, 82(12), 2971 – 2981. Applied Scientific Computing IX - Numerical Approximation and Simulation Technologies.
- Ángel Plaza, Márquez, A., Moreno-González, A., & Suárez, J. P. (2009). Local refinement based on the 7-triangle longest-edge partition. *Mathematics and Computers in Simulation*, 79(8), 2444 – 2457. Nonstandard Applications of Computer Algebra Applied Scientific Computing VI: Numerical Grid Generation, Approximation and Visualization Modelling and Managing Financial Risk.
- Azócar, D.-I. (2007). Aplicación de los algoritmos de refinamiento LEPP en la propagación de grietas. Tesis de Magister, Departamento de Ingeniería Mecánica, Santiago -Chile.
- Bedregal, C. & Rivara, M.-C. (2013). A study on size-optimal longest edge refinement algorithms. In Jiao, X. & Weill, J.-C. (Eds.), *Proceedings of the 21st International Meshing Roundtable*, (pp. 121–136)., Berlin, Heidelberg. Springer Berlin Heidelberg.
- Bedregal, C. & Rivara, M.-C. (2014). Technical note: Longest-edge algorithms for size-optimal refinement of triangulations. *Computer-Aided Design*, 46, 246–251. 2013
 {SIAM} Conference on Geometric and Physical Modeling.
- Bedregal, C. & Rivara, M.-C. (2015). New results on lepp-delaunay algorithm for quality triangulations. *Procedia Engineering*, 124, 317 – 329. 24th International Meshing Roundtable.

Cheng, S.-W., Dey, T. K., & Shewchuk, J. (2012). Delaunay Mesh Generation (1st ed.).

Chapman & Hall/CRC.

- Chew, L. P. (1993). Guaranteed-quality mesh generation for curved surfaces. In *SCG* '93: Proceedings of the ninth annual symposium on Computational geometry, (pp. 274–280)., New York, NY, USA. ACM.
- Devore, J. L. & Berk, K. N. (2012). *Modern Mathematical Statistics with Applications* (2 ed.). Springer Science+Business Media.
- Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). *Statistical Distributions* (4 ed.). John Wiley & Sons, Inc.
- Gutierrez, C., Gutierrez, F., & Rivara, M.-C. (2007). Complexity of the bisection method. *Theoretical Computer Science*, *382*(2), 131–138.
- Miller, M. B. (2014). *Mathematics and statistics for financial risk management* (2 ed.). John Wiley & Sons, Inc., Hoboken, New Jersey.
- Pion, S. & Yvinec, M. (2019). 2D triangulation data structure. In *CGAL User and Reference Manual* (4.14 ed.). CGAL Editorial Board.
- Rivara, M.-C. (1984). Algorithms for refining triangular grids suitable for adaptative and multigrid techniques. *International Journal of Numerical Methods in Engineering*, 20, 745–756.
- Rivara, M.-C. (1997). New longest-edge algorithm for the refinement and/or improvement of unstructured triangulation. *International Journal of Numerical Methods in Engineering*, 40, 3313–3324.
- Rivara, M.-C. & Iribarren, G. (1996). The 4-Triangles longest-side partition of triangles and linear refinement algorithms. *Mathematics of Computing*, 65(216), 1485–1502.
- Rivara, M.-C., Rodriguez, P., Montenegro, R., & Jorquera, G. (2012). Multithread parallelization of lepp-bisection algorithms. *Appl. Numer. Math.*, *62*(4), 473–488.
- Rivara, M.-C. & Vemere, M. J. (1996). Cost analysis of the longest-side (triangle bisection) refinement algorithm for triangulation. *Engineering with Computers*, 12(3-4), 224– 234.
- Rodriguez, P. A. & Rivara, M. C. (2013). Parallel lepp-bisection algorithm over distributed memory systems. In 2013 32nd International Conference of the Chilean Computer Science Society (SCCC), (pp. 1–3).
- Ruppert, D. (2014). *Statistics and Finance: An Introduction*. Springer Texts in Statistics. Springer New York.

- Ruppert, J. (1995). A Delaunay refinement algorithm for quality 2-dimensional mesh generation. *J. Algorithms*, *18*(3), 548–585.
- Shewchuk, J. R. (1996). Triangle: Engineering a 2D quality mesh generator and delaunay triangulator. In FCRC '96/WACG '96: Selected papers from the Workshop on Applied Computational Geometry, Towards Geometric Engineering, (pp. 203–222)., London, UK. Springer-Verlag.
- Shewchuk, J. R. (1997). Delaunay Refinement Mesh Generation. tesis PhD, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania. Available as Technical Report CMU-CS-97-137.
- Shewchuk, J. R. (2002). Delaunay refinement algorithms for triangular mesh generation. *16th ACM Symposium on Computational Geometry: Theory and Applications*, 22(1-3), 21–74.
- Stephens, M. A. (1992). Introduction to kolmogorov (1933) on the empirical determination of a distribution. In Kotz, S. & Johnson, N. L. (Eds.), *Breakthroughs in Statistics: Methodology and Distribution*, (pp. 93–105)., New York, NY. Springer New York.
- Suárez, J. P., Plaza, A., & Carey, G. F. (2003). Propagation path properties in iterative longest-edge refinement. In *Proceedings 12th International Meshing Roundtable*, (pp. 79–90).
- Suárez, J. P., Plaza, A., & Carey, G. F. (2005). The propagation problem in longest-edge refinement. *Finite Elements in Analysis and Design*, 42(2), 130–151.
- Thomopoulos, N. T. (2018). *Probability Distributions: With Truncated, Log and Bivariate Extensions* (1 ed.). Springer International.
- Triola, M. F. (2006). *Estadística* (9 ed.). México: Pearson Educación.
- Vilca, O.-A. (2009). Estudio del refinamiento de mallas geométricas de triángulos rectángulos isósceles. Tesis de Magister, Departamento de Ciencias de la Computación, Santiago - Chile.
- Vilca, O.-A., Rivara, M.-C., & Gutierrez, C. (2010). Cálculo de la longitud media de propagación del LEPP. In *Proceedings*, *CSPC-2010*, (pp. 35–42)., Arequipa-Perú. Sociedad Peruana de Computación.
- Yvinec, M. (2019). 2D triangulation. In *CGAL User and Reference Manual* (4.14 ed.). CGAL Editorial Board.

ANEXOS

Anexo 1. Programa principal en C++ para generar la triangulación con la Distribución normal bivariada

```
#include <iostream>
  #include "eigenmvn.h"
2
  #include <chrono>
3
  #include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
4
  #include <CGAL/Triangulation_2.h>
  #include <CGAL/point_generators_2.h>
6
  #include <random> // para numeros aleatorios
7
  #include <fstream> // para manejar archivos
  typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
  typedef CGAL::Triangulation_2<K>
                                                Triangulation;
10
  typedef Triangulation::Vertex_circulator Vertex_circulator;
11
  typedef Triangulation:: Point
                                                Point:
12
  typedef Triangulation::Edge_circulator
                                                Edge_circulator;
13
  typedef Triangulation::Vertex_iterator
                                                All_vertices_iterator;
14
  typedef Triangulation:: Face_iterator
                                                All_faces_iterator;
15
                                            All_edges_iterator;
  typedef Triangulation::Edge_iterator
16
  typedef Triangulation::Finite_vertices_iterator Vertex_iterator;
17
  typedef Triangulation::Face_handleFace_handle;typedef Triangulation::Vertex_handleVertex_handle;
18
19
  typedef Triangulation::Point
                                                       Point:
20
  typedef CGAL::Creator_uniform_2<double,Point> Creator;
21
  std::ofstream Medidas;
22
  std::ofstream Archivo;
23
24
  Eigen::Matrix2d genCovar(double v0, double v1, double theta)
25
   {
26
     Eigen::Matrix2d rot = Eigen::Rotation2Dd(theta).matrix();
27
     return rot*Eigen::DiagonalMatrix<double,2,2>
28
             (v0, v1)*rot.transpose();
29
  }
30
31
  int main() {
32
   Eigen::Vector2d mean;
33
   Eigen::Matrix2d covar;
34
   const int dim = 2; // en dos dimensiones
35
    covar = genCovar(50000/4, 10000/4, M_PI/5);
36
37
   Eigen::EigenMultivariateNormal <double> normX_solver(mean, covar);
   Eigen:: Matrix<double, -1, -1>m=normX_solver.samples(1).transpose();
38
                        // crear la triangulacion
    Triangulation t;
39
    Vertex_handle vh;
40
41
   std::default_random_engine gen;
42
    typedef std::chrono::high_resolution_clock myclock;
43
    myclock::time_point beginning = myclock::now();
44
45
   int NroPuntos; // número de puntos de la triangulación
46
   int NroRepeti; // número de repeticiones
47
48
    Archivo.open ("puntos.csv");
    Archivo << "Grupo, x, y, x2, y2" << std::endl;</pre>
49
    Medidas.open("medidaTmp.csv");
50
   Medidas << "Grupo, Vertices, Triangulos, Cierre, Máximo, MediaLeppSin, "
51
    <<std::endl:
52
   for (NroPuntos = 10000; NroPuntos <= 200000; NroPuntos += 10000)</pre>
53
    for(NroRepeti =1; NroRepeti <=40; NroRepeti ++) // 40 repeticiones</pre>
54
```



```
{
55
       std::string tip;
56
       if(NroPuntos < 10000) tip="00";</pre>
57
       else if(NroPuntos < 100000) tip="0";</pre>
58
       else tip="";
59
60
       std::cout<<"Distribucion normal bivariada"<<std::endl;</pre>
61
       mean << 0.0,0.0; // Fijar la media
62
       normX_solver.setMean(mean);
63
       covar = genCovar(pow(200,2), pow(80,2), M_PI/5);
64
       normX_solver.setCovar(covar);
65
       m = normX_solver.samples(NroPuntos).transpose();
66
       for (int i=0; i < NroPuntos; ++i) {</pre>
67
          Point p(m(i, 0), m(i, 1));
68
          t.insert(p);
69
       }
70
71
       assert(t.is_valid(true));
72
       if (t.number_of_vertices()>1) {
73
         vh = t.all_vertices_begin(); // Nota: primer vértice es inf.
74
         for(vh++ ; vh != t.all_vertices_end(); vh++){
75
            Archivo <<"G"+tip+std::to_string(NroPuntos)+","
<< vh->point().x()<<","<< vh->point().y()
76
77
            <<"," << vh->point().x()/100 << "," << vh->point().y()/100
78
            << std::endl;
79
         }
80
       }
81
82
       Vertex_circulator vi=t.incident_vertices(t.infinite_vertex()),
83
84
       done(vi);
       int contador=0;
85
       if (vi != 0)
86
87
         for(;;){
            contador++;
88
            if(++vi == done) break;
89
         }
90
91
       cout << "Vertices en el cierre convexo " << contador << std::endl;</pre>
92
                                    "<<t.number_of_vertices()<<std::endl;
       cout<<"Numero vértices
93
       cout << "Numero triángulos "<<t.number_of_faces()<<std::endl;</pre>
94
       Medi das << "G" + ti p + std: : to_string(NroPuntos/1000) + ", "</pre>
95
         <<t.number_of_vertices()<<",
96
         <<t.number_of_faces()<<","<<contador;
97
<del>9</del>8
       Lepp(t);
       t.clear();
99
100
     }
    Medidas.close();
101
    Archivo.close();
102
     return 0:
103
   }
104
```